
TransNet: Training Privacy-Preserving Neural Network
over Transformed Layer

Qijian He†, Wei Yang‡
∗

, Bingren Chen†, Yangyang Geng†, Liusheng Huang‡

School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
†{cnstrong,bingren,geng325}@mail.ustc.edu.cn, ‡{qubit,lshuang}@ustc.edu.cn

ABSTRACT
The accuracy of neural network can be improved by training
over multi-participants’ pooled dataset, but privacy prob-
lem of sharing sensitive data obstructs this collaborative
learning. To solve this contradiction, we propose TransNet,
a novel solution for privacy-preserving collaborative neural
network, whose main idea is to add a transformed layer to
the neural network. It has the advantage of lower compu-
tation and communication complexity than previous secure
multi-party computation based and homomorphic encryp-
tion based schemes, and has the superiority of supporting
arbitrarily partitioned dataset compared to previous differ-
ential privacy based and stochastic gradient descent based
schemes, which support horizontally partitioned dataset on-
ly. TransNet is trained by a server which pools the trans-
formed data, but has no special security requirement on the
training server. We evaluate TransNet’s performance over
four datasets using different neural network algorithms. Ex-
perimental results demonstrate that TransNet is not affected
by the number of participants, and trains as quickly as the
original neural network does. With proper variables, Trans-
Net gets close accuracy to the baseline which trains over
pooled original dataset.

PVLDB Reference Format:
Qijian He, Wei Yang, Bingren Chen, Yangyang Geng, Liusheng
Huang. TransNet: Training Privacy-Preserving Neural Network
over Transformed Layer. PVLDB, 13(11): 1849-1862, 2020.
DOI: https://doi.org/10.14778/3407790.3407794

1. INTRODUCTION
Recent developments of deep neural network (also called

deep learning [18]) have been an enormous success in many
fields. However, there is a serious contradiction between
the performance of neural network model and the privacy
of training datasets. For example, many applications use

∗Corresponding Author. Supported by the Anhui Initiative
in Quantum Information Technologies (No. AHY150300).

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407794

data like personal contacts [21], medical records [22] and
even genetic sequences [3], but they are unable to protect
the privacy of users. Under such circumstances, the indi-
viduals will become less willing to provide their data with
the awareness of privacy concerns. On the other hand, the
companies are unwilling to share data with others because
there are economic values in the data. In addition, some
institutions like hospitals, banks and governments are un-
able to share the valuable datasets by the restriction of law.
However, in these cases, people will benefit if they can col-
laboratively train a machine learning algorithm. Therefore,
it is meaningful to design a privacy-preserving collabora-
tive neural network scheme, within which the participants
can obtain practical or better applications from partitioned
datasets while the privacy is preserved.

In this paper, we focus on privacy-preserving collaborative
neural network which is suitable for different data partition
types (DPTs). In the real world, the participants may have
separated data in different ways. For instance, special hospi-
tals differ in the cases of one patient from each other, which
is called vertically partitioned dataset. And general hospital-
s of several cities have complete cases of different patients,
which is called horizontally partitioned dataset. More uni-
versally, hospitals have different cases of different patients,
which is called arbitrarily partitioned dataset. The three
DPTs are shown in Fig. 1, where the names are abbreviated
to V-data, H-data and A-data respectively.

P1 P2 P3

(a) V-data

P1

P2

P3

(b) H-data

P1 P3

P2

P3

P1 P2

(c) A-data

Figure 1: Three DPTs, where P1, P2 and P3 represent dif-
ferent participants.

The state-of-the-art methods design such schemes mainly
based on homomorphic encryption (HE) [16] (or combined
with secure multi-party computation (SMC) [39]), differen-
tial privacy (DP) [12] and stochastic gradient descent (S-
GD). HE based schemes [17, 23, 28, 36, 40] support A-data,
but are slow in speed and costly in communication, which
are not practical when the datasets become large. Moreover,

1849

DP based scheme [27] and SGD based schemes [1,25,31] only
support H-data.

To solve this problem, we propose TransNet, which trains
privacy-preserving neural Network over a Transformed lay-
er collaboratively. The basic idea of our design is to add
an extra “transformed” layer to the neural network. The
original privacy data are computed through an irreversible
transformation to be converted into the transformed lay-
er data, and then the deep neural networks can be trained
over the transformed layer. Compared with previous SMC,
HE and DP based approaches, our solution introduces a new
method for this topic, i.e., using the indeterminate system
to define the irreversible transformation in our scheme.

In summary, we make the following contributions:

• We present TransNet, which allows multiple partici-
pants to train a neural network collaboratively over
their pooled dataset with a training server, while keep-
ing their data private. We add a transformed layer,
which is obtained by a noisy linear transformation, to
the neural network to build TransNet. And the neural
network can train over the transformed dataset. In-
tuitively, two close examples of the same classification
should also be close after transformation, and thus the
transformation should be continuous. We analyze why
it works through Lipschitz continuity. Besides, Trans-
Net is independent of the structure of neural network
and has no special security requirement on the training
server. These properties make the scheme easy to de-
ploy. Namely, we can turn the current neural networks
into TransNet method directly.

• We address the challenge of supporting vertically, hor-
izontally and arbitrarily partitioned datasets by de-
veloping a method called Indeterminacy Constitution,
and corresponding schemes are named as TransNet-V,
TransNet-H and TransNet-A, respectively. Compared
to DP or SGD based schemes, TransNet makes up for
the incomplete support of DPTs and is not affected
by the number of participants; Compared to SMC or
HE based schemes, our method has lower computation
and communication complexity.

• We perform comprehensive experiments over various
datasets by using different kinds of neural networks
including MLP, CNN and RNN. Experimental results
demonstrate the effectiveness and advantages of Trans-
Net. It shows that TransNet-V has no accuracy loss
when using MLP and RNN. With TransNet-H, we find
that adding 300 dimensional noise to the MNIST data-
set only causes about 3% accuracy loss, and adding
600 dimensional noise causes only about 6% accuracy
loss when using MLP. TransNet-A’s accuracy is slight-
ly lower than that of TransNet-H. As a conclusion,
TransNet achieves privacy-preservation at the cost of
sacrificing only a little accuracy.

2. MODELS AND ASSUMPTIONS

2.1 System Model
The system contains two parties: a training server, and

the participants. Its workflow can be divided into two phas-
es, namely, the training phase and the prediction phase.
Each participant first sends the server a 0/1 table to indicate

Figure 2: Workflow of TransNet, where 1©, 2©, 3© belong
to training phase, and 4©, 5©, 6© belong to prediction phase.

the data it owns (including labels). Then the server deter-
mines the DPT and instructs the participants to manipulate
the disjoint parts of the dataset. As shown in Fig. 2, in the
training phase the participants transform their private da-
ta and upload them to the server for training (the labels
are permuted to avoid the server from knowing the corre-
spondences), while in the prediction phase the participants
submit the transformed prediction examples and the server
returns the results. The parts inside the outer box are pub-
lic, while the private data marked with red color and the
transformation outside the outer box are secret.

2.2 Security Assumptions
Herein, our target is to protect the data privacy of the

participants. Concretely, the numerical values of training
and prediction data of participants would not be recovered.
The labels of the dataset are permuted as well.

In reality, the risks of disclosure are also in the trained
models. Inversion attacks can recover input data in “white
box” [15] (by analyzing internal model parameters) and in
“black box” [14] (by repeatedly querying the models to get
the oracles). Considering these attacks, we assume that the
adversaries have free access to internal model parameters to
meet the “worst-case” principle.

Moreover, the system follows the curious-but-honest mod-
el (also called the semi-honest model), which is also adopted
by most related work. That is, the server and all the par-
ticipants will honestly follow the prescriptive steps, but try
to learn others’ secret data as much as possible.

3. CHALLENGES AND SOLUTIONS
The basic idea of TransNet is to add a “transformed” layer

to the neural network, as shown in Fig. 3. A transformation
T (·) is performed on dataset X. Intuitively, the data from
different participants should be transformed in a consistent
way. Otherwise, the same examples can be transformed into
two different examples. There are three main challenges to
develop such a basic concept. The first challenge is to sup-
port all kinds of partition types. We propose three schemes
called TransNet-V (§ 3.2), TransNet-H (§ 3.3) and TransNet-
A (§ 3.4) to deal with this challenge, and common opera-
tions of them are listed in § 3.1. The second challenge is
the privacy protection of the transformed layer. We address

1850

Input Transformed Hidden Output

Private Data Neural Network

Tr
an

sf
or

m
at

io
n
T

Figure 3: The basic idea of TransNet is to add an indirect
“transformed” layer (green nodes) to the neural network.

this challenge by developing a method named Indetermina-
cy Constitution to ensure that the transformation equations
have infinite solutions. The degree to which privacy is pre-
served is analyzed in § 3.5. Briefly speaking, it depends on
the secret values including private transformation matrix,
noise and the secret translation vector. The last challenge is
the effectiveness of the training of neural network over the
transformed layer. We analyze the Lipschitz continuity of
the transformation to explain why the neural network can
train over the transformed layer in § 3.6.

3.1 Common Operations of TransNet
TransNet’s common operations include two aspects: de-

termine the DPT and permute the labels, which are con-
ducted before and during the training phase, respectively.

Determine the DPT. Suppose the whole dataset is ag-
gregated from p participants, and each participant Pi pos-
sesses a partial dataset Xi. The whole dataset has m exam-
ples and n attributes, and is denoted as an m × n matrix
X. Each participant first sends the server a table to indi-
cate which positions of the dataset it has. Whether it has
the labels of an example is also indicated. The IDs of the
data examples are hashed. Then the server can determine
the DPT and requires the dataset from each participant in
disjoint parts. Hence the form is simplified. If the partic-
ipants have different data examples and the attributes are
complete, then X is horizontally partitioned and can be de-
noted as (XT

1 , X
T
2 , · · · , XT

p)T , where Xi owned by Pi has
mi examples, n attributes and

∑p
i=1mi = m. If the partic-

ipants have different parts of attributes of the data exam-
ples, then X is vertically partitioned and can be denoted as
(X1, X2, · · · , Xp), where Xi owned by Pi has m examples,
ni attributes and

∑p
i=1 ni = n. More universally, X can be

arbitrarily partitioned and denoted as
∑p
i=1Xi, where the

data positions that Pi does not have are set to 0 in Xi .
Permute the labels. To prevent the server from know-

ing the dataset’s labels, the participants negotiate a common
permutation and perform it to their labels. Then they send
the scrambled labels to the server. If some classes of the
labels have obvious statistical characteristics, those classes
are divided into multiple groups. For example, 26 letters
can be divided into 40 kinds of classes and are permuted,
and thus the server cannot relate the labels to the data.

3.2 Vertically Partitioned Dataset
Suppose a music website wants to precisely recommend

genres to a newly registered user, it can aggregate the same

P1

P2

K1

K2

Vertically Neural Network

x1

x2

x3

x4

Input Transformed Hidden Output

Figure 4: Structure of TransNet-V.

Horizontally

 

A

P1
P2
x1

x2

x3
Random
Noise
r3 Ki

Input Transformed Hidden Output

Neural Network

Figure 5: Structure of TransNet-H.

user’s purchase records of a bookstore website and the view-
ing records of a video website. The two other websites may
also want to do something similar or deliver proper adver-
tisements. This is an application scenario of training over a
vertically partitioned dataset.

As mentioned before, the dataset should be transformed
in a consistent way. In this situation, each participant, who
has different parts of attributes in the dataset, makes Pi
possible to use different private transformation matrices Ki

(size ni × ni). To guarantee no information loss, we require
Ki to be full rank. The transformation of Xi is X ′i = XiKi,
and the whole dataset is transformed as

X ′ = XK = (X1K1, X2K2, · · · , XpKp), (1)

where K = diag(K1,K2, · · · ,Kp). Fig. 4 shows a simple
illustration of two participants’ situation of TransNet-V.

3.3 Horizontally Partitioned Dataset
If several hospitals in different cities want to research cer-

tain disease based on their patients’ data, it is a typical
situation of learning over a horizontally partitioned dataset.

In this case, we use a public transformation matrix A to
ensure the consistency. To do this while preserving privacy,
we introduce an approach named Indeterminacy Constitu-
tion. We can regard the original dataset X as source and
the transformed dataset X ′ as destination, and the trans-
formation can be considered as a transmission channel. We
have two basic methods to conduct the Indeterminacy Con-
stitution. One is to use a privacy-preserving principal com-
ponent analysis (PCA) scheme to reduce the dimension of
attributes of the original dataset, and this is a noiseless lossy
channel. The other is to add noise as additional attributes to

1851

A

Arbitrarily

x1

x2

x3

r3 Ki

Input Transformed Hidden Output

Neural Network

 Random
Noise

b2

b1

b3

b4

Figure 6: Structure of TransNet-A.

the original dataset, which is a noisy lossless channel. Alge-
braically, the former is to decrease the number of equations
in the indeterminate system, while the latter is to increase
the number of unknowns.

In TransNet-H, we adopt the latter approach, as shown
in Fig. 5. The participants first negotiate a public matrix A
(size n× n). Suppose d dimensional noise r is added to the
data example x. Each Pi concatenates a noise matrix Ri
(size mi × d) and its partitioned dataset Xi (size mi × n),
and then generates a private matrix Ki (size d × n). Let
Ai = (AT ,KT

i)T . Pi’s dataset Xi is transformed as

X ′i = (Xi, Ri)Ai = XiA+RiKi. (2)

3.4 Arbitrarily Partitioned Dataset
Sometimes datasets are more fragmented. For example,

in a shopping mall, the consumption data held by many
merchants make up a complete dataset. These data may
contain some relevance between different commodities. In
this scenario, datasets are called arbitrarily partitioned.

For an arbitrarily partitioned dataset, if we similarly adopt
Eq. (2) to transform it as X =

∑p
i=1(Xi, Ri)Ai, where Pi

generates m × d noise matrix Ri and d × n private matrix
Ki, then the noise errors are accumulated, which results in
a decrease in test accuracy after training. To overcome this
problem, we can let Pi generate pairwise disjoint parts of
noise matrix Ri, and the positions of Ri that are not gener-
ated by Pi are set to 0, i.e., each element of R =

∑p
i=1Ri is

not a compound random variable. However, by doing this,
it enforces that Pi does not generate any noise for some da-
ta examples, and the transformation reduces to x′ = xA,
which is solvable. This situation will happen when the num-
ber of participants is greater than the dimension of noise.
For example, if n + 1 participants own a dataset of n at-
tributes together, then there must exist one participant that
does not generate any noise.

Indeterminacy Constitution for TransNet-A introduces a
“secret translation vector” b = (b1, b2, · · · , bn). We denote
the row extension matrix of b as B = (bT , bT , · · · , bT)T . As
shown in Fig. 6, the transformation goes as

X ′i = (X,R)Ai +B (3)

where Ai = (AT ,KT
i)T is similar to TransNet-H.

In TransNet-A, each participant generates a vector bi =
(bi1, bi2, · · · , bin), and the server also generates a vector b0,
In § 4.3 we will desgin a method called Convert Secure Sum
to sum b =

∑p
i=0 bi in Eq. (3), but b and all bi are secure.

The secret translation vector b can also be generated pair-
wise disjointly, yet it requires d > n/(p−1) dimensional noise
to meet indeterminate demand. The analysis is as follows:
Suppose Pi has ni attributes, it generates di (

∑p
i=1 di = d)

dimensional noise and ti (
∑p
i=1 ti = n) dimensional secrets

bs+1, bs+2, · · · , bs+ti , labeled in order rather than by posi-
tion. Then Pi has (n − ni) unknown attributes, (d − di)
unknown noise and (n− ti) unknown secrets. It should sat-
isfy the indeterminacy that the number of unknowns should
be greater than the number of equations, which is:

(n− ni) + (d− di) + (n− ti) > n, ∀i.

This means for all i, Pi should satisfy ti+di < (n−ni)+d, for
all possible ni. In the worst case, we let n−ni = 0, ∀i, and
add up the inequalities:

∑p
i=1 ti < (p−1)d. With

∑p
i=1 ti =

n, we know that it needs d > n
p−1

dimensional noise to meet
the requirement of indeterminacy.

3.5 Privacy Analysis

3.5.1 TransNet-V
It is reasonable to regard the transformation X ′ = XK

as an encryption scheme, where K is the encryption key, X
is the plaintext, and X ′ is the ciphertext.

Theorem 1. The TransNet-V encryption X ′ = XK is
of information-theoretic security.

Proof. For any invertible square matrix Kr, let Xr =
X ′Kr

−1, then Pr[Xr = X] = Pr[Kr = K], so taking any
plaintext amounts to taking any invertible square matrix.

Now for any two different invertible square matricesK0,K1,
we let X0 = X ′K−1

0 , X1 = X ′K−1
1 as two plaintexts. The

two plaintexts have the same probability Pr[X0] = Pr[X1].
Besides, Pr[K0] = Pr[K1]. It follows that

Pr[C = X ′|M = X0] = Pr[C = X ′|M = X1],

where C represents the ciphertext and M represents the
plaintext. Thus Theorem 1 holds.

There still exist vulnerabilities. For continuous values,
the attacker can narrow the range of the possible K with
the background of the values’ ranges. Taking 1 dimensional
data for example, suppose the minimum value is a and the
maximum value is b, then their transformed values will be
ak and bk, respectively. Therefore, the value of k can be de-
termined. Similarly, for categorical attributes {1, 2, · · · , n},
the adversary gets {k, 2k, · · · , nk}, which is easy to unravel.
For training in these cases, it is essential to have addition-
al patches by adding noise like that in TransNet-H, which
will be presented in § 3.5.2. Note that with noise added,
the accuracy will also be affected. Besides, for 0/1 encoded
attributes, |r| ≥ 1

2
|k| is required for noise r to ensure the

indistinguishability, which will lead to more accuracy losses
in some tasks.

3.5.2 TransNet-H

In the transformation x′ = (x, r)Au = (x, r)

(
A
Ku

)
, if

Ku is disclosed, the adversary can recover the original data
example using the pseudo-inverse pinv(Au):

(x0, r0) = x′ · pinv(Au)

= x′ · (ATuAu)−1ATu

= (x, r)Au · (ATuAu)−1ATu .

1852

Note P = Au(ATuAu)−1ATu is actually the projection matrix,
then (x0, r0) is the projection of (x, r) in the subspace of
the column space of Au, and the distance

||(x, r)− (x0, r0)|| =
n∑
i=1

(xi − x(0)i)2 +

d∑
i=1

(ri − r(0)i)2

gets the minima, where x0 = (x
(0)
1 , · · · , x(0)n) and r0 =

(r
(0)
1 , · · · , r(0)d). The recovered example (x0, r0) is the best

approximation to (x, r).

We denote A as (aij)1≤i,j≤n and Ku as (k
(u)
ij)1≤i≤d,1≤j≤n.

The transformation of example x = (x1, · · · , xn) goes as

x1a1i+· · ·+xnani+r1k(u)1i +· · ·+rdk(u)di = x′i, ∀i = 1, · · · , n,

and it gets the transformed example x′ = (x′1, · · · , x′n).

Note aij is public and x′ can be observed, while ri and k
(u)
ij

are private, the adversary actually has a set of equations

with errors e = (e1, · · · , en), where ei = r1k
(u)
1i +· · ·+rdk(u)di :

xA+ e = x′. (4)

The adversary can ignore e and compute x0 = x′A−1

to recover the data. It is approximated to the recovery
(x0, r0) = x′ · pinv(Au), the closest method we can find.
It is obvious that the bigger the noise is, the harder the

adversary can recover the data. Suppose ri and k
(u)
ij are

normal distributions:

ri ∼ N (0, σr), k
(u)
ij ∼ N (0, σk).

Then ei is the inner product of vectors r and k
(u)
i (column

vector of Ku). We have the characteristic function of ei
(refer to [32]):

Ψe(ω) =

{
(1 + σ2

rσ
2
kω

2)−d1 , d = 2d1

(1 + σ2
rσ

2
kω

2)−d1−1/2, d = 2d1 + 1.

According to the relationship of the derivative of character-
istic function and the moment of the random variable, the
variance of ei can be computed by:

D(ei) = dσ2
rσ

2
k. (5)

Therefore, the degree of privacy increases with d, σr and σk.
Next we try to recover the transformed MNIST dataset by

x′A−1 with parameters in Eq. (5). Table 1 lists the results.
Row (a) is the original MNIST examples. If the errors get
too small, the scheme cannot provide enough privacy for
the image dataset (Rows (b), (c) and (d)). We find that the
noise’s dimension d brings more stable privacy than σr or
σk with the same D(ei). (Row (d) versus Row (e); Row (c)
versus Row (f)). Moreover, we can learn from Row (e) that
d = 16 is already hard for the adversary to recover, and in
the experiments we find that for TransNet-H, d = 300 only
leads to 3% decrease of test accuracy in MNIST dataset.
Our subsequent experiments listed in Table 3 (§ 5.6) use
the settings of d = 100, σr = 1, σk = 1/4, and the recovery
result is shown in Row (g).

The above analysis is under the real number situation.
Now we consider the case that the elements of x are integral
or rational numbers. Let Aq = A mod q and y = x′ mod q,

Table 1: The MNIST recovery examples of TransNet-H.

(a) σr σk d

(b) 1 1 1

(c) 1 2 1

(d) 2 2 1

(e) 1 1 16

(f) 1
2

1 16

(g) 1 1
4

100

we notice the similarity between Eq. (4) and the “Learning
with Errors” (LWE) problem, i.e.,

xAq ≈ y (mod q) (6)

Denote the question defined by Eq. (4) as the integral-LWE
problem, and we have the following theorem:

Theorem 2. The problems of integral-LWE and LWE can
be reduced to each other.

Proof. If x0 is a solution to Eq. (4), then x0 mod q is
the solution to Eq. (6).

For the other direction, if x0 is a solution to Eq. (6), let
x1 = x0 + t · q and substitute x1 into Eq. (4) to compute
t = 1/q · (x′ − x0A) · A−1. Hence the solution to Eq. (4),
i.e., x1, can be computed.

Therefore, the difficulty of solving TransNet-H is equal to
solving LWE problem, which is believed to be difficult.

3.5.3 TransNet-A
The privacy analysis of the transformation x′ = (x, r)Ai+

b is same to that of TransNet-H. The “secret translation vec-
tor” b can be regarded as one more random variable, and
it increases the derivative of the comprehensive error. Thus
TransNet-A introduces more randomness than TransNet-H
with the same σr, σk and d, and it losses more model accu-
racy than TransNet-H, which will be shown in experiments.

3.6 Why TransNet Works
The above transformations can be denoted as a compound

function T of a linear transformation L and a translation τb,
and the noise-adding function η : Rn → Rm, i.e.,:

T (x) = τb ◦L(x) = L(x) + b, η(x) = (x, r).

We know T is Lipschitz continuity while η is not. The
distance between two close vectors x1,x2 can be greater
than a fixed value after noise is added. In § 5 we can also
see that the impact of the transformation matrix K or A on
the performance of the neural network is small, while the
impact of the noise R is notable.

Denote the neural network training over the original data-
set as a function N0, and the same model training over the
transformed layer as function N1, then we have the following
relation diagram (7).

Rm T=τb ◦L−−−−−→ Rn

N0

y yN1

X
f−−−−−→ Y

(7)

1853

Suppose there are two points p1, p2 ∈ Rm, the neural net-
work function N0 can effectively classify the original data,
whose meaning is that if p1, p2 are the same kind of da-
ta, then the Euclidean metric ||N0(p1), N0(p2)||2 is small.
For example, if we use a 10 dimensional vector to represent
the classification of the handwritten numbers, then for the
same classification p1, p2, N0(p1), N0(p2) are dropped near
the unit vector of the same axis. Here we explain the data
relationship of the prediction results of the neural networks
trained over the original and the transformed datasets. In
the relation diagram (7) we denote function f as a map from
classification space X to Y . If we can prove that f is Lip-
schitz continuity, then when the prediction results of X are
close, the prediction results of Y given by N1 are restrict-
ed by the Lipschitz constant, which are also close, i.e., the
training results of N1 are also reasonable.

Define a metric dX of space X, for two arbitrary examples
x1 = N0(p1) ∈ X,x2 = N0(p2) ∈ X,

dX(x1, x2) = ||N0(p1), N0(p2)||2.

Similarly, define a metric dY of space Y as

dY (y1, y2) = ||N1(T (p1)), N1(T (p2))||2.

In the previous work of Szegedy et al. [33] and Ruan et
al. [29], the authors show the Lipschitz continuity of various
deep learning models. And here we have:

Theorem 3. If N0 is bi-Lipschitz, and N1 is Lipschitz,
then f is also Lipschitz.

Proof. According the Lipschitz continuity of N1 and T ,

dY (y1, y2) = dE(N1(T (p1)), N1(T (p2)))

≤ C1 · dE(T (p1), T (p2))

≤ CTC1 · dE(p1, p2).

Because of the bi-Lipschitz continuity of N0, ∃C0 ≥ 1,

1

C0
· dE(p1, p2) ≤ dX(x1, x2) = dE(N0(p1), N0(p2))

≤ C0 · dE(p1, p2),

hence

dY (y1, y2) ≤ CTC1 · dE(p1, p2) ≤ CTC1C0 · dX(x1, x2),

i.e., Cf ≤ CTC1C0.

To visually present this intuition, we show the iris1 data-
set before and after the transformation X ′ = (X,R)Ai +B.
Fig. 7 is a visual display of the relation diagram (7). We
show the points of first two features and apply three compo-
nents PCA to the dataset, where three colors of the points
denote the three kinds of iris respectively. The data are
garbled after the transformation (as shown in the 2 dimen-
sional chart, but they still have obvious boundaries if we
apply PCA (as shown in the 3 dimensional chart), which
means that PCA over the transformed layer works.

4. THE TRANSNET SCHEMES
In this section, we provide the algorithm of TransNet

schemes in detail. Before training, each participant first
sends the server a 0/1 table to indicate which positions of

1Iris dataset contains 150 examples, consisting of 4 attributes
(sepal/petal length, sepal/petal width) and label of three kinds.

Figure 7: Principal component analysis over the Iris data-
set before and after the transformation of TransNet-A.

the dataset it has (including labels). A common hash func-
tion is applied to ID attribute. Then the server can deter-
mine the type of data partition and sends a 0/1 table back
to each participant to instruct it to manipulate the disjoint
part of the dataset. Suppose there are m data examples
and n attributes. The set of the labels y ∈ G are scrambled
with a common negotiated permutation S : G → S(G) as
mentioned in § 3.1. Then the labels Y of the dataset is in
(S(G))m.

Suppose p participants Pi (i = 1, 2, · · · , p) train TransNet.
In training phase, Pi has partitioned datasetXi. The private
parametersRi andKi are generated randomly. In prediction
phase, an example z is going to be predicted. If the dataset
is vertically or arbitrarily partitioned, Pi owns part of z,
written as zi. Denote the training server as S, and the
trained neural network is represented as a function N .

4.1 TransNet-V

Algorithm 1: Training of TransNet-V.

Data: Dataset X = (X1, · · · , Xp); labels Y ∈ (S(G))m;
Result: S trains function N over (X′, Y);

1 for i← 1 to p do
2 Pi generates ni × ni private matrix Ki;
3 Pi computes X′i ← XiKi;
4 Pi sends X′i to S;

5 end
6 S pools X′ ← (X′1, X

′
2, · · · , X′p);

7 S trains over (X′, Y) and gets function N ;
8 Suppose N(x) = fl(fl−1(. . . f0(xW0 + b0) . . .)Wl + bl);
9 if distribute parameters then

10 W ′ ←W0;

11 S divides W ′ = (W1
′T ,W2

′T , · · · ,Wp
′T)T by ni;

12 for i← 1 to p do
13 S sends W ′i to Pi;
14 end

15 end

The training phase of TransNet-V is described in Algori-
thm 1. TransNet-V has the option to distribute its model
parameters to the participants. If the scheme does not dis-
tribute the training parameters, Algorithm 2 is used to pre-
dict, otherwise Algorithm 3 is used. Algorithm 3 can avoid
the duplicate use of private matrices Ki.

1854

Algorithm 2: Prediction of TransNet-V.

Data: The prediction example z;
the same Ki and N as in Algorithm 1;
Result: S predicts for z;

1 for i← 1 to p do
2 Pi computes z′i ← ziKi;

3 end
4 S pools z′ ← (z′1,z

′
2, · · · ,z′p);

5 S sends z′ to S;
6 S computes y ← N(z′);
7 S encrypts y and sends to all Pi;

8 Pi decrypts and reverses the permutation S−1(y);

Algorithm 3: Prediction of TransNet-V.

Data: The prediction example z;
the same W ′i and N as in Algorithm 1;
Result: S predicts for z;

1 for i← 1 to p do
2 Pi computes Wi ← KiW

′
i ;

3 Pi computes ai ← ziWi;
4 end

5 a←
∑p
i=1 ai by secure multi-party sum;

6 Participants send a to S;
7 Suppose N(z′) = fl(fl−1(. . . f0(z′W ′ + b0) . . .)Wl + bl);
8 S computes y ← fl(fl−1(. . . f0(a + b0) . . .)Wl + bl);
9 S encrypts y and sends to all Pi;

10 Pi decrypts and reverses the permutation S−1(y);

Theorem 4. Algorithm 3 and Algorithm 2 have the same
prediction result y.

Proof. In Algorithm 3 we have W = KiW
′
i , so

X ′iW
′
i = (XiKi)W

′
i = Xi(KiW

′
i) = XiWi,

X ′W ′ = (X ′1 X
′
2 · · · X ′p) · (W ′T1 W ′T2 · · · W ′Tp)T

= (X ′1W
′
1 X

′
2W
′
2 · · · X ′pW ′p)

= (X1W1 X2W2 · · · XpWp) = XW

In the same way, we have z′W ′ = zW = a, thus in Algori-
thm 3 y = N(z′), which is the same result as in Algorithm 2.
We call W the “de-transformed” weights of W ′ in Algori-
thm 1.

In Algorithm 2, the participants just submit their data,
and asynchronously receive the prediction. While in Algo-
rithm 3, the participants need to work together with others
to do the secure multi-party sum.

4.2 TransNet-H
Algorithm 4 describes the training phase of TransNet-H.

The server can simply distribute the model to all partic-
ipants. Then in the prediction phase of TransNet-H (Al-
gorithm 5), the participants can do predictions themselves.
Moreover, the training of TransNet-H can be simultaneously
carried out with the pooling of the dataset, while TransNet-
V and TransNet-A both need to wait until all the datasets
are collected.

4.3 TransNet-A
Suppose that encryption function is c = Enc(m) and

the corresponding decryption function is m = Dec(c). The
training phase and the prediction phase of TransNet-A are
described in Algorithm 6 and Algorithm 7, respectively.

Algorithm 4: Training of TransNet-H.

Data: X = (XT
1 , XT

2 , · · · , XT
p)T ; Y ∈ (S(G))m;

Result: S trains function N over (X′, Y);
1 The participants consult n× n public matrix A;
2 for i← 1 to p do
3 Pi generates mi × d noise matrix Ri;
4 Pi generates d× n private matrix Ki;
5 Pi computes X′i ← XiA + RiKi;
6 Pi sends X′i to S;

7 end

8 S pools X′ ← (X1
′T , X2

′T , · · · , Xp
′T)T ;

9 S trains over (X′, Y) and gets function N ;
10 S distributes N to all Pi;

Algorithm 5: Prediction of TransNet-H.

Data: The prediction example z;
The same A and N as in Algorithm 4;
Result: Pi predicts for z;

1 Pi generates 1× d noise matrix r;
2 Pi generates d× n private matrix Ki;
3 Pi computes z′ ← zA + rKi;
4 Pi computes y ← N(z′);

5 Pi reverses the permutation S−1(y);

There is a key point in Algorithm 6 that no one should
know the value of b =

∑p
i=0 bi, otherwise the indeterminacy

of the Eq. (3) is broken. Herein we develop an original tech-
nique called Convert Secure Sum. For the server, the terms
x′ + b and b0 are known, the terms x′ and

∑p
i=1 bi are un-

known. Thus b cannot be computed from (x′+ b)−x′, nor
from b0 +

∑p
i=1 bi. And for participants Pi, the terms bi

and x′ are known,
∑i
k=0 bk + c can be known in the situa-

tion that one data example is completely owned by Pi. Note
that the term c is unknown. Therefore, Pi (i = 1, 2, · · · , p)
cannot extract b from (b + c)− c.

5. EVALUATION

5.1 Experimental Overview
We implement the interface between our transformed layer

and the neural network based on TensorFlow and PyTorch
frameworks. The training uses cross-entropy loss and Adam
optimizer, and the learning rate is 0.01. The batch size is
100 when using SGD method. We also use the notation
[−l1 − l2−] to denote the number of nodes of hidden layers
when using MLP, the number of filters when using CNN,
and the sequence length of hidden layers when using RNN.

For simplicity, we use notation ks to denote the range
[−ks, ks] of the elements of Ki and A when they are ran-
domly generated with uniform distribution, notation rs to
denote that range [−rs, rs] of Ri, and notation bs to denote
that range [−bs, bs] of secret translation vector b. We also
use notation ds to denote the dimension of noise. In addi-
tion, if these variables are randomly generated with normal
distribution, then the same notation ks, rs, bs denote the
standard deviation σ. The default value of ks, rs, bs is 1
with uniform distribution, the default value of ds is 100.
Table 2 lists the datasets and the neural network we apply.

We denote the independent learning as that each partici-
pant trains over its split dataset, and denote the baseline as

1855

Algorithm 6: Training of TransNet-A.

Data: X =
∑p
i=1 Xi; Y ∈ (S(G))m;

Result: S trains function N over (X′, Y);
1 The participants consult n× n public matrix A;
2 for i← 1 to p do
3 Pi generates m× d noise matrix Ri;
4 Pi generates d× n private matrix Ki;
5 Pi computes X′′i ← XiA + RiKi;
6 Pi generates 1× n secret translation vector bi;

7 Bi ← (bTi , bTi , · · · , bTi)T ;

8 end
9 S generates 1× n secret translation vector b0;

10 S generates a random vector c, C ← (cT , cT , · · · , cT)T ;
11 S encrypts e0 ← Enc(b0 + c);

12 E0 ← (ET
0 ,ET

0 , · · · ,ET
0)T ;

13 S sends e0 to P1;
14 for i← 1 to p do
15 Pi decrypts Mi−1 ← Dec(Ei−1);
16 Pi computes Mi ←Mi−1 + X′′i + Bi;
17 Pi encrypts Ei ← Enc(Mi);
18 if i 6= p then
19 Pi sends Ei to Pi+1;
20 else
21 Pi sends Ei to S;
22 end

23 end
24 S decrypts Mp ← Dec(Ep);
25 S computes X′ = Mp − C;
26 S trains over (X′, Y) and gets function N ;

Algorithm 7: Prediction of TransNet-A.

Data: The prediction example z;
the same A, bi and N as in Agorithm 6;
Result: S predicts for z;

1 for i← 1 to p do
2 Pi generates ri and private matrix Ki;
3 Pi computes z′′i ← ziA + riKi;

4 end
5 S generates a random vector c;
6 S encrypts e0 ← Enc(b0 + c);
7 S sends e0 to P1;
8 for i← 1 to p do
9 Pi decrypts mi−1 ← Dec(e0);

10 Pi computes mi ←mi−1 + z′′i + bi;

11 Pi encrypts ei ← Enc(mi);
12 if i 6= q then
13 Pi sends ei to Pi+1;
14 else
15 Pi sends ei to S;
16 end

17 end
18 S decrypts mp ← Dec(ep);
19 S computes z′ = mp − c;
20 S computes y ← N(z′);
21 S encrypts y and sends to Pi;

22 Pi decrypts and reverses the permutation S−1(y);

Table 2: The datasets and the applied neural network.

Dataset Train/Test Size epochs Neural Network
LETTER 12,000/8,000 5,000 MLP: [-40-]

MNIST 55,000/10,000 ≈ 7.3
MLP: [-400-300-]
CNN: [-16-32-]
RNN: [-40-]

FASHION 60,000/10,000 5
MLP: [-400-300-]
CNN: [-16-32-]
RNN: [-40-]

SVHN 73,257/26,032 5 CNN: [-16-32-]

the accuracy obtained by training over the original aggre-
gated dataset. Moreover, all the test accuracy data we show
in the figures are the average results of 10 training outcomes.

Our experiments first verify the utility of TransNet over
LETTER2 and MNIST3 datasets in § 5.2. Second, we adjust
ks, rs, ds, bs to see their impacts on the performance of MLP
over MNIST dataset in § 5.3. Third, we apply CNN and
RNN over FASHION4 dataset in § 5.4. § 5.5 checks the
impact of operator norm λ of the matrix. Finally, we test
our scheme over larger dataset SVHN5 to further confirm the
effectiveness of TransNet. § 5.6 summarizes the performance
of TransNet and compares TransNet to other schemes.

5.2 Utility Verification

2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.80

0.85

0.90

 baseline
 TransNet-V
 independent-V
 TransNet-H
 independent-H
 TransNet-A

Number of Participants

Te
st

 A
cc

ur
ac

y

Figure 8: Comparison of test accuracy of TransNet, inde-
pendent learning and baseline over LETTER dataset using
MLP, where ds = 2.

The accuracy of the privacy-preserving collaborative neu-
ral network should be better than the model trained over
each participant’s own dataset. The experimental result-
s over LETTER dataset using MLP are shown in Fig. 8,
and the situations over other datasets are similar. Over
horizontally partitioned dataset, independent accuracy de-
clines from 86.1% to 78.3% on average, while TransNet-H
gets about 86.7% accuracy. This is because in the experi-
ment, more participants share the whole dataset means each
of them will have fewer examples, and this is opposite to the
common situation that more participants means a larger
dataset. Over vertically partitioned dataset, the indepen-
dent accuracy declines from 56.4% to 9.1% which is totally
useless, while TransNet-V makes the accuracy up to about
89.1%. Over arbitrarily partitioned dataset, TransNet-A
gets about 86.5% accuracy, while independent learning can-
not be done.

In addition, the accuracy is not affected by the number of
participants, as shown in Fig. 8. It keeps basically steady on-
ly with little fluctuation because of the randomness. In the
experiments over larger datasets, the number of participants
is increased from 10 to 100, and it also does not influence
the accuracy. This is useful since it makes the schemes easy
to extend to participants with a single data example.

2http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
3http://yann.lecun.com/exdb/mnist
4https://github.com/zalandoresearch/fashion-mnist
5http://ufldl.stanford.edu/housenumbers/

1856

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 00 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Te
st

Ac
cu

rac
y b a s e l i n e

 T r a n s N e t - V

E p o c h
0

1

2

3

Tra
inin

g L
os

s

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 00 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 b a s e l i n e
 T r a n s N e t - H

E p o c h

Te
st

Ac
cu

rac
y

0

1

2

3

Tra
inin

g L
os

s

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 00 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 b a s e l i n e
 T r a n s N e t - A

E p o c h

Te
st

Ac
cu

rac
y

0

1

2

3

Tra
inin

g L
os

s

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 00 . 8 4

0 . 8 8

0 . 9 2

0 . 9 6

1 . 0 0

 b a s e l i n e
 T r a n s N e t - V

N u m b e r o f M i n i b a t c h G r a d i e n t C o m p u t a t i o n s

Te
st

Ac
cu

rac
y

0 . 0 0

0 . 1 5

0 . 3 0

0 . 4 5

Tra
inin

g L
os

s

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 00 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

 b a s e l i n e
 T r a n s N e t - H

N u m b e r o f M i n i b a t c h G r a d i e n t C o m p u t a t i o n s
Te

st
Ac

cu
rac

y
0 . 0 0

0 . 1 5

0 . 3 0

0 . 4 5

Tra
inin

g L
os

s

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 00 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

 b a s e l i n e
 T r a n s N e t - A

N u m b e r o f M i n i b a t c h G r a d i e n t C o m p u t a t i o n s

Te
st

Ac
cu

rac
y

0 . 0 0

0 . 1 5

0 . 3 0

0 . 4 5

Tra
inin

g L
os

s

Figure 9: Training processes of TransNet vs. baseline, where black and blue curves represent accuracy and loss, respectively.
The top three diagrams are trained over LETTER dataset, and the bottom three diagrams are trained over MNIST dataset.

To intuitively acquaint the training over the transformed
layer, we draw charts of test accuracy and training loss with
the number of minibatch gradient computations. The di-
agrams in Fig. 9 show the performances of TransNet over
LETTER and MNIST datasets in the top and bottom row
respectively. The curves of baseline and TransNet are close.
TransNet gets slightly lower accuracy than the baseline with
noise added. Because of SGD, the accuracy presents a fluc-
tuating increase over MNIST dataset. It is noticeable that
TransNet-V trains faster than the baseline over MNIST data-
set. The possible reason is the transformation matrix K in
TransNet-V is a block diagonal matrix diag(K1,K2, · · · ,Kp).

5.3 Impact of Variables Using MLP
To investigate the impact of ks, rs, bs, and ds, the idea

of “control variates” is adopted. We first fix other variables
and adjust ks in TransNet-V, for it eliminates the interfer-
ence of noise R and secret translation vector b. Then we
choose a relatively good ks to test the impact of rs and
ds in TransNet-H. Finally the impact of bs is evaluated in
TransNet-A. In the beginning, ks, rs, and bs are set to 1
with uniform distribution and ds = 100.

We perform experiments over MNIST dataset using MLP
to explore the impact of variables in TransNet. The val-
ues of MNIST dataset are normalized to range [0,1]. The
transformed layer is not normalized and is input into [-400-
300-] MLP for 4,000 steps of minibatch gradient computa-
tions. The baseline gets 98% accuracy. The independent
learning can only get enough accuracy when the dataset is
horizontally partitioned and is influenced by the number of
participants, so the corresponding curves are not drawn in
the following diagrams. Experimental results are exhibited
in charts of Fig. 10.
Impact of transformation matrix. Fig. 10a shows

the impact of ks. Let ks = 2−4, 2−3, · · · , 25 respectively
in TransNet-V, we can learn that too big or too small ks
slightly lowers the performance. It basically declines at a
log speed (because x-axis is in log scale) when ks ≥ 1. It
gets the highest accuracy when σ = ks = 1/8 with normal

distribution, and when ks = 1/4 with uniform distribution.
The curve of uniform distribution performs slightly better
than that of normal distribution. Thus in the following ex-
periments, we fix ks = 1/4 with uniform distribution.
Impact of noise. Unlike the linear transformation de-

fined by matrix, the noise-adding function is not a Lips-
chitz continuity. However, adding more dimensions of noise
means higher privacy level, so it is an important factor in
the schemes. In TransNet-H we firstly fix ds = 100 and
change rs, then use the appropriate rs to see how ds affects
the performance.

Fig. 10b shows the impact of rs, where rs = 2−4, 2−3, · · · ,
25 respectively. We can learn that a larger rs lowers the
accuracy apparently. The curve of uniform gets higher accu-
racy than that of normal. The performance is steady when
rs ≤ 1. Since the values of MNIST dataset are in range
[0, 1], we suggest rs = 1 with uniform distribution to make
the noise similar to the real data examples.

Fig. 10c shows the impact of ds in the setting of rs = 1.
We add the dimensions of noise from 10 to 600 with step 10.
The curve declines in linear speed. Notice it is a very good
result that adding 300 dimensional noise loses only about
3% accuracy from about 98% to about 95%, and adding 600
dimensional noise loses only about 6% accuracy to about
92%. Therefore, if rs is appropriate, the impact of the ds
is limited. From this experimental result we can learn that
adding more dimensions of noise can increase the privacy
level with low accuracy cost.

Impact of secret translation vector. From Fig. 10d
we can learn that the increase of b causes a rapid decline of
accuracy. The normal one performs worse than the uniform
one. It is even close to random guesses (1/10 accuracy) when
the distribution is N (µ = 0, σ = 22). Although translation
is Lipschitz, too big bs eliminates the differences between
two different data points. The reason is similar to that nor-
malization can improve the performance of machine learning
algorithms.

Since b seems to have big influence on performance, we
draw curves of different bs with the change of ks (with uni-

1857

-4 -3 -2 -1 0 1 2 3 4 5
0.92

0.94

0.96

0.98

 normal
 uniform

lg(ks)

Te
st

 A
cc

ur
ac

y

TransNet-V

(a) Impact of ks.

-4 -3 -2 -1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

 normal
 uniform

lg(rs)

Te
st

 A
cc

ur
ac

y

TransNet-H, ks=1/4, ds=100

(b) Impact of rs.

0 100 200 300 400 500 600
0.92

0.94

0.96

0.98

ds

Te
st

 A
cc

ur
ac

y

TransNet-H, ks=1/4, rs=1

(c) Impact of ds.

0.250.5 1 2 4 10 15 20 25 30
0.2

0.4

0.6

0.8

1.0

TransNet-A, ks=1/4, rs=1, ds=100

 normal
 uniform

bs

Te
st

 A
cc

ur
ac

y

(d) Impact of bs.

0 1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1.0

 bs=1
 bs=5
 bs=10
 bs=20
 bs=50
 bs=100

ks

Te
st

 A
cc

ur
ac

y

TransNet-A, rs=1, ds=100

(e) Impact of bs and ks.

0 1 2 3 4 5 6 7 8
0.93

0.94

0.95

0.96

0.97

0.98

 TransNet-V
 TransNet-H
 TransNet-A

ks

Te
st

 A
cc

ur
ac

y

TransNet, rs=1, ds=100, bs=1

(f) Comparison of the 3 schemes.

Figure 10: Impact of TransNet’s variables on the performance over MNIST dataset using MLP. (baseline: 98.0%.)

form distribution). As shown in Fig. 10e, if we use bigger
bs, then using bigger ks will help to increase the accuracy,
but the accuracy cannot exceed the curves of smaller bs.

Comparison of the three schemes. We have explored
the impact of all the variables in TransNet. Next, we com-
pare the three schemes. ks is the common variable in the
three schemes. Therefore, we set ks as the x-axis to see
how things make different when introducing the noise R in
TransNet-H, and when introducing the secret translation
vector b in TransNet-A.

Fig. 10f shows the comparison result, in which all the
variables are randomly generated with uniform distribution.
Consistent with the performance in Fig. 10a, the increase of
ks lowers the test accuracy of the three schemes. TransNet-
H gets lower accuracy than TransNet-V since there are 100
dimensional noise added, and TransNet-A gets very close
but slightly lower accuracy than TransNet-H since it only
introduces 1 dimension b and bs = 1 is small. The curve of
TransNet-H will get closer to TransNet-V when ds declines
according to Fig. 10c, and vice versa.

5.4 Impact of Variables Using CNN and RNN
We also perform experiments over FASHION dataset us-

ing CNN and RNN, and the corresponding schemes are called
TransCNN and TransRNN respectively.

We find that ks does not obviously influence the accura-
cy when using CNN. The accuracy stays steady while ks
changes in very large scale intervals. TransCNN-V keeps
about 86.2% accuracy while ks ∈ [2−21, 2501], TransCNN-
H keeps about 83.3% accuracy while ks ∈ [2−20, 2500], and
TransCNN-A keeps about 83.1% while ks ∈ [2−7, 2502]. The
CNN baseline’s accuracy is 90.3%.

Fig. 11 shows the impact of the variables in TransCNN
and TransRNN over FASHION dataset, where RNN curves
are all lower than the corresponding CNN curves. The im-
pact of rs, ds and bs in TransCNN and TransRNN are simi-

lar to TransMLP. The impact of ks in TransRNN is also sim-
ilar to TransMLP. The RNN baseline’s accuracy is 86.0%.

In Fig. 11c, the dimension of noise is up to 1400, which
exceeds the number of data attributes (784). It also shows a
limited impact when using CNN and RNN, which is similar
to the situation that uses MLP.

5.5 Impact of Transformation Matrix Norm
We gave an analysis of why the neural network can train

over the transformed layer in § 3.6. The Lipschitz constant
of a linear transformation is the norm of the transformation
matrix, i.e., the largest singular value λ of the matrix. Thus
in this subsection we explore the impact of the matrix norm
on the performance of the training model. To make the
results more obvious, we generate the matrix that all the
singular values are the same.

As shown in Fig. 12a, over MNIST dataset, the impact of
the matrix norm λ on the test accuracy is similar to ks but
more notable. When using CNN, the impact is the least.
When using RNN, the impact is more notable than MLP.
As shown in Fig. 12b, over FASHION dataset, the impact
of the matrix norm λ is also similar.

According to the analysis of Lipschitz continuity in § 3.6,
smaller matrix norm will improve the accuracy, but in the
experiment we did not see it. This may be because the nu-
merical calculation of small numbers will bring errors, as the
impact of ks shows. Moreover, the neural network function
itself has a big Lipschitz constant. Notice that all Lipschitz
functions are uniformly continuous, and thus it works.

5.6 Experimental Summary and Comparison

5.6.1 Experimental Summary
We test TransNet schemes over different datasets using

different deep learning models. The results are summarized
in Table 3. The experiments demonstrate that TransNet

1858

- 1 0 - 5 0 5 1 0
0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

 R N N b a s e l i n e
 T r a n s R N N - V
 T r a n s R N N - H
 T r a n s R N N - A

l g (k s)

Te
st

Ac
cu

rac
y

r s = 1 , d s = 1 0 0 , b s = 1

(a) Impact of ks.

1 2 3 4 5 6 7 8 9 1 0

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

 C N N b a s e l i n e
 T r a n s C N N - H
 T r a n s C N N - A
 R N N b a s e l i n e
 T r a n s R N N - H
 T r a n s R N N - A

r s

Te
st

Ac
cu

rac
y

k s = 1 / 4 , d s = 1 0 0 , b s = 1

(b) Impact of rs.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0
0 . 5 5
0 . 6 0
0 . 6 5
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0

 C N N b a s e l i n e
 T r a n s C N N - H
 T r a n s C N N - A
 R N N b a s e l i n e
 T r a n s R N N - H
 T r a n s R N N - A

d s

Te
st

Ac
cu

rac
y

k s = 1 / 4 , r s = 1 , b s = 1

(c) Impact of ds.

0 1 2 3 4 5 6 7 8 9
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

 C N N b a s e l i n e
 T r a n s C N N - A
 R N N b a s e l i n e
 T r a n s R N N - A

l g (b s)

Te
st

Ac
cu

rac
y

k s = 1 / 4 , d s = 1 0 0 , r s = 1

(d) Impact of bs.

Figure 11: Impact of TransNet’s variables on the performance over FASH-
ION dataset using CNN (baseline: 90.3%) and RNN (baseline: 86.0%).

- 1 0 - 5 0 5 1 0
0 . 8 2
0 . 8 4
0 . 8 6
0 . 8 8
0 . 9 0
0 . 9 2
0 . 9 4
0 . 9 6
0 . 9 8

 T r a n s M L P - V
 T r a n s C N N - V
 T r a n s R N N - V

� � � � �

Te
st

Ac
cu

rac
y

(a) Experiments over MNIST dataset.

- 1 0 - 5 0 5 1 0
0 . 6 0

0 . 6 4

0 . 6 8

0 . 7 2

0 . 7 6

0 . 8 0

0 . 8 4

0 . 8 8

 T r a n s M L P - V
 T r a n s C N N - V
 T r a n s R N N - V

� � � � �

Te
st

Ac
cu

rac
y

(b) Experiments over FASHION dataset.

Figure 12: Impact of the transforma-
tion matrix norm on the performance.

Table 3: Experimental accuracy results with ks =
1/4, rs = 1, ds = 100, bs = 1. V, H and A are the abbr.
of TransNet-V, TransNet-H and TransNet-A respectively.

Dataset Network Baseline V H A
LETTER MLP 0.892 0.891 0.867 0.865

MNIST
MLP 0.980 0.978 0.971 0.970
CNN 0.993 0.971 0.933 0.931
RNN 0.974 0.973 0.923 0.921

FASHION
MLP 0.753 0.731 0.723 0.717
CNN 0.903 0.862 0.833 0.831
RNN 0.860 0.860 0.822 0.820

SVHN CNN 0.861 0.732 0.706 0.687

schemes are effective. We also explore the impact of vari-
ables in TransNet on the performance of neural network,
and find that too big or too small ks slightly lowers the ac-
curacy; that too big rs strongly lowers the accuracy; that
the impact of ds on the accuracy is limited; that too big bs
strongly lowers the accuracy; and that too big or too small
matrix norm λ slightly lowers the accuracy.

Overall, the transformation matrix has small influence
since the linear transformation defined by the matrix is Lip-
schitz continuity; the noise have big influence since the pro-
cessing of adding noise is not continuity; however, the secret
translation vector b has big influence.

We can see from Table 3 that there are little accuracy
losses using MLP, a bit of accuracy losses using RNN, and
relatively large accuracy losses using CNN. Over LETTER
and MNIST datasets, TransMLP-V almost loses no accura-
cy, TransRNN-V also loses little accuracy.

5.6.2 Comparison to Other Schemes
We compare TransNet to other privacy-preserving neural

network schemes in Table 4. Our TransNet has lower com-
putation and communication complexity than homomorphic
encryption (HE) based schemes [40], and has the advantage

Table 4: Comparison to state-of-the-art schemes, where
V, H and A are the abbr. of vertically, horizontally and
arbitrarily partitioned dataset respectively.

Scheme
Data

Partition
Affected by
No. Parties?

Complexity

Yuan2014 [40] V H A No High

Shokri2015 [31] H Yes Low

McMahan2017 [25] H Yes Low

Papernot2016 [27] H Yes Low
TransNet V H A No Low

of supporting arbitrarily partitioned dataset compared with
the stochastic gradient descent (SGD) [25,31] or differential
privacy (DP) based schemes [27]. Besides, the accuracy of
TransNet is not influenced by the number of participants.

Below is the complexity comparison. The methods based
on HE have the highest computation and communication
complexity because the spending of the encryption and de-
cryption is very high, and the calculation results need to be
transmitted frequently. Schemes based on SGD have the
same computation complexity as the original neural net-
work, but need time to wait for the uploads of SGD parame-
ters for every training step. They also have low communica-
tion complexity because they only need to upload the SGD
parameters. Papernot et al.’s approach [27] is of high effi-
ciency because the models are training independently and fi-
nally aggregated using DP with low computation complexity
and very low communication complexity. The computation
complexity of TransNet is the same as the original neural
network since it trains over the transformed layer. And the
communication complexity of TransNet is O(m), where m
is the number of data examples, which is also small.

Furthermore, we compare our scheme with HE based work
over arbitrarily partitioned datasets. Yuan2014’s scheme
[40] is a representative of directly training the neural network
based on HE to date, while recent HE based work have diffe-

1859

Table 5: Comparison to Yuan2014’s scheme [40], where ks = rs = bs = 1.

Test Accuracy Training Time
Dataset Sample Architecture Baseline TransNet-A1 TransNet-A2 Yuan2014 TransNet-A Yuan2014
Iris 150 4-5-3 98.17% 93.17% 84.17% 83.79% 4.8s∼4.9s 10.68min
Diabetes 768 8-12-2 69.57% 66.72% 65.97% 63.99% 5.1s∼6.8s 21.86min
kr-vs-kp 3196 36-15-2 93.93% 90.45% 87.17% 86.19% 7.6s∼9.8s 36.69min

1ds = 1/2 number of attributes 2ds = number of attributes

rent aims that convert pre-trained neural networks to cryp-
tographic versions [7, 17] or provide secure CNN prediction
as a service [9, 20]. Therefore, [40] is still the state-of-the-
art work in this field, and we adopt it as the comparison
scheme. We directly extract the results from [40], and em-
ploy the same network architecture to train TransNet-A. We
run more epochs than [40] does, because with small epochs
we cannot reach adequate accuracy. Yuan2014’s scheme is
implemented via C language and executed on Amazon EC2
cloud, including 10 nodes with 8-core 2.93-GHz Intel Xeon
CPU and 8-GB memory, while TransNet is implemented
using Python TensorFlow and launched with 2-core 2.70-
GHz Intel Pentium G630 CPU and 4-GB memory locally to
simulate multi-party. Obviously, our running specification
is lower than that of [40], and thus theoretically, TransNet
would perform better, or at least not worse, should it be
conducted using the same running specification of [40].

The comparison is in terms of runtime performance and
test accuracy over iris, diabetes6 and kr-vp-kp7 datasets of
UCI machine learning repository. The numbers of attributes
n of the datasets are 4, 8 and 36, respectively. We use
two settings (ds = n/2 and ds = n) to train TransNet-A
for comprehensive consideration. The results are shown in
Table 5. Note that it takes more time with a bigger ds, and
thus the training time of TransNet-A varies. As can be seen
from the table, for test accuracy, TransNet-A gets a small
lift. While for training time, TransNet-A performs much
better than Yuan2014. In general, TransNet-A surpasses
Yuan2014’s scheme in all aspects.

6. RELATED WORK
The research of the privacy-preserving data mining or ma-

chine learning has been started early, and there are surveys
[2, 10, 30] of tools and methods to approach such schemes.
We use a taxonomy according to the technique that the
schemes adopt to classify the state-of-the-art work, includ-
ing SMC, HE, DP, and SGD based schemes.

SMC computes a boolean function on multiple partici-
pants’ inputs securely by converting it into a garbled circuit.
The circuit complexity is proportional to the computation
complexity of the function. It has been used for learning
decision tree [24], linear regression and classification [11],
k-means clustering [19], association rule [34], Naive Bayes
classifier [35], and k-Nearest Neighbor [37] etc. However,
the extremely high computation and communication com-
plexity of SMC usually make it far from practical when the
algorithm or the data size becomes larger.

HE can do computations over ciphertexts. It is firstly
applied to linear algorithms, including linear regression [26,
38], linear classifier [6], etc. By converting the activation
function into its polynomial approximation, neural network

6http://archive.ics.uci.edu/ml/datasets/Diabetes
7http://archive.ics.uci.edu/ml/datasets/Chess+%28King-
Rook+vs.+King-Pawn%29

[40] can use HE to approach its privacy-preserving version,
followed by encrypted CNN [17] which is based on Bos et
al.’s HE [5]. Li et al. [23], Phong et al. [28], and Wang
et al. [36] also designed privacy-preserving neural networks
based on HE. Similar to SMC based approaches, schemes
based on HE also have the limitation of low computational
efficiency.

DP has become the most popular technique in the pri-
vacy topic in recent years. It has been applied to boost-
ing [13], linear and logistic regression [41], principal compo-
nent analysis [8], and risk minimization [4]. Papernot et al.’s
work [27] proposed a PATE scheme that a “student” classi-
fier is trained by Private Aggregation of Teacher Ensembles
using DP technique. The schemes based on DP possess the
advantage of low computation and communication complex-
ity, but have the insufficiency that they are only suited to
horizontally partitioned datasets and they have to be ap-
plied to database rather than individual data examples.

Furthermore, SGD has also been exploited for approach-
ing privacy-preserving neural networks, for it is an essential
component in the algorithms. Such work include distributed
selective SGD [31], differential privacy SGD [1], and SGD of
the “federated averaging” [25].

Although there exist many privacy-preserving machine
learning schemes, the methods toward the neural network
are still insufficient. Different from previous work, our Trans-
Net uses indeterminate system to constitute the transformed
layer to protect to privacy of the original dataset. TransNet
has the advantage of lower computation and communication
complexity than the SMC and HE based schemes, and the
training speed is close to the DP based scheme [27] but faster
than the SGD based schemes [1,25,31]. Furthermore, it has
the superiority of supporting arbitrarily partitioned dataset
and being not influenced by the number of participants.

7. CONCLUSIONS
In this paper, we proposed TransNet, a new method to

train privacy-preserving collaborative neural network over
transformed layer. In TransNet, the participants transform
their vertically, horizontally or arbitrarily partitioned data-
sets using irreversible transformation defined by linear in-
determinate equations, and upload the transformed data to
the server. The server then can train a practical model with-
out knowing any private information over the transformed
layer. We use Lipschitz continuity to analyze why the neu-
ral network can train over the transformed layer. TransNet
supports all kinds of partitioned datasets compared to most
of previous schemes that support single partitioned dataset
only. It is independent of the neural network structure and
not affected by the number of participants. It takes no extra
computational burden and has no special security require-
ment on the training server. Finally, extensive experiments
showed the effectiveness and the above advantages of our
TransNet.

1860

8. REFERENCES
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,

I. Mironov, K. Talwar, and L. Zhang. Deep learning
with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and
Communications Security, pages 308–318. ACM, 2016.

[2] C. C. Aggarwal and S. Y. Philip. Privacy-preserving
data mining: models and algorithms. Springer Science
& Business Media, 2008.

[3] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J.
Frey. Predicting the sequence specificities of dna-and
rna-binding proteins by deep learning. Nature
biotechnology, 33(8):831, 2015.

[4] R. Bassily, A. Smith, and A. Thakurta. Private
empirical risk minimization: Efficient algorithms and
tight error bounds. In 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science,
pages 464–473. IEEE, 2014.

[5] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig.
Improved security for a ring-based fully homomorphic
encryption scheme. In IMA International Conference
on Cryptography and Coding, pages 45–64. Springer,
2013.

[6] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser.
Machine learning classification over encrypted data. In
NDSS, volume 4324, page 4325, 2015.

[7] Bourse, Florian and Minelli, Michele and Minihold,
Matthias and Paillier, Pascal. Fast homomorphic
evaluation of deep discretized neural networks. In
Annual International Cryptology Conference, pages
483–512. Springer, 2018.

[8] K. Chaudhuri, A. D. Sarwate, and K. Sinha. A
near-optimal algorithm for differentially-private
principal components. The Journal of Machine
Learning Research, 14(1):2905–2943, 2013.

[9] Chen, Hao and Dai, Wei and Kim, Miran and Song,
Yongsoo. Efficient multi-key homomorphic encryption
with packed ciphertexts with application to oblivious
neural network inference. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and
Communications Security, pages 395–412, 2019.

[10] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and
M. Y. Zhu. Tools for privacy preserving distributed
data mining. ACM Sigkdd Explorations Newsletter,
4(2):28–34, 2002.

[11] W. Du, Y. S. Han, and S. Chen. Privacy-preserving
multivariate statistical analysis: Linear regression and
classification. In Proceedings of the 2004 SIAM
international conference on data mining, pages
222–233. SIAM, 2004.

[12] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In Theory of cryptography conference, pages
265–284. Springer, 2006.

[13] C. Dwork, G. N. Rothblum, and S. P. Vadhan.
Boosting and differential privacy. pages 51–60, 2010.

[14] M. Fredrikson, S. Jha, and T. Ristenpart. Model
inversion attacks that exploit confidence information
and basic countermeasures. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and
Communications Security, pages 1322–1333. ACM,
2015.

[15] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and
T. Ristenpart. Privacy in pharmacogenetics: An
end-to-end case study of personalized warfarin dosing.
In 23rd {USENIX} Security Symposium ({USENIX}
Security 14), pages 17–32, 2014.

[16] C. Gentry et al. Fully homomorphic encryption using
ideal lattices. In Stoc, volume 9, pages 169–178, 2009.

[17] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter,
M. Naehrig, and J. Wernsing. Cryptonets: Applying
neural networks to encrypted data with high
throughput and accuracy. In International Conference
on Machine Learning, pages 201–210, 2016.

[18] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. science,
313(5786):504–507, 2006.

[19] G. Jagannathan and R. N. Wright. Privacy-preserving
distributed k-means clustering over arbitrarily
partitioned data. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge
discovery in data mining, pages 593–599. ACM, 2005.

[20] Juvekar, Chiraag and Vaikuntanathan, Vinod and
Chandrakasan, Anantha. GAZELLE: A low latency
framework for secure neural network inference. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 1651–1669, 2018.

[21] A. Kannan, K. Kurach, S. Ravi, T. Kaufmann,
A. Tomkins, B. Miklos, G. Corrado, L. Lukacs,
M. Ganea, P. Young, et al. Smart reply: Automated
response suggestion for email. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
955–964. ACM, 2016.

[22] I. Kononenko. Machine learning for medical diagnosis:
history, state of the art and perspective. Artificial
Intelligence in medicine, 23(1):89–109, 2001.

[23] P. Li, J. Li, Z. Huang, T. Li, C. Gao, S. Yiu, and
K. Chen. Multi-key privacy-preserving deep learning
in cloud computing. Future Generation Computer
Systems, 74:76–85, 2017.

[24] Y. Lindell and B. Pinkas. Privacy preserving data
mining. In Annual International Cryptology
Conference, pages 36–54. Springer, 2000.

[25] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas. Communication-efficient learning of
deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273–1282, 2017.

[26] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft. Privacy-preserving ridge
regression on hundreds of millions of records. In 2013
IEEE Symposium on Security and Privacy, pages
334–348. IEEE, 2013.

[27] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow,
and K. Talwar. Semi-supervised knowledge transfer
for deep learning from private training data. arXiv
preprint arXiv:1610.05755, 2016.

[28] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and
S. Moriai. Privacy-preserving deep learning via
additively homomorphic encryption. IEEE
Transactions on Information Forensics and Security,
13(5):1333–1345, 2018.

[29] W. Ruan, X. Huang, and M. Kwiatkowska.
Reachability analysis of deep neural networks with

1861

provable guarantees. In Proceedings of the 27th
International Joint Conference on Artificial
Intelligence, pages 2651–2659. AAAI Press, 2018.

[30] K. Saranya, K. Premalatha, and S. Rajasekar. A
survey on privacy preserving data mining. In 2015 2nd
International Conference on Electronics and
Communication Systems (ICECS), pages 1740–1744.
IEEE, 2015.

[31] R. Shokri and V. Shmatikov. Privacy-preserving deep
learning. In Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security,
pages 1310–1321. ACM, 2015.

[32] M. K. Simon. Probability distributions involving Gau
ssian random variables: A handbook for engineers and
scienti. 2006.

[33] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna,
D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[34] J. Vaidya and C. Clifton. Privacy preserving
association rule mining in vertically partitioned data.
In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 639–644. ACM, 2002.

[35] J. Vaidya, M. Kantarcıoğlu, and C. Clifton.
Privacy-preserving naive bayes classification. The

VLDB Journal, 17(4):879–898, 2008.

[36] Q. Wang, M. Du, X. Chen, Y. Chen, P. Zhou,
X. Chen, and X. Huang. Privacy-preserving
collaborative model learning: The case of word vector
training. IEEE Transactions on Knowledge and Data
Engineering, 30(12):2381–2393, 2018.

[37] W. K. Wong, D. W.-l. Cheung, B. Kao, and
N. Mamoulis. Secure knn computation on encrypted
databases. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data,
pages 139–152. ACM, 2009.

[38] D. Wu and J. Haven. Using homomorphic encryption
for large scale statistical analysis, 2012.

[39] A. C.-C. Yao. How to generate and exchange secrets.
In 27th Annual Symposium on Foundations of
Computer Science (sfcs 1986), pages 162–167. IEEE,
1986.

[40] J. Yuan and S. Yu. Privacy preserving
back-propagation neural network learning made
practical with cloud computing. IEEE Transactions on
Parallel and Distributed Systems, 25(1):212–221, 2014.

[41] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and
M. Winslett. Functional mechanism: regression
analysis under differential privacy. very large data
bases, 5(11):1364–1375, 2012.

1862

