
2R: Efficiently Isolating Cold Pages in Flash Storages

Minji Kang∗ Soyee Choi∗∗ Gihwan Oh∗∗ SangWon Lee∗∗

*Samsung Electronics Co. Hwasung, Korea
minji10.kang@samsung.com

**Sungkyunkwan University, Suwon 16419, Korea
{ithdli, wurikiji, swlee}@skku.edu

ABSTRACT

Given skewed writes common in databases, the conventional
1R-Greedy FTL incurs huge write amplification, most of
which is contributed by cold pages amounting to 80% of
data. Since 1R-Greedy manages all flash blocks in one region
at no type distinction, cold pages will be mixed with non-
cold ones in the same blocks, spread across blocks over time,
and thus repeatedly relocated upon garbage collections.

In this paper, we propose “two region” FTL (2R in short);
with two flash regions of normal and cold, it focuses on iso-
lating cold pages into cold region and thus preventing their
repetitive relocations. 2R has two versions. The optimized
version, 2R-FIFO, can further prevent the problem of false
cold pages in the basic version, 2R-Greedy, by taking FIFO
instead of Greedy as its victim selection policy. 2R is unique
in that all its design decisions, including page placement and
migration between regions, cold page identification, victim
block selection, and space allocation among regions, capital-
ize on workload characteristics such as write skews, tempo-
ral locality, and frozen pages. Thanks to the principled ap-
proach, 2R is, unlike the existing hot/cold separation FTLs,
a statistics-free and practical solution which can efficiently
and effectively separate cold pages using only two regions.

Experimental results using a real OpenSSD as well as
trace-driven simulations confirm that 2R-FIFO can, com-
pared to 1R-Greedy, halve the write amplification in two
OLTP benchmarks, TPC-C and LinkBench, thereby dou-
bling IO performance and transaction throughput. In par-
ticular, as flash storage becomes nearly full, 2R-FIFO starts
outperforming 1R-Greedy by 4x or more.

PVLDB Reference Format:

Minji Kang, Soyee Choi, Gihwan Oh, Sang-Won Lee. 2R: Effi-
ciently Isolating Cold Pages in Flash Storages. PVLDB, 13(11):
2004-2017, 2020.
DOI: https://doi.org/10.14778/3407790.3407805

∗Work done while in Sungkyunkwan University

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 21508097.
DOI: https://doi.org/10.14778/3407790.3407805

1. INTRODUCTION
For the last decade, flash memory storages have been

relentlessly replacing harddisks as the main storage across
all sectors of computing, including smartphones, mobile de-
vices, desktops, stand-alone servers, data centers, and even
the cloud computing. In particular, the OLTP database
market has been leading this trend because of the superior-
ity of flash storages such as high random IOPS/$ and low
power consumption [17].

At the core of any flash storage is the flash translation
layer (FTL) [30], a firmware module between the host and
the flash memory chips. Since overwrites are not allowed in
flash memory chips and thus the copy-on-write approaches
are taken, FTL has to manage the mapping between the
data page’s logical address and its current physical address
in flash memory. In addition, when all flash blocks are in
use, FTL has to reclaim new space by relocating valid data
pages and erasing flash blocks. Note that the relocation of
data pages during garbage collections amplifies the writes
to flash memory. The write amplification is a fundamen-
tal and intrinsic issue in flash storages. Among numerous
FTL schemes, the page-mapping FTL is the most popular
mainly for performance reasons. The existing page-mapping
FTL is characterized to manage all flash blocks under one
region at no distinction of block type and to merge a sin-
gle block chosen as a victim according to the greedy policy
upon garbage collections. Throughout this paper, we call
this de-facto standard FTL as 1R-Greedy.

Meanwhile, 1R-Greedy will incur excessive write amplifi-
cation under skewed and random writes common in data-
intensive applications. As a concrete example, the write
amplification factor (WAF) has increased from one to five
when the TPC-C benchmark is run on a real OpenSSD with
1R-Greedy as its FTL. The ever-increasing WAF in turn
halved the SSD’s IOPS (IO per second) and the bench-
mark’s transaction throughput. The amplified writes will
also shorten the lifespan of flash storages. Nevertheless, 1R-
Greedy has been, since its inception almost two decades ago,
used across almost every workload with inertia at no funda-
mental change. Note that the astonishing IO performance
improvement in flash storages over the last decade is due to
the architectural changes [11, 18, 26], not to the advances
in FTL technique itself.

Then, why does 1R-Greedy amplify writes so excessively
under OLTP workloads? Most of its write amplification is,
as analyzed in Section 3, contributed by cold pages account-
ing for 80% of all data but only for 20% of all writes. In
1R-Greedy cold pages are mixed with non-cold ones in the

2004

same flash blocks, spread across flash blocks over time and
thus repeatedly relocated upon garbage collections.

To address the problem of cold page spreading in 1R-
Greedy, we propose “two region” FTL (hereafter 2R); with
two regions of normal and cold flash blocks, it aims at iso-
lating cold pages into cold region and thus minimizing their
relocations. The main technical contributions of this paper
are summarized as follows:

• We observe three characteristics of the write patterns
in OLTP applications: write skewness, strong tempo-
ral locality, and frozen pages. They play a crucial role
in making all design decisions of 2R(Section 2).

• We motivate that the cold page spreading is the main
culprit for high WAF in 1R-Greedy. Due to the single-
block-merge mechanism in 1R-Greedy, cold pages will
be colocated with non-cold pages in same flash blocks,
spread over flash blocks of one type, and then repeat-
edly relocated upon garbage collections. (Section 3)

• We propose two versions of 2R. On garbage collections,
the basic version 2R-Greedy merges multiple blocks at
once from the same region and relocates their valid
pages to a cold block. This multi-block-merge mecha-
nism aims to disallow cold pages to mix with non-cold
ones in same flash block. The cold pages isolated in
cold region will be rarely relocated. (Section 4.2)

• The Greedy policy in 2R-Greedy might allow non-cold
pages to enter the cold region, severely offsetting its
benefits. To prevent the problem of false cold pages,
the optimized version 2R-FIFO takes FIFO as its vic-
tim selection policy. 2R-FIFO enhances the basic FIFO
policy further with two optimizations: selective merge
policy and second chance policy. (Section 4.3)

Meanwhile, 2R might not be such a novel considering
there exist many hot/cold separation FTLs [12, 33, 36].
However, 2R differs from those schemes in that all its design
decisions, including page placement and migration between
regions, cold page identification, victim block selection, and
space allocation among regions, are based on three work-
load characteristics mentioned above. Owing to the prin-
cipled approach, 2R can, unlike the existing FTLs, isolate
cold pages correctly in a statistics-free manner.

2. BACKGROUND

In this section, we review how 1R-Greedy works and ex-
plain several related concepts. Also, we describe a few in-
triguing write characteristics in OLTP workloads, which are
essential to 2R design.

2.1 1RGreedy FTL

Page-Mapping FTL An FTL is responsible for several
key functionalities such as address mapping, GC and wear
level management [30]. Because overwrites are not allowed
in flash memory, a new data page write should be handled in
an out of place manner (i.e., log-structured) - the old version
of the page will be marked as invalid and new version will
be stored in a new clean page. Thus, FTL has to manage
the ever-changing address mapping between each page’s log-
ical address at the file system layer and its physical address

in flash memory chips. Since the address mapping scheme
is critical to the performance and lifespan of flash storages,
numerous address mapping schemes such as block-mapping,
page-mapping ,and hybrid-mapping [30] have been proposed
since the inception of FTL techniques. Among them, the
page-mapping FTL scheme is taken by most flash storage
mainly for performance reason at the cost of memory re-
source for managing the logical-to-physical mapping at the
page granularity [16, 18, 30].

Garbage Collection When clean space for new writes
runs out, FTL has to reclaim new clean space by calling
the garbage collection (GC hereafter) procedure. Upon GC,
a victim block is chosen among all flash blocks in use, all
valid pages in the victim are copybacked to a clean block
B (i.e., read out from the victim block and written back to
the clean block), and then the victim is erased and returned
as a free block. After GC, new writes from the host will
be appended to the remaining clean pages in B. Since only
a single block is merged upon each GC, we call the merge
mechanism as a single-block-merge. However, it has an un-
desirable consequence: cold pages can colocate with non-cold
ones in the same flash blocks. While pages relocated from a
GC are presumably cold according to the temporal locality,
pages newly written from the host are not. In this way, pages
with different coldnesses will colocate in one flash block.

WAF The GC procedure causes write amplification be-
cause it has to relocate all valid pages from the victim to
the new block. Informally, write amplification factor (WAF)
represents the ratio of the number of physical writes to flash
memory over the number of logical writes from the host.
Let us denote the total number of pages in a flash block, the
number of valid and invalid pages in a victim block as N ,
V , I , respectively. During GC, V pages have to be copied
to another clean block B. After GC, the block B now has
I (that is, N - V) free pages. To write I logical pages from
the host, I + V (i.e., N) physical pages have to be written.
Hence, WAF can be defined as follows:

WAF =
I + V

I
= 1 +

V

I

Note that the last term in the above equation, V/I , rep-
resents the fraction of additional physical writes over the
logical writes from the host. Ideal WAF will be one when
the value of V/I becomes zero. The above equation indicates
that minimizing V is crucial to reducing write amplification.

Victim Selection Policy Since the write amplification
is proportional to the number of valid pages in victim blocks,
the victim should be judiciously selected. The most popular
is the greedy policy originating from log-structured file sys-
tem [30, 33]. It chooses as the victim the flash block with
the smallest number of valid pages. This heuristic is known
to perform best (that is, to minimize write amplification) for
uniform and random writes [21, 19]. The greedy policy is in
a sense analogous to the LRU buffer replacement algorithm:
the former aims to minimize WAF using the heuristic of
choosing a block with the least number of valid pages while
the latter does to maximize hit ratio with the heuristic of
choosing the least recently used page.

1R-Greedy In addition, in the existing FTLs, all blocks
are managed at no distinction of block type; the flash stor-
age space is managed as one region, a pool of flash blocks

2005

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.1 0.25 0.5 0.75 1.0

C
um

ul
at

iv
e

R
ef

er
en

ce
s

Fraction of Pages(RANKED)

Fio a=1.0
TPCC (buf 0.5G)

TPCC (buf 2G)
Linkbench (buf 0.5G)

Linkbench (buf 2G)

Figure 1: Write Skews in OLTP Workloads

of the same type. In summary, the standard FTL can be
characterized as managing the address-mapping at the page
granularity, choosing victim block using the greedy policy,
merging single block per GC, and managing all flash blocks
in one region [18], which we call 1R-Greedy in this paper.
Besides commercial SSDs, OpenSSD platform and Open-
Channel SSD take 1R-Greedy as default FTL [1, 2, 10].

Over-provisioning Another critical factor which deter-
mines WAF is over-provisioning (OP in short) [3]. Besides
the logical capacity exposed to the host OS, most flash stor-
ages are equipped with extra physical capacity for better
performance and endurance. The OP capacity is the differ-
ence between its physical capacity (P) and logical capacity
(U), and the OP factor is defined as (P − U)/U . With
a larger OP area, pages will have longer temporal chances
to be invalidated so that victim blocks will have less valid
pages. Although the OP factor in SSDs ranges depending on
the products and the vendors, the ‘factory over-provisioned’
factor is quite limited (usually, less than 10%).

2.2 Characteristics in OLTP Write Traces

Understanding workloads is essential to storage system
design. But, little work has been conducted on characteriz-
ing write traces in OLTP workloads, particularly from the
perspective of FTL design. This section discusses three in-
triguing characteristics we have observed from realistic write
traces: write skew, temporal locality, and frozen page. As
explained later, we capitalize on them in designing 2R.

Write Skews It is well known that logical references
to tuples at the buffer layer are heavily skewed in OLTP
workloads [7, 28]. In addition, the page-level access skew at
the buffer layer is virtually same as the tuple level skew [28].
Then, the following question would be whether the write
skew still holds for at the block I/O layer.

To answer this question and to quantify the skewness fac-
tor in OLTP workloads, we collected the write traces while
running TPC-C and LinkBench benchmarks on a commer-
cial RDBMS and the MySQL/InnoDB engine, respectively.
In addition, to check the effect of buffer size on the write
skewness at the block I/O layer, we collected write traces
for two buffer sizes, 0.5GB and 2GB, for each benchmark.
For comparison purpose, we also collected a synthetic write
trace by running the fio tool with the skewness factor (de-
noted as α) set to 1 (i.e., random distribution:zipf=1).
For each write trace, the pages were sorted in the descend-
ing order of their write frequency and then the cumulative
fraction of the corresponding database versus the cumula-
tive probability of writes was plotted as the x and y axis,
respectively. The results are presented in Figure 1.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 fr
oz

en
 p

ag
es

ov

er
 to

ta
l p

ag
es

Write sequence

TPCC
Linkbench

Figure 2: Frozen Pages in OLTP Workloads

Consistently across three workloads, as shown in Figure 1,
more than 80% of all writes were made to less than 20% of all
pages. In other words, while only a small fraction of pages is
very hot, the most page is very cold in terms of writes (i.e.,
infrequently written). We would like to highlight two points
from Figure 1. First, Zipfian write distributions are com-
mon and strong in realistic OLTP workloads. Second, the
write skewness remains quite stable, regardless of database
engines and buffer sizes, thanks to the self-similarity prop-
erty of Zipf’s s law [38]. Note that the results in Figure 1
are consistent with the observations in recent research [38]
saying that 45 out of 48 real traces show strong Zipfian dis-
tributions. In summary, skewed writes are not specific to
OLTP workloads but ubiquitous in many applications.

Temporal Locality Though all traces used in Figure 1
are commonly skewed in terms of per-page write frequency,
two OLTP traces differ from the FIO trace in terms of per-
page write interval. While the write intervals of each page
are stationary in FIO, the write intervals of the most page
in OLTP traces reveal strong temporal locality. That is, in
OLTP traces, once a page is written, regardless of its total
write count, it tends to be repeatedly and intensively written
during a short period and then suddenly not written for a
relatively long period. In other words, each page’s per-page
writes exhibit alternating hot and cold phases and the phase
transition is not incremental but stark.

The strong temporal locality in per-page writes is at-
tributable to the data processing logic. For instance, while
new order entries are inserted to new order and order line

tables in the TPC-C benchmark [28], the corresponding data
pages will be repeatedly written until they are full of new
tuples, and then those pages suddenly become and remain
cold quite long until their orders are delivered later.

Frozen Pages It is common in many applications that
a large fraction of data pages eventually become frozen:
most data pages are, once created, actively updated for a
while, and then eventually no longer updated but remain
ever valid. In this sense, a frozen page is a special type of
cold page. Figure 2 illustrates how the fraction of frozen
pages change over time in two OLTP traces used for Fig-
ure 1. In each workload, the fraction of frozen pages is
larger than 40% at the middle point and becomes greater
than 60% at the fourth-fifth point. In the case of the TPC-C
benchmark [28], most frozen pages comes from three tables
of order line, order, and history, which are used to log
all the transactional activities of order-payment-delivery his-
tory. In a separate experiment, a similar observation about
the frozen pages holds for TPC-E [11]. The existence of
frozen pages is not workload-specific. Instead, it would be
quite natural in any ever-growing database that most newly

2006

created pages become eventually frozen rather than being
permanently updated. In contrast, the FIO trace has no
frozen page because every page is continuously updated.

3. MOTIVATIONS

3.1 Write Amplifications in Real SSDs
To understand the effect of write amplifications on IO

performance and ultimately on the transaction throughput,
we measured both cumulative and running WAFs, IOs per
Second (IOPS), and transactions per minute (TPM) while
running the TPC-C benchmark using a commercial RDBMS
and a commercial SSD. The results are plotted in Figure 3.
The SSD with 800GB logical capacity and 10% OP factor
is presumably known to use 1R-Greedy as its FTL. The cu-
mulative WAF was measured every 10 minutes using the
S.M.A.R.T interface [23, 34] and the running WAF was de-
rived from the cumulative WAF. With an initial database
of 400 GB, the benchmark was run for four days until the
growing database filled up the remaining 400GB space.

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 4

 4.4

 4.8

 5.2

2000 4000 6000 8000 10000
15K

20K

25K

30K

35K

40K

45K

W
A

F

TPM

Write time(m)

TPM

Running WAF
Cumulative WAF

20K

30K

40K

50K

60K

70K

80K

IOPS

IOPS

Figure 3: Real WAF on a Commercial SSD (TPC-C)

As shown in Figure 3, While cumulative and running
WAF has ever increased over time to 2.4 and 5, respectively,
IOPS and TPM has decreased from 60K to 30K and from
40K to 17K, respectively. Because the SSD was initially
half-full and thus the remaining SSD capacity played the
role of the over-provisioning area for FTL, the running WAF
remains somewhat low in the first half period of the experi-
ment. But, as the SSD was filled up with the ever-growing
database and thus the over-provisioning area in effect was
ever-shrinking, the running WAF continued increasing. In
a separate experiment running the same TPC-C benchmark
on two SSDs from other vendors, we have also observed that
their IO and transaction performance behave almost same
to Figure 3. To address the performance drop in SSDs, it
is even recommended to use up to 70% of the SSD capac-
ity [22]. In that 30% of the SSD space is traded to sustain
the performance, the tuning guide is similar to the short-
stroking strategy for harddisk [27]. However, considering
the price of an SSD is mostly determined by its physical ca-
pacity, the trade-off is not an economical option. Hence, to
maximize the cost-benefit of SSD, it is compelling to devise
a better FTL which can keep WAF low and thus sustain the
IO performance high till SSD is mostly full.

Effect of Cold pages on Write Amplification To
investigate why the commercial SSD yielded high write am-
plification for OLTP workloads, we calculated two statistics
while replaying the last one-tenth of the TPC-C trace used
in Figure 3 against an 1R-Greedy simulator: the average
utilization of every victim block and the average number of

copybacks for all pages. First, the average block utilization
of victim blocks was about 0.8. This high utilization will,
according to the WAF formula in Section 2.1, explain why
the running WAF has reached up to 5 in Figure 3. Second,
the average number of copybacks of all pages was about 10.
In particular, some frozen pages have been relocated even
more than 30 times. Recalling that valid pages in victims
are presumably cold, cold pages tend to be repeatedly re-
located. We conclude from these statistics that cold pages
with long write intervals account for most of write amplifica-
tion in 1R-Greedy. In particular, frozen pages with infinite
write interval, as detailed in Section 5, contribute to more
than 80% of write amplifications in OLTP workloads. Under
1R-Greedy, logically frozen pages are not physically frozen
but they are continuously relocated instead.

3.2 Cold Page Spreading
Then, what is the culprit for the excessive copybacks of

cold pages in 1R-Greedy? The answer is the single-block-
merge mechanism. The mechanism has, as explained above,
an undesirable consequence that cold pages are allowed to
colocate with non-cold pages in the same flash blocks. To
be worse, the mechanism incurs the phenomenon of cold
page spreading; cold pages spread across flash blocks as GCs
proceed. As cold pages are evenly distributed over flash
blocks, the utilizations of victim blocks will increase and
thus more valid pages will be copybacked on GCs.

To confirm whether the phenomenon of cold page spread-
ing indeed exists in 1R-Greedy and, if so, how rapidly and
uniformly cold pages spread, we carried out another exper-
iment. While replaying the TPC-C trace used in Figure 3
using 1R-Greedy simulator, we measured the fraction of cold
pages in each of all flash blocks at three-time points in the
trace (i.e., initial, middle, and final), sorted all flash blocks
in the ascending order of cold page fraction in them, and
plot the results in Figure 4(a). At the initial point of the
trace most cold pages are stored only on half of all flash
blocks (the ‘Initial’ graph in Figure 4(a)). But, they have
gradually spread across all flash blocks over time (the ‘Mid-
dle’ graph in Figure 4(a)), and the fraction of cold pages
in every flash block became more than 60% in the end (the
‘Final’ graph in Figure 4(a)).

For comparison purpose, we also carried out the same
experiment using the FIO trace (α=1.0) and present the re-
sult in Figure 4(b). In this experiment, we measured the
fraction of cold pages in flash blocks at six points of time.
Note that cold page spreading proceeds much faster in FIO
than in TPC-C. For instance, cold pages have almost evenly
spread already at the early phase of the FIO trace (the
‘Initial(0.2h)’ graph in Figure 4(b)). Taking into account
that the SSD was full of data from the beginning, this fast-
spreading of cold pages in FIO is not surprising.

4. DESIGN OF 2R
This section presents the design of 2R. It has two ver-

sions, 2R-Greedy and 2R-FIFO. They differ in the victim
selection policy. We will explain the design principles of 2R
and describe how each version works.

4.1 Design Principles
The root cause of excessive WAF in 1R-Greedy is that its

single-block-merge allows cold pages to colocate with non-
cold ones in the same flash blocks. This recognition led us

2007

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Co
ld

 P
ag

e
Ra

tio

Total Block

Initial (0h)
Middle (12h)

Final (24h)

(a) TPC-C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Co
ld

 P
ag

e
Ra

tio

Total Block

Initial (0h)
Initial (0.1h)
Initial (0.2h)
Initial (0.3h)

Middle (0.5h)
Final (1h)

(b) FIO (α=1.0)

Figure 4: Cold Page Spreading (OP factor = 10%)

to take the first design principle: “do not mix cold pages with
non-cold ones in same flash blocks.” To realize this design
principle, we propose “two-region” FTL (2R hereafter). In
2R, flash blocks are distinguished into two types, normal and
cold; normal blocks are to store non-cold pages while cold
blocks are to store cold pages. Thus, the flash memory space
is divided into two regions of normal and cold. The main
goal of 2R scheme is to minimize the relocations of cold pages
by isolating them into the cold region while keeping non-cold
pages in the normal region (that is, bimodal distributions of
cold and non-cold pages in two regions).

Though it looks simple, however, designing an FTL with
two regions raises several technical issues: which region to
place new writes from the host, how to identify cold pages,
when and which page to migrate between regions, how to al-
locate space to each region, and the victim selection policy.
In addition, for each issue, there might exist two or more
alternatives. Therefore, the design space of FTL with two
regions could be very large. For this reason, we take another
design principle for 2R: “all its design decisions should be
capitalized on three write characteristics: write skew, tem-
poral locality, and frozen pages.”

These two design principles make 2R statistics-free and
thus a viable solution for real SSDs. The only statistic 2R
needs is the number of valid pages for each block, which
commercial SSDs already maintain. In contrast, the existing
hot/cold separation FTLs require per-page and/or per-block
metadata to classify pages’ hotness [12, 33, 36].

4.2 2RGreedy
We first describe the basic version, 2R-Greedy. We will

explain how it handles such issues as page placement, page
migration, cold page identification, and GC. While explain-
ing these issues, the architecture of 2R in Figure 5 and the
write and GC procedures in Algorithm 1 will be referred to.

4.2.1 Where To Place New Writes From The Host?

With two regions, a page writes from the host can be
placed, depending on the page’s hotness, on either normal or
cold region. In fact, in the case of existing hot/cold separa-
tion FTL schemes supporting multiple regions, a page write
will be placed on proper regions depending on the page’s
hotness which is calculated from its per-page statistics [12,
36]. In contrast, 2R simply places every writes from the
host on the normal region ((1) in Figure 5). If the previous
version is in cold region, the page now migrates to normal
region ((5) in Figure 5). Otherwise, the page remains in
normal region ((2) in Figure 5). Note that either type of
migration does not cause additional copyback.

Figure 5: Page Migrations in 2R

This decision on the page placement in 2R is based on a
simple heuristic that every newly written page be non-cold
at the time of the write. The heuristic is, in turn, based
on the write skewness and the temporal locality in OLTP
write traces. That is, recalling that more than 80% of all
writes are made against hot pages and also that a page is,
once written, likely to be re-written soon, the heuristic that
any newly written page is in its hot phase would be correct
in most case. Although wrong in some cases, this heuristic,
unlike the existing solutions [12, 36], does not require any
extra overhead to determine page hotness.

Refer to the procedure Write in Algorithm 1, where the
variable CurBlk indicates current normal block where new
page writes will be placed. In 2R-Greedy, all flash blocks are
initially used as normal blocks. When all flash blocks are
consumed and thus no free space is available for new writes
in CurBlk, a clean normal block has to be secured by trigger-
ing the GarbageCollect procedure (line 4 in Algorithm 1).

4.2.2 Cold Page Identification

2R aims at achieving bimodal distribution by keeping non-
cold pages in normal region while isolating cold pages in
cold region. For better bimodality, it is crucial to identify
cold pages correctly. The cold page identification in 2R-
Greedy resorts to another heuristic: valid pages in victim
blocks will be cold. This heuristic holds true in most cases
because a page is unlikely to be written soon, according to
the temporal locality, if the page remains intact since its
last write or copyback to the victim block. This heuristic
will be further supported by two characteristics in OLTP
workloads: the stark hot/cold phase transitions in per-page
writes and frozen pages. Following the heuristic, all valid
pages in victim blocks will be migrated to cold region ((3)
or (4) in Figure 5). In summary, the cold page identification
in 2R-Greedy is based solely on temporal locality.

2008

Algorithm 1 2R-Greedy Algorithm

1: procedure Write (P)
2: /* CurBlk: current normal block for new write */
3: if no free page in CurBlk then
4: CurBlk = GarbageCollect();
5: end if
6: /* every host write goes to normal region */
7: write P to CurBlk;
8: mark (if any) P’s old version in either region
9: end procedure
10:
11: procedure GarbageCollect()
12: /* victim selection using the Greedy policy */
13: select N victim blocks from one region
14: copy valid pages in victims to N-1 cold block(s);
15: erase N victim blocks;
16: return a secured FreeBlock;
17: end procedure

4.2.3 Garbage Collection and Page Migration

Like 1R-Greedy, upon GC, 2R-Greedy also chooses the
block with the least number of valid pages as the first vic-
tim, regardless of its block type. But, unlike 1R-Greedy
taking single-block-merge, 2R-Greedy merges two or more
blocks from the same region at once in each GC. By merging
multiple blocks from the same region, 2R-Greedy aims to
disallow cold pages from normal victim blocks to mix with
colder pages from cold victim blocks.

2R-Greedy chooses multiple blocks (N) from the same re-
gion as victims, compacts all valid (and presumably cold)
pages in victims into (N-1) cold blocks, and thus secures a
completely empty block. The number of blocks to be merged
at once, N, will be determined as follows: the total capacity
of invalid pages in the blocks should be equal to or greater
than the size of one flash block. In this way, 2R-Greedy
intends to strictly separate non-cold pages from cold ones,
thus meeting its first design principle: “do not mix cold pages
with non-cold pages in the same flash block.” For the GC
algorithm in 2R-Greedy, refer to the GarbageCollect pro-
cedure in Algorithm 1.

When normal blocks are merged on GC, every valid page
in victim blocks has to migrate to cold region ((3) in Fig-
ure 5). Note that this migration causes one additional write.
Once moved to cold region, a page will stay there until the
new write is made for the page. While staying at cold re-
gion, cold pages should not, ideally, experience further relo-
cations. But, cold pages with long write intervals as well as
frozen pages might experience repetitive copybacks within
cold region ((4) in Figure 5) when their belonging blocks
become victim for GC.

Although 2R does not explicitly distinguish page cold-
ness at three or more levels, merging multiple cold blocks
will have the effect of isolating very cold pages and frozen
pages implicitly into a deeper level. More deeply those cold
pages are isolated, the less likely they experience copyback.
In particular, frozen pages, after experiencing a few copy-
backs within cold region, will not be relocated any more;
they are now frozen physically as well as logically. In this
way, 2R-Greedy will isolate both frozen pages and very cold
pages deeply into cold region and thus minimize their write
amplification. That is, with 2R multiple stages of cold-

ness are implicitly classified within cold region by merging
cold blocks. For this reason, we argue that two regions are
enough to workloads with skewness, strong temporal local-
ity, and frozen pages.

In 2R, the GarbageCollect procedure in Algorithm 1 au-
tomatically adapts the sizes of normal and cold region. That
is, depending on the type of victim blocks, one region grows
while the other shrinks. For instance, if N victims are chosen
from normal region, cold region grows as cold pages amount-
ing to (N-1) blocks are migrated from normal region. In this
way, the space allocation to regions in 2R will adapt to the
changing workloads, requiring no tuning. In addition, be-
cause the type of victim blocks is highly dependent on the
victim selection policy, the victim selection policy is, as il-
lustrated in Section 5, critical to the actual space allocation
to each region.

4.3 2RFIFO

4.3.1 False Cold Pages in 2R-Greedy

Though quite effective in isolating cold pages, as demon-
strated later, 2R-Greedy suffers from the problem of false
cold pages. Informally, a page is defined as false cold when
soon-to-be-invalidated thus non-cold in reality but, under
2R-Greedy, misregarded as cold and thus migrated to cold
region. In fact, the non-marginal fraction of the pages enter-
ing cold region in 2R-Greedy is false cold. False cold pages
will exacerbate the write amplification in two ways. First,
each false cold page incurs one copyback from normal to
cold region. Second and even worse, they pollute the cold
region. As false cold pages are soon invalidated after mi-
grated to cold region, the utilizations of cold blocks will be
accordingly lowered. Cold blocks with low utilization are
then likely to become victims for GC, which in turn cause
even truly cold pages in the blocks to be relocated. To sum,
the problem of false cold pages offsets the benefit of cold
page isolation in 2R-Greedy.

The Greedy policy itself is the culprit for false cold pages
in 2R-Greedy. That is, with regard to cold page identifica-
tion, the policy contradicts the principle of temporal local-
ity in two ways. First of all, since only the number of valid
pages in blocks are taken into account in victim selection,
normal blocks are more likely to become victim over cold
ones. This is especially true with young normal blocks in
which many non-cold pages happen to be colocated. As a re-
sult, non-cold but still-valid pages in such normal blocks will
migrate to cold region. Second, because the policy prefers
normal blocks as victim and thus the normal region is ever-
shrinking, non-cold pages in normal region will have less
temporal chance to be invalidated and thus more likely to
become false cold pages. This vicious circle will make 2R-
Greedy less effective in filtering false cold pages.

4.3.2 2R-FIFO

To prevent the problem of false cold pages, we made three
changes to the GC mechanism in 2R-Greedy: the FIFO vic-
tim selection policy, selective merge policy, and the second
chance policy. One common goal of these changes is to give
non-cold pages in normal region a longer temporal chance to
be invalidated and thus to identify cold pages more faithfully
to the principle of temporal locality.

FIFO Policy The FIFO policy is used to choose the
victim blocks (i.e., 2R-FIFO). To embody the FIFO policy,

2009

all flash blocks of normal and cold are maintained as a single
linked list. Each normal or cold block is appended to the
tail of the list in the order of its allocation. In addition
to the head, the FIFO list has three pointers, cur scan,
cur cold blk, and cur blk. The cur scan pointer indicates
the block up to which the list is scanned. The cur cold blk

pointer refers to the newest cold block to which the next cold
pages will be appended. The cur blk is the normal block at
the tail of the list, to which normal writes are made. Once
the current normal block, cur blk, is full, 2R-FIFO starts
scanning the list from the cur scan block in a circular order
and chooses, as in 2R-Greedy, multiple victim blocks of the
same type per a GC so as to secure a completely clean block.
All valid pages in victims will be copied to the cur cold blk

blocks. Then, each victim block will be removed from the
list and the cur scan pointer is also adjusted to point to
the next candidate victim block in the list. The clean block
obtained from the GC is then appended to the tail of the list
as normal block and will be used as cur blk to store new
writes from the host until it is full. Note that, in 2R-FIFO,
all normal and cold blocks are interleaved in the list in the
order of their allocations. The next victim block selection
starts from the cur scan, not from the list’s head. With
the FIFO policy, each non-cold page in normal blocks will
now have a more temporal chance to be invalidated until its
belonging block becomes the victim.

Selective Merge Policy While scanning blocks in the
FIFO list, 2R-FIFO selectively chooses victim blocks. That
is, a block is selected as a victim only if its utilization is
less than a threshold value (i.e., BLK UTIL), but otherwise
skipped. This selective merge policy is taken for three rea-
sons. First of all, merging blocks with high utilization will
secure only limited space at the cost of relocating numerous
valid pages. Second, by skipping blocks with large utiliza-
tion, valid pages in the blocks will have another chance to
be invalidated during the sweep of the circular buffer list.
This second chance effect will help in identifying truly cold
pages. Finally, by merging cold blocks with low utilizations
eagerly, the policy can allocate the space trimmed from the
cold blocks to normal region. In this way, the space uti-
lization of cold region will improve and also, more impor-
tantly, the normal region will shrink at a slower pace than
2R-Greedy. This virtuous cycle can effectively mitigate the
problem of false cold pages. We have empirically found out
that 2R-FIFO performs best with BLK UTIL set to 0.5. With
higher threshold value, the copyback overhead of valid pages
offsets the benefit of cold page isolation. With lower value,
in contrast, 2R-FIFO suffers from space under-utilization,
causing higher write amplification.

Second Chance Policy As cur blk approaches the tail
of the FIFO list, the pages at the tail blocks will have less
temporal chance to be invalidated because they are recently
written or copybacked. Since the pace of scanning the list is
faster than that of appending new blocks at the list tail, we
decided to give a second chance to the blocks near the tail
of the list. For this, when reaching a predefined depth of
the list, FIFO SCAN DEPTH, 2R-FIFO stops scanning the list
and instead start scanning from the list head. This second
chance mechanism will prevent non-cold pages at the tail of
the list from falsely entering cold region.

It is obvious that the performance of 2R-FIFO will be
highly dependent on the parameter FIFO SCAN DEPTH. To

 1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

 6x10
7

 7x10
7

 60 65 70 75 80 85 90 95 100

N
um

be
r

of
 c

op
yb

ac
ke

d
pa

ge
s

FIFO_SCAN_DEPTH (%)

Total
Cold
Hot

Figure 6: Effect of Varying FIFO SCAN DEPTH on WAF

understand the effect of FIFO SCAN DEPTH on write ampli-
fication, we measured the cumulative WAF for the TPC-
C trace used in Figure 1 by varying the parameter from
60% to 100%, and presented the result in Figure 6. With
the parameter set to 80%, as indicated by the ‘Total’ line
in Figure 6, 2R-FIFO yields the lowest WAF: the num-
ber of copybacked pages in Y-axis is smallest. With higher
FIFO SCAN DEPTH, 2R-FIFO also will tend to falsely migrate
the non-cold pages from the young blocks at FIFO tail to the
cold region, thereby causing more non-cold pages to be re-
located, as illustrated by the ‘HOT’ line in Figure 6. With
lower FIFO SCAN DEPTH, in contrast, 2R-FIFO is likely to
choose old blocks at the FIFO head as victim and has to
merge cold pages in the blocks, thus causing more cold pages
to be relocated, as indicated by the ‘COLD’ line in Figure 6.

4.3.3 Recovery

FTLs should be able to recover from any unexpected fail-
ures. For the simplicity of discussion, all the key data struc-
tures of 2R-FIFO are assumed to reside in the battery-
backed non-volatile cache [26], including its page-mapping
table, three pointers, and the linked FIFO structure. With
the help of durable cache, it would be trivial to make the
key data structures in 2R-FIFO consistent and persistent
despite of sudden failures. One exception is the FIFO list.
When a crash is encountered at any point while manipulat-
ing the linked list, it would be time-consuming to recover
the broken list. A better solution is to make the update
operations for the list atomic. For instance, in order to in-
sert/remove a block to/from the middle of the FIFO list,
two pointers have to be updated atomically. The existing
solutions for non-blocking linked lists will shed light on this
issue [20].

4.3.4 MBMInduced Tail Latency

In 2Rs, merging multiple blocks (i.e., MBM) from the
same region at once upon garbage collection plays a cru-
cial role in strictly segregating cold pages from non-cold
ones. The MBM scheme will, however, induce longer tail
latency for write operation: a write operation encountering
a garbage collection has to wait until multiple blocks are
completely merged and erase. In the case of 1R-Greedy, in
contrast, each garbage collection merges only a single vic-
tim block so that the tail latency for write operations will be
shorter. As the long tail latency issue becomes more critical
in modern applications [15], the latency variability resulting
from MBM has to be properly addressed. The semantics of
MBM, fortunately, does not enforce the synchronous merge
implementation. Instead, merging multiple blocks can be
implemented asynchronously. That is, once all valid pages
in the first victim block are successfully relocated and the

2010

block is erased, the write operation can proceed while other
victim blocks are merged in a background way.

Before closing this section, we would like to stress that
2R-FIFO is a viable solution for commercial SSDs in two
aspects. First, 2R-FIFO can be implemented with minimal
changes to the existing 1R-Greedy, as detailed in Section 5.3.
Second, 2R-FIFO is efficient in terms of run-time overhead.
Upon every GC, for instance, 2R-FIFO can find the next
victim blocks simply by scannng the FIFO list, while 1R-
Greedy and 2R-Greedy have to compare the numbers of valid
pages in all blocks. In addition, unlike other existing FTLs,
it can isolate cold pages in a statistics-free manner.

5. PERFORMANCE EVALUATION

5.1 Experimental Setup
We have implemented a simple trace-driven simulator for

each of three FTLs and measured WAF while running each
simulator using three traces, FIO, TPC-C, and LinkBench.
WAF is a good performance indicator in comparing different
FTL schemes since both IOPS and TPS are, as illustrated
in Figure 3, almost inverse-proportional to WAF. For all
experiments, the page size was set to 4KB, the flash block
was to have 1,024 pages (i.e., 4MB). Besides, while running
each trace, the size of flash memory was by default con-
figured to have 10% over-provisioning (OP) in addition to
the final database size. The three I/O traces were collected
using the blktrace tool [8] while running a synthetic FIO

tool [9], and also running TPC-C and LinkBench. For each
OLTP workload, the buffer size was set at 10% of its initial
database size. Below are described the three workloads.

FIO FIO (Flexible I/O tester) is a synthetic tool that gener-
ates I/O patterns as indicated by users [9]. Using the
configurable option random distribution:zipf=α in
the tool, you can specify the skewness of data access.
By default, FIO generates uniformly random distribu-
tion for random IOs (that is, α = 0). We collected
a random write trace while writing 90 million of 4KB
pages (i.e., 360GB in total) against a fixed database
of 8GB using FIO with α set to 1.0.

TPC-C The TPC-C trace was obtained while running the
benchmark [28] using the Benchmark Factory tool [35]
on a popular commercial DBMS. While running the
benchmark, the database engine wrote about 105 mil-
lion of 4K pages (480 GB in total) and the database
size had grown from 1GB to 10GB.

LinkBench LinkBench is an open-source benchmark mod-
eling the social graph data at Facebook [7]. This trace
was collected while running the LinkBench (version
2.0) tool [6] on MySQL/InnoDB (version 5.7.2). While
running the benchmark, the database engine wrote
about 300 million of 4K pages (1.2TB in total) and
the database size had grown from 2GB to 30GB.

5.2 Performance Analysis

5.2.1 Overall Performance

Let us briefly compare the overall performance of three
FTLs using Figure 7. While running three I/O traces on
three FTLs, we measured the running WAF at every tenth
interval point in each trace and present the results in the

figure. In the figure, the X-axis represents the sequence of
page writes in each trace and the Y-axis does the running
WAF which means the ratio of total internal physical writes
to flash memory over total logical writes made so far in the
trace. As shown in Figure 7, 2R schemes outperform 1R-
Greedy considerably in terms of WAF consistently across all
three I/O traces. In particular, it should be noted that the
running WAF gaps among three FTLs are ever-growing over
time for both TPC-C and LinkBench workload and thus 2R-
FIFO outperforms 1R-Greedy by more than 2.5 folds in the
end. Recalling that the data is growing over time, the effect
of isolating cold pages in 2R schemes becomes outstanding as
the SSD is filled with more data. It is also noteworthy that
the running WAF gap between 2R-FIFO and 2R-Greedy is
also substantial in both OLTP traces.

5.2.2 Performance Analysis: FIO

1R-Greedy vs. 2R schemes: It is clear from Fig-
ure 7(a) that 1R-Greedy results in high WAF for the FIO
trace. In particular, the running WAF spikes at the early
phase of the trace and is ever-increasing, though steadily,
until the end of the trace. This high WAF in 1R-Greedy is
mainly due to its cold page spreading which was illustrated
in Figure 4(b). Recall that cold pages have rapidly spread
over all flash blocks in the early stage of the FIO trace and
continue spreading till the end of the trace. In contrast, the
WAFs in 2R-Greedy as well as 2R-FIFO reach the plateau
early at the one-fourth point of the trace, then remaining al-
most stable until the end of the trace. This clearly indicates
that for the FIO trace with skewed writes (i.e., α=1.0) 2R
schemes can effectively prevent cold pages from spreading
instead isolating them into cold region, thus limiting their
relocations. In fact, according to a separate analysis, most
write reduction of 2Rs over 1R-Greedy is attributable to cold
pages with quite long write intervals.

2R-Greedy vs. 2R-FIFO: With the FIO trace, as in-
dicated in Figure 7(a), the WAF gap between 2R-FIFO and
2R-Greedy is, compared to the one between 2R-FIFO and
1R-Greedy, quite small. This is due to the write charac-
teristics in FIO trace: the hotness of each page is statisti-
cally determined, its write count is inverse-proportional to
its hotness, and, more importantly, each page’s write inter-
val is uniform (i.e., no temporal locality in page writes).
Therefore, the oldest normal blocks will have the smallest
number of valid pages so that both 2R-Greedy and 2R-FIFO
are likely to choose the same oldest normal blocks as vic-
tims. In particular, because the oldest blocks tend to be
victim, 2R-Greedy will not suffer from the problem of false
cold pages. Instead, because of its eager cold block merge,
2R-FIFO can outperform 2R-Greedy, though marginal.

Effect of Skewness Given highly skewed writes (e.g.,
α = 1.0), 2Rs outperform 1R-Greedy. To understand the
effect of skewness, we collected six write traces using run-
ning the FIO tool by increasing the skewness factor α from
zero (i.e., uniform random) to 1.0 (i.e., highly skewed) at
the interval of 0.2, measured the cumulative WAFs while
running three FTLs using those traces, and present the re-
sult in Figure 8. It is clear from Figure 8 that the benefit of
2Rs over 1R-Greedy becomes outstanding as the writes are
more skewed (i.e., as α increase from 0.6 to 1.0). As the
writes are more skewed, 2Rs can identify cold pages more
correctly and isolate truly cold pages into cold region while

2011

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2x10
7

 4x10
7

 6x10
7

 8x10
7

W
A

F
 (

R
un

ni
ng

)

Write sequence

1R-Greedy
2R-Greedy

2R-FIFO

(a) FIO (α=1.0)

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 0 2x10
7

 4x10
7

 6x10
7

 8x10
7

 1x10
8

W
A

F
 (

R
un

ni
ng

)

Write sequence

1R-Greedy
2R-Greedy

2R-FIFO

(b) TPC-C

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 0 5x10
7
 1x10

8
 1.5x10

8
 2x10

8
 2.5x10

8
 3x10

8

W
A

F
 (

R
un

ni
ng

)

Write sequence

1R-Greedy
2R-Greedy

2R-FIFO

(c) LinkBench

Figure 7: Running WAF (Over-provisioning = 10%)

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

W
A

F

Zipfian Factor (α)

1R-Greedy
2R-Greedy

2R-FIFO

Figure 8: Varying Skewness in FIO

1R-Greedy suffer from the cold page spreading. Meanwhile,
given less skewed writes (i.e., α ≤ 0.4) where the most page
has almost similar write interval, 2Rs can hardly distinguish
cold pages from non-cold ones so that they perform closely
to 1R-Greedy. It should be noted, however, that 2Rs are
not inferior to 1R-Greedy even for uniform writes (i.e., α =
0.0) which is the worst scenario for 2Rs. In this regard, 2Rs
are resilient to low skewness. In a separate experiment us-
ing the real Cosmos board, we verified that the cumulative
WAFs of 1R-Greedy and 2R-FIFO are almost the same to
those in Figure 8. Meanwhile, the cumulative WAFs of three
commercial SSDs are almost same to that of 1R-Greedy in
Figure 8. In summary, we would like to stress that 2Rs are
not workload-specific but workload-agnostic.

5.2.3 Performance Analysis: TPCC and Linkbench

Before analyzing the effect of our 2R schemes on OLTP
workloads in detail, let us make two general observations
about the results in Figure 7. First, across three FTLs,
running WAFs in OLTP traces are quite lower than those
in the FIO trace. In particular, even with 1R-Greedy, the
running WAF in each OLTP trace is quite small and in-
creasing slowly in the first half of the trace. This is mainly
because each OLTP trace was collected from an initially
small but ever-growing database while the FIO trace was
from an initially full and fixed database. In the case of
OLTP traces, when the database size is relatively small, the
remaining unused logical space in flash storages will play
the role of over-provisioned area in effect [3]. Second, each
FTL shows similar trends in WAF over time for both TPC-
C and LinkBench. This is because they are similar in their
write characteristics such as skewness, temporal locality, and
frozen pages. For this reason, our performance comparison
and analysis of three FTLs will focus on the TPC-C trace.

1R-Greedy vs. 2R-FIFO As Figure 7.(b) illustrates,
2R-FIFO starts outperforming 1R-Greedy at the early phase
of the TPC-C trace, the running WAF gap between two

FTLs is ever-widening over time, and eventually at the last
interval in the trace, 2R-FIFO can reduce the running WAF
by 1/3. Recalling that the write performance is inverse to
the internal WAF, this result in turn implies that 2R-FIFO
can improve the random write I/O performance over 1R-
Greedy by three folds in principle. This huge performance
gain is, as demonstrated in Section 5.3, indeed achievable
with our real implementation.

2R-FIFO vs. 2R-Greedy As shown in Figure 7.(b),
2R-FIFO starts outperforming 2R-Greedy considerably in
terms of running WAF from the middle of two OLTP traces.
In addition, in terms of cumulative WAF at the end of
both traces, 2R-FIFO and 2R-Greedy achieves the cumu-
lative WAF of 1.23 and 1.61, respectively. Again, there are
two sources of WAF reduction in 2R-FIFO over 2R-Greedy:
false cold pages and frozen pages. First of all, the main prob-
lem with 2R-Greedy is that the write amplification due to
non-cold pages (i.e., pages whose write interval is than DB
size) is quite large (i.e., about 0.4), which is, to our surprise,
even higher than that in 1R-Greedy. This inefficiency is due
to the problem of false cold pages in 2R-Greedy. In contrast,
since 2R-FIFO can prevent pages with short write intervals
from falsely entering cold region, it can reduce the write
amplification of non-frozen pages, compared to 0.4 in 2R-
Greedy, to 0.1. Second, the write amplifications of frozen
pages are approximately 0.2 in 2R-Greedy and 0.1 in 2R-
FIFO. This improvement is another positive side-effect of
preventing false cold pages in 2R-FIFO. That is, as less false
cold pages pollute cold region in 2R-FIFO, the cold blocks
will be less merged and accordingly the frozen pages in cold
blocks will be less copybacked.

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

c
ti
o
n
 o

f
B

lo
c
k
s

Block utilization

1R-Greedy
2R-Greedy

2R-FIFO

Figure 9: Bimodal Block Utilization (TPC-C)

Bimodality in Block Utilizations As discussed in
Section 4, 2R will show the bimodal distribution of block
utilizations. To verify the superiority of 2R-FIFO over 2R-
Greedy in bimodality, we measured the utilization of all flash
blocks at the three-fourths point while running the TPC-C

2012

trace for each FTL including 1R-Greedy, and plotted the re-
sult in Figure 9. Note that the y-axis is log-scale. 1R-Greedy
shows no bimodality because it has a single block type: most
block tends to linger just above the cleaning point [33].

2R-FIFO is more clear than 2R-Greedy in terms of the bi-
modality, which can in turn explain the WAF gap between
them. Compared to 2R-Greedy, 2R-FIFO will choose nor-
mal blocks with quite lower utilization as victim: the aver-
age utilization of all normal victim blocks in 2R-FIFO and
in 2R-Greedy was 0.16 and 0.41, respectively.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 0.2 0.4 0.6 0.8 1

C
ol

d
bl

oc
k

ra
tio

(%
)

Time

2R-Greedy
2R-FIFO

Figure 10: Adaptive Space Allocation (TPC-C)

Adaptive Space Allocation In the TPC-C trace, as
the database grows over time, the number of cold and frozen
pages also increases. Therefore, the cold region has to ac-
cordingly expand to accommodate more cold pages. 2R
schemes are novel in that they allocate space adaptively to
flash regions, thus requiring no tuning effort. To verify how
adaptively 2Rs allocate blocks to cold region, we measured
the fraction of cold blocks over all blocks while running the
trace and present the result in Figure 10. Note that Y-axis
in the figure ranges up to 110% because the OP factor is set
to 10%. While both schemes allocate more blocks to cold re-
gion over time, the fraction of cold region in 2R-FIFO is less
than that in 2R-Greedy about by 0.2 across all ranges greater
than 0.1 in X-axis. This result indicates that 2R-FIFO is
better than 2R-Greedy in terms of the space utilization of
cold region. 2R-FIFO can utilize the cold region better be-
cause it prevents false cold pages from entering the cold
region, and also because it takes the eager cold block merge.
With larger normal region, non-cold pages in normal blocks
will have more temporal chances to be invalidated before
the normal blocks become victims. This is the reason why
the average utilization of normal victim blocks in 2R-FIFO
was lower than that in 2R-FIFO.

Effect of OP Factor on WAF The performance and
endurance of flash storages are highly dependent on the over-
provisioning (OP) capacity. Irrespective of FTL schemes,
WAF will decrease with larger OP area because most non-
cold page will have more temporal chance to be invalidated
before its belonging blocks become victim for garbage col-
lection. To evaluate the impact of the OP capacity on write
amplification, we measured cumulative WAF of each FTL
for the TPC-C trace by varying the OP factor from 5% to
50% over the final database size, and the results are pre-
sented in Figure 11. We would like to highlight several
points from Figure 11. First, 2R-FIFO outperforms 1R-
Greedy substantially across all OP ranges tested. Second,
the WAF gap between 2R-Greedy and 2R-FIFO is rapidly
narrowing as the OP area is growing. This is because a larger
OP area can drastically mitigate the problem of false cold
pages in 2R-Greedy. Third, as the OP factor is reduced from

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

 5 10 20 30 40 50

W
A

F

Over-Provisioning(%)

1R-Greedy
2R-Greedy

2R-FIFO

Figure 11: Effect of OP Factor on WAF (TPC-C)

20% to 5%, the WAF increase in 2R-FIFO is gentle while
they are steep in 1R-Greedy and 2R-Greedy. This indicates
that the benefit of 2R-FIFO becomes more outstanding with
smaller OP factor. Lastly, and most importantly, 2R-FIFO
with only 5% OP factor wins over 1R-Greedy even with 50%
OP factor. Given that the price of an SSD is highly de-
pendent on its physical flash capacity, this indicates that
2R-FIFO can, compared to 1R-Greedy, cut the cost of SSDs
down by 40% for the TPC-C workload, while providing the
same or better performance. This can in turn justify the
cost-benefit of 2R-FIFO over 1R-Greedy.

5.3 Experimental Results using Real SSD
To evaluate the effect of 2R-FIFO on a real system, we

have prototyped 2R-FIFO on the OpenSSDCosmos board [5]
and compared it with 1R-Greedy, the default FTL in the
board, by running TPC-C, LinkBench, and YCSB bench-
marks on each of two FTLs. 2R-FIFO was implemented
with minimal change of 52 lines to the 1R-Greedy codebase
on the board. The OpenSSD Cosmos board employs the
HYU Tiger 4 controller based on Dual-Core ARM Cortex-
A9 on top of Xilinx Zynq-7000 board, and 32GB MLC Nand
flash memory. All the experiments were conducted on a
Linux platform with the 4.15 kernel running on an Intel
Core i7-4770 3.4GHz processor with 16GB DRAM. The size
of over-provisioning area on the board was set to 10%.

TPC-C MySQL/InnoDB engine (version 8.0.2) and the
tpcc-mysql tool was used to run the TPC-C benchmark.
While running the benchmark against each FTL, the initial
database of 1.5GB was created and then 16 threads of the
benchmark tool concurrently ran until the database grew up
to the full capacity of SSD (i.e., 28GB). The database page
size was set to 16KB which is the default in the database
engine and the buffer size was to 512MB. While running the
benchmark for each FTL, the running WAF and TPM were
measured at every 10 seconds and plotted in Figure 12(a).
In the figure, the X-axis represents the amount written from
the host, and the left and the right Y-axis does the running
WAF and the transaction throughput, respectively. Note
that the throughput and running WAF of 1R-Greedy in Cos-
mos board over time change very similarly in those of real
commercial SSD in Figure 3. The average TPM of 2R-FIFO
(13,512) is 1.9x better than that of 1R-Greedy (7,092) and
the last 1% TPM of 2R-FIFO (9,912) surpasses that of 1R-
Greedy (2,432) by 4.07x. The huge throughput gap between
2R-FIFO and 1R-Greedy is a direct reflection of WAF re-
duction. As shown in Figure 12(a), the last 1% WAF of
2R-FIFO was 1.7 while that of 1R-Greedy was 5. Finally,
it should be noted that the running WAF of 2R-FIFO has
sustained less than 1.1 until the SSD is almost full, which is
very close to the ideal WAF of 1.

2013

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 20 40 60 80 100 120
0

5K

10K

15K

20K

25K

30K
W

A
F

 (
R

u
n

n
in

g
)

T
P

M

Write (GB)

TPM :

1R-Greedy
2R-FIFO

WAF :

1R-Greedy
2R-FIFO

(a) TPC-C on MySQL

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100
0

1K

2K

3K

4K

5K

6K

7K

W
A

F
 (

R
u

n
n

in
g

)

T
P

M

Write (GB)

TPM :

1R-Greedy
2R-FIFO

WAF :

1R-Greedy
2R-FIFO

(b) LinkBench on MySQL

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 500 1000 1500 2000 2500 3000 3500
2K

3K

4K

5K

6K

7K

8K

9K

W
A

F
 (

R
u

n
n

in
g

)

O
P

S

Write (GB)

OPS :

1R-Greedy
2R-FIFO

WAF :

1R-Greedy
2R-FIFO

(c) YCSB on RocksDB

Figure 12: OLTP Performance on Cosmos OpenSSD

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100
0

5K

10K

15K

20K

25K

30K

35K

W
A

F
 (

R
un

ni
ng

)

T
P

M

Write (%)

TPM :

1R-Greedy
2R-FIFO

WAF :

1R-Greedy
2R-FIFO

Figure 13: Multi-Tenant TPC-C Performance

LinkBench With the same InnoDB setting as in TPC-
C, we measured the running WAF and TPM at every 10 sec-
onds while running LinkBench on each FTL and presented
the results in Figure 12(b). In this experiment, the ini-
tial database of 5GB was created and then 32 thread of the
benchmark tool concurrently ran until the database grew up
to the full capacity of SSD (i.e., 28GB). 2R-FIFO outper-
forms 2R-Greedy about by two times in terms of both aver-
age and last OPS. Likewise the TPC-C case, the significant
throughput gain of 2R-FIFO over 1R-Greedy in LinkBench
is also due to the WAF gap between two FTLs. The cumula-
tive WAF of 1R-Greedy and 2R-FIFO is 2.1 and 1.28, respec-
tively and their running WAFs at the last point of time are
4.3 and 1.8, respectively. Note that the running WAF trends
in both 1R-Greedy and 2R-FIFO and their WAF gap over
time in Figure 12(b) are very close to those in Figure 7(c).

YCSB In addition, to compare the performances of 1R-
Greedy and 2R-FIFO for NoSQL applications, we measured
OPS (operation per second) and WAF while running the
update-only YCSB workload [14] with RocksDB [4] on top
of each FTL and present the results in Figure 12(c). For
this experiment, 32GB MLC Nand flash memory was added
to the board so as to store the initial database of 35GB and
also to accommodate the space amplification required from
RocksDB. While running the benchmark, RocksDB wrote
a large number of SSTables whose total size amounts to
350GB.

To our surprise, even for the YCSB benchmark, 2R-FIFO
wins over 1R-Greedy in terms of average OPS (5,216 vs.
4,685) as well as the running WAF (2 vs. 1.4). This result
is counter-intuitive: we expected that the running WAF be
very low (i.e., close to 1) even with 1R-Greedy since the write
patterns in RocksDB are mostly sequential (e.g., 32MB-
long SSTables) and thus flash-friendly. But, our preliminary
analysis reveals the writes from RocksDB are also skewed so
that 2R-FIFO outperforms 1R-Greedy.

Multi-Tenant Databases With the ever-increasing ca-
pacity of SSDs, it would be common for multiple databases
to share a single large SSD. In particular, with more appli-
cations moving to the cloud, more database instances ser-
viced by cloud vendors will run in multi-tenant environ-
ment [29]. To evaluate the effect of 2R-FIFO on multi-
tenant databases, we measured total TPSs of four TPC-C
benchmarks concurrently running on a single Cosmos SSD
with each of 1R-Greedy and 2R-FIFO, and also measured
the running WAF of the SSD, and present the results in
Figure 13. Each database’s size was set to one-fourth of
single database used for Figure 12(a). Not surprisingly, the
performance gap between 1R-Greedy and 2R-FIFO under
multi-tenant databases is very close to the gap under single
tenant database (Figure 12(a)). Regardless of the number
of concurrent tenants, the benefit of 2R-FIFO will hold as
long as the writes are skewed.

6. RELATED WORKS

2R aims at separating cold pages from non-cold ones into
the cold region and thus reducing write amplification. In this
regard, there exist two types of related work: hot/cold sep-
aration FTLs schemes [12, 36] and multi-stream SSDs [25].
In addition, the cold page isolation in 2R is analogous to the
hot page filtering in 2Q buffer algorithm [24].

Hot/Cold Separation FTLs Numerous hot/cold sep-
aration FTL schemes [12, 36] have been proposed to reduce
write amplification by placing pages with different hotness
into different regions. Indeed, most hot/cold separation
FTL can be traced back to LFS [33] which pioneered the
idea of separating hot/cold data and storing them in differ-
ent segments. In particular, the authors of LFS showed that
the victim selection policy is crucial in segregating hot/cold
data correctly. Existing hot/cold separation FTLs have ex-
tended LFS mainly in two ways. First, unlike LFS, they
explicitly divide the flash storage into multiple regions. Sec-
ond, they determine each page’s hotness based on either the
update recency [12] or the update frequency [36].

But, existing hot/cold separation FTLs incur both space
and computation overheads to maintain per-page hotness
metadata and estimate the page hotness on demand. For
instance, for each page, the DAC scheme [12] keeps track
of its region number as well as the last-written-time in the
page-mapping table, and calculates each page’s hotness on-
demand to decide its migration to neighbor region on write
or GC. In addition, the cost-benefit victim selection policy
used in DAC as well as LFS incur overly run-time over-
head. To be specific, to select a victim upon every GC, they

2014

Figure 14: Comparison with other FTLs (OP=10%)

have to apply the formula, a × (1 − u)/u, to every block,
where a and u represent the block’s age and utilization, re-
spectively, and further have to compare all blocks (e.g., 1M
blocks) so as to select a block with the largest cost-benefit.
Therefore, though quite effective in separating hot/cold data
and thus reducing write amplification, those statistics-heavy
FTLs have been discarded for commercial SSDs.

To quantitatively compare 2Rs against existing hot/cold
separation FTLs, we made simulators for DAC [12] and
LFS [33]. Using each simulator, we measured the cumula-
tive WAF while running each of FIO, TPC, and LinkBench
traces used for Figure 7, and presented the results in Fig-
ure 14. For all three traces, DAC performs best with the
cost-benefit policy and four regions [12] and LFS does with
the cost-benefit policy [33]. Thus, their results are denoted
as DAC-CB and LFS-CB, respectively, in the table. In addi-
tion, for comparison, the WAFs of 1R-Greedy, 2R-Greedy,
and 2R-FIFO for the same traces are summarized in the ta-
ble. Below we briefly analyze the result of LFS and DAC.
LFS-CB achieves quite low WAF for each of three traces,

which is in between the WAFs of 2R-Greedy and 2R-FIFO.
This confirms that LFS can effectively segregate hot/cold
pages even with a single region. Though, LFS-CB under-
performs 2R-FIFO mainly for two reasons. First, the cost-
benefit policy in LFS can choose blocks which cost high but
benefit marginally as victim. That is, the a× (1− u)/u for-
mula can in some cases prefer old blocks nearly full of cold
pages to young blocks with low utilizations. Note that such
blocks are excluded as victim by the selective merge policy
in 2R-FIFO. Second, because it has one write stream, LFS
allow pages written from host to colocate pages cleaned from
garbage collection in the same flash block.
DAC-CB performs best across three traces in terms of WAF.

With the help of per-page update recency metadata, DAC-CB
with four regions can place or migrate pages to the proper
region. Also, it can choose right victim blocks using the
cost-benefit policy. Therefore, as intended, DAC-CB can ef-
fectively cluster data pages, according to their hotness, into
different regions. Interestingly, when the Greedy policy is
instead used, DAC-Greedy underperforms even 2R-Greedy for
all traces. But, recall that the run-time overhead for manag-
ing per-page and/or per-block hotness information in DAC-CB

is unacceptable to resource-scarce SSDs. In contrast, 2R-
FIFO is a viable solution for SSDs because it performs close
to DAC-CB while it works in a statistics-free manner.

Multi-Stream SSDs A novel interface for flash stor-
ages, Multi-Stream SSD (MS-SSD), was recently proposed
and standardized [25, 37], which allows applications to place
pages with different lifetimes to different streams (i.e., dif-

ferent flash blocks). Both MS-SSD and 2R aim to reduce
write amplification by separating pages with different hot-
ness into different flash blocks. When properly hinted by
applications, this interface is effective in reducing write am-
plification [25]. With MS-SSD, however, an application has
to determine the number of streams to be used in advance
and further has to designate the proper stream-id for ev-
ery write call. In particular, given the stark and irregular
hot/cold phase transition in per-page writes in OLTP work-
loads, any database storage engine itself could not, upon
writing a dirty page to the storage, predict its hotness cor-
rectly and thus assign the right stream to the page. For
this reason, it is a daunting task to leverage MS-SSD for
OLTP workloads, and the performance gain is quite limited
with an enormous tuning effort [13] or even storage engine
modification [32]. In contrast, without any user hint or any
complicated tuning effort, 2R can isolate cold pages into cold
region and at the same time performs nearly optimally.

2Q Buffer Replacement Algorithm The goal of FTL
is similar to that of the buffer replacement algorithm: an
FTL aims at minimizing write amplification with the limited
over-provisioning space while a buffer replacement algorithm
does at maximizing hit ratio with the limited buffer size.
Most buffer replacement algorithm capitalizes on temporal
locality in data accesses to identify hot pages and keep them
buffered. Among numerous algorithms, 2Q [24] is known to
perform as well as LRU-2 [31] but to have constant time
overhead and require no tuning. In its simplified version,
the buffer space is divided into two buffers, A1 and Am. On
the first reference to a page, 2Q places it in A1 queue. If
the page is re-referenced during its Al residency, then it is
regarded hot and thus moved to Am, the main buffer. The
key idea of 2Q is to filter hot pages using A1 buffer according
to the temporal locality. Likewise 2Q, 2R identifies cold
pages from normal region according to the temporal locality.
Thus, it is also a practical and low-overhead solution. But,
one key design consideration in 2R FTL is how to prevent
cold pages from mixing with non-cold ones upon garbage
collections. 2Q is free from such complicated issue.

7. CONCLUSION
In this paper, we showed that given highly skewed writes

common in OLTP workloads, cold pages are spread over
flash blocks and thus cause excessive write amplification un-
der the existing 1R-Greedy scheme. To remedy this problem,
we proposed two-region FTL, 2R, which focuses on isolat-
ing cold pages into the cold region and thus minimizing their
write amplification. In particular, since all its design deci-
sions are based on the write characteristics in OLTP work-
loads, 2R is very practical; unlike the existing solutions, it
does not require per-page statistics, any tuning effort, or
any user hint. Also, experimental results using a real SSD
confirm that the optimized version, 2R-FIFO, can achieve
almost optimal WAF (i.e., 1.2 or less) for OLTP workloads.

Acknowledgements

We would like to thank the anonymous PVLDB reviewers
for their valuable comments. This work was supported in
part by Institute of Information & communications Technol-
ogy Planning & Evaluation (IITP) (No.2015-0-00314) and in
part by the National Research Foundation of Korea (NRF)
(No.2018R1A2B2005502).

2015

8. REFERENCES
[1] OpenSSD Project. http://www.openssd-project.

org/wiki/The_OpenSSD_Project, 2019.

[2] OpenSSD Project. http://lightnvm.io/
liblightnvm/, 2019.

[3] Over-Provisioning. https://en.wikipedia.org/wiki/
Write_amplification, 2019.

[4] Rocksdb: A persistent key-value store for fast storage
environments. https://rocksdb.org, 2019.

[5] The OpenSSD Project. http://www.openssd.io,
2019.

[6] T. G. Armstrong. Facebook Graph Benchmark.
https://github.com/facebookarchive/linkbench,
2013.

[7] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and
M. Callaghan. LinkBench: A Database Benchmark
Based on the Facebook Social Graph. In Proceedings
of the 2013 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’13, pages
1185–1196. ACM, 2013.

[8] J. Axboe. blktrace:Block layer IO tracing tool.
http://git.kernel.org/cgit/linux/kernel/git/

axboe/blktrace.git, 2006.

[9] J. Axboe. FIO (Flexible IO Tester). http://git.
kernel.dk/?p=fio.git;a=summary, 2006.

[10] M. Bjørling, J. Gonzalez, and P. Bonnet. LightNVM:
The Linux Open-Channel SSD Subsystem. In 15th
USENIX Conference on File and Storage Technologies
(FAST 17), pages 359–374. USENIX Association, Feb.
2017.

[11] S. Chen, A. Ailamaki, M. Athanassoulis, P. B.
Gibbons, R. Johnson, I. Pandis, and R. Stoica. Tpc-e
vs. tpc-c: Characterizing the new tpc-e benchmark via
an i/o comparison study. SIGMOD Rec., 39(3), Feb.
2011.

[12] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang. Using
Data Clustering to Improve Cleaning Performance for
Flash Memory. Software Practice and Experience,
29(3):267–290, Mar. 1999.

[13] S. Choi, H. Park, and S. W. Lee. Don’t write all data
pages in one stream. In Proceedings of the 21th
International Conference on Extending Database
Technology, EDBT 2018, pages 654–657, 2018.

[14] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10,
2010.

[15] J. Dean and L. A. Barroso. The Tail at Scale.
Communications of the ACM, 56(2):74–80, Feb. 2013.

[16] P. Desnoyers. Analytic Models of SSD Write
Performance. ACM Transactions on Storage,
10(2):8:1–8:25, Mar. 2014.

[17] J. Gray and B. Fitzgerald. Flash Disk Opportunity for
Server Applications. Queue, 6(4):18–23, July 2008.

[18] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A Flash
Translation Layer Employing Demand-based Selective
Caching of Page-level Address Mappings. In
Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XIV, pages 229–240,
2009.

[19] R. Haas and X.-Y. Hu. The fundamental limit of flash
random write performance: Understanding, analysis
and performance modelling. IBM Research Report
(RZ3771), Mar. 2010.

[20] T. L. Harris. A Pragmatic Implementation of
Non-Blocking Linked-Lists. In Proceedings of the 15th
International Conference on Distributed Computing,
DISC ’01, pages 300–314, 2001.

[21] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and
R. Pletka. Write Amplification Analysis in Flash-based
Solid State Drives. In Proceedings of SYSTOR 2009:
The Israeli Experimental Systems Conference,
SYSTOR ’09, pages 10:1–10:9. ACM, 2009.

[22] M. Huc. Why SSD Performance Slows Down As It
Becomes Full. https://pureinfotech.com/, Jan.
2020.

[23] Intel. Solid-State Drives in Server Storage
Applications. http://www.intel.com/content/dam/
www/public/us/en/documents/white-papers/

ssd-server-storage-applications-paper.pdf,
2014.

[24] T. Johnson and D. Shasha. 2Q: A Low Overhead High
Performance Buffer Management Replacement
Algorithm. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94,
pages 439–450. Morgan Kaufmann Publishers Inc.,
1994.

[25] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho. The
Multi-streamed Solid-State Drive. In Proceedings of
the 6th USENIX Conference on Hot Topics in Storage
and File Systems, HotStorage’14. USENIX
Association, 2014.

[26] W.-H. Kang, S.-W. Lee, B. Moon, Y.-S. Kee, and
M. Oh. Durable Write Cache in Flash Memory SSD
for Relational and NoSQL Databases. In Proceedings
of the 2014 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’14, pages
529–540. ACM, 2014.

[27] S.-W. Lee, B. Moon, and C. Park. Advances in Flash
Memory SSD Technology for Enterprise Database
Applications. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’09, pages 863–870, 2009.

[28] S. T. Leutenegger and D. Dias. A Modeling Study of
the TPC-C Benchmark. In Proceedings of the 1993
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’93, pages 22–31.
ACM, 1993.

[29] F. Li. Cloud-Native Database Systems at Alibaba:
Opportunities and Challenges. PVLDB,
12(12):1942–1945, 2019.

[30] Ma, Dongzhe and Feng, Jianhua and Li, Guoliang. A
Survey of Address Translation Technologies for Flash
Memories. ACM Computing Survey, 46(3):36:1–36:39,
Jan. 2014.

[31] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The
LRU-K Page Replacement Algorithm for Database
Disk Buffering. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’93, pages 297–306. ACM, 1993.

[32] H.-W. Park, S. Choi, M. An, and S.-W. Lee. Freezing
Frozen Pages with Multi-Stream SSDs. In Proceedings

2016

http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://lightnvm.io/liblightnvm/
http://lightnvm.io/liblightnvm/
https://en.wikipedia.org/wiki/Write_amplification
https://en.wikipedia.org/wiki/Write_amplification
https://rocksdb.org
http://www.openssd.io
https://github.com/facebookarchive/linkbench
http://git.kernel.org/cgit/linux/kernel/git/axboe/blktrace.git
http://git.kernel.org/cgit/linux/kernel/git/axboe/blktrace.git
http://git.kernel.dk/?p=fio.git;a=summary
http://git.kernel.dk/?p=fio.git;a=summary
https://pureinfotech.com/
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ssd-server-storage-applications-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ssd-server-storage-applications-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ssd-server-storage-applications-paper.pdf

of the 15th International Workshop on Data
Management on New Hardware, DaMoN’19, 2019.

[33] M. Rosenblum and J. K. Ousterhout. The Design and
Implementation of a Log-structured File System.
ACM Transactions on Computer Systems,
10(1):26–52, Feb. 1992.

[34] Samsung. Samsung Solid State Drive White Paper.
http://www.samsung.com/global/business/

semiconductor/minisite/SSD/us/html/whitepaper/

whitepaper.html, 2013.

[35] Q. Software. Benchmark Factory for Databases.
http://www.quest.com/benchmark-factory/, 2018.

[36] R. Stoica and A. Ailamaki. Improving Flash Write
Performance by Using Update Frequency. PVLDB,
6(9):733–744, 2013.

[37] William Martin(T10 Technical Editor). SCSI Block
Commands - 4 (SBC-4) (Working Draft Revision 9):
4.34 Stream Control. http://www.t10.org/cgi-bin/
ac.pl?t=f&f=sbc4r09.pdf, November 2015.

[38] Y. Yang and J. Zhu. Write Skew and Zipf
Distribution: Evidence and Implications. ACM
Transactions on Storage, 12(4):21:1–21:19, June 2016.

2017

http://www.samsung.com/global/business/semiconductor/minisite/SSD/us/html/whitepaper/whitepaper.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/us/html/whitepaper/whitepaper.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/us/html/whitepaper/whitepaper.html
http://www.quest.com/benchmark-factory/
http://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc4r09.pdf
http://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc4r09.pdf

	Introduction
	Background
	1R-Greedy FTL
	Characteristics in OLTP Write Traces

	Motivations
	Write Amplifications in Real SSDs
	Cold Page Spreading

	Design of 2R
	Design Principles
	2R-Greedy
	Where To Place New Writes From The Host?
	Cold Page Identification
	Garbage Collection and Page Migration

	2R-FIFO
	False Cold Pages in 2R-Greedy
	2R-FIFO
	Recovery
	MBM-Induced Tail Latency

	Performance Evaluation
	Experimental Setup
	Performance Analysis
	Overall Performance
	Performance Analysis: FIO
	Performance Analysis: TPC-C and Linkbench

	Experimental Results using Real SSD

	Related Works
	Conclusion
	References

