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ABSTRACT
Worst-case optimal join algorithms are attractive from a
theoretical point of view, as they offer asymptotically bet-
ter runtime than binary joins on certain types of queries.
In particular, they avoid enumerating large intermediate re-
sults by processing multiple input relations in a single multi-
way join. However, existing implementations incur a sizable
overhead in practice, primarily since they rely on suitable
ordered index structures on their input. Systems that sup-
port worst-case optimal joins often focus on a specific prob-
lem domain, such as read-only graph analytic queries, where
extensive precomputation allows them to mask these costs.

In this paper, we present a comprehensive implementa-
tion approach for worst-case optimal joins that is practi-
cal within general-purpose relational database management
systems supporting both hybrid transactional and analyt-
ical workloads. The key component of our approach is a
novel hash-based worst-case optimal join algorithm that re-
lies only on data structures that can be built efficiently dur-
ing query execution. Furthermore, we implement a hybrid
query optimizer that intelligently and transparently com-
bines both binary and multi-way joins within the same query
plan. We demonstrate that our approach far outperforms
existing systems when worst-case optimal joins are benefi-
cial while sacrificing no performance when they are not.
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1. INTRODUCTION
The vast majority of traditional relational database man-

agement systems (RDBMS) relies on binary joins to pro-
cess queries that involve more than one relation, since they
are well-studied and straightforward to implement. Ow-
ing to decades of optimization and fine-tuning, they offer
great flexibility and excellent performance on a wide range
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of workloads. Nevertheless, it is well-known that there are
pathological cases in which any binary join plan exhibits
suboptimal performance [10,19,30]. The main shortcoming
of binary joins is the generation of intermediate results that
can become much larger than the actual query result [46].

Unfortunately, this situation is generally unavoidable in
complex analytical settings where joins between non-key at-
tributes are commonplace. For instance, a conceivable query
on the TPCH schema would be to look for parts within the
same order that could have been delivered by the same sup-
plier. Answering this query involves a self-join of lineitem
and two non-key joins between lineitem and partsupp,
all of which generate large intermediate results [16]. Self-
joins that incur this issue are also prevalent in graph ana-
lytic queries such as searching for triangle patterns within a
graph [3]. On such queries, traditional RDBMS that employ
binary join plans frequently exhibit disastrous performance
or even fail to produce any result at all [2, 3,48,54].

Consequently, there has been a long-standing interest in
multi-way joins that avoid enumerating any potentially ex-
ploding intermediate results [10, 19, 30]. Seminal theoreti-
cal advances recently enabled the development of worst-case
optimal multi-way join algorithms which have runtime pro-
portional to tight bounds on the worst-case size of the query
result [9,45,46,54]. As they can guarantee better asymptotic
runtime complexity than binary join plans in the presence
of growing intermediate results, they have the potential to
greatly improve the robustness of relational database sys-
tems. However, existing implementations of worst-case op-
timal joins have several shortcomings which have impeded
their adoption within such general-purpose systems so far.

First, they require suitable indexes on all permutations
of attributes that can partake in a join which entails an
enormous storage and maintenance overhead [3]. Second, a
general-purpose RDBMS must support inserts and updates,
whereas worst-case optimal systems like EmptyHeaded or
LevelHeaded rely on specialized read-only indexes that re-
quire expensive precomputation [2, 3]. The LogicBlox sys-
tem does support mutable data, but can be orders of mag-
nitude slower than such read-optimized systems [3, 8]. Fi-
nally, multi-way joins are commonly much slower than bi-
nary joins if there are no growing intermediate results [42].
We thus argue that an implementation within a general-
purpose RDBMS requires (1) an optimizer that only intro-
duces a multi-way join if there is a tangible benefit in doing
so, and (2) performant indexes structures that can be built
efficiently on-the-fly and do not have to be persisted to disk.
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In this paper, we present the first comprehensive approach
for implementing worst-case optimal joins that satisfies these
constraints. The first part of our proposal is a carefully
engineered worst-case optimal join algorithm that is hash-
based instead of comparison-based and thus does not require
any precomputed ordered indexes. It relies on a novel hash
trie data structure which organizes tuples in a trie based on
the hash values of their key attributes. Crucially, this data
structure can be built efficiently in linear time and offers low-
overhead constant-time lookup operations. As opposed to
previous implementations, our join algorithm handles chang-
ing data transparently as any required data structures are
built on-the-fly during query processing. The second part of
our proposal is a heuristic extension to traditional cost-based
query optimizers that intelligently generates hybrid query
plans by utilizing the existing cardinality estimation frame-
work. Finally, we implement our approach within the code-
generating Umbra RDBMS developed by our group. This
system constitutes the evolution of the high-performance in-
memory database HyPer towards an SSD-based system [44].
Like HyPer, Umbra is explicitly designed for hybrid OLTP
and OLAP (HTAP) workloads. Our experiments show that
the proposed approach outperforms binary join plans and
several systems employing worst-case optimal joins by up to
two orders of magnitude on complex analytical workloads
and graph pattern queries, without sacrificing any perfor-
mance on the traditional TPCH and JOB benchmarks where
worst-case optimal joins are rarely beneficial.

The remainder of this paper is organized as follows. In
Section 2 we present some background on worst-case op-
timal join algorithms. The hash trie index structure and
associated multi-way join algorithm are described in detail
in Section 3, and the hybrid query optimizer is presented in
Section 4. Section 5 contains the experimental evaluation
of our system, Section 6 gives an overview of related work,
and conclusions are drawn in Section 7.

2. BACKGROUND
In the following section, we provide a brief overview of

worst-case optimal joins and their key differences to tradi-
tional binary join plans. In the remainder of this paper, we
consider natural join queries of the form

Q := R1 B · · · B Rm, (1)

where the Rj are relations with attributes v1, . . . , vn. Note
that any inner join query containing only equality predicates
can be transformed into this form by renaming attributes
suitably. While most queries of this type can be processed
efficiently by traditional binary join plans, query patterns
such as joins on non-key attributes can lead to exploding
intermediate results which pose a significant challenge to
RDBMS which rely purely on binary join plans. Consider,
for example, the query

Q∆ := R1(v1, v2) B R2(v2, v3) B R3(v3, v1).

If we set R1 = R2 = R3 and view tuples as edges in a graph,
Q∆ will contain all directed cycles of length 3, i.e. trian-
gles in this graph (cf. Figure 1a). Any binary join plan for
this query will first join two of these relations on a single
attribute, which is equivalent to enumerating all directed
paths of length 2 in the corresponding graph. This inter-
mediate result will generally be much larger than the actual
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0 1

2 3

R3(v3, v1)
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(a) Sample instances of the relations R1, R2, R3. Each
relation contains the tuples (0, 1), (1, 2), (1, 3), (2, 0), (2, 3)
which are viewed as edges in a directed graph. The di-
rected triangles in this graph are (0, 1, 2), (1, 2, 0), (2, 0, 1).
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(b) The trie structure induced by Algorithm 1 on these
instances of R1, R2, R3. Each recursive step conceptually
iterates over the elements in the intersection between
some trie nodes (line 5), and subsequently moves to the
children of these elements (line 6).

Figure 1: Algorithm 1 on the triangle query Q∆.

query result, since a graph with e edges contains on the or-
der of O(e2) paths of length 2 but only O(e1.5) triangles [53].
The resulting large amount of redundant work will severely
impact the overall query processing performance.

Worst-case optimal join algorithms, on the other hand,
avoid such exploding intermediate results [46]. Continuing
our example, a worst-case optimal join conceptually per-
forms a recursive backtracking search to find valid assign-
ments of the join keys v1, v2, and v3 before enumerating
any result tuples. Specifically, we begin by iterating over
the distinct values k1 of v1 that occur in both R1 and R3,
i.e. k1 ∈ {0, 1, 2} in Figure 1a. For a given k1 we then re-
cursively iterate over the distinct values k2 of v2 that occur
in both R2 and the subset of R1 with v1 = k1, e.g. k2 ∈ {1}
for k1 = 0 in Figure 1a. Finally, we proceed analogously to
find valid assignments k3 of v3. Unlike a binary join plan, a
worst-case optimal join avoids redundant intermediate work
if a specific join key value occurs in multiple tuples, since
only the distinct join key values need to be considered. Thus,
as discussed in detail in our experimental evaluation (cf. Sec-
tion 5), any relational join query in which a large fraction
of tuples have multiple join partners can potentially benefit
from worst-case optimal joins.

2.1 Worst-Case Optimal Join Algorithms
Formally, this paper builds on the generic worst-case opti-

mal join algorithm shown in Algorithm 1 which directly im-
plements the conceptual backtracking approach motivated
above [46, 47]. It operates on the query hypergraph HQ =
(V, E) of a query Q, where the vertex set V contains the
attributes {v1, . . . , vn} of Q, and the edge set E = {Ej | j =
1, . . . ,m} contains the attribute sets of the individual rela-
tions Rj . In case of our running example Q∆, the query hy-
pergraph is given by V = {v1, v2, v3} and E = {E1, E2, E3}
with E1 = {v1, v2}, E2 = {v2, v3}, E3 = {v1, v3}.

Algorithm 1 consists of a recursive function which searches
for valid assignments of a single join key vi in each recursive
step. The index i of the current join key is passed as a
parameter to the algorithm. In later recursive steps (i.e.
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Algorithm 1: Generic Worst-Case Optimal Join
given : A query hypergraph HQ = (V, E) with

attributes V = {v1, . . . , vn} and hyperedges
E = {E1, . . . , Em}.

input : The current attribute index
i ∈ {1, . . . , n+ 1}, and a set of relations
R = {R1, . . . , Rm}.

1 function enumerate(i, R)
2 if i ≤ n then

// Relations participating in the current join
3 Rjoin ← {Rj ∈ R | vi ∈ ERj} ;

// Relations unaffected by the current join
4 Rother ← {Rj ∈ R | vi /∈ ERj} ;

// Key values appearing in all joined relations
5 foreach ki ∈

⋂
Rj∈Rjoin

πvi(Rj) do
// Select matching tuples

6 Rnext ← {σvi=ki(Rj) | Rj ∈ Rjoin} ;
// Recursively enumerate matching tuples

7 enumerate(i+ 1, Rnext ∪Rother) ;
8 else

// Produce result tuples
9 produce(×Rj∈R Rj) ;

i > 1), the backtracking nature of the algorithm entails
that a specific assignment for the join keys v1, . . . , vi−1 has
already been selected in the previous recursive steps (see
above). The second parameterR consists of m separate sets,
one for each input relation Rj , which contains all tuples from
Rj that match this specific assignment of join key values.
Initially, i is set to 1 and R contains the full relations Rj .

Within a given recursive step i, the algorithm first deter-
mines which relations contain the join key vi and thus have
to be considered when searching for matching assignments
of vi (line 3). These relations are collected as separate el-
ements in the set Rjoin. Next, the algorithm iterates over
all assignments ki of vi that appear in every one of these
relations (line 5). In every iteration of this loop, the tuples
that match the current assignment ki of vi are selected from
the relations in Rjoin (line 6) and the algorithm proceeds to
the next recursive step (line 7). In the final recursive step
(i.e. i = n + 1), the relations in R contain only tuples that
match one specific assignment of the join keys and are thus
part of the query result (line 9).

When taking a closer look at a specific input relation Rj ,
we observe that the parameter R of Algorithm 1 contains
only tuples from Rj that share a common prefix of join key
values. In case of the input relation R1 of the triangle query,
for example, R will contain the full relation R1 in the first
recursive step, all tuples that match a specific value of v1 in
the second step, and all tuples that match a specific value
of (v1, v2) in the final step. Therefore, Algorithm 1 induces
a trie structure on each input relation, as illustrated in Fig-
ure 1b [3]. The levels of this trie correspond to the join keys
appearing in this relation, in the order in which they are
processed by the join algorithm.

The theoretical foundation for the study of worst-case op-
timal join algorithms such as Algorithm 1 was laid down by
Atserias, Grohe, and Marx, who derived a non-trivial and
tight bound on the output size of Q that depends only on the

size of the input relations Rj [9,46,47]. Given the query hy-
pergraph HQ of Q as defined above, we consider an arbitrary
fractional edge cover x = (x1, . . . , xm) of HQ [47], which is
defined by xj > 0 for all j ∈ {1, . . . ,m} and

∑
vi∈Ej

xj ≥ 1

for all vi ∈ V . Then this bound states that

|Q| ≤
m∏

j=1

|Rj |xj , (2)

and the worst-case output size of Q can be determined by
minimizing the right-hand size of Inequality 2 [47]. A join
algorithm for computing Q is defined to be worst-case opti-
mal if its runtime is proportional to this worst-case output
size [46, 47]. In case of our running example Q∆, the right-
hand side of Inequality 2 is minimal for the fractional edge
cover x = (0.5, 0.5, 0.5) which results in an upper bound of√
|R1| · |R2| · |R3| on the size of Q∆ [3, 47].
Central to the analysis of the runtime complexity of worst-

case optimal joins is the query decomposition lemma proved
by Ngo et al. [47] From their constructive proof of this
lemma, they derive a generic worst-case optimal join algo-
rithm that has runtime in O(nm

∏
Ej∈E |Rj |xj ) for an ar-

bitrary fractional edge cover x = (x1, . . . , xm) of the query
hypergraph. Algorithm 1 as shown here is a special case of
this generic algorithm [47].

2.2 Implementation Challenges
Any implementation of Algorithm 1 has to rely on in-

dexes that explicitly model the trie structure on the input
relations in order to maintain the runtime complexity guar-
antees that are required for the algorithm to be worst-case
optimal [46,47]. However, this requirement for index struc-
tures poses a considerable practical challenge. The order in
which the join keys vi of a query are processed heavily influ-
ences the performance of Algorithm 1 [2]. Depending on the
query and its optimal join key order, indexes are required on
different permutations of attributes from the input relations.
The number of such permutations is usually much too large
to store the corresponding indexes persistently. Therefore,
they have to be built on-the-fly during query processing, pre-
cluding any expensive precomputation of the indexes them-
selves. Moreover, a general-purpose RDBMS and in partic-
ular an HTAP database has to support changing data. This
makes it difficult to precompute data structures that could
be reused across indexes. For instance, EmptyHeaded and
LevelHeaded rely heavily on a suitable dense dictionary en-
coding of the join attribute values which is hard to maintain
in the presence of changing data [2,3].

At the same time, the overall runtime of Algorithm 1
is dominated by the set intersection computation in line 5
which has to be implemented using these trie indexes [3].
While traditional B+-trees or plain sorted lists are compa-
rably cheap to build, they exhibit poor performance on this
computation. The read-optimized data structures employed
by EmptyHeaded and LevelHeaded can perform orders of
magnitude better, but as outlined above are far too expen-
sive to build on-the-fly [3,8,13]. For example, we measured
in Section 5 that EmptyHeaded spends up to two orders
of magnitude more time on precomputation than on actual
join processing [3]. In contrast, our hash trie index structure
proposed in Section 3 is much cheaper to build while still
offering competitive join processing performance.
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h2(3) h2(2) h2(0) = h2(3)h2(1)

h1(1) h1(0) h1(2)

(1, 2)(1, 3) (2, 3) (0, 1) (2, 0)

hash table 
on h1(v1)

hash tables 
on h2(v2)

materialized tuples 
in R1(v1, v2)

Figure 2: Illustration of a hash trie on the relation
R1(v1, v2) shown in Figure 1. The example contains
a collision between h2(0) and h2(3) (marked in red).

Finally, binary join processing has been studied and op-
timized for decades, leading to excellent performance on a
wide range of queries. Even efficiently implemented worst-
case optimal join algorithms frequently fail to achieve the
same performance on queries that do not contain growing
joins [2]. For instance, even when disregarding precomputa-
tion cost, the highly optimized LevelHeaded system is out-
performed by HyPer by up to a factor of two on selected
TPCH queries [2, 31]. Moreover, we measured that the
Umbra RDBMS which employs binary join plans outper-
forms a commercial database system that relies on worst-
case optimal joins by up to four orders of magnitude on the
well-known TPCH and JOB benchmarks (cf. Section 5 and
Figure 5) [38, 44]. Therefore, we propose a hybrid query
optimization approach that only replaces binary joins with
growing intermediate results by worst-case optimal joins, as
we expect a tangible benefit in this case (cf. Section 4).

3. MULTI-WAY HASH TRIE JOINS
In this section, we present our hash-based worst-case op-

timal join algorithm. The workhorse of this approach is a
novel hash trie data structure which is carefully designed to
fulfill the requirements identified above.

3.1 Outline
Conceptually, the trie structure required by Algorithm 1

can be modeled easily through nested hash tables, where
each level of nesting corresponds to exactly one join key
attribute [54]. The path to a nested hash table then de-
termines a unique prefix of join key values, and the nested
hash table itself stores the distinct values of the correspond-
ing join key attribute that appear in tuples with this prefix.
On the last level, the hash tables store some sort of tuple
identifiers that allow access to the tuple payload. The set
intersections required by the worst-case optimal join algo-
rithm can then trivially be computed in linear time, and the
tuples matching a specific join key value can be selected by
a single constant-time hash table lookup.

However, a straightforward implementation of this ap-
proach will suffer from suboptimal performance due to the
substantial overhead incurred by each hash table lookup.
Most importantly, every successful lookup into a hash table
involves at least one key comparison in order to detect and
eliminate hash collisions. This requires that the actual key
values are accessible from the hash table buckets, and con-
sequently, we either have to follow a pointer to the actual
tuple on each hash table lookup, or the key values have to
be stored within the buckets themselves. In either case, the
cache performance of lookup operations will suffer consid-
erably even if the actual key comparison function is cheap.

Variable-length join keys such as strings further exacerbate
this problem [55]. Finally, Algorithm 1 will generally pro-
duce many tentative matches in the upper levels of the tries
that are later rejected because no corresponding matches
exist on the lower levels, each of which still requires at least
one key comparison.

The proposed hash trie data structure is based on the core
insight that this key comparison can be deferred until the
actual result tuples are enumerated by the join algorithm.
Specifically, we modify Algorithm 1 to operate exclusively
on the hash values of join keys, i.e. enumerate all tuples for
which the hash values instead of the actual values of the join
keys match. As a result, the corresponding trie structures
will also be built on the hash values instead of the actual
values of the join keys (cf. Figure 2). Of course, this enu-
meration will now include some false positives due to hash
collisions, but we eliminate these false positives by verify-
ing the actual join condition just before producing a result
tuple (line 9 in Algorithm 1). The amount of redundant
work introduced by this relaxation will generally be negli-
gible since hash collisions are extremely rare in any decent
hash function like AquaHash or MurmurHash [7,52].

These modifications allow for a much more efficient im-
plementation of the nested hash table structure, since no in-
formation about the actual key values is required. Thus, all
hash tables share a uniform compact memory layout, and
both set intersections and lookup operations can be com-
puted without any type-specific logic by only relying on fast
integer comparisons. Moreover, the modified version of Al-
gorithm 1 does not require any actual key comparisons for
tentative matches that are later rejected.

3.2 Join Algorithm Description
The proposed join processing approach can be split into

clearly separated build and probe phases. In the build phase
the input relations are materialized and the corresponding
hash tries are created. In the subsequent probe phase, the
worst-case optimal hash trie join algorithm utilizes these
index structures to enumerate the join result.

3.2.1 Hash Tries
As outlined above, a hash trie represents a prefix tree on

the hashed join attribute values of a relation, where the join
attributes and their order are determined by a given query
hypergraph. Thus, we assume in the following that there is
a hash function hi for each join attribute vi which maps the
values of vi to some integer domain. A node within a hash
trie consists of a single hash table which maps these hash
values to child pointers. These point to nodes on the next
trie level in case of inner nodes, and to the actual tuples
associated with a full prefix in case of leaf nodes. Within a
leaf node, these tuples are stored in a linked list. For exam-
ple, Figure 2 illustrates a possible hash trie on the relation
R1(v1, v2) of Q∆ shown in Figure 1, containing the tuples
(0, 1), (1, 2), (1, 3), (2, 0), (2, 3). Its root hash table contains
the distinct hash values of v1, i.e. h1(0), h1(1), and h1(2).
The child hash table of the entry for h1(1), for instance, then
contains the distinct hash values of v2 that occur in tuples
with h1(v1) = h1(1), i.e. h2(2) and h2(3).

3.2.2 Build Phase
In the build phase, this hash trie data structure is built

on each input relation Rj of the join query Q. For a given
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Algorithm 2: Hash Trie Join Build Phase
given: A hyperedge Ej ∈ E and hash functions hi

for the join attributes vi ∈ V .
input: The global index i ∈ {1, . . . , n+ 1} of the

currently processed attribute vi ∈ Ej and a
linked list L of tuples.

1 function build(i, L)
2 if i ≤ n then

// Allocate hash table memory
3 M ← allocateHashtable(2dlog2(1.25·|L|)e) ;

// Build outer hash table
4 while L is not empty do
5 t← pop next tuple from L ;
6 B ← lookupBucket(M , hi(πvi(t))) ;
7 push t onto the linked list stored in B ;

// Build nested hash tables
8 inext ← index of the next attribute in Ej ;
9 foreach populated bucket B in M do

10 Lnext ← extract linked list stored in B ;
11 Mnext ← build(inext, Lnext) ;
12 store Mnext in B ;

13 return(M) ;
14 else

// All attributes in Ej have been processed
15 return(L) ;

relation Rj , we first materialize all tuples in Rj in a linked
list. Subsequently, this linked list is passed to Algorithm 2
which recursively constructs the hash tables comprising the
hash trie from top to bottom. Its inputs are the global index
i of the join attribute on which to build a hash table, and
a linked list L of tuples. The algorithm first allocates space
for the hash table, where the number of buckets is chosen
as the next power of two larger than some fixed multiple of
the number of tuples in L (line 3). Subsequently, the tuples
in L are inserted into the hash table based on the hash
value of the current join attribute vi. Tuples that fall into
the same bucket are collected in a linked list stored in that
bucket (lines 4–7). Finally, the hash tables on the next join
key attribute are built by calling Algorithm 2 recursively on
these linked lists (lines 8–12). In the base case (line 15), the
linked list L itself is returned unchanged as the leaf node.

3.2.3 Probe Phase
The probe phase is responsible for actually enumerating

the tuples in the join result of a query. As outlined above,
we modify the generic multi-way join algorithm shown in
Algorithm 1 to defer key comparisons and make use of the
hash trie data structures created in the build phase. Our im-
plementation accesses hash tries through iterators. A hash
trie iterator points to a specific bucket within one of the
nodes of a hash trie, and thus identifies a unique prefix
stored within this trie. Iterators can be moved through a
set of well-defined interface functions which are shown in
Table 1. These functions allow horizontal navigation within
the buckets of a given node (next, lookup), and vertical nav-
igation between different nodes of the hash trie (up, down).
Crucially, all functions can be implemented with amortized

Table 1: The trie iterator interface used in the
probe phase of our hash trie join algorithm (cf. Al-
gorithm 3). An iterator points to a specific bucket
within one of the nodes of a hash trie, and the in-
terface functions allow navigation within the trie.

function description
up Move the iterator to the parent bucket of the

current node.
down Move the iterator to the first bucket in the

child node of the current bucket.
next Move the iterator to next occupied bucket

within the current node. Return false if no
further occupied buckets exist.

lookup Move the iterator to the bucket with specified
hash. Return false if no such bucket exists.

hash Return the hash value of the current bucket.
size Return the size of the current node.
tuples Return the current tuple chain (only possible

after calling down on the last trie level).

constant time complexity as they directly map to elementary
operations on the underlying hash tables.

The resulting worst-case optimal hash trie join algorithm
is shown in Algorithm 3. From a high-level point of view it
operates in exactly the same way as the generic algorithm
shown in Algorithm 1, with the key difference that it initially
enumerates all tuples for which the hash values of the join
keys match. Any false positives arising due to hash collisions
are filtered by a final check just before passing the tuples to
the output consumer of the multi-way join operator (line 18).

3.2.4 Complexity Analysis
In the following, we present a formal investigation of the

time and space complexity of the proposed hash trie join
approach, proving in particular that its runtime is indeed
worst-case optimal.

Theorem 1. The build phase of the proposed approach
has time and space complexity in O(n ·

∑
Ej∈E |Rj |).

Proof. As outlined above, the same operations are per-
formed for each input relation Rj during the build phase,
hence we focus on a given Rj in the following. The initial
materialization of Rj in a linked list clearly requires time
and space proportional to |Rj |. Moving on to Algorithm 2,
we note that each tuple in the input linked list L is moved to
exactly one of the linked lists that are processed recursively.
That is, no additional space is required for tuple storage,
and the overall set of tuples that is processed in each recur-
sive step of Algorithm 2 is some partition of Rj . As there
are at most n join attributes in a relation, we obtain a total
time and space complexity of O(n · |Rj |) for the build phase
of a single relation Rj .

At this point, it is important to recall that we intend to
integrate our approach into a general-purpose RDBMS, and
thus have to adhere to the bag semantics imposed by the
SQL query language. However, both the theoretical ground-
work on worst-case optimal join processing as well as exist-
ing implementations only consider the case of set semantics,
used for example in the Datalog query language [3,46]. We
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Algorithm 3: Hash Trie Join Probe Phase
given : A query hypergraph and hash tries on the

input relations with iterators
I = {I1, . . . , Im}.

input : The current attribute index
i ∈ {1, . . . , n+ 1}.

1 function enumerate(i)
2 if i ≤ n then

// Select participating iterators
3 Ijoin ← {Ij ∈ I | vi ∈ Ej} ;
4 Iother ← {Ij ∈ I | vi /∈ Ej} ;

// Select smallest hash table
5 Iscan ← arg minIj∈Ijoin size(Ij) ;

// Iterate over hashes in smallest hash table
6 repeat

// Find hash in remaining hash tables
7 foreach Ij ∈ Ijoin \ {Iscan} do
8 if not lookup(Ij, hash(Iscan)) then
9 skip current iteration of outer loop ;

// Move to the next trie level
10 foreach Ij ∈ Ijoin do
11 down(Ij)

// Recursively enumerate matching tuples
12 enumerate(i+ 1);

// Move back to the current trie level
13 foreach Ij ∈ Ijoin do
14 up(Ij)
15 until not next(Iscan);
16 else

// All iterators now point to tuple chains
17 foreach t ∈×Ij∈I tuples(Ij) do
18 if join condition holds for t then
19 produce(t) ;

thus pursue the following line of reasoning. In the first step,
we formally prove that Algorithm 3 is worst-case optimal
under set semantics, where exactly one tuple is associated
with each distinct join key in the input relations Rj . Sub-
sequently, we informally motivate how this worst-case opti-
mality under set semantics translates to bag semantics.

In preparation for our subsequent analysis, some addi-
tional notation is required. As outlined above, a hash trie
iterator Ij ∈ I always points to a specific node within a
hash trie. We write R(Ij) to identify the set of tuples stored
in the leaves of the subtrie rooted in this node, and H(Ij)
to identify the set of hashed join keys that are present in
these tuples. For example, let Ij point to a bucket in the
inner node containing h2(2) and h2(3) in Figure 2. Then
R(Ij) consists of the tuples (1, 2) and (1, 3), while H(Ij) con-
sists of the tuples (h1(1), h2(2)) and (h1(1), h2(3)). Clearly,
|H(Ij)| ≤ |R(Ij)| holds for any hash trie iterator Ij . In the
following, we will view H(Ij) as a relation with the same
attribute names as the corresponding R(Ij).

Theorem 2. Let x = (x1, . . . , xm) be an arbitrary frac-
tional edge cover of the query hypergraph HQ. Then Algo-
rithm 3 has time complexity in O(nm

∏
Ej∈E |H(Ij)|xj ) and

space complexity in O(nm).

Proof. We begin by proving the time complexity of Al-
gorithm 3 by induction over its recursive steps i. Our ap-
proach is based on the assumption that good hash functions
are used, in the sense that collisions occur only very rarely.
As we impose set semantics for the purposes of this proof,
we can formalize this assumption as

|H(Ij)| ∈ Θ(|R(Ij)|) (3)

for any hash trie iterator Ij .
In the base case i = n+1 all hash trie iterators point to leaf

nodes, i.e. by construction |H(Ij)| = 1 for all iterators Ij ∈
I. Under Assumption 3, this yields |R(Ij)| ∈ O(1) and thus
the cross product of the R(Ij) enumerated in lines 17–19
contains O(1) elements. Actually constructing the candidate
result tuple t and checking the join condition on t can then
easily be done in O(nm) which yields an overall runtime of
O(nm) = O(nm

∏
Ej∈E |H(Ij)|xj ) for the base case.

For the inductive step, we observe that the recursive part
of Algorithm 3 operates analogous to that of the generic
worst-case optimal Algorithm 1. In particular, the loop in
lines 6–15 runs for exactly size(Iscan) iterations, and its
body in lines 10–14 is executed for each element ki in the set
intersection

⋂
Ij∈Ijoin

πvi(H(Ij)). Invoking down on the par-
ticipating iterators is equivalent to computing σvi=ki(H(Ij))
for Ij ∈ Ijoin. Under these conditions, and given the base
case runtime derived above, the proof provided by Ngo et
al. for the runtime of Algorithm 1 yields that the runtime
of Algorithm 3 is indeed in O(nm

∏
Ej∈E |H(Ij)|xj ) [47].

Finally, we observe that the hash trie iterators and inter-
face functions required by Algorithm 3 can easily be imple-
mented using O(nm) additional space, as each iterator only
needs to store the path to the current bucket.

Taking into account that |H(Ij)| ≤ |R(Ij)| as outlined
above, Theorem 2 yields that the runtime of Algorithm 3 is
indeed worst-case optimal under set semantics. Concluding
our analysis, we note that under bag semantics, we can view
the algorithm as performing a worst-case optimal join on the
set of join key values, before expanding the bag of tuples cor-
responding to the join keys that are part of the join result.
Crucially, this expansion occurs after Algorithm 3 has de-
termined that all tuples in this cross product are part of the
join result, except of course for potential false positives due
to hash collisions.

3.3 Implementation Details
In the following, we provide essential implementation de-

tails of the proposed approach, and a brief account of its
integration into a compiling query execution engine [43].

3.3.1 Hash Trie Implementation
Figure 3 shows the memory layout of a hash trie as it

is implemented within the Umbra system [44]. We assume
that the size of a hash value is 64 bits, which is sufficient
even for very large data sets. As outlined above, the size of
hash tables is restricted to powers of two, as this allows us
to compute the bucket index for a given hash value using a
fast bitwise shift instead of a slow modulo operation. Specif-
ically, for a hash table size of 2p and a 64-bit hash value, the
bucket index is computed by shifting the hash value 64− p
bits to the right. Each hash table contiguously stores this
shift value, i.e. 64− p, as a single 8-byte integer followed by
an array of 2p 16-byte buckets.
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61 h1(1) h1(0) h1(2)
hash ptr hash ptr hash ptr

8-byte shift 16-byte buckets

ptr v1 v2

2 3
ptr v1 v2

0 1
ptr v1 v2

2 0null null

ptr v1 v2

1 2
ptr v1 v2

1 3

8-byte chain pointer tuple memory
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hash table 
on h1(v1)

hash tables 
on h2(v2)

materialized tuples 
in R1(v1, v2)

Figure 3: Memory layout of the hash trie in Figure 2. The gray boxes correspond to the individual hash
tables and materialized input tuples. No nested hash table is built for the tuple (0, 1) due to singleton pruning.

The first 8 bytes of each bucket contain the full hash value
that is stored in the bucket, which is required as we use
linear probing to resolve collisions within the bucket array.
In comparison to other collision resolution schemes such as
chaining, linear probing has the advantage that all distinct
hash values are stored separately in the hash table. This
allows us to store the associated child pointer directly within
the remaining 8 bytes of a bucket, which would otherwise
require at least one further level of indirection.

We apply two further optimizations to the hash trie data
structure, namely singleton pruning and lazy child expan-
sion. Singleton pruning compresses paths in which every
node has exactly one child, which occurs for the tuple (0, 1)
in Figure 3, for instance. With lazy child expansion, we only
create the root nodes of the hash tries in the build phase,
and create any nested hash tables on-demand when they are
accessed for the first time during the probe phase. The latter
optimization is especially beneficial in selective joins, where
many nested hash tables are never accessed. We provide
the full implementation details and a thorough evaluation
of these additional optimizations in a supplemental techni-
cal report [15].

3.3.2 Build Phase
In the build phase, the incoming tuples are materialized

contiguously in an in-memory buffer prior to running Al-
gorithm 2. Tuples are stored using a fixed-length memory
layout that is determined during query compilation time, in
order to facilitate subsequent random tuple accesses. In ad-
dition to the actual tuple data, we reserve an additional 8
bytes of memory per tuple which is used later to store the tu-
ple chain pointer required by the linked lists (cf. Figure 3).
As part of this materialization step, the tuples are parti-
tioned based on the hash values of the first join key attribute.
This ensures that tuples with similar join key hash values
reside in physically close memory locations which is critical
to achieve acceptable cache performance during the remain-
der of the build and probe phases. For this purpose, we
adapt the two-pass radix partitioning scheme proposed by
Balkesen et al. to the morsel-driven parallelization scheme
employed by Umbra [12,37,61].

An artifact of the self-join patterns frequently found in
graph analytic workloads is that multiple input pipelines
to a worst-case optimal join may produce exactly the same
hash tries. This is evident, for example, in Figure 1b where
two of the three tries on the participating relations are iden-

tical. We detect this during code generation and only build
the corresponding data structures once.

3.3.3 Probe Phase
After the build phase, the initial hash trie structure for

each input pipeline is available, and the join result can be
computed by Algorithm 3. Within the Umbra RDBMS, the
hash trie data structure and trie iterators are implemented
in plain C++, while the code that implements the build and
probe phases of a multi-way join for a specific query is gen-
erated by the query compiler. At query compilation time,
the query hypergraph and, in particular, the number and
order of join attributes is statically known. This allows us
to fully unroll the recursion in Algorithm 3 within the gen-
erated code, resulting in a series of tightly nested loops that
enumerate the tuples in the join result. This code is fully
parallelized by splitting the outermost loop, i.e. the first set
intersection, into morsels that can be processed indepen-
dently by worker threads within the work-stealing frame-
work provided by Umbra [37].

3.4 Further Considerations
An attractive way to reduce the amount of work required

in the build phase is to exploit existing index structures.
As the proposed join algorithm is hash-based, it is unfor-
tunately not possible to reuse traditional comparison-based
indexes like B+-trees for this purpose. However, with mi-
nor extensions to allow for insertions, the proposed hash
trie data structure could also be used as a secondary index
structure. Then, the build phase can be skipped for input
pipelines that scan a suitably indexed relation.

Even more aggressive optimizations are possible if the
data is known to be static. In this case, it is actually desir-
able to perform as much precomputation as possible in or-
der to minimize the time required to answer a query. While
this obviates the need for data structures that can be built
efficiently on-the-fly, a hash-based approach retains the ad-
vantage that complex attribute types can be handled much
more efficiently than in a comparison-based approach.

4. OPTIMIZING HYBRID QUERY PLANS
As discussed in Section 2, even an efficiently implemented

worst-case optimal join can be much slower than a binary
join plan if there are no growing binary joins that can be
avoided by the worst-case optimal join [2]. Therefore, we
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Algorithm 4: Refining binary join trees
input : An optimized operator tree T
output: A semantically equivalent operator tree T ′

which may employ multi-way joins
1 function refineSubtree(T)
2 if T 6= Tl B Tr then
3 return T ;
4 T ′

l ← refineSubtree(Tl) ;
5 T ′

r ← refineSubtree(Tr) ;
// Detect growing joins and multi-way join inputs

6 if |T | > max(|T ′
l |, |T ′

r|) ∨ T ′
l 6= Tl ∨ T ′

r 6= Tr then
7 return collapseMultiwayJoin(T ′

l B T ′
r) ;

8 return T ′
l B T ′

r ;

R1 R2 R3 R4
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5 10

(a) Binary join plan

R1 R2

R3 R4
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5
10

(b) Hybrid join plan

Figure 4: Illustration of the proposed join tree re-
finement algorithm. A growing binary join and all
its ancestors (shown in red in (a)) are collapsed into
a single multi-way join (shown in (b)).

argue that a general-purpose system cannot simply replace
all binary join plans by worst-case optimal joins and conse-
quently, its query optimizer must be able to generate hybrid
plans containing both types of joins.

The main objective of our optimization approach is to
avoid binary joins that perform exceptionally poorly due to
exploding intermediate results. We thus propose a heuristic
approach that refines an optimized binary join plan by re-
placing cascades of potentially growing joins with worst-case
optimal joins. Although the hybrid plans generated by this
approach are not necessarily globally optimal, they never-
theless avoid growing intermediate results and thus improve
over the original binary plans. We identify such growing
joins based on the same cardinality estimates that are used
during regular join order optimization. As query optimizers
depend heavily on accurate cardinality estimates, state-of-
the-art systems have been subject to decades of fine-tuning
to produce reasonable estimates on a wide variety of queries.
Thus, although it is well-known that errors in these esti-
mates are fundamentally unavoidable [24], we expect our
approach to work well on a similarly wide range of queries.

The pseudocode of our approach is shown in Algorithm 4.
We perform a recursive post-order traversal of the optimized
join tree, and decide for each binary join whether to replace
it by a multi-way join. A binary join is replaced either if it
is classified as a growing join, i.e. its output cardinality is
greater than the maximum of its input cardinalities, or if one
of its inputs has already been replaced by a multi-way join
(line 6). In both cases, a single multi-way join is built from
the inputs and the current join condition (cf. Figure 4). We

choose to eagerly collapse the ancestors of a growing binary
join into a single multi-way join, as the output of a grow-
ing join will necessarily contain duplicate key values which
would cause redundant work when processed by a regular
binary join. Note that the formulation in Algorithm 4 is
slightly simplified, as our actual implementation contains
additional checks to ensure that only inner joins with equal-
ity predicates are transformed into a multi-way join, as this
is not possible for other join types in the general case. Fur-
thermore, we do not create multi-way join nodes with only
two inputs as they offer no benefit over regular binary joins.

Like many commercial and research RDMBS, Umbra em-
ploys a dynamic programming approach for cost-based join
order optimization, and we could also attempt to integrate
hybrid query plans into the search space of this optimizer.
However, this attempts to holistically improve the quality of
all query plans, whereas we only want to avoid binary joins
that suffer from exploding intermediate results. Further-
more, recent work within a specialized graph system has
shown that accurate cost estimates for such plans require
detailed cardinality information that cannot be computed
cheaply within a general-purpose RDBMS like Umbra [42].

As the final step of our optimization process, the join at-
tribute order of each multi-way join introduced by Algo-
rithm 4 is optimized in isolation. For this purpose, we adopt
the cost-based optimization strategy that was developed for
the worst-case optimal Tributary Join algorithm [13]. We
selected this particular strategy over other alternatives [2,3,
8,42], as its cost estimates rely only on cardinality informa-
tion that is already maintained within Umbra [17], and the
generated attribute orders exhibited good performance in
our preliminary experiments. We emphasize that the multi-
way join optimization strategy is entirely independent of
both the actual join implementation presented in the previ-
ous section and the join tree refinement algorithm presented
in this section. Therefore, other multi-way join optimiza-
tion approaches such as generalized hypertree decomposi-
tions could easily be integrated into our system [3,18].

5. EXPERIMENTS
In the following, we present a thorough evaluation of the

implementation of the proposed hybrid optimization and
hash trie join approach within the Umbra RDBMS [44]. We
will subsequently refer to the corresponding system configu-
ration as UmbraOHT. For comparison purposes, we also run
experiments in which all binary joins are eagerly replaced
by worst-case optimal joins, and refer to the corresponding
system configuration as UmbraEAG.

5.1 Setup
We compare our implementation to the unmodified ver-

sion of Umbra and to the well-known column-store Mon-
etDB (v11.33.11) both of which exclusively rely on binary
join plans [23,44]. Furthermore, we run comparative exper-
iments with a commercial database system (DBMS X) and
the EmptyHeaded system, both of which implement worst-
case optimal joins based on ordered index structures [1,
3]. We additionally intended to compare against Level-
Headed, an adaptation of EmptyHeaded for general-purpose
queries, but were unable to obtain a copy of its source code
which is not publicly available [2]. Finally, we implemented
the Leapfrog Triejoin algorithm within Umbra (UmbraLFT),
based on dense sorted arrays that are built during query

1898



DBM
S

X

M
onet

DB

Umbra
EAG

Umbra
O

HT

105

104

103

102

101

1

0.1

re
la

ti
v
e

sl
o
w

d
o
w

n
(l

o
g

sc
a
le

)
TPCH (SF 30)

DBM
S

X

M
onet

DB

Umbra
EAG

Umbra
O

HT

fa
st

e
r
−→

←
−

sl
o
w

e
r

JOB

Figure 5: Relative slowdown of the different systems
in comparison to binary join plans within Umbra on
TPCH and JOB. The boxplots show the 5th, 25th,
50th, 75th, and 95th percentiles.

processing using the native parallel sort operator of Um-
bra [54,56]. Our preliminary experiments showed that using
sorted arrays within the UmbraLFT system is consistently
faster than using the B+-tree indexes available within Um-
bra as the former incur substantially less overhead.

For our experiments, we select the join order benchmark
(JOB) which is based on the well-known IMDB data set [38],
and the TPCH benchmark at scale factor 30. Further-
more, we run a set of graph-pattern queries on selected net-
work datasets which have been used extensively in previ-
ous work [40, 48]. In particular, we choose the Wikipedia
vote network [39], the Epinions and Slashdot social net-
works [41, 51], the much larger Google+ and Orkut user
networks [11, 58], as well as the Twitter follower network
which is one of the largest publicly available network data
sets [36]. All graph data sets are in the form of edge relations
in which each tuple represents a directed edge between two
nodes identified by unsigned 64-bit integers. Like previous
work on the subject [3,6,22,42,48], we focus on undirected 3
and 4-clique queries on these graphs as they are a common
subpattern in graph workloads [48]. The queries used in our
experiments are available online [16].

All experiments are run on a server system with 28 CPU
cores (56 hyperthreads) on two Intel Xeon E5-2680 v4 pro-
cessors and 256 GiB of main memory. Each measurement is
repeated three times and we report the results of the best
repetition. Our runtime measurements reflect the end-to-
end query evaluation time including any time required for
query optimization or compilation, and a timeout of one
hour is imposed on each individual experiment repetition.

5.2 End-To-End Benchmarks
We first present end-to-end benchmarks which demon-

strate the effectiveness of the hash trie join implementation.

5.2.1 Traditional OLAP Workloads
In our first experiment, we expand upon the preliminary

results that were briefly discussed in Section 2. In particular,
we demonstrate that a hybrid query optimization strategy
is critical to achieve acceptable performance on relational
workloads such as TPCH and JOB. EmptyHeaded is ex-
cluded in this experiment as it does not support the complex
analytical queries in these benchmarks.
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Figure 6: Histogram of the relative slowdown of the
different systems in comparison to binary join plans
within Umbra on JOB without filter predicates.

Here, the unmodified version of Umbra that relies purely
on binary join plans outperforms all other systems except
for the UmbraOHT system which employs our novel hybrid
optimization strategy. The relative slowdown of these sys-
tems in comparison to Umbra is shown in Figure 5. The
key observation in this benchmark is that the UmbraEAG

system which eagerly replaces all binary joins by worst-case
optimal joins consistently outperforms both DBMS X and
MonetDB. These results demonstrate that our implementa-
tion of worst-case optimal joins is highly competitive even in
comparison to mature and optimized systems such as Mon-
etDB. However, they also show that even such a competitive
implementation falls short of binary join plans if the lat-
ter do not incur any redundant work. Similar results have
been obtained in previous work on the LevelHeaded sys-
tem [2]. The UmbraOHT system which employs our novel
hybrid query optimizer closes this gap in performance and
incurs no slowdown over the unmodified version of Umbra
on the TPCH and JOB benchmarks. In fact, our optimizer
correctly determines that a worst-case optimal join plan is
never beneficial on these queries as there always exists a
binary join plan without growing joins (cf. Section 5.3.2).

5.2.2 Relational Workloads with Growing Joins
This situation changes when growing joins are unavoid-

able, e.g. when looking for parts within the same order that
are available in the same container from the same supplier
on TPCH (cf. Section 1). Our hybrid query optimizer cor-
rectly identifies the growing non-key joins in this query, and
generates a plan containing both binary and multi-way joins.
As a result, the UmbraOHT system exhibits the best overall
performance, improving over Umbra by a factor of 1.9× and
over UmbraEAG by a factor of 4.2×.

We broaden this experiment by additionally running the
JOB queries without any filter predicates on the base tables.
Similar to the previous query on TPCH, they contain a mix
of non-growing and growing joins and are thus challenging
to optimize. Query 29 is excluded in this experiment as it
contains an extremely large number of joins which causes the
query result to explode beyond the size that even a worst-
case optimal join plan can realistically enumerate. We again
measure the relative performance of the competitor systems
in comparison to the unmodified version of Umbra.

Figure 6 shows the distribution of this relative perfor-
mance for each system. Most importantly, we observe that
although the benchmark now contains growing joins, neither
DBMS X nor the UmbraEAG system are able to match the
performance of the unmodified version of Umbra, by a sim-
ilar margin as in the previous experiment. This indicates
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Table 2: Absolute runtime in seconds of the graph
pattern queries on the small network data sets.

Wiki Epinions Slashdot
3-clique EH-Probe 0.28 0.30 0.29

EmptyHeaded 0.43 0.79 1.07
DBMS X 0.28 0.52 1.37
Umbra 0.03 0.06 0.08
UmbraLFT 0.36 0.53 0.49
UmbraOHT 0.04 0.07 0.07

4-clique EH-Probe 0.40 0.55 0.47
EmptyHeaded 0.55 1.04 1.24
DBMS X 1.66 6.53 13.95
Umbra 1.61 12.04 7.91
UmbraLFT 3.82 7.02 4.09
UmbraOHT 0.10 0.23 0.18

that pure worst-case optimal join plans are still not feasible
on queries which contain a mix of growing and non-growing
joins, where the non-growing joins could be processed much
more efficiently by binary joins. In contrast, the UmbraOHT

system with our hybrid query optimizer matches or improves
over the performance of Umbra, by identifying six queries
on which a hybrid query plan containing worst-case optimal
joins is superior to a traditional binary join plan. Moreover,
the hybrid query plans employed by the UmbraOHT system
do not incur any timeouts on this benchmark, unlike any
other system that we investigate.

5.2.3 Graph Pattern Queries
Finally, we evaluate our hash trie join implementation on

the graph pattern queries and data sets introduced above.
On such queries, worst-case optimal join plans typically ex-
hibit asymptotically better runtime complexity than binary
join plans, and previous research has shown that large im-
provements in query processing time are possible [3,48].

We first run the 3 and 4-clique queries on the small Wiki,
Epinions, and Slashdot graph data sets. The absolute end-
to-end query execution times of the different systems are
shown in Table 2. Note that our measurements for Emp-
tyHeaded include the time required for its precomputation
step, without any disk IO that is done as part of this step.
For reference, we also provide measurements for Empty-
Headed that exclude this precomputation step (EH-Probe).
First of all, we observe that the hash trie join implementa-
tion within the UmbraOHT system consistently exhibits the
best runtime across all data sets and queries, outperforming
the remaining systems by up to two orders of magnitude.
Interestingly, the unmodified version of Umbra matches the
performance of our hash trie join implementation on the
3-clique query, and all other systems perform considerably
worse. In case of EmptyHeaded, this is evidence of both
a large optimization and compilation overhead that we ob-
served to be essentially static on this benchmark, and its
expensive precomputation step. The multi-way join imple-
mentations of DBMS X and UmbraLFT rely on ordered data
structures which are less efficient than our optimized hash
trie data structure, a finding that is also evident on the more
complex 4-clique query.

Finally, we run the 3-clique query on the much larger
Google+, Orkut, and Twitter graph data sets (cf. Table 3).

Table 3: Absolute runtime in seconds of the 3-clique
query on the large network data sets.

Google+ Orkut Twitter
EH-Probe 0.64 2.78 150.16
EmptyHeaded 18.67 309.14 timeout
DBMS X 59.77 311.44 timeout
Umbra 28.53 55.49 timeout
UmbraLFT 14.55 30.61 1 175.97
UmbraOHT 7.70 15.25 579.07

Once again, the UmbraOHT system consistently outperforms
its competitors by a large margin. The performance of Emp-
tyHeaded degrades in comparison to the benchmarks on the
small data sets, as its precomputation step becomes exces-
sively expensive on these larger data sets.

5.3 Detailed Evaluation
The remainder of our experiments provide a detailed eval-

uation of the applicability of worst-case optimal joins to rela-
tional workloads, and of the proposed optimization strategy.

5.3.1 Applicability of Worst-Case Optimal Joins
We expand on the end-to-end benchmarks that were pre-

sented above, and study the applicability of worst-case opti-
mal joins within a general-purpose RDBMS in detail. Tra-
ditional relational workloads such as TPCH or JOB do not
produce any growing intermediate results and thus there
is no benefit in introducing a worst-case optimal join. In
fact, as demonstrated above, worst-case optimal joins incur
a substantial overhead on such workloads, primarily since
they have to materialize all their inputs in suitable index
structures. However, as exemplified by the experiments in
Section 5.2.2, growing intermediate results can arise, for ex-
ample, due to unconstrained joins between foreign keys.

In order to study such workloads under controlled con-
ditions, we generate an additional synthetic benchmark. In
particular, we choose two parameters r ∈ {104, 105, 106, 107}
and d ∈ {1, . . . , 10}, and generate randomly shuffled rela-
tions R, S, and T as follows. R simply contains the distinct
integers 1, . . . , 107, while S and T contain the distinct inte-
gers 1, . . . , (107 + r)/2 and (107− r)/2, . . . , 107 respectively.
Each distinct integer in R, S, and T is duplicated d times.
Thus the result of the natural join R B S B T contains ex-
actly r distinct integers, each of which is duplicated d3 times
for a total of rd3 tuples. While any binary join plan for this
query will contain growing intermediate results for d > 1,
they do not grow beyond the size of the query result if the
join S B T is performed first. This differs from graph pat-
tern queries, where usually any binary join plan produces
an intermediate result that is larger than the query result.

Figure 7 shows the absolute runtime of the query R B

S B T for different configurations of the Umbra system.
As expected, we observe that as the number of duplicates
in the join result is increased, the runtime of binary join
plans increases much more rapidly in comparison to worst-
case optimal joins. As outlined above, each distinct value
in the join result is duplicated d3 times. In a binary join
plan, enumerating each one of these duplicates requires at
least two hash table lookups. In contrast, a hash trie join
determines once that the distinct value is part of the join
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Figure 7: Absolute query runtime on the synthetic
query R B S B T as the number of distinct values r
and duplicated tuples d in the query result is varied.

result after which all duplicates thereof can be enumerated
without any additional hash table operations.

However, we also observe that the superior scaling behav-
ior of worst-case optimal joins does not necessarily translate
to an actual runtime advantage. If there are few distinct val-
ues r or duplicates d in the query result, binary join plans
still exhibit reasonable performance and commonly outper-
form worst-case optimal joins. In these cases, the additional
time required by a hash trie join for materializing all input
relations in hash tries exceeds the time saved by its more effi-
cient join evaluation. Consequently, the break-even point at
which worst-case optimal joins begin to outperform binary
join plans moves towards a smaller number of duplicates
d as the number of distinct values r in the query result is
increased. That is, worst-case optimal joins offer the great-
est benefit on join queries where most tuples from the base
relations have a large number of join partners.

Finally, we note that the hybrid query optimizer employed
by UmbraOHT accurately detects this break-even point for
r > 104, resulting in good performance across the full range
of possible query behavior. While the optimizer does switch
to worst-case optimal joins too early for r = 104, we deter-
mined that this is caused by erroneous cardinality estimates.
This is a common failure mode in relational databases which
unfortunately cannot be avoided in the general case [24,38].
Crucially, the optimizer always correctly detects the case
d = 1 which corresponds to a traditional relational work-
load without growing intermediate results.

5.3.2 Optimizer Evaluation
In order to gain more detailed insights into the behav-

ior of our hybrid query optimizer, we additionally analyze
every decision made by the optimizer on the benchmarks
presented in this paper. Specifically, we collect both the es-
timated and true input and output cardinalities of all join
operators inspected by Algorithm 4. For a given join, we
subsequently check if the optimizer decided to introduce a
multi-way join or not, and whether this decision matches
the correct decision given the true input and output cardi-
nalities. This allows us to sort these decisions into true and
false positives, respectively negatives, where the correct in-
troduction of a multi-way join is counted as a true positive.

Table 4: Breakdown of the decisions made by the
hybrid query optimizer on each benchmark. The
table shows the total number of joins, as well as the
number of introduced multi-way joins categorized
into true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN).

Benchmark Joins TP TN FP FN
TPCH 59 0 59 0 0
JOB 864 0 859 0 5
JOB (no filters) 234 19 140 0 75
Graph 48 48 0 0 0
Synthetic 80 52 8 18 2
Total 1 285 119 1 066 18 82

An overview of the results is shown in Table 4. As dis-
cussed previously, growing joins are exceptionally rare in tra-
ditional relational workloads like TPCH and JOB. Out of a
total of 923 joins, the optimizer incurs only 5 false negatives
where a growing join is incorrectly classified as non-growing.
These errors occur on two JOB queries (8c and 16b) where
the initial binary join ordering produces a suboptimal plan
containing mildly growing joins due to incorrect cardinality
estimates. We determined that the optimal plan for these
queries would not contain any growing joins. Beyond that,
our results show that the proposed hybrid query optimizer
is insensitive to the cardinality estimation errors that rou-
tinely occur in relational workloads [24, 38]. This is to be
expected, as the optimizer relies only on the relative dif-
ference between the cardinality estimates of the input and
output of join operators, and not their absolute values.

On the modified JOB queries, the optimizer correctly iden-
tifies the severely growing joins, while also incurring a com-
parably large number of false negatives. They occur pri-
marily on weakly growing joins, where minor errors in the
absolute cardinality estimates can already affect the deci-
sion made by the hybrid optimizer. However, we measured
that these false negatives affect the absolute query runtime
only on 3 of the 32 queries, on which we only miss a poten-
tial further speedup of up to 1.6×. The join attributes in
this benchmark are frequently primary keys, which generally
causes Umbra to estimate lower cardinalities. A major ad-
vantage of this behavior is that it makes false positives, i.e.
the incorrect introduction of multi-way joins, unlikely and
in fact no false positives occur on these queries. This is crit-
ical to ensure that we do not compromise the performance
of Umbra on traditional relational queries.

The graph pattern queries contain only very rapidly grow-
ing joins, all of which are correctly identified by the hybrid
optimizer. As discussed above, the behavior of joins in the
synthetic benchmark varies. However, as none of the join
attributes are marked as primary key columns the system is
much less hesitant to estimate high output cardinalities for
joins. This is evident in Figure 7 for r = 104 and results
in some false positives which in comparison to the optimal
plan increase the absolute query runtime by up to 3.7× for
d = 2. However, it is important to note that these false pos-
itives affect only joins on non-key columns where d > 1. In
summary, our results show that the proposed hybrid query
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optimizer achieves high accuracy even under difficult cir-
cumstances and across a wide range of different queries.

6. RELATED WORK
As outlined in Section 1, it is well-known that binary joins

exhibit suboptimal performance in some cases, and espe-
cially in the presence of growing intermediate results [10,
19, 30, 60]. Hash Teams and Eddies were early approaches
that addressed some of these shortcomings by simultane-
ously processing multiple input relations in a single multi-
way join [10, 19, 30]. However, these approaches do not
specifically focus on avoiding growing intermediate results
as Hash Teams are primarily concerned with avoiding re-
dundant partitioning steps in cascades of partitioned hash
joins [19, 30], and Eddies allow different operator orderings
to be applied to different subsets of the base relations [10].
They still rely on binary joins internally and hence are not
worst-case optimal in the general case.

Ngo et al. were among the first to propose a worst-case op-
timal join algorithm [45,46,47], which provides the founda-
tion of most subsequent worst-case optimal join algorithms,
including our proposed hash trie join algorithm (cf. Sec-
tion 3). On this basis, theoretical work has since contin-
ued in a variety of directions, such as operators beyond
joins [3, 25, 26, 29, 32, 57], stronger optimality guarantees [5,
33,34,45], and incremental maintenance of the required data
structures [27, 28], Implementations of worst-case optimal
join algorithms have been proposed and investigated in a
variety of settings. Veldhuizen proposed the well-known
Leapfrog Triejoin algorithm that is used in the LogicBlox
system and can be implemented on top of existing ordered
indexes or plain sorted data [13, 54, 56]. Variants of such
join algorithms have been adopted in distributed query pro-
cessing [4,6, 13,35] graph processing [3,6, 22,42,59,62], and
general-purpose query processing [2,8].

However, such comparison-based implementations incur a
number of problems, as outlined in more detail in Sections 1
and 2. Persistent precomputed index structures are only fea-
sible in limited numbers, e.g. in specialized graph processing
or RDF engines [3, 22, 42]. One could sort the input data
on-the-fly during query processing. This has been shown
to work well in distributed query processing where commu-
nication costs far outweigh the computation costs [13], but
can severely impact the performance of a single-node sys-
tem. The proposed techniques could also be applied to this
domain, e.g. by integrating them into the approach devel-
oped by Chu et al. [13] Here, data is sent to worker nodes in
a single communication round, after which the entire query
result can be computed by running the original query locally
on the data sent to each node. The latter step could be per-
formed by the proposed hybrid join processing technique,
allowing different query plans to be chosen on the worker
nodes depending on the local data characteristics.

Veldhuizen already suggested representing the required
trie index structures through nested hash tables [54]. How-
ever, as this paper demonstrates a careful implementation of
this idea is required to achieve acceptable performance, and
we are not aware of any previous work addressing this prac-
tical challenge. Fekete et al. propose an alternative, radix-
based algorithm that achieves the same goal, but do not
evaluate an actual implementation of their approach [14].

The hash trie data structure itself is structurally similar
to hash array mapped tries [49] and the data structure used

in extendible hashing schemes [20]. However, while these
approaches allow for optimized point lookups of individual
keys, our hash trie data structure supports optimized range-
lookups of key prefixes as they are required by a hash-based
multi-way join algorithm. Prefix hash trees within peer-
to-peer networks address a similar requirement, albeit with
different optimization goals such as resilience [50].

A key contribution of this paper is a comprehensive im-
plementation of our approach within the general-purpose
Umbra RDBMS [44]. The LevelHeaded system is an evolu-
tion of the graph processing engine EmptyHeaded towards
such a general-purpose system, but like EmptyHeaded it re-
quires expensive precomputation of persistent index struc-
tures and only allows for static data [2, 3]. The most ma-
ture system that implements worst-case optimal joins is the
commercial LogicBlox system which allows for fully dynamic
data through incremental maintenance of the required index
structures [8,27]. However, previous work has shown that it
exhibits poor performance on standard OLAP workloads [2].

Similar to our approach, LogicBlox is reported to also em-
ploy a hybrid optimization strategy [2], but no information
is available on its details. Approaches that holistically op-
timize hybrid join plans have been proposed for graph pro-
cessing [42,62], but as outlined in Section 4 these approaches
generally rely on statistics that are prohibitively expensive
to compute or maintain in a general-purpose RDBMS. An
algorithm that is similar to our join tree refinement approach
has been proposed for introducing multi-way joins using gen-
eralized hash teams into binary join plans [19,21,30]. How-
ever, this approach greedily transforms as many binary joins
as possible into a multi-way join which results in suboptimal
performance according to our experiments.

7. CONCLUSIONS
In this paper, we presented a comprehensive approach

that allows the seminal work on worst-case optimal join pro-
cessing to be integrated seamlessly into general-purpose re-
lational database management systems. We demonstrated
the feasibility of this approach by implementing and eval-
uating it within the state-of-the-art Umbra system. Our
implementation offers greatly improved runtime on complex
analytical and graph pattern queries, where worst-case op-
timal joins have an asymptotic runtime advantage over bi-
nary joins. At the same time, it loses no performance on
traditional OLAP workloads where worst-case optimal joins
are rarely beneficial. We achieve this through a novel hy-
brid query optimizer that intelligently combines both binary
and worst-case optimal joins within a single query plan, and
through a novel hash-based multi-way join algorithm that
does not require any expensive precomputation. Our con-
tributions thereby allow mature relation database manage-
ment systems to benefit from recent insights into worst-case
optimal join algorithms, exploiting the best of both worlds.
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