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ABSTRACT
We present vacuum filters, a type of data structures to sup-
port approximate membership queries. Vacuum filters cost
the smallest space among all known AMQ data structures
and provide higher insertion and lookup throughput in most
situations. Hence they can be used as the replacement of
the widely used Bloom filters and cuckoo filters. Similar to
cuckoo filters, vacuum filters also store item fingerprints in a
table. The memory-efficiency and throughput improvements
are from the innovation of a table insertion and fingerprint
eviction strategy that achieves both high load factor and
data locality without any restriction of the table size. In
addition, we propose a new update framework to resolve
two difficult problems for AMQ structures under dynamics,
namely duplicate insertions and set resizing. The experi-
ments show that vacuum filters can achieve 25% less space
in average and similar throughput compared to cuckoo fil-
ters, and 15% less space and >10x throughput compared to
Bloom filters, with same false positive rates. AMQ data
structures are widely used in various layers of computer
systems and networks and are usually hosted in platforms
where memory is limited and precious. Hence the improve-
ments brought by vacuum filters can be considered signifi-
cant.
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1. INTRODUCTION
Approximate membership queries (AMQs) rely on space-

efficient data structures to decide whether a queried data
item is in a large set of items. These data structures (called
the AMQ structures hereafter), such as the well-known Bloom
filters [13], are essential components of numerous practical
computer software and systems, such as Google Bigtable
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Figure 1: Bits per item vs. # of items

[18], Apache Cassandra [28], Google Chrome, the content
distribution network Akamai [33], Bitcoin [5], and Ethereum
[9]. The most attractive feature of the AMQ structures is
their memory efficiency, with the trade-off on allowing
few false positives. Compared to an error-free representation
of a set of items, such as a hash table, an AMQ structure
can work on devices with limited memory resource (network
routers, switches, and IoT devices), or in a higher level of the
memory hierarchy (cache vs main memory, or main memory
vs disk). For example, Bloom filters have been extensively
used in reducing disk I/O [13, 18], avoiding unnecessary re-
mote content lookups [24, 33], network functions [21, 44,
46, 31, 50], services on mobile and IoT devices [17, 30], and
many data management applications including distributed
joins and semi-joins [37], indexing [11], auxiliary metadata
[18, 20], and query processing problems [29]. The recently
proposed cuckoo filters [23] improves Bloom filters in ideal-
case memory-efficiency and enabling deletions.

This paper presents vacuum filters, a type of AMQ data
structures that cost the smallest space among all known
methods, i.e., more memory-efficient than Bloom filters,
cuckoo filters, and other AMQ structures, when the false
positive rate � < 3%. The name is from vacuum packing
which uses the least space to pack items. To understand the
space and false positive rate tradeoffs of AMQ data struc-
tures, we show the empirical results to better illustrate our
idea and contributions. Fig. 1 shows the memory cost of the
most representative data structures for AMQs (in bits per
item), including the Bloom filters [13], Cuckoo filters [23],
and vacuum filters (this work). The false positive � is set to
0.01%, a common requirement of many applications [23, 16].
Compared to Bloom, vacuum filters can reduce the memory
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Table 1: Comparison of AMQ structures in space,
throughput, and supporting dynamics. D: deletions;
I: duplicate insertions; R: set resizing. Results are
based on the experiments when false positive rate �
from 0.01% to 0.1%.
Data structure Space Thrpt Dynamic
Bloom F. [13] 1x 1x I
Dele. BF [43] ∼1.13x ∼1.95x D,I
Blocked BF [41] ∼1.12x ∼5.8x I
Count. BF [24] 4x <1x D, I
Count. Quo-
tient F. [40]

0.87x to 1.45x ∼4.7x D, I, R

Cuckoo F. [23] 0.84x to 1.5x ∼10x D
Morton F. [16] 0.88x to 1.1x ∼6x D
Vacuum F. 0.84x to 0.91x ∼11x D, I, R

cost by more than 3 bits per item, resulting in ∼ 15% space
saving. Compared to a cuckoo filter, a vacuum filter only
costs 50% space in the worst cases and saves 25% space on
average. Vacuum filters cost less memory than Bloom filters
and other AMQ structures when � < 3%. The advantage of
space-efficient becomes larger when the target � is smaller.
Although Bloom filters cost less memory when � > 3%, 3%
is considered too much for most AMQ designs. It is common
that applications require � < 0.1% or even < 0.01%, such as
the examples in [23, 16, 46, 31, 30, 12]. In addition, vacuum
filters and cuckoo filters provides similar lookup through-
put and both are much faster than other AMQ structures.
We show a brief comparison among many popular AMQ
structures in both space and lookup throughput in Table 1.
Vacuum filters show the space and throughput advantages
compared to all other methods.

Since AMQ data structures have been so widely used for
many fields of computing technologies, we argue that > 20%
space reduction compared to Bloom and cuckoo filters (av-
erage case) is a significant contribution. Considering
that AMQ data structures are used in fast memory (SRAM,
TCAM, cache) that are expensive and power-hungry, such
memory efficiency becomes especially important to reduce
device cost and avoid unnecessary device updates. In addi-
tion, fast memory is usually shared by multiple applications.
For example, the SRAM on network switches and routers
needs to supports network functions including forwarding
tables [46, 48], multicast [31], traffic measurement [47, 50],
packet caching [10], and load balancing [25, 35]. Reducing
the AMQ cost benefits a variety of functions.

In addition, many practical applications require AMQ
data structures to support dynamics, including insertions,
deletions and set resizing. A well-known limitation of Bloom
filters is that they cannot support deletions. To allow dele-
tions, cuckoo filters store duplicate fingerprints. As a re-
sult, a cuckoo filter may crash due to table overflow when
inserting duplicate items, which frequently happens in prac-
tical applications, as explained in Sec. 2. Moreover, neither
Bloom nor cuckoo filters allow set resizing. The only AMQ
method known for set resizing is quotient filters [12], which
cost more space than Bloom and provide lower throughput
than cuckoo.

Our important observation is that an AMQ data struc-
ture cannot support both deletions and duplicate insertions
unless it allows reconstruction from the complete set. The
major problem of current AMQ reconstruction is that it has
to be executed in a large but slow memory because a re-
construction needs to access the complete item set. During

that time, the AMQ structure running in the fast memory
is unable to answer queries in order to achieve consistency.
We resolve this problem by proposing a new update frame-
work for vacuum filters called IUPR (Instant Updates and
Periodical Reconstructions) to support deletions, duplicate
insertions, and set resizing. IUPR is a good fit for legacy
memory hierarchy and network architectures. For example,
the vacuum filter can be run in the main memory of a query
server, while the construction can be conducted on a back-
end storage server to access the set of items. In the widely
adopted software defined networking (SDN) paradigm [2,
38], the vacuum filter is used in network switches with lim-
ited memory, the construction program can be run in the
SDN controller on a server, and the vacuum filter updates
are achieved via standard APIs such as P4 [15].

In a nutshell, the vacuum filter has unique advantages:
1) its memory cost is the smallest among existing meth-
ods; 2) its query throughput is higher than most other so-
lutions, only slightly lower than that of cuckoo in very few
cases; and 3) it supports practical dynamics using the mem-
ory hierarchy in practice. No existing method can achieve
all of them. Since AMQ data structures have been widely
adopted and memory efficiency is their most essential fea-
ture, the > 20% space reduction is fundamental improve-
ment rather than a small increment.

The remaining paper is organized as follows. Section 2
presents the related work. Section 3 presents the detailed
design of vacuum filters. We show the theoretical analysis
results in Section 4. Section 5 presents the method to deal
with dynamics. The implementation and evaluation results
are shown in Section 6. We conclude this work in Section 7.

2. RELATED WORK
This section introduces existing AMQ data structures.
Bloom Filter. Bloom filters (BFs) [13] are the most well-

known AMQ data structures. A Bloom filter represents a
set of n items S = x1, x2, ..., xn by an array of m bits. Each
item is mapped to k bits in the array uses k independent
hash functions h1, h2, ..., hk and every mapped bit at loca-
tion hi(x) is set to 1. To lookup whether an item xi is in the
set, the Bloom filter checks the values in the hi(x)-th bit.
If all bits are 1, the Bloom filter reports true. Otherwise,
it reports false. A Bloom filter yields false positives. The
false positive rate is � = (1−e−kn/m)k = (1−p)k. A Blocked
Bloom filter (BBF) [41] divides a Bloom filter into multiple
small blocks, each block fits into one cache-line. A BBF is
cache-efficient because it only needs one cache miss for every
query. One limitation of Bloom filter is that it cannot sup-
port deletions. Counting Bloom filters [24] allow deletions,
which replace every bit by a counter to store the numbers
of setting these bits to 1. Introducing counters significantly
increases memory cost. The deletable Bloom filter (DIBF)
[43] supports deletion by adding and maintaining a collision
bitmap. Items can be deleted with a probability.

Quotient Filters. A quotient filters (QF) [12] uses a
hash table to store the fingerprints of the inserted items.
The hash table contains 2q continuous entries. Every entry
comprises one slot to store the fingerprint of an item and
some extra flag bits to handle hash collision. The space cost
of QF is larger than that of BFs. Counting Quotient Filter
[40](CQF) improves QF from throughput and memory usage
perspectives. It also supports deletions of the inserted items.
However, both QF and CQF’s hash tables should have the
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Figure 2: Example of a cuckoo filter

number of entries to be a power of two, which hurts the
memory efficiency.

Cuckoo Filters. The recently proposed cuckoo filters
(CFs) [23] improves Bloom filters in two aspects. First,
in ideal cases, cuckoo filters cost smaller memory than the
space-optimized Bloom filter when the target false positive
rate � < 3%. Second, cuckoo filters support deletion oper-
ations without extra memory overhead. A cuckoo filter is
a table of m buckets, each of which contains 4 slots. Every
slot stores an l-bit fingerprint fx of an item x. For every
item x, the cuckoo filter stores its fingerprint fx in one of
two candidate buckets with indices B1(x) and B2(x):

B1(x) = H(x) mod m

B2(x) = Alt(B1(x), fx)

whereH is a uniform hash function and function Alt(B, f) =
B⊕H �(f), where H � is another uniform hash function. It is
easy to prove: B1(x) = Alt(B2(x), fx) which means, using
fx and one of the two bucket indices B1(x) and B2(x), we
are able to compute the other index. To lookup an item x,
we check whether the fingerprint fx is stored in two buckets
B1(x) and B2(x) as shown in Fig. 2(a).

Cuckoo filter insertion. For each item x, the cuckoo
filter stores its fingerprint fx in an empty slot in Bucket
B1(x) or B2(x) if there is an empty slot, as in Fig. 2(a). If
neither B1(x) nor B2(x) has an empty slot, the cuckoo filter
performs the Eviction process. It randomly chooses a non-
empty slot in bucket B (B is one of B1(x) and B2(x)). The
fingerprint f � stored in the slot will be removed and replaced
by fx. Then f � will be placed to a slot of the alternate bucket
Alt(B, f �) of f �, as shown in Fig. 2(b). If the alternate
bucket is also full, the cuckoo filter recursively evicts an
existing fingerprint f �� in Bucket Alt(B, f �) to place f �, and
looks for an alternate slot for f ��. When the number of
recursive evictions reaches a threshold, this insertion is failed
and a reconstruction of the whole filter is required.
Though there have been continuous studies of the vari-

ants of cuckoo filters [16, 36, 45], we observe that two fun-
damental limitations prevent cuckoo filters from being
widely used as a replacement of Bloom filters.

1. The claimed advantage of cuckoo filters in memory-
efficiency can only be achieved in ideal situations, i.e.,
the number of items is around 3.8 × 2x for an integer
x. In a generalized case where the number of items
could be arbitrary, cuckoo filters may need as much
as ∼ 50% extra memory in the worst case and ∼ 25%
extra memory in average.

2. To support deletions, cuckoo filters will store duplicate
fingerprints and may crash due to table overflow when
inserting duplicate items. In practical applications,

inserting duplicate items are ubiquitous and cannot
be detected by cuckoo filters.

3. Cuckoo filters do not support incremental expansion
of the item set, a requirement by many applications.

Dynamic cuckoo filters. A dynamic cuckoo filter (DCF)
[19] uses a number of linked homogeneous CFs, can support
extension of the key set. Since a lookup needs to check all
linked CFs, a DCF has lower throughput and higher false
positive rate compared to a CF.

Morton filters. Morton Filters (MFs) [16] are variants
of CFs. The main design goal of MF is to provides higher
throughput for special hierarchical memory systems. MFs
introduce virtual buckets and divide logical buckets into
memory-aligned blocks. To support high throughput, MF
contains extra bits - overflow flags and bucket counters in
every block. MFs are claimed faster than CFs on the ARM
architecture. MFs only support certain lengths of finger-
prints (hence certain false positive rates), which significantly
restricts its application range. Besides, Morton Filters can-
not use the semi-sorting optimization in CFs [23].

Other variants of cuckoo filter. The adaptive cuckoo
filter [36] reduces the false positive rate by maintain a cuckoo
hash table in a slow memory. It changes a stored fingerprint
when a false positive is detected. The D-ary cuckoo filter
[45] aims to provide higher space utilization by increasing
the number of candidate buckets for each key. However, it
increases the time cost of insertions and lookups.

3. DESIGN OF VACUUM FILTERS
3.1 Problem statement

A vacuum filter is an AMQ data structure for a set of
items, which supports insertion, lookup, and deletion
operations. The construction of a vacuum filter can be im-
plemented as serial insertions of all items in the given set.
When executing the lookup operation for a queried item x,
the vacuum filter should return either positive, indicating
that x is in the set, or negative, indicating that x is not
in the set. Similar to most other AMQ data structures [13,
12, 23], a vacuum filter may report false positive results, but
never report false negative results. A vacuum filter utilizes a
table-based structure to store fingerprints, similar to those
used in quotient filters [12], cuckoo filters [23], and Mor-
ton filters [16]. Each fingerprint is a brief representation of
the key of an item. If the fingerprint of a queried item is
found in certain buckets of the table, the AMQ structure
returns positive. Compared to cuckoo filters, the typical
table-based AMQ structures, vacuum filters have the follow-
ing main advantages by resolving several challenges that are
not addressed in prior methods. 1) Vacuum filters are more
space-efficient than cuckoo, Bloom, quotient, and Morton
filters. Compared to cuckoo filters, vacuum filters reduce
the space cost by > 25% on average. 2) Vacuum filters pro-
vide higher lookup and insertion throughput, due to better
data locality. 3) Vacuum filters can replace cuckoo filters in
most applications.

3.2 Where to gain extra space-efficiency and
throughput

Both vacuum and cuckoo filters use the table structure:
A table has m buckets and each bucket has 4 slots to store
fingerprints, as shown in Fig. 2. When a new fingerprint
is inserted and its both buckets are full, there should be a
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Chunk 1 (L=16) Chunk 2 (L=2)
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Figure 3: Selecting a proper AR is non-trivial

way to evict an existing fingerprint to its alternate bucket by
using the function Alt(). If the alternate bucket is again full,
another fingerprint in the alternate bucket will be recursively
evicted. The most important feature of Alt() is to ensure
that B2 = Alt(B1, f) mod m and B1 = Alt(B2, f) mod m,
for a fingerprint f and its alternate buckets B1 and B2. In
addition, compared to the function Alt() used in cuckoo,
we want to achieve two desired properties of Alt() in
the new design.

1. The fingerprints should be spread evenly over all buck-
ets by Alt() to achieve high table load factor without
any restriction on the number of buckets. The load
factor is the proportion of filled slots in a table – an
important metric for memory efficiency.

2. The two alternate buckets should be stored with a cer-
tain level of locality : they could co-locate in a same
cacheline, page, or big page to reduce the memory ac-
cess cost.

Note cuckoo filters use Alt(B, f) = B ⊕H �(f), which re-
lies on the assumption that m must be a power of two. It
may cause significant space waste. In a case when we need
1025 buckets, we have to use m = 2048, almost 50% space
waste. Simply replacing ⊕ with + does not resolve this prob-
lem. It can work with an arbitrary m but insertions may
easily fail with a low load factor of the table when m is not
a power of two. Also there is very little locality using this
Alt() function. Two buckets can be arbitrarily far away
across the table. Hence each insertion operation may ac-
cess the memory in different cachelines and pages, resulting
in many cacheline and translation lookaside buffer (TLB)
missings. Each lookup or deletion operation needs to access
two buckets in different cachelines and pages. Assuming the
structure runs in the main memory, these cache missings are
considered the bottleneck operations of an AMQ structure.
We run a set of experiments with m = 228 and every bucket
occupies 8 bytes. The results show the two alternate buckets
of cuckoo filters never fit into the same 64-byte cache line or
the same 4K-byte page.
The alternate function of vacuum filters achieves these two

goals. We firstly model the problem as a “Balls into Bins”
problem [42] and introduce the concept of alternate ranges
to balance the tradeoff between the load factor and data
locality. Based on these results, we propose an optimized
multi-range alternate function that achieves both good data
locality and high load factor.

3.3 Alternate Ranges
To maintain a certain level of locality, we may divide the

whole table into multiple equal-size chunks, each of which
includes L consecutive buckets and L is a power of two.
Hence m is a multiple of L, instead of being restricted to a
power of two as in cuckoo filters. The two candidate buckets
of each item should be in the same chunk. For each item x,
we compute the indices of the two alternate buckets using
B1(x) = H(x) mod m and:

B2(x) = Alt(B1(x), f) = B1(x)⊕ (H �(f) mod L) (1)

Note we change the alternate function slightly. It is easy to
prove that �B1(x)/L� = �B2(x)/L�, which means the two
buckets fall into the same chunk. This method is denoted
as chunked-CF. Hence by knowing the fingerprint f and one
of the alternate buckets, we can always compute the other
alternate bucket using Equation 1, because we also have
B1(x) = Alt(B2(x), f). For a better illustration, we call the
length of chunk, L, as the alternate range (AR), shown in
Fig. 3(a).

Determining a proper size L of the alternate range is chal-
lenging. If the AR is small, as shown in Fig. 3(b), the filter
provides good data locality since the two alternate buckets
are very close to each other and likely to be in the same cache
line or page (called co-located). However, a small AR can
cause fingerprint gathering. Fingerprint gathering means all
alternate buckets of many fingerprints are in a small range of
buckets. The search space of the eviction process is limited,
hence eviction loops are likely to happen and the insertions
can easily fail. A large AR (Fig. 3(c)) can avoid finger-
print gathering and provide high load factor, but its locality
becomes bad. Besides, the flexibility of the table is limited,
because the number of buckets should a multiple of L – extra
buckets may be used and the space cost increases. We show
the experimental results of the load factor in Fig. 4, the rate
of two alternate buckets in a same cacheline in Fig. 5, and
the rate of two alternate buckets in a same page in Fig. 6,
by varying the AR size L. The dilemma is obvious from
the results: small ARs cause low load factors and large ARs
cause bad locality.

Algorithm 1: LoadFactorTest(n,α, r, L)

m = �n/4αL�L // the number of buckets;
N = 4rmα // the number of inserted items ;
c = m/L // the number of chunks;
P = 0.97× 4L // the capacity lower bound of each chunk;
D = EstimatedMaxLoad(N, c) ;
if D < P then

return Pass;
else

return Fail ;
end

An existing work of chunked hash table [34] fixes the num-
ber of chunks to 256 empirically. We improve this design by
calculating the minimum AR size based on the number of
items n and the target load factor α. The first algorithm is
to test whether a specific alternate range, L, can achieve the
target load factor α given the number of items n, as shown
in Algorithm 1. r is a parameter that shows the ratio of
inserted items in the total number of items. Given n, the
target load factor α, and the number of slots per bucket b (4
in our case), we can calculate the number of buckets m. The
whole table of buckets is separated into c = m/L chunks.
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The items are randomly distributed to the chunks. We can
model this problem as the “Balls into Bins” problem [42].
The goal is that all these chunks will not be overwhelmed
by the inserted items. The “Balls into Bins” model provides
an estimation of the maximum load and we use a loose esti-
mation from [42] to calculate the maximum load with high
probability:

EstimatedMaxLoad(n, c) =
n

c
+

3

2

�
2
n

c
· log(c) (2)

If the estimated maximum load is smaller than the capacity
of each chunk P , we consider this L is good to use and the
algorithm returns ‘Pass’. Otherwise it returns ‘Fail’.

Then the second algorithm selects the minimum AR size
that can pass the load factor test to achieve good locality,
shown in Algorithm 2. For example, when m = 225 and
expected load factor α = 0.95, the algorithm will select L =
32768 as the AR size L.

Algorithm 2: RangeSelection(n,α, r)

L = 1 ;
while LoadFactorTest(n,α, r, L) �= Pass do

L ← L× 2
end
return L

Table 2: Determine the # of AR to balance the load
factor and locality. 100 random tests for 227 items.
One failed insertion means the final load factor is
lower than 95% in a run.

Metric
# of ARs

1 2 4 8

Average Load Factor 96.6% 96.3% 96.1% 95.3%
Insertion Fail Rate (α = 95%) 0% 0% 1% 7%
Co-locate in a 64B cacheline 0.00% 4.69% 7.03% 9.86%
Co-locate in a 4KB page 0.83% 50.61% 75.00% 81.03%
Co-locate in a 4MB page 95.32% 98.44% 99.22% 99.61%

3.4 Multi-Range Alternate Function
We shall not stop with a fixed AR size as we showed that

small ARs cause low load factors and large ARs cause bad
locality. To achieve the best of both worlds, we propose a
multi-range alternate function. Our idea is inspired by the
road network, which usually consists of a large portion of
short local roads and a small portion of long highways. We
allow every item to have an independent alternate range.
Also, most items have small alternate ranges to achieve

locality and a small number of items have large alternate
ranges to avoid low load factor, as shown in Fig. 7.

For example, given the target load factor α = 95%, we
may allow 25% items to use a large AR and 75% items to
use a much smaller AR. Denote the large AR as L0 and small
AR as L1. The AR size calculated by Algorithm 2 can be
considered as the upper bound of L0 to achieve α. Hence
we set L0 = RangeSelection(n,α, 1). Next, we consider the
small AR L1. Note that a large chunk with size L0 and a
small chunk with size L1 may overlap as shown in Fig. 7.
Hence the items with AR L0 may exist in a small chunk but
will not always take the space of the small chunk – it can be
evicted to a bucket outside the small chunk. We can re-use
the range selection algorithm for these 75% of items of AR
L1 to compute L1 = RangeSelection(n,α, 0.75).

Moreover, we can use more than two ARs. For example,
if we want to have K different ARs, we can set those ARs
by the calculation method above. Denote those ARs as L0

to LK−1. Let L0 ≥ L1 ≥ . . . LK−1. For the i−th AR,
α∗ (1− i/K) of items should have their ARs smaller than or
equal to Li. So we set Li = RangeSelection(n,α, 1− i/K).

How many ARs should we use eventually? From the im-
plementation perspective, we set the number of ARs as a
power of two, so we can assign ARs to the items by their
least significant bits. We test different numbers of ARs to
find the best configuration and show the results in Table 2.
The result shows that when we use one AR, it cannot achieve
good data locality (co-locate rates). With more ARs, the fail
cases happen more frequently. To balance both the load fac-
tor and locality, we use 4 different ARs in the final design
of vacuum filters.

The final design of the alternate function Alt() is pre-
sented in Algorithm 3. All items will be divided into four
(roughly) equal-size groups and each group uses a AR size
determined by the calculation of RangeSelection().We dou-
ble the smallest alternate range L[3] to avoid fingerprint
gathering that will cause insertion failures. Due to the loose
maximum load estimation, it causes relatively bad perfor-
mance when there is a small number of keys. Thus, we de-
sign another alternate function that is shown as Algorithm 4
when the number of keys is smaller than 218.

3.5 Optimization for insertion
The insertion algorithm is slightly different from the re-

cursive eviction process introduced in cuckoo filters [23]. To
further optimize space utilization and throughput, we intro-
duce optimization in the insertion process.

The proposed recursive eviction is different from that in
cuckoo hashing [39]. The hash table can be viewed as an
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Algorithm 3: Vacuum Filter : Alt(B, f)

if L is not initialized then
for i = 0; i < 4; i++ do

L[i] = RangeSelection(n, 0.95, 1− i/4)
end
L[3] = L[3]× 2 // Enlarge L[3] to avoid failures ;

end
l = L[f mod 4] // Current alternate range ;
Δ = H�(f) mod l ;
return B ⊕Δ ;

Algorithm 4: Vacuum Filter : Alt(B, f)

Δ� = H �(f) mod m;
B� = (B −Δ�) mod m ;
B� = (m− 1−B� +Δ�) mod m;
return B�;

undirected graph, where each bucket is a vertex and each
item can be considered as an edge that connects the two al-
ternate buckets of the item. Cuckoo hashing uses a “random
eviction” scheme to look for an empty slot, which can be con-
sidered as a random depth-first search (DFS) of the graph.
The random DFS scheme is easy to implement. However,
as table occupancy grows, the random DFS scheme needs to
examine more buckets and thus require more eviction steps
to find an empty slot. A breadth-first-search (BFS) scheme
for cuckoo hashing is proposed in [32]. For a full bucket
of fingerprints, evicting each fingerprint will start a possi-
ble eviction path. The BFS scheme has a broader searching
space and thus may reduce the number of evictions to find
an empty slot. However, it needs to maintain an extra queue
to find the path. In vacuum filters, we combine the advan-
tages of both BFS and DFS. When searching for an empty
slot, we look ahead one step. Specifically, when we have
to evict an existing fingerprint from the two full buckets of
the inserting item, we traverse all alternate buckets of the 8
fingerprints. If there is an empty slot among these buckets,
then we can evict the corresponding fingerprint to the empty
slot and finish the eviction process. This optimization in-
creases the success rate of insertion and hence improve both
the load factor and insertion throughput. In addition we do
not need to maintain an extra queue. Algorithm 5 shows the
vacuum filter insertion algorithm. Besides, semi-sorting is
a technique to reduce the space cost of storing fingerprints,
introduced in an early work [14]. Vacuum filters provide an
option of using semi-sorting, similar to cuckoo filters [23].

3.6 Lookup and deletion
To lookup an item x, it first computes two candidate buck-

ets B1(x) = H(x) and B2(x) = Alt(B1(x), f). If the finger-
print fx matches one fingerprint stored in the two buck-
ets, the algorithm returns positive. Otherwise it returns
negative. When we generate the first candidate bucket for
an item, we need a modulo operation to map the 32-bit
hash values of the bucket indices to [0,m− 1]. In cuckoo fil-
ters, when m is a power of two, the modulo can be replaced
by a simple bit-wise AND operation to increase the speed of
calculation – and hence improve the lookup and insertion
throughput. However, when m is not a power of two as in
vacuum filters, the bit-wise AND operation fails, which forces
us to use another method.

Algorithm 5: Vacuum Filter : Insert(x)

f = H �(x) // H� is the fingerprint function;
B1 = H(x), B2 = Alt(B1, f);
if B1 or B2 has an empty slot then

put f into the empty slot ;
return Success;

end
Randomly select a bucket B from B1 and B2 ;
for i = 0; i < MaxEvicts; i++ do

// Extend Search Scope
foreach fingerprint f � in B do

if Bucket Alt(B, f �) has an empty slot then
put f to the original slot of f � ;
put f � to the empty slot ;
return Success ;

end
end
Randomly select a slot s from bucket B ;
Swap f and the fingerprint stored in the slot s ;
B = Alt(B, f) ;

end
return Fail ;

What we need is a map function, which maps 32-bit hash
value to [0,m−1] uniformly to avoid the collision. We adopt
the method from [1]: map(x,m) = (x ·m) � 32. If x is uni-
formly distributed on [0, 232−1], then the first multiplication
scale it to a distribution over [0, (232 − 1) ∗ m]. Then the
right shift operation compress the interval to [0,m−1]. This
method generates a roughly uniform distribution with only
two light instruction, which is comparably fast to the AND

operation.
The deletion algorithm for item x is simple. If there is a

fingerprint equal to fx in the two candidate buckets of x,
the vacuum filter removes this fingerprint.

4. ANALYSIS RESULTS
We present the analysis results on the load factor, false

positive rate, space cost and time cost.

4.1 Load factor
We give the theoretical analysis for static ARs. The anal-

ysis for the multi-range alternate function is more compli-
cated and we will leave it as future work. In the static
range case, items will be randomly distributed into different
chunks. Each chunk can be viewed as a single sub-table and
all evictions of an insertion happen in a single chunk. There-
fore, we need two steps of analysis - we first calculate the
expected load factor of each chunk, and then check whether
the load factor of each chunk can satisfy a certain value of
overall load factor of the entire vacuum filter.

Upper bound of the number of items in each chunk.
Let the AR be L and the number of buckets is m. There
are c = m/L chunks and n items to insert. We utilize the
results from the well-studied “Balls into Bins” model [42], in
which n balls are uniformly randomly distributed to c bins.
In [42], the author gives an upper bound about the number
of balls in any bin.

Theorem 1. Let M be the random variable that counts
the maximum number of balls in any bin. Then Pr[M >
ka] = o(1), where a > 1 and ka = n

c
+ a

�
2n

c
log c, if n �

c log c.

In our case, n and c satisfy n � c log c. Let a = 3
2
. We have

the maximum number of items in any chunk will be smaller
than n

c
+ 3

2

�
2n

c
log c with high probability.
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Expected load factor of vacuum filters. In [22], the
author provides the analysis of the load factor of cuckoo fil-
ters. However, it requires the number of slots per bucket to
be 10.916, which does not fit our design. To our knowl-
edge, there is no theoretical result of the load factor
that fits the four-slot table design.

Hence we use experiments to test the maximum load fac-
tor for those chunks. The experiment shows that the load
factor of a single chunk can achieve 97% with probability
greater than 99%. Hence in the RangeSelection algorithm,
we fix the overall load factor as 95% and select the AR value
such that the upper bound of the number of items does not
exceed 97% of the chunk capacity, which ensures that even
if the number of items of a single chunk reaches the upper
bound, the insertions will not fail with > 99% probability.
As a result, the final design of vacuum filters can achieve
high load factor (95%) with > 99% probability.

4.2 False positive rate and space cost
Two factors influence the false positive rate of a vacuum

filter: 1) the length of fingerprint l; and 2) the number of
slots b in each bucket (usually set to 4). We call an item
‘alien item’, if it is not in the target item set. In a vacuum
filter, the probability that a query of an alien item matches
one stored fingerprint (a false-positive match) is at most
1/2l. The probability of false positive rate can be computed
after 2b comparisons. We also need to consider the load
factor α of the table of the vacuum filter. Then the expected
number of comparisons is 2bα. The probability of no false
hit is (1 − 1/2l)2bα. Thus, the upper bound of the total
probability of false positive rate is

� = 1− (1− 1/2l)2bα ≈ 2bα/2l (3)
We can derive the necessary fingerprint length for a given

target false positive �:

l ≥ �log2(2bα/�)� (4)

For a given number of items n, the whole memory con-
sumption MV is

MV = (n/α)�log2(2bα/�)� (5)

where the unit is bit.
The theoretical number of bits per item for vacuum filters

(VFs) is log2(2bα)+log2(1/�)

α
. Since the semi-sorting technol-

ogy use one bit less per item, the space cost per item for vac-

uum filters with semi-sorting (VFs-ss) is log2(2bα)−1+log2(1/�)

α
.

Given α = 0.95 and b = 4, the space cost per item
for VFs and VFs-ss are 3.07 + 1.05 log2(1/�) and 2.07 +
1.05 log2(1/�). Cuckoo filters (CFs) have the same space
cost in their best cases, and their average and worst cases
need 25% and 50% more space respectively. For counting
quotient filters (CQFs) [4], at the same load factor, the space
cost per item is 2.24+1.05 log2(1/�). Similar to CFs, CQFs
require the number of buckets to be a power of two. Hence
the space cost in the average and worse cases is higher than
this value. For Bloom filters, the space cost per item is
1.44 log2(1/�). When � < 3%, VFs have the lowest space
cost compared to other AMQ structures.

4.3 Time cost
The time cost for each lookup or deletion of VFs is con-

stant – either of them only needs at most 2 memory accesses.
The analysis of the time cost for each insertion is more

complicated. Since all fingerprints are uniformly distributed
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Figure 8: Duplicate insertions are difficult to handle

among the buckets, the probability that a bucket of b slots
is full is αb. Assume the searching process in the insertion
algorithm follows the Bernoulli distribution with a successful
rate 1− αb. Let p be the number of traversed buckets of an
insertion. Then the expectation of p under the load factor
α, E(pα) can be estimated by the equation

E(pα) = (1− αb) + αb(E(pα) + 1) (6)

We have E(pα) = 1/(1 − αb). For the average insertion
cost E for serial insertions from load factor 0 to α, we can
integrate E(px) from 0 to α,

E =

� α

0

E(px)dx =

� α

0

1/(1− xb)dx (7)

With b = 4 and α = 0.95, we have E = 1.3. Our exper-
imental results show that the average traversed number of
buckets is about 1.58, which is close to the theoretical result.

5. VACUUM FILTERS UNDER DYNAMICS

5.1 Problem statement
Dynamics of the item set include item insertions, dele-

tions, and set resizing. Note if the item insertion rate is
approximately equal to the deletion rate, set resizing will
not happen. However, if the insertion and deletion rates
are not equal in some applications, the set size may change
after a period of time. For example, by keeping inserting
items to the set, the set may become too larger to fit the
current table at a certain time. Bloom filters can deal with
insertions but not deletions. Cuckoo filters can handle in-
sertions and deletions when there is no duplicate insertion.
Duplicate insertions mean a same item may be inserted to
the data structure for multiple times. If set resizing or du-
plicate insertions happen, cuckoo filters may fail or at least
become sub-optimal.

Duplicate insertions exist in many practical applications.
For example, a proxy server in a content distribution net-
work may use an AMQ structure to represent the current
set of cached content in the local network [33, 17]. When
a proxy server caches a content, it notifies all other servers
about the cached content. Obviously, a same content may
be cached in different servers by multiple times, hence there
will be duplicate insertions. We show the dilemma in dealing
with duplicate insertions in Fig. 8. As shown in Fig. 8(a), if
we allow to store duplicate fingerprints, then after 9 times
of inserting the same item x, the table will overflow and fail.
As shown in Fig. 8(b), if we do not allow to store duplicate
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fingerprints, then two items x and y may have a same finger-
print. Deleting x will also remove y from the table, resulting
in future false negatives!

In addition to duplicate insertions, neither cuckoo filters
nor counting Bloom filters can deal with set resizing. In
fact, no existing AMQ structures work well under duplicate
insertions or set resizing.

5.2 Instant updates and periodical reconstruc-
tions

We plan to solve these problems in a practical model.
Most applications make use of a memory hierarchy to con-
struct the AMQ data structures, in which the full data set is
stored in a slow and large memory and the AMQ is running
in a fast and small memory. For example, the slow mem-
ory can be disks and the fast memory can be main memory
[13]; the slow memory can be a server and the fast memory
can be network devices that use ASICs [17, 48, 49]. The
AMQ structure (vacuum filter in our case) is used to re-
sponse to membership lookups that should be processed in
a fast speed. In addition, the vacuum filter should instantly
update itself when there is any insertion or deletion. How-
ever, after a period of time and a number of updates, the
vacuum filter may be sub-optimal, e.g., its size does not fit
the current item size. At this time, a new version of vacuum
filter is constructed by another process (or another machine)
using the slow memory. The old vacuum filter running in
the fast memory will be replaced with the new version. This
method is called IUPR (Instant Updates and Periodical Re-
constructions). For every time of reconstruction, duplicate
insertions and set resizing are resolved. Hence the vacuum
filter can be recovered from the sub-optimal condition.

5.3 Instant updates of vacuum filters
One requirement for the self updates on the vacuum is a

fast speed to avoid interruption of responding AMQ queries.
Our goal is to provide fast updates and the update opera-
tions include insertions and deletions. For deletion opera-
tions, the requirement is to delete the items which must have
been previously inserted [23]. Insertion operations are more
complicated to deal with compared with deletion operations.
It is because a full vacuum filter needs to be extended to in-
sert more items.

To achieve this goal, we design the Dynamic Vacuum Fil-
ter (DVF) inspired by the Dynamic cuckoo filter (DCF) [19]
for fast self updates of IUPR. A DCF uses a linked chain of
cuckoo filters for some extended space.

However, directly applying DCFs to vacuum filters faces
some problems. 1) A DCF is based on the standard cuckoo
filter, the load factor of each cuckoo filter is low when insert-
ing a certain number of items, which is not memory-efficient.
2) The design of a DCF incurs high cost for the lookup pro-
cess. Assuming there are s chained cuckoo filters, the lookup
process needs 2s memory accesses, which increases the cost
when s grows big. 3) The false positive rate increases to
2bs/2l compared to 2b/2l of the original cuckoo filter. 4) A
DCF requires that every linked cuckoo filter has the same
size of buckets. Thus the number of buckets in each cuckoo
filter is decided by the first cuckoo filter. If the initial num-
ber of buckets is small, this design could incur many small
cuckoo filters when more items come, significantly increasing
the cost for the operations. However, in many applications it
is hard to pre-determine a proper number of buckets at the

system initialization. Therefore DCFs cannot be directly
used for vacuum filters.

A DVF uses a linked chain of vacuum filters. A vacuum
filter achieves about 95% memory utilization rate without
any constraint on the number of inserting items. Thus, the
DVF can resolve the first problem of DCFs. Another feature
of the DVF is that we do not require all the linked vacuum
filters have the same number of buckets, which makes the
DVF more flexible in dynamic environments. The number
of buckets in each vacuum filter is independently decided.

Insertions. The status of a vacuum filter may be full or
not when there are new items to be inserted. Two condi-
tions are used to decide whether the filter is full. 1) The load
factor of the filter reaches a defined threshold, e.g., 96%; 2)
The current insertion fails. If the filter is not considered
full, we can easily insert the item. When the filter is consid-
ered full, we create another table and order all tables in a
sequence with ascending order of the time of creation. Then
the future items will be inserted into the newly created ta-
ble, called the tail table. If there are multiple tables in the
list, during item insertions, we check the status of the tail
table instead of traversing all tables in the list to save time.
Obviously the lookup and insertion performance will down-
grade by chaining more tables. However, IUPR includes
the periodical reconstruction phase, which will recover the
chained tables to a unified vacuum filter table including the
fingerprints of all current items. The process benefits from
the property of a vacuum filter that it can be in any size
without restricting the value of m.

Lookups. To lookup of an item x, the vacuum filter needs
to traverse the tables in the chain. If no table has a matched
fingerprint, the vacuum filter reports negative.

Deletions. The deletion of an item x is simple. The DVF
performs a membership query of x in the whole vacuum filter
list. If a corresponding fingerprint of x is found, we delete
the fingerprint. One situation caused by deletion operations
is that some vacuum filters in the list may get low load
factors after deleting a number of items. The sub-optimal
tables will be resolved by each reconstruction.

During each update operation, the system cannot support
the membership query. Since each of these updates can be
finished with in O(1) time in average similar to those in
cuckoo hashing [39]. Thus lookup operations will not be
significantly interrupted. On the other hand, a reconstruc-
tion to create a new version of the vacuum filter may take
a longer time. Hence we propose to let a different machine
or process to run the reconstruction program concurrently
with the lookup process.

5.4 Periodical reconstruction
To resolve the performance downgrading problem caused

by fast updates, we introduce the periodical reconstruction
process that creates new versions of the vacuum filter.

Each reconstruction can be triggered in two ways. First,
after a time interval T , the construction process reconstructs
the vacuum filter from the up-to-date data set. Second, it
can be triggered by special events, e.g., the lookup through-
put of the vacuum filter is lower than a pre-defined thresh-
old, or the number of updates exceeds a pre-defined thresh-
old. During the reconstruction process, the current vacuum
filter running in the fast memory still accepts membership
queries and performs fast updates. When a new version
of the vacuum filter has been constructed, the construction
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process will first apply the update operations that happened
during the reconstruction time. It is because these opera-
tions are not included in the past reconstruction. Then the
construction process transmits the new version to the lookup
process, and the lookup process replaces the old filter with
the new version. Fig. 9 is an example of such parallel re-
construction. It shows the timelines of both lookup and
construction processes. At time t1, a reconstruction is trig-
gered and the new vaccum filter should reflect the original
item set and the recent updates #1-4. When this recon-
struction finishes, there are three more updates happened
during this period, namely updates #5-7. Hence the con-
struction process applies instant updates to the new version
for 5-7 and sends the new version to the lookup process.
The lookup process has self-updated the updates #1-7 and
may experience a downgraded performance. It replaces the
old vacuum filter with the new version and is recovered to a
better performance. Under these dynamics the downgraded
performance of the vacuum filter can always be recovered af-
ter a period of time. The experimental results is shown in
Section 6.3.

In addition, reconstructions help to keep a very small
number of chained tables in the vacuum filter. In DCF that
the chain could be arbitrarily long. A long chain of table
will significantly decrease the lookup and update through-
put. Two parameters are taken into consideration to achieve
a good tradeoff for the dynamic design. The first one is the
time interval of triggering the reconstruction process. The
second one is the number of buckets for the newly chained
table during fast updates. The reconstruction time interval
is suggested to be determined in a per-application basis. If
we decide the reconstruction time interval T and predict the
insertion rate as ri and deletion rate as rd, we set the size of
the newly chained table to contain 2T (ri − rd) items, using
2x as a safety margin.

5.5 Summary of IUPR
The design of IUPR solves the performance downgrad-

ing problem caused by duplicate insertions and set resizing.
These problems frequently happen in practical applications
but has not been well-addressed by existing methods. IUPR
is an extra component to further strengthen vacuum filters
that work on practical memory hierarchies. Note even if
IUPR is not used, vacuum filters provide better performance
than Bloom or cuckoo filters in most concerned metrics in-
cluding the space cost, throughput, and false positive rate.

6. PERFORMANCE EVALUATION
6.1 Evaluation methodology

We implement a complete software prototype of vacuum
filters including the basic algorithms and the protocols in

IUPR. There are two design options of vacuum filters in
implementation. One option is that for different lengths of
fingerprints, whether we should add padding bits so that
no bucket will cross two cachelines. The other option is
whether the implementation includes semi-sorting. The im-
plementation of vacuum filters including semi-sorting but
no padding is denoted as VF-ss (No Padding). The im-
plementation including padding but no semi-sorting is de-
noted as VF. The implementation including both padding
and semi-sorting is denoted as VF-ss. We use the imple-
mentation of cuckoo filters provided by their authors [3].
The corresponding versions of cuckoo filter are denoted as
CF and CF-ss. For Morton filter (MF), we use the imple-
mentation provided by the authors [7]. The implementation
of Bloom filters is standardized, we set the number of hash
functions to �ln 2(m/n)� in order to achieve the lowest false
positive rate [17], where n is the number of items, m is the
array size. We also implement the deletable Bloom filters
(DIBFs) [43] and blocked Bloom filters (BBFs) [41]. We use
open source code for Counting Quotient Filters (CQFs) [4].
The code for Vacuum Filters is available in [8].

Unless otherwise mentioned, the items used for experi-
ments are pre-generated 64-bit distinct integers from ran-
dom number generators. All experiments are running on a
DELL work station with Intel E5-2687W CPU, 3.00 GHz,
and 30 MB L3 Cache. The hard-disk is SK-hynix-SC311-S
1TB SSD.

Metrics: We evaluate the following metrics:

• False positive rate: measured by querying a filter with
non-existing (alien) items and then calculating the frac-
tion of returned positive results. The false positive rate
is usually a target value that needs to be achieve by
adjusting other parameters.

• Bits per item: this metric reflects the memory cost.
We count the average number of bits used per item
in an AMQ structure to achieve a target false positive
rate.

• Load factor : measured by the number of bits used
to store fingerprints, over the total size of the data
structure.

• Lookup, insertion, and deletion throughput : measured
by the number of lookup/insertion/deletion operations
a data structure can process per second.

Unless otherwise mentioned, for every result shown in this
section, we conduct 10 production runs and compute the
average.

For the evaluation under dynamic environments, we com-
pare the performance between IUPR-VF method and a mod-
ified dynamic vacuum filter (linked-VF) method without re-
construction, which will be illustrated in Section 6.3. We
also compare IUPR-VF with IUPR-CF.

In addition, we evaluate the gain of replacing Bloom and
cuckoo filters with vacuum filters in a real application: check-
ing the revocation status of digital certificates.

6.2 Evaluation of data structures
We compare the performance of vacuum filters (VFs),

cuckoo filters (CFs), Bloom filters (BFs), Blocked Bloom
filters (BBFs), Deletable Bloom filters (DIBFs), Morton fil-
ters (MFs) and Counting Quotient Filter (CQFs). For VFs
and CFs, we also compare the performance of their semi-
sorting implementation (VF-ss and CF-ss). Note counting
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Figure 10: Memory cost versus false positives
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Figure 12: Performance of lookup throughput
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Figure 13: Performance of insertion throughput

Bloom filters (CBFs) have higher memory cost and lower
throughput than BFs by the design. Hence we do not need
to compare to CBFs.

6.2.1 Memory cost and false positives
We evaluate the memory usage with target false positive

rates for VF-ss, CF-ss, BFs, BBFs, DIBFs, MFs and CQFs.
We show the results of three cases. In Case 1 the number
of items n = 0.95 × 225. In Case 2, n = 0.75 × 225. In
Case 3, n = 225. Note in all three cases, the bits per item
of VFs have no clear difference. However for CFs and MFs,
Case 1 is considered the best case, Case 2 is considered the
average case, and Case 3 is considered the worst case. The
selected numbers of items and the results of three cases are
the representative ones.

Fig. 10 shows the results of the memory cost (in the num-
ber of bits per item) versus the target false positive rate.
We also show the theoretical lower bound in the figures for
comparison, which does not exist in practice. We find that
VFs achieve the lowest memory cost in all cases, pro-
viding 2-5 bits saving per item compared to other methods
in the average case under a same false positive rate. The
plots of memory cost for CFs, MFs, CQFs, and VFs are
all in stair-steps, because they need to use the fingerprints
whose length is an integer. When the key numbers are near
powers of two (such as Case 3), CFs and CQFs have to cre-
ate a much bigger hash table to store the fingerprints. As
a result, the load factor of a CF will be close 50% and the
memory cost is high. In the average case (Case 2), VFs still
show an advantages of ∼5 fewer bits per item compared to
CFs. BFs and the variants DIBFs and BBFs show worse
memory and the false positive tradeoff than the VFs in all
cases. MFs need more memory than VFs in all cases.

6.2.2 Operation throughput
In this section, we fix the fingerprint length for VFs, CFs,

MFs, and CQFs to 12 bits. For VF-ss and CF-ss, we select
13 bits per fingerprints for a better alignment. The item

number is 227 ∗ 0.95, and the memory consumption are all
fixed to 192MB, which is much bigger than the L3 cache.
Note this setting is a best-case situation for CFs
and CQFs. We give advantages to them to show
that even under these cases, VFs still outperform
these methods. VFs do not rely on these situations.
In other situations, VFs may provide more obvious
performance gains.

Lookup throughput. Fig. 12 shows the lookup through-
put for two cases - 100% of existing items, and 50%-50%
mixed of existing and alien items. Our results show that
VF-ss is about 1.1x to 1.8x faster than CF-ss for positive
lookups. VFs provide higher throughput than all other
methods when the table occupancy rate is lower than 90%.
In the implementation, VFs may access fewer than two cache-
lines, and CFs will always access two cachelines. Intuitively,
CFs’ throughput will be much slower than VFs’. However,
since The Intel Xeon micro-architecture has multiple mem-
ory accessing units, the two memory accesses may be done
concurrently. As a result, the lookup throughput of CFs
will be slightly better than VFs when the occupancy rate is
high. The number of chunks for chunked-CF is 256. We can
find that chunked-CF has almost the same performance as
CF. The lookup throughput of BFs and DBFs is always the
lowest.

Deletion throughput. The deletion throughput is shown
in Fig. 11. We can find that VFs and CFs have similar dele-
tion throughput, higher than most other methods.

Insertion throughput. Fig. 13(a) shows the insertion
throughput with different table occupancies. VFs have the
highest throughput compared to other AMQ structures when
the table occupancy < 65%. The insertion throughput of all
methods except Bloom filters and their variants decreases
with higher table occupancy. When the occupancy is higher
than 60%, both CFs and VFs require more bucket accesses
to find an empty slot. In these cases, the data locality
can significantly affect the throughput. Since the semi-
sorting optimization requires more complicated operations,
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Figure 14: Throughput versus num. of items.
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Figure 15: Performance of throughput in SSD.

the memory access speed may not be the bottleneck. Hence,
VF-ss shows slightly better throughput than CF-ss. BFs
need about 9 random memory accesses, which have the slow-
est insertion speed among all methods. However BBFs are
fast in insertions because they cause one cache miss at the
most. After inserting all items into the data structures, we
compute the overall performance of insertion throughput,
shown in Fig. 13(b). We can find that VF achieves best
overall insertion throughput except for BBF. The overall in-
sertion throughput of VFs and VF-ss is higher than that of
CFs and CF-ss.

Throughput versus the number of items. We evalu-
ate the throughput for different numbers of items to demon-
strate the scalability and stability of the methods. Figs. 14(a)
and 14(b) shows the results. VFs are slightly better than
CFs in all cases.

Throughput in SSD. We evaluate the throughput of
different methods in the SSD hard disk, where the memory
access speed is much slower. And we limit the memory to
100MB. The results are shown in Fig 15. The results show
that the lookup throughput of VF and VF-ss is around 1.86x
to 2.13x faster than those of CF and CF-ss. The insertion
experiments also show VFs provides higher throughput than
CFs regardless of the occupancy.

6.3 Evaluation under dynamics
In this section, we evaluate the performance of vacuum

filters in dynamic environments with frequent item set up-
dates. For the comparison purpose, we build two systems.
The Linked-VF system keeps creating new tables with
items updates and links the tables in a chain. The IUPR-
VF system uses the proposed IUPR update and reconstruc-
tion methods. We also replace vacuum filters by standard
cuckoo filters to make a comparison between them. We ap-
ply the semi-sorting versions of VFs and CFs to save memory
cost.We set length of fingerprints to be 13 bits. The vacuum
filters and cuckoo filters are empty at the beginning. Up-
dates happen with a stable frequency. The arrival time of
the update events follows the Poisson distribution. The pa-
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Figure 16: IUPR-VF/CF versus Linked-VF/CF

rameter λ denotes the average number of updates happening
in the given time interval.

We evaluate two metrics: lookup throughput and mem-
ory cost. For the memory cost, we only consider the mem-
ory consumption of the AWQ structures running in the fast
memory. We consider two parameters that influence perfor-
mance. 1) Reconstruction interval: In the implementation,
we reconstruct the vacuum filter with a given interval. 2)
The number of buckets: to choose a proper number of buck-
ets when creating a new table, we set the number of buckets
according to a pre-defined number, an estimated number of
insertions in the next time interval.

Overall system performance. Fig. 16 shows the per-
formance comparison of IUPR-VF, linked-VF, IUPR-CF,
and linked-CF. In this set of experiments, the reconstruc-
tion interval is set to 20 seconds and λ is set to 106. From
Fig.16(a), we find that IUPR-VF and IUPR-CF have higher
lookup throughput than linked-VF and linked-CF over time.
The reason is that the systems are always recovered to a
good state every 20 seconds by resolving performance down-
grading. We find that every 20 seconds, there is a sudden
increase of the lookup throughput (in the 20s, 40s, and so
on), meaning a replacement of the old version with a new
version. However, the lookup throughput of linked-VF and
linked-CF continuously decreases due to more linked tables
caused by updates. We also find that IUPR-VF and IUPR-
CF have a comparable lookup throughput. However, it may
require much more memory for IUPR-CF to reconstruct the
filter due to the restriction of the filter size as shown in
Fig. 16(b).

Varying number of buckets in a new table. We use
experiments to show the performance of varying the num-
ber of buckets for each new table. Every 10 seconds there
will be about 106 new items need to be inserted into the
data structure. In this experiment setting, every update we
create a new table that can contain 106, 2 × 106, 3 × 106,
and 4× 106 items respectively. Fig. 17 shows the results of
lookup throughput. We find that assigning a larger space
when creating a new table has better lookup throughput for
the linked-VF because it can decrease the number of table
in the list. The drawback is that it consumes more memory
when the newly linked vacuum filter is not full of sufficient
updates, which can be shown in Fig. 18(a). In Fig. 18, the
memory of both linked-VF and IUPR-VF increases about
1.6 MB every 10 seconds due to the new vacuum filter is cre-
ated. And we find that the influence of the different size of a
vacuum filter is small because of the reconstruction process.
A larger number of buckets consume more memory during
the system operation. In practice, assigning an estimated
space for updates with proper reconstruction makes a good
trade-off between the memory cost and lookup throughput.
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Table 3: Performance of AMQs for certificate checking applications

bits per item measured false positive r. lookup thpt (pos) lookup thpt (mixed)

VF-ss CF-ss BF VF-ss CF-ss BF VF-ss CF-ss BF VF-ss CF-ss BF

valid
12.752 13.546 13.542 0.081% 0.076% 0.117% 7.593 7.455 2.177 7.383 6.250 4.184

15.808 16.932 18.750 0.011% 0.0098% 0.0090% 7.127 7.001 1.473 7.042 6.045 2.900

revoked
12.873 20.978 13.542 0.087% 0.097% 0.112% 14.704 14.868 4.149 13.754 11.052 8.198

16.091 26.699 17.709 0.011% 0.012% 0.014% 14.166 14.650 3.232 13.797 10.775 6.580

Varying reconstruction interval. We evaluate the in-
fluence of different reconstruction intervals by setting the
interval to be 20s, 30s, 40s, and 50s respectively. Fig. 19
shows the results of lookup throughput. A smaller recon-
struction interval means reconstructions happen more fre-
quently, which is shown in the pink circle in Fig. 19. We find
that the lowest lookup throughput of 20s is higher than that
of 30s, 40s, and 50s. We also find that the smallest recon-
struction interval achieves best lookup throughput from the
figure 19 in the whole process, although it incurs higher com-
putation overhead in the slow memory due to more frequent
reconstruction calls. In practice, a real deployment may
choose the smallest time interval allowed by the worksta-
tion running the update program to achieve a better lookup
throughput.

6.4 Case study: checking revoked certificates
Vacuum filters can be used in many real applications [26,

5, 30, 27]. In this section, we study a case of using vac-
uum filters to check the certificate revocation status, which
originally uses Bloom filters.

The TLS protocol, which relies on the public key infras-
tructure (PKI), is the cornerstone of Internet security. One
critical problem for the web’s PKI is the overlooked certifi-
cate revocation. If an erroneous or compromised certificate
should be revoked, otherwise the client software will believe
that the certificate is valid until it expires. Attackers can
utilize such certificates to conduct the Man-in-the-Middle
(MitM) attacks. However, many client applications do not
properly check the revocation status of certificates. CR-
Lite [30] proposes a client-server model to check certificate
revocation status. The server aggregates the revocation in-
formation for all-known revoked certificates and generate a
filter based on them. The clients download the filter and use
it to check the revocation status. CRLite relies on Bloom
filters to achieve low memory cost for running on mobile de-
vices. In this study, we show that replacing Bloom filters
with vacuum filters results in smaller memory cost for the
same target false positive rate �.

We use the data downloaded from Censys [6], which con-
tain both revoked and non-revoked certificates. In this set
of experiments, the total number of certificates is 30 mil-
lion. The number of unrevoked certificates is 29,725,074,
the number of revoked certificates is 274,926. For this ap-
plication, we build three AWQ data structures to store the
revoked and unrevoked certificates respectively. We set the
target false positive rate to be 0.1% and 0.01%. For Bloom
filters, we set the number of hash functions to achieve the
best false positive rate. Table 3 shows the results. We can
find that vacuum filters achieve the lowest memory cost with
a target false positive rate compared to CFs and BFs in all
cases. We also evaluate the lookup throughput with only
existing items and the mixed items (containing 50% alien
items). We can find that VFs and CFs have similar lookup
throughput. BFs are the worst in both existing and mixed
lookup throughput.

7. CONCLUSION
Vacuum filter, which is a type of AMQ data structures,

is a more memory-efficient and faster replacement of Bloom
and cuckoo filters. We made three main contributions in
this work: 1) a fingerprint eviction strategy to achieve both
high load factors and better data locality; 2) a new inser-
tion algorithm that combines the advantages of both BFS
and DFS to achieve a higher load factor and better inser-
tion throughput; 3) an instant updates and periodical re-
constructions (IUPR) method to resolve duplicate insertions
and set resizing, both of which are considered difficult to
handle in previous AMQ data structures. Experimental re-
sults and real case study show that vacuum filters require
smaller memory in all cases and provide higher throughput
in many situations, compared to existing methods.
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