
Topic-based Community Search over Spatial-Social
Networks

Ahmed Al-Baghdadi and Xiang Lian
Department of Computer Science, Kent State University

Kent, OH 44242, USA
{aalbaghd, xlian}@kent.edu

ABSTRACT
Recently, the community search problem has attracted significant
attention, due to its wide spectrum of real-world applications such
as event organization, friend recommendation, advertisement in e-
commence, and so on. Given a query vertex, the community search
problem finds dense subgraph that contains the query vertex. In
social networks, users have multiple check-in locations, influence
score, and profile information (keywords). Most previous studies
that solve the CS problem over social networks usually neglect such
information in a community. In this paper, we propose a novel
problem, named community search over spatial-social networks
(TCS-SSN), which retrieves community with high social influence,
small traveling time, and covering certain keywords. In order to
tackle the TCS-SSN problem over the spatial-social networks, we
design effective pruning techniques to reduce the problem search
space. We also propose an effective indexing mechanism, namely
social-spatial index, to facilitate the community query, and develop
an efficient query answering algorithm via index traversal. We
verify the efficiency and effectiveness of our pruning techniques,
indexing mechanism, and query processing algorithm through ex-
tensive experiments on real-world and synthetic data sets under
various parameter settings.

PVLDB Reference Format:
Ahmed Al-Baghdadi and Xiang Lian. Topic-based Community Search over
Spatial-Social Networks. PVLDB, 13(11): 2104-2117, 2020.
DOI: https://doi.org/10.14778/3407790.3407812

1. INTRODUCTION
With the increasing popularity of location-based social networks

(e.g., Twitter, Foursquare, and Yelp), the community search prob-
lem has drawn much attention [5, 58, 25, 56] due to its wide us-
age in many real applications such as event organization, friend
recommendation, advertisement in e-commence, and so on. In
order to enable accurate community retrieval, we need to consider
not only social relationships among users on social networks, but
also their spatial closeness on spatial road networks. Therefore,
it is rather important and useful to effectively and efficiently con-
duct the community search over a so-called spatial-social network,
which is essentially a social-network graph integrated with spatial

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407812

Figure 1: An Example of Spatial-Social Networks.

road networks, where social-network users are mapped to their
check-in locations on road networks.

In reality, social-network users are very sensitive to post/ propa-
gate messages with different topics [15]. Therefore, with different
topics such as movie, food, sports, or skills, we may obtain dif-
ferent communities, which are of particular interests to different
domain users (e.g., social scientists, sales managers, headhunting
companies, etc.). In this paper, we will formalize and tackle a novel
problem, namely topic-based community search over spatial-social
networks (TCS-SSN), which retrieves topic-aware communities,
containing a query social-network user, with high social influences,
social connectivity, and spatial/social closeness.

Below, we provide a motivation example of finding a group (com-
munity) of spatially/socially close people with certain skills (key-
words) from spatial-social networks to perform a task together.

EXAMPLE 1. (Building a Project Team) Figure 1 illustrates
an example of a spatial-social network, Grs, which combines so-
cial networks Gs with road networks Gr . In social networks Gs,
users, u1∼u6, are vertices, and directed edges (e.g., eu1,u2) rep-
resent friend relationships between any two users. Each user (e.g.,
u1) is associated with a set of keywords that represent one’s skills
(e.g., programming skills). Furthermore, each directed edge eui,uj
has a weight vector with respect to two topics, (basketball, tech-
nology), each weight representing the social influence of user ui

towards user uj with respect to a topic. For example, for the
technology topic, the social influence of user u2 on user u4

(i.e., edge eu2,u4) is given by 0.7, whereas the influence of user u4

on user u2 (i.e., edge eu4,u2) is 0.8. That is, influence probabil-
ities on the two directed edges between users u2 and u4 may be
asymmetric.

Moreover, in road networks Gr , vertices are intersection points
and edges indicate road segments containing connecting those in-

2104

tersection points. Each social-network user from social network
Gs has multiple check-in locations on the spatial network Gr .

In order to accomplish a programming project related to basket-
ball websites, a project manager u2 may want to find a voluntary
(non-profit) team of developers who have the programming skills
such as {Python,HTML,C + +} (i.e., topics), are socially and
spatially close to each other, and highly influence each other on
basketball topics. In this case, the manager can issue a TCS-SSN
query over spatial-social networks Grs and call for a community
of developers who can meet and complete the project task.

In Figure 1, although user u6 has the query keyword C + + and
high influence score with u2, he/she resides in a place far away
from u2. Thus, u6 will not be considered. Similarly, user u5 will
not be considered, since its influence score based on basketball
and technology topic is very low. Therefore, in this running
example, a community {u2, u1, u4} will be returned as potential
team members. �

As described in the example above, it is important that relation-
ships among team members (programmers) to be high, so this will
encourage them to join and better communicate with their friends.
Also, we would like people with certain skills (topics) such as pro-
gramming skills or front-end and back-end skills. Furthermore, we
want programmers to reside within a certain road-network distance
such that team members do not have to drive too long to meet.

Prior works on the community search usually consider the com-
munity semantics either by spatial distances only [16] and/or struc-
tural cohesiveness [25]. They did not consider topic-aware social
influences. Moreover, some works [32] considered communities
based on topics of interests (e.g., attributes), however, topic-based
social influences among users are ignored.

In contrast, in this paper, our TCS-SSN problem will consider
the community semantics by taking into account degree of interests
(sharing similar topics of interest) among users, degree of inter-
actions (interacting with each other frequently), degrees of mutual
influences (users who influence each other), structural cohesiveness
(forming a strongly connected component on the social network),
and spatial cohesiveness (living in places nearby on road networks).

It is rather challenging to efficiently and effectively tackle the
TCS-SSN problem, due to the large scale of spatial-social net-
works and complexities of retrieving communities under various
constraints. Therefore, in this paper, we will propose effective
pruning mechanisms that can safely filter out false alarms of can-
didate users and reduce the search space of the TCS-SSN problem.
Moreover, we will design cost-model-based indexing techniques
to enable our proposed pruning methods, and propose an efficient
algorithm for TCS-SSN query answering via the index traversal.

Specifically, we make the following contributions in this paper.

1. We define the problem of the topic-based community search
over spatial-social networks (TCS-SSN) in Section 2.

2. We propose effective pruning strategies to reduce the search
space of the TCS-SSN problem in Section 3.

3. We design effective, cost-model-based indexing mechanisms
to facilitate the TCS-SSN query processing in Section 4.

4. We propose an efficient query procedure to tackle the TCS-
SSN problem in Section 5.

5. We demonstrate through extensive experiments the efficiency
and effectiveness of our TCS-SSN query processing approach
over real/synthetic data sets in Section 6.

Section 7 reviews previous works on query processing in social
and/or road networks. Finally, Section 8 concludes this paper.

Table 1: Frequently used symbols and their descriptions.

Symbol Description
Gr, Gs, andGrs a spatial network, a social network, and a spatial-

social network, respectively
S a set (community) of social-network users
u, v, uj , or vj a social-network user
u.key a vector of possible keywords associated with user uj
u.L a set of check-in locations, u.loci, by user u
eu,v a directed edge from user u to user v
eu,v.T a vector of topics of interests associated with edge

eu,v
sup(e) the support of an edge e
tpju,v a weight probability on the topic j from user u to v
infScore(., .) an influence score function
avg distRN (u, v) the average road-network distance between users u

and v
distSN (u, v) No. of hops between users u and v on social networks
PRN a set of l road-network pivots, rpivi
PSN a set of h social-network pivots, spivi
Pindex a set of ι index pivots

2. PROBLEM DEFINITION
In this section, we provide formal definitions and data models for

social networks, spatial networks, and their combination, spatial-
social networks, and then define our novel query of topic-based
community search over spatial-social networks (TCS-SSN).

2.1 Social Networks
We formally define the data model for social networks, as well

as structural cohesiveness and social influence in social networks.
DEFINITION 1. (Social Networks, Gs) A social network, Gs,

is a triple (V (Gs), E(Gs), φ(Gs)), where V (Gs) is a set of M
users u1, u2, . . . , and uM ,E(Gs) is a set of edges eu,v (friendship
between two users u and v), and φ(Gs) is a mapping function:
V (Gs)× V (Gs)→ E(Gs).

In Definition 1, each user, uj (for 1 ≤ j ≤ M), in the social
network Gs is associated with a vector of possible keywords (or
skills) uj .key = (keyj1, key

j
2, . . . , key

j
|key|).

Each edge (friendship), eu,v (∈ E(Gs)), in social networks is as-
sociated with a vector of topics of interest eu,v.T = (tp1u,v, tp

2
u,v,

. . . , tp
|T |
u,v), where tpju,v is the influence probability (weight) of

interested topic j and |T | is the size of the topic set eu,v.T .
Modeling Structural Cohesiveness: Previous works usually de-
fined the community as a subgraph in social networks Gs with
high structural cohesiveness. In this paper, to capture structural
cohesiveness in Gs, we consider the connected (k, d)-truss [32].

Specifically, we first define a triangle in Gs, which is a cycle
of length 3 denoted as 4uaubuc , for user vertices ua, ub, uc ∈
V (Gs); the support, sup(e), of an edge e ∈ E(Gs) is given by the
number of triangles containing e in Gs [52]. Then, the connected
(k, d)-truss is defined as follows.

DEFINITION 2. (Connected (k, d)-Truss [32]): Given a graph
Gs, and an integer k, a connected subgraph S ∈ Gs is called a
(k, d)-truss if two conditions hold: (1) ∀e ∈ E(S), sup(e) ≥ (k−
2), and (2) ∀u, v ∈ V (S), distSN (u, v) < d, where sup(e) is the
number of triangles containing e and distSN (u, v) is the shortest
path distance (the minimum number of hops) between users u and
v on social networks.
Modeling Social Influences: Now, we discuss the data model for
social influences in social networks. Each edge eu,v is associated
with a vector, T = (tp1u,v, tp

2
u,v, . . . , tp

|T |
u,v), of influence prob-

abilities on different topics. Further, we denote the path pathu,v

as a path on the social network connecting two users u and v such
that pathu,v = (u = a1 → a2 → · · · → a|pathu,v| = v).
It is worth noting that, Barbieri et al. [6] extended the classic IC
and LT models to be topic-aware and introduced a novel topic-
aware influence-driven propagation model that is more accurate in

2105

describing real-world cascades than standard propagation models.
In fact, users have different interests and items have different char-
acteristics, thus, we follow the text-based topic discovery algorithm
[6, 15] to extract user’s interest topics and their distribution on
each edge. Specifically, for each edge eu,v , we obtain an influence
score vector, for example, (basketball:0.1, technology:0.8), indicat-
ing that the influence probabilities of user v influenced by user u
on topics, basketball and technology, are 0.1 and 0.8, respectively.

Below, we define the influence score function.

DEFINITION 3. (Influence Score Function [15]). Given a
social-network graphGs, a topic vector T , and two social-network
users u, v ∈ V (Gs), we define the influence score from u to v as
follows:

infScore(u, v|T) = max
∀pathu,v∈Gs

{infScore(pathu,v|T)}. (1)

For two vertices u, v ∈ V (Gs) such that pathu,v = (u = a1 →
a2 → · · · → a|pathu,v| = v), and a topic vector T , we define the
influence score on pathu,v as follows:

infScore(pathu,v|T) =

|pathu,v|−1∏
i=1

f(ai, ai+1|T), (2)

where f(ai, ai+1|T) is the influence score from ai to ai+1 of the
two adjacent vertices ai and ai+1 based on the query topic vec-
tor T . We compute the influence score between any two adjacent
vertices ai and ai+1 as follows:

f(ai, ai+1|T) =

|T |∑
j=1

tpju,v · T j , (3)

where tpju,v is the weight probability on topic j, T j is the j-th
query topic, and |T | is the length of the topic set T .

In Definition 3, we define the influence score between any two
users in the social networkGs. Given a topic vector T and a subset
S ⊆ Gs, we define the influence score between subgraph S and a
user v as follows:

infScore(S, v|T) = min
∀u∈S

{infScore(u, v|T)}, (4)

where infScore(u, v|T) is defined in Eq. (2).
Note that, the pairwise influence (or mutual influence) in our

TCS-SSN problem indicates the influence of one user on another
user in the community. In particular, the pairwise influence is not
symmetric, in other words, for two users u and v, the influence of
u on v can be different from that of v on u. Thus, in our TCS-SSN
community definition, we require both influences, from u to v and
from v to u, be greater than the threshold θ (i.e., mutual influences
between u and v are high), which ensures high connectivity or
interaction among users in the community. Other metrics such as
pairwise keyword similarity [7] (e.g., Jaccard similarity) are usu-
ally symmetric (providing a single similarity measure between two
users), which cannot capture mutual interaction or influences. Most
importantly, users u and v may have common keywords/topics,
however, it is possible that they may not have high influences to
each other in reality.

2.2 Spatial Road Networks
Next, we give the formal definition of spatial road networks.
DEFINITION 4. (Spatial Road Networks, Gr) A spatial road

network, Gr , is represented by a triple (V (Gr), E(Gr), φ(Gr)),
where V (Gr) is a set of N vertices w1, w2, . . . , and wN , E(Gr)
is a set of edges ej,k (i.e., roads between vertices wj and wk), and
φ(Gr) is a mapping function: V (Gr)× V (Gr)→ E(Gr).

In Definition 4, road networkGr is modeled by a graph, with edges
as roads and vertices as intersection points of roads.

2.3 Spatial-Social Networks
In this subsection, we define spatial-social networks, as well as

the spatial cohesiveness over spatial-social networks.

DEFINITION 5. (Spatial-Social Networks, Grs) A spatial- so-
cial network, Grs, is given by a combination of spatial road net-
works Gr and social networks Gs, where users uj on social net-
works Gs are located on some edges of spatial road networks Gr .

From Definition 1, each social-network user, uj ∈ Gs (for 1 ≤
j ≤ M), is associated with a 2D location on the spatial network
uj .L, where uj .L = {uj

(loc1,time1)
, . . . , (uj

(loc|u.L|,time|u.L|)
},

where uj
loci

has its spatial coordinates (xji , y
j
i) along x− and y−

axes, respectively on Gr at timestamp uj
timei

.
Modeling Spatial Cohesiveness: Next, we discuss modeling of
spatial cohesiveness over spatial-social networks. In real-world
social networks, users change their locations frequently due to mo-
bility. As a result, users’ spatially close communities change fre-
quently as well [25]. Social-network users’ check-in information
can be recorded with the help of GPS and WiFi technologies. To
measure the spatial cohesiveness, we define an average spatial dis-
tance function, avg distRN (.). The average spatial distance func-
tion utilizes social-network users’ locations u.loc on the spatial
network to measure the spatial cohesiveness.

DEFINITION 6. (The Average Spatial Distance Function). Si-
nce each social-network user u ∈ V (Gs) has multiple locations on
spatial networks Gr , u.loc, at different timestamp time, we define
the shortest path distance between any two users u, v ∈ V (Gs) on
the spatial networks as follows:

avg distRN (u, v) (5)

=

∑
∀u.loci

∑
∀v.locj distRN (u.loci, v.locj)

|u.L| · |v.L| ,

where |u.L| is the number of check-ins by user u, and distRN (., .)
is the shortest path distance between two road-network locations.

2.4 Topic-based Community Search over
Spatial- Social Network (TCS-SSN)

In this subsection, we first propose a novel spatial-social struc-
ture, ss-truss, and then formally define our TCS-SSN problem.
Spatial-Social Structure, ss-truss. In this work, we consider both
spatial and social networks to produce compact communities with
respect to spatial cohesiveness, social influence, structural cohe-
siveness, and user keywords. We propose a novel spatial-social
(k, d, σ, θ)-truss, or ss-truss.

DEFINITION 7. (Spatial-Social (k, d, σ, θ)-Truss, ss-truss).
Given a spatial-social network Grs, a query topic set Tq , integers
k and d, a spatial distance threshold σ, and an influence score
threshold θ, we define the spatial-social (k, d, σ, θ)-truss, or ss-
truss, as a set, S, of users from the social network Gs such that:

• S is a (k, d)-truss (as given in Definition 2);

• the average spatial distance between any two users u and v
in S is less than σ, u, v ∈ S|avg distRN (u, v) < σ, and;

• the influence score infScore(.|.), {∀u, v ∈ S : ∃pathu,v ∈
S, infScore(pathu,v|Tq) ≥ θ.

2106

Note that, the ss-truss satisfies the nested property that: if k′ ≤
k, d′ ≥ d, σ′ ≤ σ, and θ′ ≤ θ hold, then we have: (k, d, σ, θ)-truss
is a subgraph of some (k′, d′, σ′, θ′)-truss.

Next, we define our novel query topic-based community search
over spatial-social networks.

DEFINITION 8. (Topic-based Community Search Spatial- So-
cial Community, TCS-SSN). Given a spatial-social network Grs,
a query user q, a keyword set query Kq , and a topic query set
Tq , the topic-based community search over spatial-social networks
(TCS-SSN) retrieves a maximal set, S, of social-network users such
that:
• q ∈ S;
• S is a (k, d, σ, θ)-truss, and;
• ∀u ∈ S, u.key ∩Kq 6= ∅.

Discussions on the Parameter Settings: Note that, parameter θ
(∈[0, 1]) is an influence score threshold that specifies the minimum
score that any two users influence each other based on certain topics
in the user group S. Larger θ will lead to a user group S with higher
social influence.

The topic query set, Tq , contains a set of topics specified by
the user. The influence score between any two users in the user
group S is measured based on topics in Tq . The larger the topic
set query Tq , the higher the influence score among users in the
resulting community S.

The parameter σ controls the maximum (average) road-network
distance between any two users in the user group S, that is, any two
users in S should have road-network distance less than or equal
to σ. The larger the value of σ, the farther the driving distance
between any two users in the community community S.

The parameter d limits the maximum number of hops between
any two users in the user group S on social networks. The larger
the value of d, the larger the diameter (or size) of the community
S.

The integer k controls the structural cohesiveness of the commu-
nity (subgraph) S in social networks. That is, k is used in (k, d)-
truss to return a community S with each connection (edge) (u, v)
endorsed by (k − 2) common neighbors of u and v. The larger
the value of k, the higher the social cohesiveness of the resulting
community S.

The keyword query set Kq , is a user-specified parameter, which
contains the keywords or skills a user u must have in order to be
included in the community. In real applications (e.g., Example
1) each user in the resulting community S must have at least one
keyword in Kq .

To assist the query user with setting the TCS-SSN parameters,
we provide the guidance or possible fillings of parameters θ, Tq ,
σ, d, and k, such that the TCS-SSN query returns a non-empty
answer set. Specifically, for the influence threshold θ, we can assist
the query user by providing a distribution of influence scores for
pairwise users, or suggesting the average (or x-quantile) influence
score of those user groups selected in the query log. To suggest
the topic query set Tq , we can give the user a list of topics from
the data set, and the user can choose one or multiple query topics
of one’s interest. Furthermore, to decide the road-network dis-
tance threshold σ, we can also show the query user a distribution
of the average road-network distance between any neighbor users
(or close friends) on social networks. In addition, we suggest the
setting of value k, by providing a distribution of supports, sup(e),
on edges e (between pairwise users) of social networks, and let
the user tune the social-network distance threshold d, based on the
potential size of the resulting subgraph (community). Finally, we

assist the query user setting the keyword query setKq by providing
a list of frequent keywords appearing in profiles of users surround-
ing the query issuer q.
Challenges: The straightforward approach to tackle the TCS-SSN
problem is to enumerate all possible social-network users, check
query predicates on spatial-social networks (as given in Definition
8), and return TCS-SSN query answers. However, this method
incurs high time complexity, since the number of possible users in a
community is rather large. Although some of users with unwanted
keywords can be directly discarded, still there will be a very large
group of users satisfying the query keyword set. Thus, in the worst
case, there is an exponential number of possible combination of
users groups. For each user group, spatial-cohesiveness, structural-
cohesiveness, and influence score have to be measured to obtain
final TCS-SSN answers, which is not efficient. Applying such
measures to many group of users may not be even feasible with
nowadays social networks containing millions of nodes and edges.

Therefore, in this work, we will design effective pruning strate-
gies to reduce the search space of the TCS-SSN problem. Then, we
will devise indexing mechanisms and develop efficient TCS-SSN
query answering algorithms by traversing the index.

3. PRUNING METHODS
In this section, we introduce effective pruning techniques that

utilize the topic-based community search properties to reduce the
search space and facilitate the online community search query pro-
cessing.

3.1 Spatial Distance-Based Pruning
For any ss-truss community S, the average spatial distance be-

tween any pair of users is less than σ (as given in Definition 7).
Based on that, for any two social-network user, if the average spa-
tial distance between their check-in locations in the spatial network
is greater than σ, then they cannot be in the same community. We
propose our spatial distance-based pruning that prunes false alarms
w.r.t. σ threshold in the ss-truss.

Intuitively, if the average spatial distance between a vertex v and
a candidate vertex u is greater than σ, it means that user v resides
in a place far from v. By the lemma, v can be discarded. However,
the computation of the average spatial distance is costly. Next,
we present our method of computing the average spatial distance
between social-network users.
Computing the Average Spatial Distance: For two social-network
vertices u and v, the average spatial road distance is computed by
applying Eq. (5). Since each social-network user may have multiple
check-in locations on the spatial network, Eq.(5) enumerates all
possible shortest path combinations between the check-in locations
of the two users.

From Figure 1, assume that we would like to compute the aver-
age spatial shortest path distance between u6 and u4. Since each
user has 2 check-in locations, 4 shortest path distance computations
on road networks are required. Clearly, Eq. (5) cannot be applied to
large graphs due to its high time complexity. Thus, we will develop
a pruning method to reduce the computation cost and tolerate real-
world large graphs.

To reduce computational costs, we avoid the computation of the
exact average spatial distance between two users by estimating the
upper bound of the average spatial distance between them.

LEMMA 1. For any user u in the ss-truss community S, and a
user v to be in S, if the upper bound ub avg distRN (u, v) of the
average shortest path distance is greater than the spatial distance
threshold, ub avg distRN (u, v) > σ, then user v cannot be in S
and can be safely pruned.

2107

We will utilize the triangle inequality [3] to estimate the up-
per bound ub avg distRN (., .) of the average spatial distance be-
tween any two vertices. We rely on the spatial distance offline
pre-computation of road network pivots PR to estimate the up-
per bound of the average spatial distance between any two social-
network users. We offline pre-compute the shortest path distance
from each user’s check-in locations u.loci(1 ≤ i ≤ |u.L|) to all
pivot locations PRN = {rpiv1, . . . , rpivl}.

By the triangle inequality, we have: distRN (u.loci, v.locj) ≤
distRN (u.loci, pivk) + distRN (pivk, v.locj), where distRN (
u.loci, pivk) (or distRN (pivk, v.locj)) is the shortest path dis-
tance on the road network between the i-th location of user u (or
the j-th location of user v) and the k-th pivot, 1 ≤ i ≤ |u.L|,
1 ≤ j ≤ |v.L|, and 1 ≤ k ≤ l. Then, at the query time,
we utilize this triangle inequality property to estimate the average
spatial distance upper bound, avg distRN (u, v), of any two social-
network users u and v in Eq. (5).

avg distRN (u, v) ≤

l
min
k=1


∑|u.L|
i=1

∑|v.L|
j=1

(distRN (u.loci, rpivk) + distRN (rpivk, v.locj))

|u.L|.|v.L|

 (6)

=
l

min
k=1

|u.L| ·
|u.L|∑
i=1

distRN (u.loci, rpivk)

+|v.L| ·
|v.L|∑
j=1

distRN (rpivk, v.locj)


= ub avg distRN (u, v).

where distRN (·, ·) is the shortest path distance on the road net-
work, l is the number of road-network pivots PRN , and |u.L| (or
|v.L|) is the number of check-in locations by user u (or v).

3.2 Influence Score Pruning
In Definition 7, for a set S of social-network users to be an

ss-truss, the influence score between any pair of users should be
greater than a certain threshold θ. This ss-truss property ensures
that the resulting communities have high influence scores, that is,
users in communities highly influence each other. In the sequel, we
propose a pruning method that utilizes this property to reduce the
search space by filtering out users with low influence score.

For a user v to be in a spatial-social community (ss-truss) S,
based on influence score, the influence score between v and each
vertex in S has to be greater than or equal to θ.

We propose an effective influence score pruning with respect to
influence score upper bounds below.

LEMMA 2. (Influence Score Pruning). Given a social net-
work Gs, a spatial-social community (ss-truss) S, a topic query
Tq , and a candidate vertex v to be in S, the vertex v can be safely
pruned if there exists a vertex u ∈ S such that ub infScore
(u, v|Tq) < θ.

For each user u in the social network Gs, we utilize the influ-
ence score upper bounds to efficiently prune false alarms. Next,
we describe our method of computing a tight upper bound of the
influence score between any two vertices.
The Computation of the Influence Score Upper Bound: We de-
note the in-degree of a vertex u as u.degin, where u.degin is a set
of users v ∈ V (Gs) such that ev,u ∈ E(Gs), and u.degout is the
out-degree as a set of users v ∈ V (Gs) such that eu,v ∈ E(Gs).
We denote ub inf in(u) and ub infout(u) as the upper bound of
in/out-influence of the vertex u. We compute the ub inf in(.) and

ub infout(.) as follows:

ub inf in(u|T) (7)

= ∀v∈u.degin∀t∈T {max{tptv,u}, . . . ,max{tp|T |v,u}}

ub infout(u|T) (8)

= ∀v∈u.degout∀t∈T {max{tptu,v}, . . . ,max{tp|T |u,v}}

For any two nonadjacent vertices u, v ∈ V (Gs)(i.e., eu,v /∈
E(Gs)), we estimate the influence score upper bound from u to v:

ub infScore(u, v|T) = ub infout(u|T) · ub inf in(v|T). (9)

Estimating the upper bound of the influence score is very critical
for the influence score pruning to perform well. In Eq. (9), we
utilize one hop friends to estimate the upper bound of the influence
score. This method has proven to be effective and we will show in
the experimental evaluation, Section 6.

3.3 Structural Cohesiveness Pruning
In fact, the ss-truss communities have high structural cohesive-

ness. From Definition 2, the support of an edge in ss-truss com-
munity S has to be greater than or equal k − 2, sup(e) ≥ k − 2.
We refer Φ(u), u ∈ V (Gs), as the maximum support of an edge
induced by u, mathematically,

Φ(u) = max
∀v∈u.deg

{
sup(u, v) if(v ∈ u.degout);
sup(v, u) if(v ∈ u.degin),

(10)

where u.deg = {u.degin ∪ u.degout}.

LEMMA 3. (Structural Cohesiveness Pruning). Given a so-
cial network Gs, a spatial-social community (ss-truss) S, and a
candidate vertex v to be in S, vertex v can be directly pruned, if
Φ(v) < k − 2.

Computing the edge support is a key issue to apply Lemma 3. In
this regard, we rely on Wang et al. [52] to compute the maximum
edge support for all edges in the graph, sup(e), ∀e ∈ E(Gs), in
O(E(Gs)1.5).

3.4 Social Distance-Based Pruning
For a spatial-social community S ∈ Gs, Definition 7 ensures

that for any two vertices u, v ∈ S, the shortest path distance
connecting u and v over the social network Gs must be less than
d, distSN (u, v) < d,∀u, v ∈ S. In the social distance-based
pruning, we filter out vertices with distances greater than d from
the candidate set S.

LEMMA 4. (Social Distance-Based Pruning). Given a social
network Gs, a spatial-social community (ss-truss) S, and a
candidate vertex v to be in S, the vertex v can be directly
filtered out if ub distSN (S, v) ≥ d, where ub distSN (S, v) =
max∀u∈S{ub distSN (u, v)}.

The Computation of the Social Distance Upper Bound: For a
two social-network users u and v, the social network distance is
the minimum number of hops connecting u and v. The upper
bound of the social-network distance between u and v can be
computed by utilizing triangle inequality. We offline pre-compute
the social-network distance from user to all social-network pivots
PSN = {spiv1, . . . , spivh}. At query time, use triangle inequality

2108

to estimate the social-network distance between any two social-
network users u and v as follows:

distSN (u, v) ≤
h

min
k=1
{distSN (u, spivk) + distSN (v, spivk)}

= ub distSN (u, v), (11)

where distSN (u, spivk) is the shortest path social-network
distance between user u and the k-th social-network pivot, (1 ≤
k ≤ h), and h is the number of the social-network pivots PSN .

3.5 Keyword-based Pruning
For a user v to join the candidate ss-truss community S, the user

keyword set v.key has to cover at least one keyword in the keyword
query setKq . If the candidate vertex v.key shares no keyword with
the query set Kq , then v can be discarded.

LEMMA 5. (Keyword-based Pruning). Given a social-network
graph Gs, a spatial-social network set S, a keyword query set Kq ,
and a user v to be in S, user v can be safely pruned, if v.key ∩
Kq = ∅.

4. INDEXING MECHANISM
4.1 Social-Spatial Index, I, Structure

We build our social-spatial index I over social-network vertices
V (Gs). Specifically, we utilize information from both spatial
and social networks to partition the social network vertices into
subgraphs. The subgraphs can be treated as leaf nodes of the index
I. Then, connected subgraphs in leaf nodes are recursively grouped
into non-leaf nodes, until a final root is obtained.
Leaf Nodes. Each leaf node in the social-spatial index I contains
social-network users u. Each user u in leaf nodes is associated with
a vector of the user’s 2D check-in locations u.L, a set of keywords
u.key, a vector of the maximum out-influence topics u.infout,
a vector of the maximum in-influenced topics u.inf in, and the
minimum value of edge support associated with the user u, Φ(u).
To save the space cost, we hash each keyword k ∈ u.key into a
position in a bit vector u.Vkey .

Furthermore, we choose h social-network pivots PSN =
{spiv1, spiv2, . . . , and spivh } in Gs. Similarly, we choose
l road-network pivots PRN = {rpiv1, rpiv2, . . . , and rpivl}
in Gr . Each social-network user u in leaf nodes maintains
its social-network distance to the social-network pivots, that is,
distSN (u, spivi)(1 ≤ i ≤ h). The case of road-network pivots
avg distRN (u, rpivj)(1 ≤ j ≤ l) is similar. A cost model is
proposed in Section 4.5 of our technical report [2] to guide how to
choose good social-network or road-network pivots.
Non-Leaf Nodes. Each entry e of non-leaf nodes in index I is
a minimum bounding rectangle (MBR) for all subgraphs under
eI . In addition, e is associated with a keyword super-set e.key
(=
⋃
∀u∈e u.key) and lb Φ(e) (= min∀u∈e Φ(u)). We maintain a

bit vector e.Vkey for entry ewhich is a bit-OR of bit vectors u.Vkey

for all u ∈ e. In addition, we store a lower bound of edge support
that is associated with each user under the node e as follows:

lb Φ(e) = min
∀u∈e

Φ(u). (12)

Finally, we store an upper bound of in-influence and out-
influence scores, that is,

ub inf
out

(e|T) (13)

= ∀u∈e∀v /∈ e, v ∈ u.degout∀t∈T {max{tptu,v}, . . . ,max{tp|T |u,v}},

ub inf
in

(e|T) (14)

= ∀u∈e∀v /∈ e, v ∈ u.degin∀t∈T {max{tptv,u}, . . . ,max{tp|T |v,u}}.

We also store upper/lower bounds of actual road-network
shortest path distance from each user’s check-in locations to all
road-network pivots PRN , and to social-network distances (the
number of hops) to the social-network pivots PSN , that is,

lb distRN (e, rpivk) = min
∀u∈e
{avg distRN (u, rpivk)}, (15)

ub distRN (eI , rpivk) = max
∀u∈e
{avg distRN (u, rpivk)}, (16)

lb distSN (e, spivk) = min
∀u∈e
{distSN (u, spivk)}, (17)

ub distSN (e, spivk) = max
∀u∈e
{distSN (u, spivk)}. (18)

4.2 Index-Level Pruning
In this subsection, we discuss the pruning on the social-spatial

index I which can be used for filtering out (a group of) false alarms
on the level of index nodes.
Spatial Distance-based Pruning for Index Nodes: We utilize the
road-network distance for ruling out index node eIi where users
reside far away from locations of users in the candidate set S.
Specifically, we have the following lemma.

LEMMA 6. (Spatial Distance-based Pruning for Index
Nodes). Given a spatial-social community S of users from social
network Gs, and a node ei from the social-spatial index I. Node
ei ∈ I can be safely pruned, if lb distRN (S, ei) > σ holds, where
lb distRN (S, ei) is the lower bound of the average road distance
between users in the community S and the index node ei.

Discussion on Obtaining Lower Bounds of distRN (S, e): Next,
we discuss how to derive the lower bound, lb distRN (S, e), of the
average road network distance which is used in Lemma 6.

lb distRN (S, e) (19)

=
l

max
k=1


|distRN (uq, rpivk)− lb distRN (e, rpivk)|,

if distRN (uq, rpivk) < lb distRN (e, rpivk);
|distRN (uq, rpivk)− ub distRN (e, rpivk)|,

if distRN (uq, rpivk) > ub distRN (e, rpivk);
0, otherwise,

where uq is the query vertex assigned at query time, and
lb distRN (e, rpivk) and ub distRN (e, rpivk) are given in
Eqs. (15) and (16), resp.
Influence Score Pruning for Index Nodes: The TCS-SSN query
aims to produce communities where users highly influence each
other. For an ss-truss community S and an index node e ∈ I,
node e can be entirely pruned, if the influence score between the
community S and e is less than threshold θ.

LEMMA 7. (Influence Score Pruning for Index Nodes).
Given a spatial-social community S and an index node e ∈
I, e can be safely pruned, if lb infScore(S, e|T) < θ or
lb infScore(e, S|T) < θ.

The Computatio of the Influence Score Lower Bound
lb infScore(S, e|T) on the Index I: We define the lower
bound of the influence score between a spatial-social community S
and an index node e ∈ I,with respect to the query vertex uq ∈ S
as follows.

lb infScore(S, e|Tq) = ub infout(uq|T) · ub inf in(e|T), (20)

lb infScore(e, S|Tq) = ub infout(e|T) · ub inf in(uq|T), (21)

where ub inf in(uq|T) and ub infOut(uq|T) are given resp. in
Eqs. (8) and (9), and ub inf in(e|T) and ub infout(e|T) are given
in Eqs. (14) and (13), resp.

2109

Social Distance-based Pruning for Index Nodes: An index node
e of index I can be filtered out by applying the social distance-
based pruning, if the number of hops between the candidate
community S and users in e is greater than a threshold d.

LEMMA 8. (Social Distance-based Pruning for Index Nodes).
Given a community S of candidate users from social network Gs,
and a node e from index I, a node e ∈ I can be safely pruned,
if lb distSN (S, e) > d holds, where lb distSN (S, e) is the lower
bound of the number of hops between users in S and index node e.

Discussion on Obtaining Lower Bounds of distSN (S, e): Next,
we discuss how to derive lower bound to derive the lower bound,
lb distSN (S, e), of the social-network distance (i.e., No. of hops)
between the ss-truss S and index node e.

To estimate the lower bound lb distSN (S, e) of the social-
network distance, we utilize social-network pivots as follows:

lb distSN (S, e) (22)

=
h

max
k=1


|distSN (uq, spivk)− lb distSN (e, spivk)|,

if distSN (uq, spivk) < lb distSN (e, spivk);
|distSN (uq, spivk)− ub distSN (e, spivk)|,

if distSN (uq, spivk) > ub distSN (e, spivk);
0, otherwise,

where uq is the query vertex assigned at query time, and
lb distSN (e, spivk) and ub distSN (e, spivk) are offline pre-
computed in Eqs. (17) and (18), respectively.
Structural Cohesiveness Pruning for Index Nodes. Similar to
the structural cohesiveness pruning discussed in Section 3.3, if the
lower bound of edge support associated with users under node e ∈
I is less than threshold k, then there is no edge under e satisfying
structural cohesiveness, and the node e can be directly pruned.

LEMMA 9. (Structural Cohesiveness Pruning for Index
Nodes) Given a social-spatial index node e ∈ I, if lb Φ(e) < k,
then the node e can be safely filtered out.

In Lemma 9, lb Φ(e) is the lower bound of edge support of the
index node e, defined in Section 4.1. Intuitively, if all the edges
associated with vertices under the node e has a maximum support
value that is less than k, then all vertices (users) under e cannot be
in the query result. The lower bound of edge support of the node e
is computed in Eq. (12).
Keyword-based Pruning for Index Nodes: Definition 8, ensures
that each user in the returned community contains at least one
keyword query that appears in the query set Kq . Therefore, for
an index node e ∈ I can be safely pruned, if all users under e share
no keywords with the keyword query set Kq .

LEMMA 10. (Keyword-based Pruning for Index Nodes)
Given an index node e ∈ I and a set Kq of query keywords, node
e can be safely ruled out, if e.Vkey ∩Kq = ∅.

For an index node e, if it holds that e.Vkey ∩Kq = ∅, then node
e does not contain any keywords in Kq , and thus e can be pruned.

4.3 The Construction of a Social-Spatial Index
Algorithms 1 and 2 will be running simultaneously to generate

the social-spatial index I. The general idea of building the
social-spatial index is to; First, find a number ι of index pivots
(social network users); Second, partition the social network users
(vertices) around those pivots.

We first start by describing Algorithm 2, where the input is
a social network Gs, a spatial network Gr , and a set Pindex

of ι pivots (social-network vertices). The goal is to generate ι
subgraphs around Pindex.

For each social-network vertex v, we compute the quality with
each social-network pivot pivi ∈ Pindex (lines 1-4). The quality

Algorithm 1: Index Pivot Selection
Input: a road networkGr , a social networkGs, and the number ι of pivots
Output: the set, Pindex, of pivots

1 global cost = −∞, P = ∅;
2 for a = 1 to global iter do
3 randomly select ι initial pivots and form a pivot set Sp
4 generate subgraphs based on pivots G =

Gen Subgraphs(Gr, Gs,Sp)
5 set local cost = Cost Pindex(G)
6 for b = 1 to swap iter do
7 select a random pivot piv ∈ Sp
8 randomly choose a non-pivot new piv

9 S
′
p = Sp − {piv}+ {new piv}

10 G
′

= Gen Subgraphs(Gr, Gs,S
′
p)

11 evaluate the new cost Cost Pindexnew(G′) w.r.t. S
′
p

12 if the new cost Cost Pindexnew(G′) is better than local cost
then

13 local cost = Cost Pindexnew(G′)
14 Sp = S

′
p

15 if local cost is better than global cost then
16 Pindex = Sp
17 global cost = local cost

18 return Pindex

function quality(v, pivi) computes the number of hops and road-
network distance between v and pivi (line 4). Then, assign the
vertex v to the pivot where the quality is the best (lines 5-8).
Finally, the set of partitions in returned (line 9).

Algorithm 1, illustrates the details of the pivot selection. At the
beginning, two parameters globalcost and P will be set to store
the globally optimal cost value and the corresponding pivot set,
resp. (line 1). We randomly select a pivot set Sp from social-
network users (vertices) (line 3). Next, we partition the social
network around Sp by Algorithm 2 and partitions G (line 4). Then,
we evaluate the cost function Cost Pindex(G) of the resulting
partitions (please refer to the cost model for selecting good index
pivots in Section 4.5.3 of our technical report [2]). After that, each
time we swap a piv ∈ Sp with a non-pivot new piv, which results
in a new pivot set S ′p (lines 7-9), and generate new graph partitions
G′ by Algorithm 2 and evaluate it (lines 10-11). If the new cost
is better than the best-so-far cost local cost, then we can accept
the new pivot set with its cost (lines 12-14). We repeat the process
of swapping a pivot with a non-pivot for swap iter times (line 6).
To avoid the local optimal solution, we consider selecting different
initial pivot sets for globa liter times (lines 2-3), and record the
globally optimal pivot set and its cost (lines 15-17). Finally, we
return the best pivot set Pindex.

Finally, we pass the optimal pivot set Pindex to Algorithm 2 to
generate subgraphs, which are treated as leafs of the social-spatial
index. Then, the connected subgraphs in leaf nodes are recursively
grouped into non-leaf nodes, until a final root is obtained.
Remarks. We also propose evaluation measures of grouping
social-network users, based on their spatial closeness, structural
cohesiveness, and social influence, and provide cost models for
selecting good road-network pivots PRN , social-network pivots
PSN , and index pivots Pindex. We omit them here due to space
limitations. For interested readers, please refer to Sections 4.4 and
4.5 in our technical report [2].

5. TCS-SSN COMMUNITY SEARCH
Algorithm 3 illustrates the pseudo code of TCS-SSN answering,

which process TCS-SSN queries over the spatial-social network
Grs via the social-spatial index I. Specifically, we traverse index
I, and apply index level pruning over the index node and objects
level pruning over the social network object, and refine a candidate
set to return the actual TCS-SSN query answer.

2110

Algorithm 2: Gen Subgraphs
Input: a spatial networkGr , a social networkGs, and a set

Pindex = piv1, . . . , pivh of pivots
Output: a set G = g1, . . . , gι of subgraphs

1 for v ∈ V (Gs) do
2 best quality =∞
3 for i = 1 to ι do
4 quality(v, pivi) =

avg distRN (v, pivi)

max avg distRN
+
distSN (v, pivi)

max DistSN
5 if quality(v, pivi) < best quality then
6 j = i
7 best quality = quality(v, pivi)

8 assign v to gj
9 return G

Pre-Processing. Initially, we set Scand to an empty set, initialize
an empty minimum heapH, and add the root, root(I), of index I
toH (lines 1-3).
Index Traversal. In Algorithm 3, after we insert the heap entry
(root(I), 0) into the heap H, we traverse the social-spatial index
I from root to leaf nodes (lines 4-15). In particular, we will use
heapH to enable the tree traversal. Each time we pop out an entry
(ei, key) with the minimum key from heapH, where ei is an index
node ei ∈ I, and key is a lower bound of road-network distance,
key = lb distRN (e, ei). If key is greater than spatial distance
threshold σ, all entries in H must have their lower bounds of
maximum road-network distances greater than threshold σ. Then,
we can safely prune all entries in the heap and terminate the loop.

When entry ei is a leaf node, we consider each object
(social-network user) u ∈ ei, and apply object-level pruning
spatial distance-based pruning, influence score pruning, structural
cohesiveness pruning, social distance-based pruning, and keyword-
based pruning to reduce the search space (line 9). If a user u cannot
be pruned, we will add it to the candidate set Scand (line 10).

When entry ei is a non-leaf node, for each child ex ∈ ei, we
will apply index-level pruning (e.g., spatial distance-based pruning
influence score pruning, social distance-based pruning, structural
cohesiveness pruning, and keyword-based pruning for index nodes)
(line 14). If a node ex cannot be pruned in line 14, then we
insert heap entry (ei, lb distRN (q, ex)) into heap H for further
investigation (line 15).
Refinement. After the index traversal, we refine the candidate set
Scand to obtain/return actual TCS-SSN answers S (line 17).
Complexity Analysis. Next, we discuss the time complexity of
our TCS-SSN query answering algorithm in Algorithm 3. The
time cost of Algorithm 3 processing consists of two portions: index
traversal (lines 4-15) and refinement (lines 16-18).

Let PP (j) be the pruning power on the j-th level of index I,
where 1 ≤ j ≤ height(I). Denote f as the average fanout of non-
leaf nodes in the social-spatial index I. Then, the filtering cost of
lines 4-15 is given by O

(∑height(I)
j=1 f j · (1− PP (j−1))

)
, where

PP (0) = 0.
Moreover, let Scand be a subgraph containing users left after

applying our pruning methods. The main refinement cost in lines
16-18 is on the graph traversal and constraint checking (e.g.,
average spatial distance, social distance, and social influence). In
particular, the average spatial distance on road networks can be
computed by running the Dijkstra algorithm starting from every
vertex in Scand, which takes O(|VRN (Scand)| · (|ERN (Scand)| ·
log(|VRN (Scand)|))) cost; the social distance computation
takes O(|VSN (Scand)| · |ESN (Scand)|) by BFS traversal from
each user in Scand; the k-truss computation takes O(p ·
|ESN (Scand)|), where p < min(dmax,

√
|ESN (Scand)|) [32];

Algorithm 3: TCS-SSN Query Answering Algorithm
Input: a spatial-social networkGrs, social-spatial index I, a query issuer q,

a topic query set Tq , a keyword query setKq , a truss value k, social
distance threshold d, spatial distance threshold σ, influence threshold
θ

Output: a community S, satisfying TCS-SSN query predicates in Definition
8

1 set S cand = ∅
2 initialize a min-heapH accepting entries in the form (e, key)
3 insert entry (root(I), 0) into heapH
4 whileH is not empty do
5 (ei, key) = de-heapH
6 if key > σ, then terminate the loop;
7 if ei is a leaf node then
8 for each user u ∈ ei do
9 if u cannot be pruned by Lemma 1, 2, 3, 4, or 5 w.r.t. q then

10 add u to Scand

11 else
// ei is a non-leaf node

12 obtain the entry eq ∈ I that contains q
13 for each entry ex ∈ ei do
14 if ex cannot be pruned by Lemma 6, 7, 8, 9, or 10 w.r.t. eq

then
15 insert (ex, lb distRN (q, ex)) into the heapH

16 while no users or edges are pruned do
17 start BFS search from q and apply social-network distance pruning and

influence score pruning on social network vertices
18 apply truss decomposition directly on remaining edges to prune edges

with truss value less than or equal to k − 2

19 return S

Table 2: Statistics of real data sets Gow&Cali and Twi&SF .

social |V (Gs)| |E(Gs)| road |V (Gr)| |E(Gr)|
network network
Gowalla
(Gow)

196K 1.9M California
(Cali)

21K 44K

Twitter
(Twi)

349K 2.1M San Fran-
cisco(SF)

175K 446K

Table 3: Experimental settings.
Parameter Values
the size of keyword set queryKq 2, 3, 5, 8, 10
the size of topic set query Tq 1, 2, 3
the spatial distance threshold σ 0.5, 1, 2, 3, 5
the influence score threshold θ 0.1, 0.3, 0.5, 0.7, 0.9
the number of triangles k 2, 3, 5, 7, 10
the social distance threshold d 1, 2, 3, 5, 10
the number of vertices in road
networkGr and social networkGs

10K, 20K, 30K, 40K, 50K, 100K , 200K

the mutual influence score computation takes O(|VSN (Scand)| ·
|ESN (Scand)|) by BFS traversal from each user in Scand.
Thus, the overall time complexity of the refinement is given by
O(|VRN (Scand)| · (|ERN (Scand)| · log(|VRN (Scand)|)) + p ·
|ESN (Scand)|+ 2 · (|VSN (Scand)| · |ESN (Scand)|)).
Discussions on Handling Multiple Query Users. The TCS-SSN
problem considers the standalone community search issued by one
query user q. In the case where multiple users issue the TCS-SSN
queries at the same time, we perform batch processing of multiple
TCS-SSN queries, by traversing the social-spatial index only once
(applying our pruning methods) and retrieving candidate users for
each query user. In particular, an index node can be safely pruned,
if for each query there exists at least one pruning rule that can
prune this node. After the index traversal, we refine the resulting
candidate users for each query and return the TCS-SSN answer sets
to query issuers.

6. EXPERIMENTAL EVALUATION
6.1 Experimental Settings

We test the performance of our TCS-SSN query processing
approach (i.e., Algorithm 3) on both real and synthetic data sets.

2111

(a) CPU time (b) I/O cost

Figure 2: The TCS-SSN performance vs. real/synthetic data sets.

Figure 3: The number of the remaining candidate users after the pruning
vs. real/synthetic data sets.

Real Data Sets. We evaluate the performance of our proposed
TCS-SSN algorithm (as given in Algorithm 3) with two real
data sets, denoted as Gow&Cali and Twi&SF , for spatial-
social networks. The first data set, Gow&Cali, is a spatial-
social network, which combines Gowalla social network [39] with
California road networks [38]. The second spatial-social network
Twi&SF integrates the Twitter [39] with San Francisco road
networks [38]. Table 2 depicts statistics of spatial/social networks.

Each user u in social networks (i.e., Gowalla or Twitter) is
associated with multiple check-in locations (i.e., places visited by
the user u). The user u also has a keyword vector u.key, which
contains keywords collected from one’s social-media profile. The
directed edge eu,v between users u and v has a weight that reflects
the influence of user u on user v based on a certain topic. We
map each user u from social networks (Gowalla or Twitter) to 2D
locations on road networks (i.e., California or San Francisco, resp.).
Synthetic Data Sets. We also generate two synthetic spatial-social
data sets as follows. Specifically, for the spatial network Gr , we
first produce random vertices in the 2D data space following either
Uniform or Gaussian distribution. Then, we randomly connect
vertices nearby through edges, such that all vertices are reachable
in one single connected graph and the average degree of vertices
is within [3, 4]. This way, we can obtain two types of graphs with
Uniform and Gaussian distributions of vertices.

To generate a social networkGs, we randomly connect each user
uwith other users, such that the degrees of users follow Uniform or
Gaussian distribution within a range [1, 10]. Each user u has a set,
u.key, of interested keywords, where keywords are represented by
integers within [1, 10] following Uniform or Gaussian distribution.
Furthermore, each social-network edge eu,v is associated with a
set of topics (we consider 3 topics by default), and each topic
has a probability (within [0, 1] following Uniform or Gaussian
distribution) that user u can influence user v, similar to [15].

Finally, we combine social network Gs with road network Gr ,
by randomly mapping social-network users to 2D spatial locations
on road networks, and obtain a spatial-social network Grs. With
Uniform or Gaussian distributions during the data generation
above, we can obtain two types of synthetic spatial-social networks
Grs, denoted as Uni and Gau, respectively.
Measures. To evaluate the performance of our TCS-SSN approach,
we report the CPU time and the I/O cost. The CPU time is the time
cost of retrieving TCS-SSN answer candidates by traversing the
index (as illustrated in Algorithm 3), whereas the I/O cost is the

(a) index construction time (b) index space cost
Figure 4: The index construction time and space cost vs. data sets.

(a) CPU time (b) I/O cost
Figure 5: The performance vs. road-network distance threshold σ.

number of page accesses during TCS-SSN query answering.
Competitors: To the best of our knowledge, prior works did
not study the problem of community search (CS) over spatial-
social networks by considering (k, d)-truss communities with user-
specified topic keywords, high influences among users, and small
road-network distances among users. Thus, we develop three
baseline algorithms, Greedy, SIndex, and RIndex.
Greedy first runs the BFS algorithm to retrieve all users with

social distance less than d from the query vertex q in social
networks. Meanwhile, it prunes those users without any query
keywords in Kq . Then, it runs another BFS algorithm over road
networks to filter out all users with average spatial distance to
q greater than σ. After that, we iteratively apply the pruning
on social-network edges for k-truss and under other constraints
(e.g., influence score, social distance, and spatial distance), and
refine/return the resulting connected subgraph.

The SIndex baseline offline constructs a tree index over
social-network users and their corresponding social information
(e.g., truss values and social-distance information via pivots). In
particular, it first partitions users on social networks into subgraphs,
which can be treated as leaf nodes, and then recursively groups
connected subgraphs in leaf nodes into non-leaf nodes until a final
root is obtained. For online TCS-SSN query, SIndex traverses
this social-network index by applying the pruning w.r.t. the social-
network distance d and the truss value k, and refine the resulting
subgraphs, similar to the refinement step in Algorithm 3.
RIndex offline constructs an R∗-tree over users’ spatial and

textual information on road networks. Specifically, we first divide
social-network users into partitions based on (1) spatial closeness
and (2) keyword information. Then, we treat each partition as a
leaf node of the R∗-tree, whose spatial locations are enclosed by a
minimum bounding rectangles (MBRs). This way, we can build an
R∗-tree with aggregated keyword information in non-leaf nodes.
RIndex traverses theR∗-tree and applies pruning based on spatial
distance (via pivots) and textual keywords. Finally, the retrieved
users (with spatial closeness and keywords) will be refined, as
mentioned in the refinement step of Algorithm 3.
Experimental Setup: Table 3 depicts parameter settings in our
experiments, where bold numbers are default parameter values. In
each set of experiments, we vary one parameter while setting other
parameters to default values. We ran our experiments on a PC with
Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz (4 CPUs), 2.8GHz
and 32 GB memory. All algorithms were implemented by C++.

2112

(a) CPU time (b) I/O cost
Figure 6: The performance vs. social-network distance threshold d.

(a) CPU time (b) I/O cost
Figure 7: The performance vs. the triangle number threshold k.

6.2 TCS-SSN Performance Evaluation
The TSC-SSN Performance vs. Real/Synthetic Data Sets.
Figure 2 compares the performance of our TCS-SSN query
processing algorithm with three baseline algorithms Greedy,
SIndex, and RIndex over synthetic and real data sets, Uni,
Gau, Gow&Cali, and Twi&SF , in terms of the CPU time and
I/O cost, where we set all the parameters to their default values
in Table 3. From the experimental results, we can see that our
TCS-SSN approach outperforms baselines Greedy, SIndex, and
RIndex. This is because TCS-SSN applies effective pruning
methods with the help of the social-spatial index. In particular,
for all the real/synthetic data, the CPU time of our proposed TCS-
SSN algorithm is 0.0035 ∼ 0.028 sec, and the number of I/Os is
around 35 ∼ 162, which are much smaller than any of the three
baseline algorithms Greedy, SIndex, and RIndex. Therefore,
this confirms the effectiveness of our proposed pruning strategies
and the efficiency of our TCS-SSN query answering algorithm on
both real and synthetic data.

Figure 3 evaluates the number of the remaining candidate users
after the index traversal (applying the pruning methods) over
synthetic/real data, where all the parameters are set to their default
values. From the figure, we can see that the number of candidate
users varies from 5 to 8. This indicates that we can efficiently refine
candidate communities with a small number of users.

In Figure 4, we evaluate the index construction time and space
cost of our proposed social-spatial index and the two index-based
baselines SIndex and RIndex over Uni, Gau, Gow&Cali,
and Twi&SF data sets. Figure 4(a) demonstrates the index
construction time for our proposed social-spatial index and the
baselines SIndex and RIndex. For Twi&SF data set (with over
than 2.1M edges), the index construction time of our social-spatial
index takes around 45 minutes. The majority of this time cost goes
to the computation of the maximum edge support for all edges in
the graph, sup(e), which takes O(E(Gs)1.5) by applying Wang et
al. [52]. Note that, the social-spatial index (as well as SIndex and
RIndex indexes) is ofline constructed only once. Furthermore,
Figure 4(b) shows the index space cost of our proposed social-
spatial index and the two baselines SIndex and RIndex. From
the experimental results, our social-spatial index is much more
space efficient than RIndex that uses R∗-tree, and is comparable
to SIndex.

To show the robustness of our TCS-SSN approach, in subsequent
experiments, we will vary different parameters (e.g., σ, d, k, θ, and

(a) CPU time (b) I/O cost
Figure 8: The performance vs. influence score threshold θ.

(a) CPU time (b) I/O cost

Figure 9: The performance vs. the size, |Kq |, of the keyword query set.

so on, as depicted in Table 3) on synthetic data sets, Uni and Gau.
Effect of the Road-Network Distance Threshold σ. Figure 5
shows the TCS-SSN performance, by varying the road-network
distance threshold σ from 0.5 mile to 5 miles, where other
parameters are by default. When σ increases, more social-network
users will be considered, and thus the CPU time and I/O cost will
increase. Nevertheless, for different σ values, both CPU time and
I/O cost remain low (0.002 ∼ 0.0075 sec and 17 ∼ 64 I/Os, resp.).
Effect of the Social-Network Distance Threshold d. Figure 6
varies the social-distance threshold d (i.e., the threshold for the
number of hops) from 1 to 10, and reports the CPU time and I/O
cost of our TCS-SSN approach over Uni andGau data sets, where
other parameters are set to their default values. With the increase
of the social-distance threshold d, more candidate communities
(with more social-network users) will be retrieved for evaluation.
Therefore, the CPU time and I/O cost become higher for larger
threshold d. Nonetheless, for different d values, the CPU time
remains small (i.e., around 0.0023 ∼ 0.005 sec), and the I/O cost
is low (with 16 ∼ 59 page accesses).
Effect of the Triangle Number Threshold k. Figure 7 examines
the TCS-SSN performance with different thresholds k for the
number of triangles, in terms of the CPU time and I/O cost, where
k = 2, 3, 5, 7, and 10, and other parameters are set to their default
values. In figures, when k becomes large, many users with low
degrees (i.e., < k) will be safely pruned, and thus the CPU time
and I/O cost are expected to reduce substantially (as confirmed by
figures). Nevertheless, the CPU time and the I/O cost remain low
(i.e., about 0.002 ∼ 0.0065 sec and 20 ∼ 61 I/Os, respectively),
which indicates the efficiency of our proposed TCS-SSN approach
for different k values.
Effect of the Influence Score Threshold θ. Figure 8 illustrates the
CPU time and the I/O cost of our TCS-SSN approach by varying
the interest score threshold θ from 0.1 to 0.9, where all other
parameter values are set by default. From the experimental results,
we can see that both CPU time and I/O cost smoothly decrease with
large θ values. This is because larger θ can filter out more edges
with low influence scores, which leads to less user candidates for
the filtering and refinement. Nonetheless, the time and I/O cost of
our TCS-SSN approach remain low (i.e., 0.0025 ∼ 0.0041 sec for
the CPU time and 25 ∼ 50 page accesses).
Effect of the Size, |Kq|, of the Keyword Query Set. Figure
9 demonstrates the performance of our TCS-SSN approach with
different numbers of query keywords in Kq , where |Kq| =

2113

(a) CPU time (b) I/O cost
Figure 10: The performance vs. the size, |Tq |, of the topic query set.

(a) CPU time (b) I/O cost
Figure 11: The performance vs. the number, |V (Gr)| (or |V (Gs)|), of
vertices in spatial or social networks.

2, 3, 5, 8, and 10, and default values are used for other parameters.
Intuitively, when |Kq| becomes larger (i.e., more query keywords),
we need to consider more potential users, which incurs higher CPU
time and I/O cost. Despite that, the CPU time and I/O cost of our
TCS-SSN approach remain low (i.e., 0.0025 ∼ 0.004 sec for the
CPU time and 25 ∼ 49 page accesses).
Effect of the Size, |Tq|, of the Topic Query Set. Figure 10
illustrates the performance of our TCS-SSN approach by varying
the number of query topics (in Tq) on edges, where |Tq| = 1, 2,
and 3, and other parameters are set to their default values. The
experimental results show that the TCS-SSN performance is not
very sensitive to |Tq|. The CPU time remains low (i.e., 0.003 ∼
0.0035 sec) and the I/O cost is around 30 ∼ 38, which indicate the
efficiency of our TCS-SSN approach with different |Tq| values.
Effect of the Number, |V (Gr)| (or V (Gs)), of Vertices in
Road (Social) Networks. Figure 11 shows the scalability of our
TCS-SSN approach with different sizes of spatial/road networks,
|V (Gr)| (or |V (Gs)|), of spatial/road networks (denoted as |V |),
where |V | varies from 10K to 200K, and other parameters are
set to their default values. In figures, when the number of road-
network (or social-network) vertices increases, both CPU time and
I/O cost smoothly increase. Nevertheless, the CPU time and I/O
costs of our TCS-SSN approach remain low (i.e., 0.0028 ∼ 0.017
sec for the time cost and 30 ∼ 89 page accesses, respectively),
which confirms the scalability of our TCS-SSN approach against
large network sizes.

6.3 A Case Study
Finally, we conduct a case study of our TCS-SSN problem on

real-world spatial-social networks, Twi&SF (i.e., Twitter [39]
with San Francisco road networks [38]). As illustrated in Figure
12(a), each social-network user is associated with keywords (i.e.,
Twitter hashtags) such as K1 ∼ K10 from user accounts, and has
checkin locations on road networks, where the user IDs of vertices
and descriptions of keywords are depicted in Figure 12(b).

Assume that we have a TCS-SSN query over Twi&SF , where
ID2 is a query vertex, truss value k = 5, social-network distance
threshold d = 3, spatial-distance threshold σ = 2 miles,
influence score threshold θ = 0.5, query topic set Tq = (sport,
health), and query keyword set Kq = {vegan, vegetarian,
eatHealthy, workout, nutritions}. Figure 12(a) shows the resulting

(a) (b)
Figure 12: A TCS-SSN case study on spatial-social networks Twi&SF .

TCS-SSN community, which contains a subgraph of 8 users,
ID1 ∼ ID8. Each user in this community is associated with at
least one query keyword in Kq , and they show strong structural
connectivity (satisfying the (5, 3)-truss constraints) and spatial
closeness on road networks (≤ 2 miles). Moreover, Figure 12(b)
depicts an influence matrix (w.r.t. Tq) for pairwise users in this
community, each element of which is above influence threshold θ
(i.e., 0.5). This confirms their high influences to each other within
our retrieved TCS-SSN community.

7. RELATED WORK
Community Detection. There are many important research prob-
lems on graph data management [36, 50] in real applications. The
community detection problem aims to discover all communities
in a large-scale graph such as social networks or bibliographic
networks. Some prior works [27, 47] retrieved communities in
large graphs, by considering link information only. More recent
work was carried by [54, 45, 46, 60], that devoted for attribute
graphs, by using clustering techniques. In [60], for example,
the links and keyword vertices are considered to compute the
pairwise vertex similarity in order to cluster the large graph. Zang
et al. [17] proposed a framework that applies a game-theoretic
approach to identify dense communities in large-scale complex
networks. Recently, other works carried by [28, 22, 29, 16] focused
on detecting communities in spatially constrained graphs, whose
vertices are associated with spatial coordinates.

A geo-community is defined as a community, in which vertices
are densely connected and loosely connected with other vertices.
Techniques such as average linkage measure [29] and modularity
maximization [22, 16] are applied to find geo-communities.
However, Lancichinetti et al. [37] argued that modularity-based
methods often fail to resolve small-size communities.
Community Search. Community search problem (CS) aims to
obtain communities in an “online” manner, based on a query
request. Several existing works [51, 20, 19, 42, 33] have proposed
efficient algorithms to obtain a community starting from and
including a query vertex q. In [51, 20], the minimum degree is
used to measure the structure cohesiveness of community. Sozio
et al. [51] proposed the first algorithm Global to obtain k-
core community containing a query vertex q. Cui et al. [20]
used local expansion techniques to boost the query performance.
Furthermore, Li et al. [41] proposed the most influential
community search over large social networks to disclose the Ckr
community with the highest outer influences, where the Ckr
community contains at least k nodes, and any two nodes in Ckr
can be reached at most r hops. Bi et al. [8] proposed an optimal
approach to retrieve top-k influential communities (subgraphs),

2114

such that each subgraph g is a maximal connected subgraph with
minimum degree of at least γ, and has the highest influence value.
Akbas et al. [1] introduced a truss-based indexing approach, where
they can in optimal time detect the k-truss communities in large
network graphs. Fang et al. [26] studied the community search
problem over large heterogeneous information networks, that is,
given a query vertex q, find a community from a heterogeneous
network containing q, such that all the vertices are with the same
type of q and have close relationships, where the relationship
between two vertices of the same type is modeled by a meta −
path, and the cohesiveness of the community is measured by the
classic minimum degree metric with the meta − path. Note that,
the aforementioned previous works [41, 8, 1, 26] did not consider
spatial cohesiveness, topic-related social influences, nor keywords,
which different from our proposed TCS-SSN problem.

Some other works [24, 42] used minimum degree metric
to search communities for attribute graphs. Other well-known
structure cohesiveness k-clique [19], k-truss [33] have also been
considered for online community search. However, these works
are designed for non-spatial graphs. Huang et al. [32] proposed
(k, d)-truss for geo-spatial networks, but they did not consider user
topic keywords, social influence, neither road-network distance.
Geo-Social Networks. Query processing on location-based
social networks has become increasingly important in many real
applications. Yang et al. [55] studied the problem of socio-spatial
group query (SSGQ), which retrieves a group of connected users
(friends) with the smallest summed distance to a given query point
q. Li et al. [43] proposed another query type that retrieves a group
of k users who are interested in some given query keywords and are
spatially close to each other. Yuan et al. [57] studied the kNN query
which obtains k POIs that are not only closest to query point q, but
also recommended by one’s friends on social networks under the IC
model. Fang et al. [23] introduced the spatial-aware community (or
SAC), which retrieves a subgraph (containing a given query vertex
q) from geo-social networks that has high structural cohesiveness
and spatial cohesiveness. Al-Baghdadi et al. [4] proposed a
group planning query over spatial-social networks (GP-SSN) that
retrieves a set S of users from social networks and a set R of
potential POIs from road networks to be visited by the users in
S. Chen et al. [14] discussed the co-located community search,
that is a subgraph satisfying connectivity, structural cohesiveness,
and spatial cohesiveness. Chen et al. [14] considered communities
that match query predicates and have the maximum cardinality
globally, whereas Fang et al. [23] focused on finding a locally
optimal community containing a query vertex. Previous works
on geo-social community search neglected the social influence
among users and road-network distance. In our proposed TCS-
SSN problem, we introduce a new and different definition of
communities that not only are spatially and socially close, but
also have high social influence and small driving distance among
community members.
Keyword Search and Spatial Keyword Queries. The keyword
search problem has been extensively studied in both domains of
relational databases and graphs. Given a set of query keywords,
the keyword search in relational databases [12, 35, 31] usually
finds a minimal connected tuple tree that contains all the query
keywords. In graph databases [40, 48], the keyword search
problem retrieves a subgraph containing the given query keywords.
Furthermore, in spatial databases containing both spatial and
textual information, another interesting problem is the spatial
keyword query, which returns relevant POIs that both satisfy the

spatial query predicates and match the given query keywords.
Coa et al. [9] categorized the spatial keyword queries based on
their ways of specifying spatial and textual predicates, including
Boolean Range Queries [30], Boolean kNN Queries [11, 21],
and Top-k kNN Queries [10, 18]. Recently, Zhang et al. [59]
proposed the keyword-centric community search (KCCS) over an
attributed graph, which finds a community (subgraph) with the
degree of each node at least k, and the distance between nodes
and all the query keywords being minimized. However, Zhang
et al. [59] did not consider the spatial cohesiveness neither
the social influence. Moreover, Islam et al. [34] proposed
the keyword-aware influential community query (KICQ) over an
attributed graph, which returns r most influential communities in
the attributed graph, such that the returned community has high
influence (containing highly influential members) based on certain
keywords. An application of KICQ is to find the most influential
community of users who are working in “ML” or “DB”. Different
from KICQ, our proposed TCS-SSN finds a community that not
only has a high social cohesiveness and covers certain keywords,
but also has a high spatial cohesiveness. Furthermore, our TCS-
SSN problem returns the community with high influence score
among community members (with respect to specific topics), rather
than members with high influences to others in KICQ Chen et
al. [13] introduced a parameter-free contextual community model
for attributed community search. Given an attributed graph and a
set of query keywords describing the desired matching community
context, their proposed query returns a community that has both
structure and attribute cohesiveness w.r.t. the provided query
context. In contrast, different from [13], our TCS-SSN problem
returns the community over spatial-social networks (instead of
social networks only), which has high social cohesiveness, spatial
cohesiveness, social influence, and covers a set of keywords (rather
than measuring the context closeness of the community with the
query context). Thus, with different data models (relational or
graph data) and query types, we cannot directly borrow previous
techniques for (spatial) keyword search or community search on
attributed graphs to solve our TCS-SSN problem.

To our best knowledge, the TCS-SSN problem has not been
studied by prior works on spatial-social networks, which considers
(k, d)-truss communities with user-specified topic keywords, high
influences among users, and small road-network distances among
users. Due to different data models and query types, previous
techniques on location-based social networks cannot be directly
used for tackling our TCS-SSN problem.

8. CONCLUSIONS
In this paper, we formalize and tackle an important problem,

topic-based community search over spatial-social networks (TCS-
SSN), which retrieves communities of users (including a given
query user) that are spatially and socially close to each other.
To efficiently tackle this problem, we design effective pruning
methods to reduce the search space, propose a novel social-spatial
index over spatial-social networks, and develop efficient algorithms
to process TCS-SSN queries. Through extensive experiments, we
evaluate the efficiency and effectiveness of our proposed TCS-SSN
processing approaches over both real and synthetic data. As our
future works, we will explore the community search over privacy-
preserved [49] or inconsistent spatial-social networks [53, 44].

Acknowledgment
Xiang Lian was supported by NSF OAC (No. 1739491) and Lian
Startup (No. 220981) from Kent State University.

2115

9. REFERENCES
[1] E. Akbas and P. Zhao. Truss-based community search: a

truss-equivalence based indexing approach. PVLDB,
10(11):1298–1309, 2017.

[2] A. Al-Baghdadi and X. Lian. Topic-based community search
over spatial-social networks (technical report).
https://arxiv.org/abs/2007.03014, 2020.

[3] A. Al-Baghdadi, X. Lian, and E. Cheng. Efficient path
routing over road networks in the presence of ad-hoc
obstacles. Information Systems, 88:101453, 2020.

[4] A. Al-Baghdadi, G. Sharma, and X. Lian. Efficient
processing of group planning queries over spatial-social
networks. IEEE Transactions on Knowledge and Data
Engineering, pages 1–1, 2020.

[5] N. Armenatzoglou, S. Papadopoulos, and D. Papadias. A
general framework for geo-social query processing. PVLDB,
6(10):913–924, 2013.

[6] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social
influence propagation models. Knowledge and information
systems, 37(3):555–584, 2013.

[7] P. Bhattacharyya, A. Garg, and S. F. Wu. Analysis of user
keyword similarity in online social networks. Social network
analysis and mining, 1(3):143–158, 2011.

[8] F. Bi, L. Chang, X. Lin, and W. Zhang. An optimal and
progressive approach to online search of top-k influential
communities. PVLDB, 11(9):1056–1068, 2018.

[9] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu,
A. Skovsgaard, D. Wu, and M. L. Yiu. Spatial keyword
querying. In International Conference on Conceptual
Modeling, pages 16–29. Springer, 2012.

[10] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k
prestige-based relevant spatial web objects. PVLDB,
3(1-2):373–384, 2010.

[11] A. Cary, O. Wolfson, and N. Rishe. Efficient and scalable
method for processing top-k spatial boolean queries. In
International Conference on Scientific and Statistical
Database Management, pages 87–95. Springer, 2010.

[12] S. Chaudhuri, S. Agrawal, and G. Das. System for keyword
based searching over relational databases, Oct. 5 2004. US
Patent 6,801,904.

[13] L. Chen, C. Liu, K. Liao, J. Li, and R. Zhou. Contextual
community search over large social networks. In 2019 IEEE
35th International Conference on Data Engineering (ICDE),
pages 88–99. IEEE, 2019.

[14] L. Chen, C. Liu, R. Zhou, J. Li, X. Yang, and B. Wang.
Maximum co-located community search in large scale social
networks. PVLDB, 11(10):1233–1246, 2018.

[15] S. Chen, J. Fan, G. Li, J. Feng, K.-l. Tan, and J. Tang. Online
topic-aware influence maximization. PVLDB, 8(6):666–677,
2015.

[16] Y. Chen, J. Xu, and M. Xu. Finding community structure in
spatially constrained complex networks. International
Journal of Geographical Information Science,
29(6):889–911, 2015.

[17] P. Chopade and J. Zhan. A framework for community
detection in large networks using game-theoretic modeling.
IEEE Transactions on Big Data, 3(3):276–288, 2016.

[18] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the
top-k most relevant spatial web objects. PVLDB,
2(1):337–348, 2009.

[19] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang. Online
search of overlapping communities. In Proceedings of the

2013 ACM SIGMOD international conference on
Management of data, pages 277–288, 2013.

[20] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of
communities in large graphs. In Proceedings of the 2014
ACM SIGMOD international conference on Management of
data, pages 991–1002. ACM, 2014.

[21] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on
spatial databases. In 2008 IEEE 24th International
Conference on Data Engineering, pages 656–665. IEEE,
2008.

[22] P. Expert, T. S. Evans, V. D. Blondel, and R. Lambiotte.
Uncovering space-independent communities in spatial
networks. Proceedings of the National Academy of Sciences,
108(19):7663–7668, 2011.

[23] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective
community search over large spatial graphs. PVLDB,
10(6):709–720, 2017.

[24] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community
search for large attributed graphs. PVLDB, 9(12):1233–1244,
2016.

[25] Y. Fang, Z. Wang, R. Cheng, X. Li, S. Luo, J. Hu, and
X. Chen. On spatial-aware community search. IEEE
Transactions on Knowledge and Data Engineering,
31(4):783–798, 2018.

[26] Y. Fang, Y. Yang, W. Zhang, X. Lin, and X. Cao. Effective
and efficient community search over large heterogeneous
information networks. PVLDB, 13(6):854–867, 2020.

[27] S. Fortunato. Community detection in graphs. Physics
reports, 486(3-5):75–174, 2010.

[28] M. Girvan and M. E. Newman. Community structure in
social and biological networks. Proceedings of the national
academy of sciences, 99(12):7821–7826, 2002.

[29] D. Guo. Regionalization with dynamically constrained
agglomerative clustering and partitioning (redcap).
International Journal of Geographical Information Science,
22(7):801–823, 2008.

[30] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing
spatial-keyword (sk) queries in geographic information
retrieval (gir) systems. In 19th International Conference on
Scientific and Statistical Database Management (SSDBM
2007), pages 16–16. IEEE, 2007.

[31] V. Hristidis, Y. Papakonstantinou, and L. Gravano. Efficient
ir-style keyword search over relational databases. In PVLDB,
pages 850–861. Elsevier, 2003.

[32] X. Huang and L. V. Lakshmanan. Attribute-driven
community search. PVLDB, 10(9):949–960, 2017.

[33] X. Huang, L. V. Lakshmanan, J. X. Yu, and H. Cheng.
Approximate closest community search in networks. arXiv
preprint arXiv:1505.05956, 2015.

[34] M. Islam, M. E. Ali, Y.-B. Kang, T. Sellis, F. M. Choudhury,
et al. Keyword aware influential community search in large
attributed graphs. arXiv preprint arXiv:1912.02114, 2019.

[35] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional expansion for
keyword search on graph databases. In Proceedings of the
31st international conference on Very large data bases,
pages 505–516, 2005.

[36] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In KDD, 2003.

[37] A. Lancichinetti and S. Fortunato. Limits of modularity
maximization in community detection. Physical review E,

2116

https://arxiv.org/abs/2007.03014

84(6):066122, 2011.
[38] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H.

Teng. On trip planning queries in spatial databases. In
International symposium on spatial and temporal databases,
pages 273–290. Springer, 2005.

[39] G. Li, S. Chen, J. Feng, K.-l. Tan, and W.-s. Li. Efficient
location-aware influence maximization. In Proceedings of
the 2014 ACM SIGMOD international conference on
Management of data, pages 87–98, 2014.

[40] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. Ease: an
effective 3-in-1 keyword search method for unstructured,
semi-structured and structured data. In Proceedings of the
2008 ACM SIGMOD international conference on
Management of data, pages 903–914, 2008.

[41] J. Li, X. Wang, K. Deng, X. Yang, T. Sellis, and J. X. Yu.
Most influential community search over large social
networks. In 2017 IEEE 33rd International Conference on
Data Engineering (ICDE), pages 871–882. IEEE, 2017.

[42] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Influential
community search in large networks. PVLDB, 8(5):509–520,
2015.

[43] Y. Li, D. Wu, J. Xu, B. Choi, and W. Su. Spatial-aware
interest group queries in location-based social networks. In
Proc. of the ACM International Conference on Information
and Knowledge Management, 2012.

[44] X. Lian, L. Chen, and S. Song. Consistent query answers in
inconsistent probabilistic databases. In Proceedings of the
2010 ACM SIGMOD International Conference on
Management of data, pages 303–314, 2010.

[45] Y. Liu, A. Niculescu-Mizil, and W. Gryc. Topic-link lda:
joint models of topic and author community. In proceedings
of the 26th annual international conference on machine
learning, pages 665–672, 2009.

[46] R. M. Nallapati, A. Ahmed, E. P. Xing, and W. W. Cohen.
Joint latent topic models for text and citations. In
Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
542–550, 2008.

[47] M. E. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical review E,
69(2):026113, 2004.

[48] L. Qin, J. X. Yu, L. Chang, and Y. Tao. Querying
communities in relational databases. In 2009 IEEE 25th
International Conference on Data Engineering, pages

724–735. IEEE, 2009.
[49] S. Song and L. Chen. Differential dependencies: Reasoning

and discovery. ACM Transactions on Database Systems
(TODS), 36(3):1–41, 2011.

[50] S. Song, B. Liu, H. Cheng, J. X. Yu, and L. Chen. Graph
repairing under neighborhood constraints. The VLDB
Journal, 26(5):611–635, 2017.

[51] M. Sozio and A. Gionis. The community-search problem and
how to plan a successful cocktail party. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 939–948. ACM, 2010.

[52] J. Wang and J. Cheng. Truss decomposition in massive
networks. PVLDB, 5(9):812–823, 2012.

[53] Y. Wang, S. Song, L. Chen, J. X. Yu, and H. Cheng.
Discovering conditional matching rules. ACM Transactions
on Knowledge Discovery from Data (TKDD), 11(4):1–38,
2017.

[54] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A
model-based approach to attributed graph clustering. In
Proceedings of the 2012 ACM SIGMOD international
conference on management of data, pages 505–516, 2012.

[55] D.-N. Yang, C.-Y. Shen, W.-C. Lee, and M.-S. Chen. On
socio-spatial group query for location-based social networks.
In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
949–957, 2012.

[56] Y. Yuan, X. Lian, L. Chen, Y. Sun, and G. Wang. Rsknn: knn
search on road networks by incorporating social influence.
IEEE Transactions on Knowledge and Data Engineering,
28(6):1575–1588, 2016.

[57] Y. Yuan, X. Lian, L. Chen, Y. Sun, and G. Wang. Rsknn: knn
search on road networks by incorporating social influence.
IEEE Trans. Knowl. Data Eng., 28(6), 2016.

[58] W. Zhang, J. Wang, and W. Feng. Combining latent factor
model with location features for event-based group
recommendation. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 910–918, 2013.

[59] Z. Zhang, X. Huang, J. Xu, B. Choi, and Z. Shang.
Keyword-centric community search. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE),
pages 422–433. IEEE, 2019.

[60] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on
structural/attribute similarities. PVLDB, 2(1):718–729, 2009.

2117

	Introduction
	Problem Definition
	Social Networks
	Spatial Road Networks
	Spatial-Social Networks
	Topic-based Community Search over Spatial- Social Network (TCS-SSN)

	Pruning Methods
	Spatial Distance-Based Pruning
	Influence Score Pruning
	Structural Cohesiveness Pruning
	Social Distance-Based Pruning
	Keyword-based Pruning

	Indexing Mechanism
	Social-Spatial Index, I, Structure
	Index-Level Pruning
	The Construction of a Social-Spatial Index

	TCS-SSN Community Search
	Experimental Evaluation
	Experimental Settings
	TCS-SSN Performance Evaluation
	A Case Study

	Related Work
	Conclusions
	References

