
SmartBench: A Benchmark For Data Management
In Smart Spaces

Peeyush Gupta, Michael J. Carey, Sharad Mehrotra, Roberto Yus
University of California, Irvine

peeyushg@uci.edu, mjcarey@ics.uci.edu, sharad@ics.uci.edu, ryuspeir@uci.edu

ABSTRACT
This paper proposes SmartBench, a benchmark focusing
on queries resulting from (near) real-time applications and
longer-term analysis of IoT data. SmartBench, derived from
a deployed smart building monitoring system, is comprised
of: 1) An extensible schema that captures the fundamentals
of an IoT smart space; 2) A set of representative queries
focusing on analytical tasks; and 3) A data generation tool
that generates large amounts of synthetic sensor and seman-
tic data based on seed data collected from a real system. We
present an evaluation of seven representative database sys-
tems and highlight some interesting findings that can be
considered when deciding what database technologies to use
under different types of IoT query workloads.

PVLDB Reference Format:
Peeyush Gupta, Michael J. Carey, Sharad Mehrotra, Roberto
Yus. SmartBench: A Benchmark For Data Management In Smart
Spaces. PVLDB, 13(11): 1807-1820, 2020.
DOI: https://doi.org/10.14778/3407790.3407791

1. INTRODUCTION
The emerging IoT revolution [14] promises to impact al-

most every aspect of modern society. In an IoT setting, sen-
sors help create a fine-grained digital representation of the
evolving physical world, which can be used to implement
new functionalities and/or bring transformative improve-
ments to existing systems. Central to IoT applications is the
database management system (DBMS) technology that can
represent, store, and query sensor data. Given the impor-
tance of IoT, a multitude of DBMSs, whether they be stan-
dard relational systems, key-value stores, document DBs, or
specialized systems such as time series stores, have begun
branding themselves as being suitable for IoT applications.

IoT systems pose special requirements on DBMSs. IoT
data can be voluminous and is often generated at high speeds
– a single smart phone contains dozens of sensors may gen-
erate data continuously every few seconds, a medium office
building has several thousand HVAC sensors producing data
at a similar rate, and a university/office campus may consist
of several hundred thousand of such sensors. Sensor data is

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407791

typically time-varying arrays of values and queries over sen-
sor data involve temporal operators and aggregations. In a
typical IoT setting, the underlying DBMS has to process ob-
servations captured from heterogeneous sensors (e.g., cam-
eras, thermal sensors, GSR sensors, wearable technologies,
etc.) each producing data with different structure.

Finally, the sensor data is often too low-level for being
useful for the final applications directly and needs to be en-
riched/translated into higher-level semantic inferences. For
instance, to provide personalized thermal comfort, an appli-
cation may need to know the occupancy of different parts
of a building, which may need to be inferred from diverse
sensors including camera data, WiFi connectivity informa-
tion, door sensors, and bluetooth beacons. Such interpre-
tation is often performed using complex machine learning
algorithms [35] outside the database system.

While different DBMSs provide different functionalities,
none provide a comprehensive solution to the above chal-
lenges. Big Data management technologies built on top
of cluster computing frameworks (e.g., Hive [45], Spark-
SQL [19]), provide efficient ways to run complex OLAP
queries on large amounts of data spanning multiple ma-
chines. However, they fail to do well on fast data ingestion,
simple selections, and real-time queries. In contrast, stream
processing systems like Apache Kafka [1], Storm [2], and
Flink [22] provide faster response times on window-based
continuous and real-time queries but do not perform well on
historical data queries. Relational database systems, such
as PostgreSQL [9], make use of indices and better join and
aggregation operator implementations, but they do not scale
well when the data becomes large and inherently do not sup-
port storage of heterogeneous data. Document stores like
MongoDB [8], Couchbase [3], and AsterixDB [16] have an
applicable logical data model and can easily store hetero-
geneous data, but do not provide special support for time-
series data. Specialized time series database systems, such
as InfluxDB [7] and GridDB [5], provide fast ingestion rates
and fast selection on time ranges but they fail to support
complex queries. IBM DB2 event store [6] is an in memory
database that provides a very fast ingestion rate along with
streaming data analysis capabilities.

The DB community has traditionally relied on bench-
marks to understand the trade-offs between different DBMSs
(e.g., the TPC-H [24] benchmark has been widely adopted
by both industry and academia). In recent years, IoT DB
benchmarks have begun to appear (e.g., [17, 18, 25, 34, 41,
42]) but the focus of such benchmarks has been on compar-
ing systems based on fast ingestion of streaming sensor data.
While ingestion is critical, IoT settings also require DBMSs

1807



to support one-shot queries over IoT data both for real-time
applications and for data analysis.

We present SmartBench1, a benchmark focusing on eval-
uating DBMSs for their suitability in supporting both real-
time and analysis queries in IoT settings. SmartBench, de-
rived from a real-world smart building monitoring system
(currently deployed in several smart buildings of the cam-
pus of the University of California, Irvine [12]) is comprised
of an IoT data model, a set of representative queries, and
a tool to generate synthetic IoT datasets. The schema cap-
tures the main concepts related to IoT environments and
is, thus, extensible to different environments. It supports
heterogeneity of sensors by using a semi-structured repre-
sentation that can be mapped to the data model supported
by the underlying DBMS. It also presents several mappings
of such a representation to underlying DBMSs.

To provide a holistic view of the efficiency and capabili-
ties of different DBMSs in supporting real-life IoT systems,
SmartBench includes a mixed set of eleven representative
queries that arise when transforming low-level sensor data
into semantically meaningful observations (e.g., as a result
of data enrichment during insertion), as a result of appli-
cations running on IoT data in real time, and during IoT
data analysis. In addition, we include a mixed query work-
load that includes online insertions of sensor data as well
as queries. Finally, SmartBench includes a tool to generate
synthetic IoT datasets of different sizes based on real data
used as a seed. The tool preserves the temporal and spatial
correlations of the generated data, as this is important in
order to evaluate systems in a realistic environment.

While SmartBench is based on a smart building context,
it can be applied to other IoT systems as well because of
its flexible schema which divides an IoT space into data,
domain and device layers. We provide detailed performance
results and an analysis of the performance of seven represen-
tative database systems (covering different technologies such
as time series and specialized databases, relational DBs, doc-
ument stores, and cluster computing frameworks). We test
scalability (both scale up and scale out) of different DBMSs
by comparing their performance under different data loads
for a single node as well as a multi-node setup. From the
results we have affirmed the intuition of a lack of a silver
bullet. However, we have seen that some issues of special-
ized databases with respect to more traditional approaches
(like the lack of support for complex operations) can be mit-
igated through external code that for typical IoT operations
can perform adequately. We conclude with some interesting
key observations that can help IoT system developers select
DB technology(ies) for their data management needs and
guide future DB developers to support such needs.

2. RELATED WORK
Widely used benchmarks, such as TPC-H [24] and TPC-

DS [37], for analytical data processing and OLAP, and TPC-
C [13] for OLTP, focus on traditional data management sce-
narios and do not address challenges posed by IoT environ-
ments. This has led to several new benchmarking efforts.

IoT benchmarks. The TPCx-IoT [41] benchmark was in-
troduced for IoT gateway systems. The TPCx-IoT data
model is based on modern electric power stations with more

1
See http://github.com/ucisharadlab/benchmark for SmartBench

(code/data generation tool) and a longer version of this paper.

than 200 different sensor types. Its workload consists of con-
current inserts and simple range queries on recent data and
does not include more complex queries (e.g., none involving
joins). IoTABench [18] focuses on a smart meter use case
and includes queries that focus on mainly on computations
in such a scenario (e.g., bill generation). RIotBench [42]
is based on real world IoT applications that aims at eval-
uating systems using streaming time-series data workload.
Neither RIoTBench nor IoTABench consider the OLAP as-
pects of an IoT system focusing instead on data ingestion,
streaming data, and continuous queries. Finally, Dayal et
al. [25] presented a proposal for a big data benchmark, with
an IoT industrial scenario as a motivation, which is similar
in nature to ours. Their benchmark design includes rep-
resentative queries for both streaming and historical data,
ranging from simple range queries to complex queries for
such industrial IoT scenarios. However, they did not pro-
vide an implementation of the benchmark and hence, there
is no comparison of different database systems.

Big Data and streaming benchmarks. Some of the
challenges of IoT data management are present in other re-
lated areas such as Big Data and streaming. Benchmarks
measuring the performance of stream processing engines,
like Linear Road (single node streaming) [17] and Stream-
Bench (distributed streaming) [34], are focused on testing
the performance of real-time data insertion/processing and
queries. Nexmark [46] is a streaming benchmark that in-
cludes analytical queries on streaming data, but it is based
on online auction data and does not capture queries run
in an IoT system. Big Data benchmarks [27, 40, 47, 32]
compare systems on their ability to process a large vol-
ume of heterogeneous data. BigBench [27] provides a semi-
structured data model along with a synthetic data generator
that mimics the variety, velocity, and volume aspects of big
data systems. BigBench queries cover different categories of
big data analytics from both business and technical perspec-
tives. BigFUN [40] is based on a synthetic social network
scenario with a semi-structured data model. HiBench [32]
and BigDataBench [47] compare systems performance for
analyzing semi-structured big data, including testing the
systems’ ability to efficiently process operators like sort, k-
means clustering, and other machine learning algorithms in
a map/reduce setting. YCSB [23] is a collection of micro-
benchmarks with a workload containing various combina-
tions of read/write operations (both random and sequential)
and access distributions; it is representative of simple key-
value store applications. It is mostly used for benchmarking
distributed key/value storage systems. SmartBench, on the
other hand, focuses on benchmarking systems under an IoT
based system workload. Furthermore, along with simple
reads and writes, SmartBench compares database systems
on complex queries including joins and aggregations. IoT
systems have to deal with the amalgamation of both the
challenges of running analytical queries on historical data
(big data benchmarks) and testing insertions and queries on
recent data (streaming data benchmarks). This combination
is not addressed by the previously described benchmarks.

3. SMARTBENCH BENCHMARK
We begin discussion of SmartBench by first highlighting

the goals that guided our design. SmartBench is designed
to explore data management needs of pervasive sensing en-
vironments, where a single smart space may house a large
variety of sensors ranging from video cameras, microphones,

1808



thermostats, beacons, and even WiFi Access Points (which
can sense which devices are connected to them). Sensors
may overlap in the type of physical phenomena they can
sense E.g., one can determine the occupancy of a location
using connectivity of devices to a WiFi access point. Occu-
pancy can also be estimated based on temperature or power
draw (e.g., number of power outlets connected to devices).
It can also be estimated using the number of times a motion
sensor in front of an entrance trips, or by using people coun-
ters. Each of these sensor modalities have their advantages
and disadvantages from the perspective of applications.

Challenge 1: DB technology must provide mechanisms
for the dynamic addition/deletion of new sensor types with-
out requiring the system to stop. The system must support
the ability to store and query data from sensors of newly
added types. In designing our benchmark, we took into
account such heterogeneity by including a general and ex-
tensible schema that enables generation of different types of
sensors. The schema is mapped to the underlying DBMS
based on the data model supported by the system.

In general, data captured by sensors is too low-level for
applications. In the occupancy estimation example, sensor
data needs to be enriched to generate the right semantic
observations. For instance, if a camera is used for occu-
pancy resolution, an image processing mechanism to count
the number of people must be used in conjunction to deter-
mine occupancy. Occupancy might also require merging sev-
eral sensor modalities using appropriate fusion algorithms.

Challenge 2: DB technology must provide efficient ways
to support data enrichment. In general, data enrichment
requires the use of specific functions that are executed fre-
quently and can improve the efficiency of the task if executed
directly in the database. For example, to compute the lo-
cation of a person carrying a smartphone connected to the
WiFi network, one would require a function such as sensor
coverage which returns the geometric area that a sensor can
observe. In our benchmark we have designed queries that
encapsulate some of these typically required functionalities.

In smart environments, key concepts/entities are those of
space and people immersed in the space, and most analytic
applications revolve around discovering/analyzing relation-
ships between people or between a person and the space.
Such analysis can involve real-time data (e.g., current occu-
pancy of the building) or historical data (e.g., average occu-
pancy over weekends for the past 6 months), or both (e.g.,
a continuous query that checks when the current occupancy
is higher than average over the past duration).

Challenge 3: DBMSs need to support a wide range of
applications with different demands ranging from simple
queries over recent data to fairly complex analysis of his-
torical data. Also, such queries might involve querying raw
sensor data as well as abstractions built on top of raw data.
This can result in complex queries on the higher-level semi-
structured data model, where typical DB operations like
joins and aggregation can be desirable. In our benchmark we
have included queries of this kind, including those required
for both real-time and analytical applications.

3.1 SmartBench Schema
The schema used in SmartBench is based on the Observ-

able Entity Relationship (OER) Model [36] which, in turn,
is based on SensorML [21]. OER is an extensible model
that allows incorporating new/heterogeneous types of sen-
sors, observations, spaces, and users. SmartBench complete

data model is specified in a longer version of this paper [10].
In the following, we highlight key entities and concepts in a
smart space categorized into three interrelated layers.

Device Layer. Devices (aka, sensors and actuators) can,
in general, be either physical or virtual. Physical sensors
are real devices that capture real-world observations to pro-
duce raw data, whereas Virtual sensors are functions that
take data from other sensors (physical or virtual) to gener-
ate higher-level semantic observations. A virtual sensor to
detect the presence of people in the space, for instance, can
use observations generated by physical sensors (e.g., images
and connectivity of different MAC addresses to WiFi APs).
Virtual sensors can be significantly more complex and may
even include classification tasks based on machine learning
models on past and streaming data.

Each sensor has attributes type, which dictates the type
of observation the sensor generate, and coverage, which cor-
responds to the spatial region in which the sensor can cap-
ture observations. For physical sensors, coverage is modeled
deterministically [49] and simplified as a function of its loca-
tion - e.g., the coverage of a camera is its view frustum. For
virtual sensors, coverage is a function of the coverage of the
sensors used as their input - the exact function depends upon
the specificity of virtual sensor. For example, the coverage
of the presence detector (that determines location of people
in the immersed space) based on camera inputs is the union
of the view frustums of all the input cameras. Each physical
sensor has a location and each virtual sensor has a property,
transformer code, corresponding to the function applied to
input sensor data to generate semantic observations.

Observation Layer. Sensors generate observations which
are the units of data generated by a sensor. Physical sensors
generate raw observations, whereas, virtual sensors generate
semantic observations that correspond to a higher-level ab-
straction derived from raw observations. For example, a
camera feed provides raw observations, whereas, the inter-
pretation from the camera feed that a subject “John” is in
“Room 2065” is a semantic observation. Services/applica-
tions are typically significantly easier to build using seman-
tic observations (compared to raw observations) since one
does not need to interpret/extract such observations from
raw data repeatedly in application logic. Instead, such an
abstraction is explicitly represented at the database layer.

All observations have a timestamp and a payload, which
is the actual data (e.g., an image or an event). Semantic
observations also have an associated semantic entity, which
is the entity from the domain layer to which the semantic
observation is related (e.g., a person or a space).

Domain Layer. This layer is comprised of the spatial ex-
tent of the smart space and information about subjects who
inhabit it. Both of these concepts are inherently hierar-
chical, with the hierarchy representing granularity (e.g., a
campus may consist of buildings, which have floors, which,
in turn, are divided into rooms and corridors; likewise peo-
ple are divided into groups – such as faculty, students, etc.).
Domain entities have associated attributes which are clas-
sified as static or dynamic. These attributes, introduced in
the W3C SSN ontology [15], model relevant and high-level
information that smart applications would require about
the space itself (e.g., its structure and functioning) or peo-
ple within. Static attributes (e.g., the name of a room or
a person, the type associated with rooms such as meet-
ing room/office) are typically immutable, while dynamic at-

1809



tributes (e.g., the occupancy or temperature of a room, the
location of a person) change with time. Dynamic attributes
are observable if they can take (physical or virtual) sensor
input to determine their value. Observable attributes are
mapped to sensors using a function (inverse coverage) that
given an entity (i.e., users/spaces), the type of observations
required, and time, returns a list of sensors that can generate
observations of the required type observing the required en-
tity at the required time. For instance, Inv Coverage(Room
2065, t1, occupancy) will return a set of (virtual) sensors
that can output the occupancy of Room 2065 at time t1.

To implement the above model in a DBMS, one needs to
map the appropriate concepts (viz., domain entities, sensors,
observations, etc.), into database objects. These mappings
are database dependent, as we will explain in Section 3.4.

3.2 Queries & Insert Operations
The benchmark consists of twelve representative queries

motivated by the the need to support diverse applications
as mentioned in Section 3. The first six queries are on raw
sensor data (selected to support different building adminis-
tration tasks, as well as queries needed by virtual sensors
to generate semantically meaningful data). The next four
queries are on higher-level semantic data (viz., on the pres-
ence of people in the space and occupancy of such spaces)
and are chosen to represent different important functionali-
ties provided by applications. The last two queries capture
window-based operations and continuous queries. Almost
all of the queries have a time range predicate specified, as
would be expected of queries in the IoT domain. Below, we
describe the queries and rationale behind their selection.
• (Q1) Coverage(s ∈ Sensors): returns the coverage of a
given sensor s. Such queries are posed every time raw sensor
data is transformed into semantic observations.
• (Q2) InverseCoverage(L, τ), where L is a list of lo-
cations, and τ is a sensor type: lists all sensors that can
generate observations of a given type τ that can cover the
locations specified in L. Inverse coverage is computed ev-
ery time we execute a query over semantic observations that
have not been pre-computed from raw sensor data. Given
the rate at which sensor data is generated and the number
and complexity of domain specific enrichments, it may not
be feasible to apply all enrichments at the time of data in-
gestion. In such a case, enrichments have to be computed on
the fly, requiring inverse coverage queries to first determine
the sensor feeds that need to be processed.
• (Q3-Q4) Observations(S ⊆ Sensors, tb, te): selects
observations from sensors in the list of sensors S during the
time range [tb, te]. We differentiate between two instantia-
tions of this query. Observation queries with a single sensor
in S are referred to as Q3. Such queries arise when ap-
plications need to create real-time awareness based on raw
sensor data (e.g., continuous monitoring of the temperature
of a region). Observation queries when S contains several
distinct sensors (often of different types) are referred to as
Q4. Q4 arises for a very different reason – as a result of
merging several sensor values (using transformation code)
to generate higher-level observations. Since the two types
of queries arise for different reasons, and (as we will see)
their performance depends upon how we map data into the
database, we consider the two queries separately.
• (Q5) C Observations(τ , cond, tb, te): selects observa-
tions generated by sensors of given type τ in the time range
[tb, te] that satisfy the condition cond, where cond is of the

form 〈attr〉 θ 〈value〉, attr is a sensor payload attribute,
value is in its range, and θ is a comparison operator, e.g,
equality. Such queries often arise in large-scale monitoring
applications of multiple regions, e.g., monitoring spaces for
abnormal (too high/low) temperatures.
• (Q6) Statistics(S ⊆ Sensors, A, F , tb, te): retrieves
statistics (e.g., average) based on functions specified in F
during the time range [tb, te]. The statistics are generated
by first grouping the data by sensor, and further by the
value of the attributes in the list A. For instance, a query
might group observations on sensor id and day (which is a
function applied to timestamp) and compute statistics such
as average. Such a query is important to build applications
that provide the building administrator information about
the status of sensors (e.g., if the sensors are generating too
much data or none at all, discovery of faulty sensors).
• (Q7) Trajectories(tb,te, lb, le): retrieves the names of
users who went from location lb to location le during the
time interval [tb, te]. Such queries arise in tasks related to
optimizing building usage, e.g., for efficient HVAC control,
janitorial service planning, graduate student tracking, etc.
• (Q8) CoLocate(u ∈ Users, tb, te): retrieves all users
who were in the same Location as user u during the spec-
ified time period. Any application involving who comes in
contact with who in which location (e.g., to construct spatio-
temporal social networks) runs such a query on the historical
presence data of users.
• (Q9) TimeSpent(u ∈ Users, η, tb, te): retrieves the
average time spent per day by subject u in locations of type
η, (e.g., meeting rooms, classrooms, office, etc.) during the
specified time period. This query arises in applications that
provide users with insight into how they spend their time
on an average during the specified period.
• (Q10) Occupancy(L, ∆t, tb, te): retrieves the occu-
pancy level for each location in the list L every ∆t units
of time within the time range [tb, te]). This query is the
direct result of a requirement to visualize graphs that plot
occupancy as a function of time for different rooms/areas.
• (Q11) Occupancy Smoothing(L, tb, te): retrieves the
smoothed out occupancy levels for each location in the list
L, within the time range [tb, te]). The smoothing is done
by taking average of last 10 occupancy level after subtract-
ing minimum and maximum occupancy level out of the 10
readings. This query produces a smooth and easy to follow
occupancy graph to the end-users.
• (CQ) Continuous Query(η, α, β): retrieves, after ev-
ery α seconds (hop size), the minimum, maximum, and av-
erage occupancy levels of locations of type η in the last β
seconds (window size). This is a continuous query which is
executed as the data is being ingested into the database.
• (I) Insert(s ∈ Sensors, t, payload): inserts a sensor
observation at time t into the database.
• (IE) Insert&Enrich(s ∈ Sensors, t, payload, params):
takes as input (raw) sensor observations and mimics execu-
tion of an enrichment pipeline to generate and insert se-
mantic observations. Such a pipeline typically consist of a
sequence of operations. Based on the type of data, it first
identifies the set of enrichment functions that need to be
invoked. Each of those functions, may result in one or more
queries over both metadata or data (e.g., queries of types
Q1-Q5). For instance, to transform a WiFi connectivity
event (indicating that a given device connected to a specific
AP at a given time) a query of type Q1 may be executed
to determine location of the AP following which sensor data

1810



from neighboring APs about the device (or other devices)
might be accessed (queries of type Q3-Q5) to predict the
semantic location (e.g., the room) in which the owner of the
device might be. Likewise, for a camera sensor, image seg-
mentation and face recognition may need to be performed
to determine the identity of a person in the view. Since
enrichment functions (e.g., face recognition, location deter-
mination, etc.) are performed outside of the DBMSs [48],
the choice of specific enrichment function does not influence
suitability of a DB technology to IoT application. We simply
model the I&E pipeline as a sequence of queries followed by
a busy wait (to mimic an execution of the enrichment func-
tion), followed by an insertion of the semantic observation.
The specific queries generated in the pipeline and the wait
time are parameters which are input to the IE function.

The set of queries listed above represents an important
functional aspect of building smart space applications that
have been motivated by the campus-level smart environment
that we have built at UCI. Note that these queries represent
sample IoT data management tasks involving operations in-
cluding selections, joins, aggregations, and sorting.

3.3 Data And Query Generator
Benchmarks typically offer tools to generate datasets of

varying size to test systems in different situations [29, 43,
31, 44, 30, 18]. SmartBench’s data generation tool2 uses
seed data from a real IoT deployment (our University build-
ing) including sensor data and metadata about the build-
ing and sensors, which is able to scale up/down to create
a synthetic dataset. The tool can scale the IoT space (i.e.,
number of rooms, people, sensors) as well as sensor data
(i.e., number of observations per second, time period during
which the sensors produce data, etc.). The tool preserves
temporal and spatial correlations in the seed data to sup-
port realistic selection and join queries. We developed our
data generation tool, rather than using a uniform distribu-
tion for every attribute independently, since we aimed at
comparing different DBMSs with more realistic data (for a
smart space setting). The data patterns (e.g., variation of
the occupancy values between the day time and the night
time, variation in the number of WiFi connections at differ-
ent points of time) affect the execution time of queries based
on the query parameters. To maintain a fair comparison, we
execute exactly the same instances of queries on the same
data for each DBMS. We do not aim at characterizing types
of smart space data based on the patterns it contains.

In addition, the tool also generates an actual query work-
load based on the query templates described above. Its input
is the already generated metadata and a configuration file
containing different parameters. All of the queries except Q1
and Q2 include a time range based filter [tb, te]. tb is selected
at random from the range [Tb, Te] where Tb and Te are the
minimum and maximum timestamp of the entire observa-
tion dataset, respectively, and te is selected at random from
the range [tb +δa, tb +δb] where values for δa and δb are pro-
vided in the configuration file. List based query parameters,
e.g., the list of sensors in query Q4 and Q6 and the list of
locations in query Q10, are generated by randomly picking
(without replacement) n elements from the already gener-
ated metadata; n itself is selected at random from the range
[na, nb], where na and nb are provided in the configuration

2
An extended explanation of the tool, including configuration pa-

rameters supported, is available in [10].

file. Scalar parameters like user u in query Q8 are selected
at random from the available values in the metadata.

3.4 Model Mapping
There are several ways in which the schema in Section 3.1

can be represented in the underlying DBMS. We explore
multiple mappings of IoT data to the underlying databases,
which are broadly characterized based on how sensor data
is stored in the database: (A) Single table for observations
from all sensors; (T) Multiple tables with one per sensor
type; and (S) Multiple tables with one per sensor instance.

Figure 1: Mappings for docu-
ment stores (A1 and A2).

A given mapping ap-
proach can be simple
and reasonable to ap-
ply on some database
systems, while difficult
or unnatural for oth-
ers. With PostgreSQL,
mapping T is straight-
forward, while mapping
A can be applied us-
ing its JSON data type
(although not intuitively
since the JSON type is
stored as a BLOB). Map-
ping S is not practical since it would create a very large
number of tables. Since CrateDB support structured data,
mapping T is most natural while A can again be applied us-
ing a JSON data type since CrateDB internally store data
in the form of documents. For document stores (e.g., Aster-
ixDB and MongoDB), mapping A is the most natural due to
their support for a semi-structured data model). We gener-
ate two distinct strategies for document stores (see Figure 1
for examples of both) – a Sub-Document Model (A1), where
each observation is stored as a nested document by embed-
ding related data together (however, since complete nesting
can create very large documents, we only nested those at-
tributes that can help in reducing the number of joins), and
a second Normalized Model (A2) where each observation is
stored as a fully normalized document, where every relation-
ship is modeled as a reference between two documents.

Timeseries databases such as InfluxDB and GridDB do
not support JSON and hence cannot support mapping A
directly. However, as mentioned in Section 4, GridDB pro-
vides two types of fixed schema containers, general pur-
pose and time series only (time stamp as primary key).
We can use the general purpose containers to store obser-
vations/semantic observations from each type together in
one container (though, a container in GridDB can not be
partitioned and therefore this model will not scale well for
GridDB). Also, for GridDB, mapping S can be realized us-
ing its specialized time series container for storing sensor
data, where observations/semantic observations from a sin-
gle sensor can be stored in a separate time series container.
InfluxDB stores time series data in terms of data points. A
point is composed of: a measurement, a list of tags (each
tag is a key value pair used for storing metadata about the
point), a list of fields (each field is a key value pair use
for storing recorded scalar values), and a timestamp. Tags
are indexed in InfluxDB but fields are not. Related points
having different tag lists but generating the same types of
readings can be associated into a measurement (synonymous
with a SQL table). We create separate measurements for
different sensor types and store Observations/Semantic Ob-

1811



Table 1: Different DBMS and their capabilities.
DBMS Secondary

Indexes
Joins Agg-

regation
Column/
Row Store

Structured/
Semi-Structured

Compression Storage Struc-
ture

Query Lan-
guage

PostgreSQL Yes Yes Yes Row Structureda No In-place updateb SQL
AsterixDB Yes Yes Yes Row Semi-Structured Noi LSM SQL++
MongoDB Yes Yesc Yes Row Semi-Structured Block In-place updateb MongoDB QL
GridDB Yes No No Row Structured Block In-place updateb TQLd

CrateDB Yese Yes Yes Column Structureda No Inverted Index SQL
SparkSQL No Yes Yes Column Structureda Columnarh Dataframes SQL
InfluxDB Nof No Yes Column Structured Columnar TSMg InfluxQLd

aprovides a JSON column type to store semi-structured data, bheap files supported by BTree indexes, conly with an unsharded collection,
dsubset of SQL, erequires index on every column used in where clause, f tags are implicitly indexed but the values cannot be indexed, gTSM
(time structured merge trees) are similar to LSM trees and store data in read-only memory-mapped files similar to SSTables, however these files

represents block of times and compactions merge blocks to create larger blocks of time, h Parquet files on HDFS, iAsterixDB recently added
support for compression that will be generally available in its next release.

servations of different types in different measurements. In-
fluxDB does not provide any means of storing non-time se-
ries data, so we cannot apply any mapping other than map-
ping T and we cannot store all of the metadata. Hence, we
store the building metadata in a PostgreSQL database when
using InfluxDB. This metadata is fetched from PostgreSQL
database whenever it is required by the application.

4. DATABASE SYSTEMS
To evaluate a wide range of database technologies in sup-

porting analytic workloads on IoT data, we broadly classify
systems into four categories: traditional relational database
systems, timeseries databases, document stores, and cluster
computing based systems. For our experiments, we selected
representatives from each category to cover a wide range
of data models, query languages, storage engines, indexing
strategies, and computation engines (see Table 1). Our main
considerations in selecting a particular DBMS were that it:
(a) Provides a community edition widely used for managing
and analyzing IoT data at many institutions; (b) Is popular
based on its appearance on the DBEngine website [4]; or
(c) Is advertised as specialized timeseries database system
optimized for IoT data management.

In our selection, we did not restrict systems based on their
specific underlying data model or their query language. We
appropriately convert our high-level data model and corre-
sponding queries to the data model and query language sup-
ported by the database system. In IoT use cases, the sensor
data is typically append only and updates are applied only
to the metadata. We, therefore, require database systems to
support atomicity at the level of single row/document but
do not require or use multi-statement transactions. For the
systems that provide stricter transaction consistencies, we
set the weakest consistency level that provides atomic sin-
gle row/document insert so that database locking would not
affect the performance of the inserts and queries.

Relational database systems. From this category, we
chose PostgreSQL since it is open source, robust, and ANSI
SQL compatible. PostgreSQL supports a cost-based opti-
mizer and also supports a JSON data type, which is useful
in storing heterogeneous sensor data. PostgreSQL has a
large user base with many deployments for IoT databases.

Timeseries database systems These systems are opti-
mized to support time varying data, often generated by ma-
chines, including sensor data, logs, events, clickstreams, etc.
Such data is often append-only, and timeseries databases
are designed to support fast ingestion rates. Furthermore,
time series databases support fast response times for queries
involving time-based summarization, large range scans, and
aggregation over both real-time or historical data. We se-
lected two time series database systems in our benchmark
study: (a) InfluxDB, which is the most popular timeseries
database at present (according to the DBEngine ranking [4]).
Along with the typical requirements for handling time series

data, InfluxDB provides support for various built-in func-
tions that can be called on time series data. It has support
for retention policies to decide how data is down sampled or
deleted. It also supports continuous queries that run period-
ically, computing target measurements. (b) GridDB, which
is a specialized time series database. We selected GridDB
because it has a unique key-container data model. The data
in the container has a fixed schema on which B-tree based
secondary indexes can be created. The container is synony-
mous with a table in relational database system on which
limited SQL functionality is available. GridDB, however,
does not provide support for queries that involve more that
one container, disallowing aggregation over more than one
time series. Containers can be either general purpose or
time series only containers. Time series containers have a
time stamp as the primary key and provide several functions
to support time-based aggregation and analysis.

Document stores. We selected two document stores as
representatives of this category for our evaluation: (a) Mon-
goDB, which is one of the most popular open source docu-
ment stores that supports flexible JSON-like documents that
can directly be mapped to objects in applications. Mon-
goDB provides support for queries, aggregation, and index-
ing. It has sharding and replication built in to provide high
availability and horizontal scaling. MongoDB supports mul-
tiple storage engines. In this study, we used MongoDB with
WiredTiger, which is the default storage engine and sup-
ports B-tree indexes and compression (including prefix com-
pression for indexes). (b) AsterixDB, which, much like Mon-
goDB, stores JSON-like documents. It, however, supports
many more features including a powerful semi-structured
query language SQL++[38] (which is similar to SQL but
works for semi structured data). AsterixDB is designed for
cluster deployment and supports joins and aggregation op-
erations on partitioned data through a runtime query execu-
tion engine that does partitioned-parallel execution of query
plans. AsterixDB has LSM-based data storage for fast in-
gestion of data and it supports B-tree, R-tree, and inverted
keyword based secondary indexes. It can also be used for
querying and indexing external data (e.g., in HDFS).

Cluster computing frameworks like Hadoop and Spark
provide distributed storage and processing of big datasets.
Database query layers like Hive & SparkSQL, built on top,
provide SQL abstraction to applications to increase porta-
bility of analytics applications (usually built using SQL) to
cluster computing environments. We selected SparkSQL as
a representative of this group. SparkSQL uses columnar
storage and code generation to make queries fast. Since it
is built on top of the Spark core engine, it can also scale to
thousands of nodes and can run very long queries with high
fault tolerance. These features are intended to make the
system perform well for queries running on large volumes of
historical data (business intelligence, data lakes).

1812



Table 2: Summary table with pros and cons of different database technologies.
DBMS Technology Pros Cons Systems Impacts
Semi-structured data model Flexible schema No standard query lan-

guage
AsterixDB, MongoDB Mapping

Structured Model Well established with stan-
dard query language (SQL)

Difficult to model com-
plex and dynamic data

PostgreSQL, CrateDB, SparkSQL,
GridDB, InfluxDB

Mapping

Full SQL or similar lan-
guage support

No need to implement ap-
plication level operators

None PostgreSQL, CrateDB, SparkSQL,
AsterixDB

Ease of use

Row Storage Faster Inserts Slower OLAP queries PostgreSQL, AsterixDB, MongoDB,
GridDB

I

Columnar Storage Faster OLAP queries Slower Inserts CrateDB, SparkSQL, InfluxDB Q6-Q10
LSM/TSM Trees Faster writes Slower reads AsterixDB, InfluxDB, SparkSQL I
Secondary Indexes Faster reads Slower writes PostgreSQL, MongoDB, AsterixDB,

GridDB, InfluxDB, CrateDB
Q1-Q10

Specialized Timeseries
Databases

Fast inserts, fast selection
and other simple queries

Limited functionality
(no support for JOIN)

GridDB, InfluxDB Q3-Q5

Sharding And Distributed
Query Engine

Important for scaling out None AsterixDB, MongoDB, CrateDB,
SparkSQL, InfluxDB

Scale Out

Other database systems. We also chose CrateDB, which
is advertised as a SQL database for timeseries and IoT ap-
plications but does not fit the criteria for a specialized time
series database system. CrateDB supports a relational data
model for application developers but internally stores data
in the form of documents supporting JSON as one of the
data types. However, along with storing documents as is,
CrateDB stores data in columnar format as well. Its dis-
tributed query engine provides full SQL support along with
other time based functions. CrateDB is built on top of Elas-
ticSearch [28] and therefore naturally supports inverted in-
dexes, although it has no support for B-tree based indices.

Table 2 lists our apriori expectations regarding the impact
of the DB technology choice on the performance of different
queries based on factors such as row versus column based
storage, support for LSM/TSM trees, temporal predicates,
indexing mechanisms, query optimization and processing.
The last column in the table lists our expectation on how
each technology impacts different aspects of the benchmark.
For instance, the choice of underlying data model (semi-
structured/structured) would affect how SmartBench data
model is mapped to the underlying data model supported
by the database system, and the usability of the system.

5. EXPERIMENTS AND RESULTS
Dataset and queries. We used the data generator tool

with seed data from a real IoT data management system,
TIPPERS [12], deployed in the DBH building at UC Irvine.
DBH is equipped with various kinds of sensors including 116
HVAC data points (e.g., vents and chillers), 216 thermome-
ters, 40 surveillance cameras, 64 WiFi APs, 200 beacons;
there are also 50 outlet meters that measure the energy
usage of members of the ISG research group. The TIP-
PERS instance has been running for two years and has col-
lected over 200 million observations from these sensors. This
data also includes higher-level semantic information gener-
ated through virtual sensors about the presence of people
within the building and occupancy levels.

We specifically used as seed TIPPERS data for one week
from 340 rooms, observations from three types of sensors –
64 WiFi Access Points, 20 plug meters, and 80 thermometers–
and semantic observations about location of people and oc-
cupancy of rooms. With this seed we generated three datasets
with different sizes (see Table 3). The query parameters were
also generated using SmartBench’s generation tool. We con-
trolled the query selectivity by restricting the time range to
be 1 day < te− tb < 4 days for the base experiments (larger
periods of time were used in an experiment to test the im-
pact of query selectivity on the systems’ performance). The
complete list of the query generation parameters used can be
found in the extended version at [10]. For each benchmark
query template, we generated 25 query instances with dif-
ferent parameters. We ran each generated query instance on

every DBMS sequentially and their average execution time
along with the variance is reported.

Database System Configuration. We used MongoDB
CE v3.4.9, GridDB SE v3.0.1, AsterixDB v0.9.4, PostgreSQL
v11.2, CrateDB v3.2.3, InfluxDB v1.7 and SparkSQL v2.4.0.
For the client side, we used Java connectors for MongoDB
and GridDB, the HTTP APIs for AsterixDB and InfluxDB,
and JDBC connectors for PostgreSQL, SparkSQL, and Crat-
eDB. We used default settings for most of the configuration
parameters setting the buffer cache size to 2 GB per node
for all. We created a secondary index on the timestamp at-
tribute for all systems except for SparkSQL (since it does
not support secondary indices). For CrateDB, we created in-
dices on all columns since it requires an index on all columns
that could be part of any selection predicate. For GridDB,
with its container per sensor model (S), we created a pri-
mary index on timestamp, since the timestamp needs to be
a primary key in GridDB’s time series containers.

5.1 Single Node Experiments
We tested the DBMSs using the datasets in Table 3 on a

single node (Intel i5 CPU 8GB RAM, 64 bit Ubuntu 16.4,
and 500 GB HDD).

Experiment 1 (Insert Performance - Table 4): We
compare the insert performance on a hot system (with 90%
data preloaded). We used single inserts for GridDB and In-
fluxDB, batched prepared statements for PostgreSQL, Crat-
eDB, and SparkSQL, batched document inserts for Mon-
goDB, and socket based data feeds for AsterixDB to insert
the 10% insert test data. The batch size used is 5,000 rows/-
documents which amounts to 5 minutes worth of observation
data for the large dataset. WAL is enabled for all the sys-
tems and the default configuration is used for compression
in the systems that support it. We did not perform insert
performance tests on SparkSQL since it does not manage
storage by itself (instead it depends on external sources –
Parquet files on HDFS in our case). Table 4 shows the size
of the dataset after ingestion and ingestion throughput.

InfluxDB performs best due to its TSM based storage en-
gine and to its support for columnar compression, which re-
duces the size of data inserted to about one-third. GridDB
(with mapping S) performs the second best due to the follow-
ing: 1) It maintains a relatively small size of data (compared
to other row stores); 2) It flushes data to disk only when the
memory is full (or due to checkpoints, the default value for
which is 20 minutes), which achieves benefits similar to LSM
storage; and 3) It does not flush WAL at every insertion, but
periodically every 1 second3. With mapping T, GridDB still
remains efficient – though it takes 25% more time compared
to mapping S due to higher index update overheads.

3
May result in a loss of the last 1 second of data in case of failure.

1813



Table 3: Dataset sizes.

Dataset
Single Node Multi Node

Sml Lrg Sml Lrg
Users 1,000 2,500 10,000 25,000
Sensors 300 600 3,000 15,000
Rooms 300 600 2,500 7,500
Days 90 120 150 180
Frequency 1/300s 1/200s 1/150s 1/100s
Observations 14 mil 30 mil 150 mil 800 mil
S. Observations 14 mil 30 mil 150 mil 800 mil
Size 12GB 25GB 125GB 600GB

AsterixDB performs better than MongoDB due to its sup-
port for LSM storage even though MongoDB has a slightly
smaller database size from insertions due to its row-level
compression. PostgreSQL performs better than AsterixDB,
even though it lacks LSM storage, due to the following:
1) The overall size of records stored in PosgreSQL is smaller
compared to AsterixDB (which is a document store), thereby
saving I/O; 2) PostgreSQL supports heap storage and new
records are inserted in memory with the data spilling over to
disk only when the memory is full. Such a storage mitigates
many of the advantages of LSM for insert-only workloads,
while preventing the processing overhead due to merging in-
curred by LSM storage; 3) In PostgreSQL, updates to index
pages could result in random I/O, in contrast to AsterixDB
(since its indexes are also LSM trees). However, the indexes
created on primary key and time were relatively small (and
mostly memory resident), thereby limiting the advantages
of an LSM tree for index updates. CrateDB performed the
worst given its columnar storage engine with no compression
(by default). The requirement to create indexes on all the
columns used for selections caused more index updates at
insertion time. Data ingestion takes about 20% more time
on mapping T compared to mapping A for CrateDB, since
this mapping requires more columns to be indexed.

We conducted an additional experiment on insert with
enrichment. The IE pipeline (see Section 3.2 consists of
query Q1 for the sensor specified in IE operator (metadata
query), followed by one of Q3 or Q4 (queries on the sensor
data already ingested) chosen randomly. The parameters for
Q3/Q4 are generated using the method mentioned in Sec-
tion 3.3, with min and max time interval of 4 and 8 hours,
respectively. We chose τ (busy wait to simulate execution of
enrichment function) to be 100ms, based on the time taken
for enrichment functions in [48] in the context of tweet pro-
cessing. Sensor data enrichment, e.g., ML functions on im-
ages, could even take longer. Even for this relatively modest
value of τ , enrichment cost quickly dominates and becomes
a bottleneck and the rate at which semantic observations are
generated (10,000/second) could easily be sustained by all
the systems. Thus, the experiment did not further provide
insight from the perspective of comparing across different
DB technologies. Nonetheless, the result points to two in-
teresting asides: (a) optimizing enrichment at the time of
ingestion in DBs [48] is an important challenge to support
real-time applications that need enrichment, and (b) scaling
systems requires additional hardware where enrichment can
be performed prior to data being stored in the DBMS.
Experiment 2 (Query Performance - Figure 4): We
compare the performance for the benchmark queries in Sec-
tion 3.2. For all systems, except GridDB and InfluxDB,
every benchmark query maps to a single query in the query
language supported by the system. For GridDB and In-
fluxDB, the benchmark queries that involve joins and aggre-
gation cannot be directly executed due to the lack of support
for such operations. Hence, we implemented these operators
at the application level by pushing selections down, using
the best join order, and performing the equivalent to an
index nested loop based join. Similarly, for database sys-

Table 4: Dataset sizes after ingestion (including indices) and
ingestion throughput for single node and multi node.

Dataset Map
Data Size (GB) Inserts/sec

Sml Lrg Multi Sml Lrg Multi

griddb
S 4 8.6

85
42,425 32,500 9,332T 5.6 11 32,941 24,045

postgresql
A 8 18

-
1,451 1,018

-
T 7.5 17 5,490 5,110

mongodb
A1 7 16

115
2,060 1,640

955
A2 6.2 15 4,087 3,286

asterixdb
A1 9 22

128
2,023 2,019

3,750A2 7.5 20 4,160 4,050

cratedb
A 10 25

140
2,017 1,495

748
T 12 30 1,565 1,138

sparksql
A 7.5 14

95 - - -
T 6.5 12

influxdb S 2.8 6.4 - 59,222 58,320 -

tems which do not support window queries (i.e., GridDB,
InfluxDB, and MongoDB), we implemented an application-
level window operator that first fetches data according to the
where clause, partitions it based on the grouping key using
in-memory hash table, and then sorts the list correspond-
ing to each key based on the ordering attribute. Also, since
InfluxDB does not support any way to store non-timeseries
data, we stored the building metadata information (users,
building info, sensor attributes) in PostgreSQL. The full ver-
sion of the paper [10] shows the complete implementations of
the queries for GridDB, InfluxDB, and the other database
systems. Figure 4 shows the average execution time per
query on the large dataset, along with standard deviation.
Since the same query is run with 25 different sets of pa-
rameters (the parameters are the same across DBMSs), we
see a significant variance in most queries. The longer the
query execution time, the higher the variance, but variance
to execution time ratio is larger for queries running within
a second. Even with the observed variance, the relative per-
formance among most of the systems can be compared.

Metadata Queries (Q1,Q2). All the systems performed
relatively well on the metadata queries, included to compare
the ability to store arbitrary data, except for InfluxDB which
does not provide a way to store complex metadata.

Simple Selection and Roll Up (Q3-Q6). Time series DBs
performed well on these queries, specially on Q3-Q5 which
are range selection queries over timestamp: GridDB (map-
ping S) performs very well, since it stores data clustered
based on timestamp (the primary key), and InfluxDB’s per-
formance is comparable (slightly better). PostgreSQL and
CrateDB perform similarly since these queries required most
of the columns to be retrieved and do not include any aggre-
gation operations (the columnar storage of CrateDB did not
provide much benefit). MongoDB and AsterixDB are slower
since these queries involve scanning a set of rows and, due
to the document model, they have to deal with larger record
sizes. Also, AsterixDB’s LSM tree based storage can slow
down reads since the system has to first look for the corre-
sponding primary keys in possibly multiple index files (due
to LSMified secondary indexes) and then search for the cor-
responding rows in multiple LSM files (if the immutable files
are not already merged). MongoDB performed slightly bet-
ter than AsterixDB thanks to its WiredTiger storage engine
supporting data compression and the use of index compres-
sion by default that helps in better secondary index scans.

Complex Queries (Q7-Q10). These queries involve com-
plex joins and aggregations that are not natively supported
in GridDB or InfluxDB. Hence, their processing requires
the application-level implementation of these operators. At
low selectivity (date range of only 1 to 4 days), the num-
ber of rows to be joined and grouped after all the execu-
tion of selection predicates is small and so application-level
joins did not cause significant overhead. In fact, except
for Q7 and Q8, GridDB and InfluxDB outperformed all
the other databases (with native JOIN support) except for

1814



0.000

0.005

0.010

0.015

0.020

0.025

0.030
Ex

ec
ut

io
n 

Ti
m

e(
s) Q1

0.00

0.05

0.10

0.15

0.20

0.25

Q2

0

5

10

15

20

Q3

0

5

10

15

20

25

30

35

Q4

0

10

20

30

40

Q5

0

10

20

30

40

Q6

0.1 0.5 1.0 1.5 2.0 2.5 3.0
Selectivity(%)

0

10

20

30

40

50

Ti
m

e(
s)

Database Join(PostgreSQL)
Application Join(PostgreSQL)

Figure 3: Performance of
application vs DB joins.

0

50

100

150

200

250

300 TO

Q7

0

50

100

150

200

250

300 TO

Q8

0

50

100

150

200

250

300 OOM OOM

Q9

0

10

20

30

40
Q10

0

2

4

6

8

10

12

14

Ex
ec

ut
io

n 
Ti

m
e(

s)

Q11

∗GridDB + application-level joins. ∗∗AsterixDB has a lower bound of 10-20ms for any query due to its operation mode (not

optimized for simple or non-cluster queries). OOMOut of memory error in the application-level code. TOTimed out.

Figure 4: Query runtime (seconds) on large dataset (single node, 15 minutes timeout).

PostgreSQL and CrateDB. For Q9 the application level sort-
based GROUP BY operator could not store the number of
rows fetched in memory what resulted in an out of memory
error. GridDB’s performance drops significantly with map-
ping T since it is not able to use the primary index on any
of the queries, while InfluxDB performs slightly better than
GridDB due to its faster read performance (see Q3-Q5).

CrateDB, a column oriented DBMS (with the benefit of
having indexes on all the columns involved in the selection
predicate and not just timestamp column), performed best
on Q7 and Q9. It took a considerable amount of time on
Q8, as it failed to come up with an optimized query plan (it
tried to do selection after join) and did not perform well on
Q10 as the query involved most of the table columns.

All the queries on MongoDB perform better with mapping
A2 which suggests that a join (lookup) with smaller meta-
data tables is many times better than having bigger nested
documents in our use case (scanning data based on a time
range). Queries that involve joins of two big collections (e.g.,
queries Q7 and Q8) timed out since the join (lookup) oper-
ator in MongoDB is limited in functionality and it failed to
push selections down in its aggregation pipeline. AsterixDB
supports full SQL functionality, has a more advanced query
optimizer, and better JOIN support compared to MongoDB
which made its performance much better. PostgreSQL out-
performed AsterixDB as the latter has to scan rows which
are comparatively larger in size and the former came up
with a better query plan since it has a more mature op-
timizer and it stores statistics about the data. SparkSQL,
even with columnar storage (parquet files on HDFS), did not
perform well since it has to scan the entire dataset for all
the queries due to the lack of support for secondary indexes.

Window based query (Q11). For Q11 we used the best
mapping configuration per system according to the previous
results. PostgreSQL performed best because of its superior
query optimizer and execution engine. Even when GridDB,
InfluxDB, and MongoDB had the added overhead of the win-
dow task performed outside of the database, they performed
better than SparkSQL since it does not support secondary
indexes. Also, since the difference in query execution time
for these database systems only depend upon the time to
fetch the filtered data from the DB (rest of the computation
is done in the application side), the performance trend for
these systems follow the trend described for Q3-Q6.
Experiment 3 (Application vs. Database Joins - Fig-
ure 3): Experiment 2 showed that GridDB and InfluxDB,
outperformed systems with native join support using appli-
cation level joins. We compared them further by varying
query selectivity levels. We selected PostgreSQL and Q8

to compare native vs. application-level join as comparing
across different systems would make it difficult to determine
whether the performance is due to the type of join or other
factors. To implement application-level joins, we first send
a selection query to the outer presence table, and then, for
each row in the result set, a selection to inner presence table.

As expected, native joins outperformed application-level
joins (see Figure 3) due to the higher overhead of the lat-
ter (e.g., multiple independent queries compiled separately).
For the native join case, PostgreSQL selected, for low selec-
tivities, a plan consisting of an index scan on the timestamp
predicate of the outer presence table followed by a nested
loop index join with the inner presence table and, for higher
selectivities, a sequential scan of the outer presence table
followed by a nested loop index join. For the application-
level join case, it selected the index scan for the outer table
at low selectivities, changing to a sequential scan at higher
selectivities. All queries on the inner presence table used an
index scan on the join column value for all selectivities.

The results show that for very small selectivities (be-
low 0.5 percent of the dataset) application-level joins per-
form very competitively to native joins. This is interesting
since in IoT applications joins are often between small meta-
data tables and large timeseries data and queries can be very
selective, filtering data corresponding to a small time range.
In such contexts, simpler timeseries databases such as In-
fluxDB and GridDB (that typically do not support joins)
could outperform more complex systems by relying on ex-
ternal application-level joins.
Experiment 4 (Effect of Time Ranges - Figure 6):
Time is a fundamental component of IoT data and queries.
We explore further the effect of varying time ranges in queries
w.r.t. systems’ performance. We chose Q6 and Q8 and var-
ied their associated time ranges to: one day, one week, two
weeks, one month, and two months. GridDB, InfluxDB,
and CrateDB continue to outperform other systems on Q6
(see Figure 6 on the left), although their runtimes increase
with the selectivity. PostgreSQL performed as well as the
timeseries database systems for low selectivities on Q6, but
its performance suffers due to increased secondary index
lookups as selectivity increases. SparkSQL performance was
not affected since it always performs a table scan. The rel-
ative performance of the document stores on Q6 gets worse
with increased selectivity due to their comparatively larger
record sizes. On Q8 (see Figure 6 on the right), AsterixDB,
SparkSQL, and CrateDB chose a hash join based approach
and took almost the same time for all selectivity values.
PostgreSQL, on the other hand, with its mature query opti-
mizer and statistics, chose an index nested loop join, which

1815



GridDB
CrateDB

MongoDB
AsterixDB

SparkSQL
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ex
ec

ut
io

n 
Ti

m
e(

s)
Q1

GridDB
CrateDB

MongoDB
AsterixDB

SparkSQL
0.0

0.1

0.2

0.3 Q2

GridDB
CrateDB

MongoDB
AsterixDB

SparkSQL
0

50

100

150

200

250

Q3

GridDB
CrateDB

MongoDB
AsterixDB

SparkSQL
0

100

200

300

400

500

Q4

GridDB
CrateDB

MongoDB
AsterixDB

SparkSQL
0

100

200

300

400

500

Q5

GridDB
CrateDB

MongoDB
AsterixDB

SparkSQL
0

100

200

300

400

500

600

Q6

GridDB
CrateDB

MongoDB
AsterixDB

SparkSQL
0

500

1000

1500

2000

2500

3000

Q7

GridDB
CrateDB

MongoDB
AsterixDB

SparkSQL
0

500

1000

1500

2000

2500

3000

Q8

GridDB
CrateDB

MongoDB
AsterixDB

SparkSQL
0

500

1000

1500

2000

2500

3000

Q9

GridDB
CrateDB

MongoDB
AsterixDB

SparkSQL
0

100

200

300

400

500

600

Q10

Figure 5: Query runtime (s) on small dataset (multi node, 1 hour timeout).

performed well on low selectivities but dropped with with in-
crease in selectivity. Timeseries databases, using our index
nested loop based application-level joins, performed quite
well for low selectivity values, but their performance grew
super-linearly with increasing selectivity.
Experiment 5 (HDD vs. SSD - Table 5): The bulk of
our experiments was performed in a cluster with hard disks.
We performed an additional experiment to explore the im-
pact of SSDs. To this end, we setup two AWS EC2 instances
with same specifications: one with a general purpose SSD
and another one with throughput optimized HDD. SSD’s
provide performance improvement over HDDs on sequential
reads and writes, however, they are mainly optimized for
random reads and writes and provide order of magnitudes
faster IO per second compared to HDDs [33]. We performed
insert and query performance test for the single node large
dataset (for the best performing mapping in our previous
experiments). For all the DBMSs (see Table 5) the insert
throughput increased because of the superior write perfor-
mance of SSDs. However, as there were very few random
updates and most of the IO performed was sequential and
not random, the increase in throughput was limited. For Q6
every system experienced a decrease of execution time due to
SSD’s higher IOPS. However, the improvement for InfluxDB
and GridDB was limited since the data is arranged based on
timestamp which implies fewer random updates. For query
Q10, all the systems showed a decrease of about 2 times in
execution time with SSD since Q10 involves scanning the
dataset and therefore the reads are mostly sequential.
CPU and IO Usage: We analyzed the percentage of ex-
ecution time than went into CPU and IO tasks per query
(plots are included in the extended version of the paper [10]).
In cases where the query timed out or threw an out of mem-
ory error, we analyzed the CPU/IO breakdown before that.
For Metadata Queries Q1 and Q2, both the CPU and IO
utilization is very low and balanced across DBMS, since
these queries run in few milliseconds. For Simple Selec-
tion and Roll Up queries Q3-Q6, almost all the systems
spent more time on IO operations. CrateDB and Spark-
SQL spent more time in CPU as they need to decompress
and de-serialize after reading data from disk. For Complex
queries Q7-Q10, AsterixDB spent a higher amount of time
on IO than other systems, as it requires scanning compar-
atively larger records. InfluxDB and GridDB have smaller
record size and support compression, hence they spend com-
paratively less time in IO and have CPU as their bottleneck.
Additionally, part of the higher CPU utilization is due to the
implementation of unsupported Join and Aggregation oper-
ations in the application domain. SparkSQL spends some
time doing IO (since it does not support secondary indexes

Table 5: Ingestion throughput and query latency.

DBMS
Ingestion (row/s) Q6 (s) Q10 (s)
HDD SSD HDD SSD HDD SSD

griddb 40,610 54,973 0.72 0.43 2.40 1.02
postgresql 18,300 28,391 3.71 0.75 4.12 2.45
mongodb 12,543 15,408 5.17 1.55 47.80 24.90
asterixdb 17,100 26,907 7.92 3.26 8.24 4.58
cratedb 4,620 5,400 0.25 0.15 6.59 3.04
influxdb 66,670 71,428 0.12 0.08 4.03 2.60
sparksql - - 12.93 5.41 10.40 4.85

and scans the complete table) but since it needs to perform
de-serialization of data [39], it spends longer time on CPU
than other systems, making CPU the bottleneck. CrateDB
spends considerably less time doing IO as it uses indexes and
columnar compression, causing CPU to be the bottleneck
because of the added cost of decompression. PostgreSQL
also, had CPU as the bottleneck for queries Q7-Q10.

5.2 Multi-Node Experiments
For multi-node experiments we used larger datasets (see

Table 3). Data was partitioned over 1, 3, 6, 9, and 12 nodes
(each node is an Intel i5 CPU, 8GB RAM, 800GB HDD, and
CentOS 7 machine connected via a 1 Gbps network link).
The DBMS instances on each node have the same configu-
ration as in the case of the single node setup. We skipped
PostgreSQL and InfluxDB for multinode experiments since
the former does not support horizontal sharding natively
and the latter supports sharding features only in its enter-
prise edition which is not open source. For the remaining
systems, we chose their most performant mapping for our
workload, inferred from the results of the single node exper-
iments. MongoDB, CrateDB, allow data to be partitioned
on any arbitrary key, so we partitioned the observation data
based on the sensor-id and the semantic observation data on
the semantic entity-id. For AsterixDB, data is partitioned
on the primary key, as it uses hash-partitioning on the pri-
mary key for all datasets. In GridDB, a container is stored
fully on a single node since GridDB does not provide an
explicit partitioning method. GridDB balances data across
nodes by distributing different containers to different nodes
based on the hash of their key/name. The information re-
garding the allocation of containers to nodes is populated
to all the nodes in the cluster, making it easy for the client
library to locate any container.
Experiment 6 (Insert Performance - Table 4): Sim-
ilar to Experiment 1, GridDB performs well on inserts as
expected, although the per tuple insertion time increased
w.r.t. the single node case even with multiple nodes writ-
ing data in parallel; the data size per node has increased
by 2.5 times, causing more data flushes from memory to
disk compared to the single node case. MongoDB’s per tu-
ple insertion time also increased with respect to the single
node experiments. Since each tuple is now required to be
routed by mongos service to the appropriate node based on

1816



Table 6: Query runtimes (s) on large dataset (12 nodes).

Query cratedb mongodb asterixdb sparksql
Q1 0.02 0.02 0.08 2.5
Q2 1.14 0.7 0.67 3.8
Q3 42.83 239.95 95.16 264.86
Q4 44.28 285.17 97.63 255.46
Q5 89.25 494.50 98.08 305.40
Q6 35.72 310.85 90.35 292.76
Q7 60.93 NA 924.66 1, 245.57
Q8 TO NA 876.44 1, 197.45
Q9 12.18 30.46 162.13 180.77
Q10 103.23 2, 235.8 80.73 251.35

the sharding key, it was not able to make use of the batched
insert, causing its insertion time to increase. AsterixDB’s
per tuple insert time also increased, but, with this larger
dataset, we started seeing the benefits of write optimized
LSM-trees as its write performance got considerably better
than MongoDB. CrateDB, because of its columnar storage,
took the most amount of time in the insert tests.
Experiment 7 (Query Performance - Figure 5 & Ta-
ble 6): Figure 5 shows the query performance results while
Table 6 shows the results for a 12 node configuration for
the large database with 1.6 billion rows4. Variance for each
query template for multi-node setup is available in the ex-
tended version of the paper [10].

Since every query in GridDB can only involve one con-
tainer, its query processing happens only on a single node.
GridDB remains better compared to other databases for
queries Q3-Q6 for upto 3 node setup. Its performance
did not improve with an increasing number of nodes ex-
cept for query Q3 which requires data to be fetched from
only one node5. For other queries, that require data to
be fetched from multiple containers, GridDB’s performance
does not improve since it natively executes only single con-
tainer queries and, thus, query processing happens only at
a single node. Since the application code we wrote ini-
tially to execute queries in GridDB was a sequential pro-
gram, GridDB was not able to leverage any parallelism from
the multi-node setup. We implemented multi-threaded pro-
grams to fetch data from multiple containers simultaneously
for GridDB. The query times for the parallel version are
available in the long version at [10]. This improved the query
performance for GridDB considerably, especially for queries
Q3-Q5, as these queries just fetch data from multiple con-
tainers based on conditions, without any reduction step due
to aggregation type. We did not see much improvement on
queries Q7 and Q8.

For the CrateDB cluster, the sharding information is avail-
able at all the nodes each of which runs a query execution
engine that can handle a distributed query (involving dis-
tributed joins, aggregations etc.). However, only the meta-
data primary node can update this information. An appli-
cation can send queries to any of the nodes in the cluster.
CrateDB again performed well on complex queries (Q7, Q9,
Q10) due to its columnar storage. Also, CrateDB was able
to scale well with its performance improving with increasing
number of nodes for all queries.

An AsterixDB cluster consists of a single controller node
and several worker nodes (storing partitioned data) called
node controllers. Applications send queries to the cluster
controller, which converts the query into a set of job de-
scriptions. These job descriptions are passed to the node
controllers running a parallel data flow execution engine
called Hyracks [20]. The Cluster controller reads the shard-
ing information and other metadata from a special node

4
We do not include results for GridDB on the 12 node configura-

tion since inserting the large database would take over 50 hours (due
to a lack of bulk insertion and insertion rate of 10k tuples/second).

5
GridDB performance for Q3 improves since data per node re-

duces as the number of nodes increase.

1 hour 1 day 1 week 2 weeks 1 month2 months
Time Range

0

20

40

60

80

100

Ti
m

e(
s)

Q6
GridDB
InfluxDB
PostgreSQL
SparkSQL
AsterixDB
MongoDB
CrateDB

1 hour 1 day 1 week 2 weeks 1 month2 months
Time Range

101

102

103

Ti
m

e(
s)

Q8

GridDB
InfluxDB
PostgreSQL
SparkSQL
AsterixDB
CrateDB

Figure 6: Performance with time selectivity.
controller called the metadata node controller. Among all
the databases, AsterixDB scaled the best, with its perfor-
mance improving significantly with increasing numbers of
nodes. AsterixDB outperformed every other database on
queries Q5 and Q8 for the 9 node cluster configuration. For
the smallest queries AsterixDB suffered from the overhead
of its job distribution approach.

In a clustered setting, MongoDB uses a router process/n-
ode called mongos that fetches information about the shards
from a centralized server (possibly replicated) called the con-
fig server. The application sends its query to the mongos
process, which processes the query and asks for data from
respective shards (in parallel if possible) and does the ap-
propriate merging of data. Even with the mongos service,
MongoDB does not support joins between two sharded col-
lections, so we skipped queries Q7 and Q8. MongoDB stores
all unsharded collections together on the same shard called
the primary shard. MongoDB was not able to scale as well
as AsterixDB, with many queries not able to benefit from
multiple nodes being able to work in parallel. Furthermore,
for queries Q5 and Q10, its performance actually degraded
with an increasing number of nodes, as its optimizer started
to pick a collection scan over an index scan.
CPU and IO Usage CPU and IO usage for multi node
setups with detailed explanations are available in the ex-
tended version of the paper [10]. The results (representing
the percentage of the total query time spent in CPU and IO
on all nodes –master and 3 workers–) are similar in nature
to the results for the single node setup. Queries Q1-Q6 are
IO bound and Q7-Q10 are CPU bound on most DBMSs.

5.3 Mixed Workloads Experiments
We compare system performance under the online mixed

workload where queries of the same template are executed
in parallel with data ingestion. We used two different levels
of data insertion rate, slow and fast, where data is available
to insert at the rate of 10,000 and 50,000 observations per
second, respectively. The experiment was repeated 6 times
with different sizes of data (based on days) already ingested.
The experiment starts from a database state where data of
a varying number of days is already ingested. The inserts
and queries are then done in parallel (multiple threads). In
order to make the queries consistent (return the same re-
sult) across different database systems (even if they support
a lower ingestion throughput than required), we generated
query instances that have a time range corresponding to the
dataset ingested prior to the time of the insert commands
- that is, the queries retrieve data that had already been
inserted at the beginning of the experiments.
Experiment 8 (Online inserts and queries - Fig-
ure 7): Figure 7 shows the average query latency for Q6
w.r.t. the number of days for slow data generation rate on a
single node as well as a multi node (3 node) setup. The query
latency is increasing with increasing number of days for all
the database systems, as the data size is increasing. The la-
tency increase rate is comparatively higher in case of faster
insert rate as expected since the queries are now running in
parallel with a much higher load of inserts. The results for

1817



40 50 60 70 80 90
Number Of Days

2

4

6

8

Av
er

ag
e 

Qu
er

y 
La

te
nc

y 
(s

)
GridDB
InfluxDB
MongoDB
AsterixDB
CrateDB
PostgreSQL

(a) Single Node

40 50 60 70 80 90
Number Of Days

0

2

4

6

8

Av
er

ag
e 

Qu
er

y 
La

te
nc

y 
(s

)

GridDB
MongoDB
AsterixDB
CrateDB

(b) Multi Node

Figure 7: Q6 in mixed workload (slow insertion rate).
multi-node version of the experiment show a similar scal-
ability trend for the DBMSs as discussed in Experiment 7,
with AsterixDB, CrateDB showing lower query latency with
multi node setup, whereas GridDB and MongoDB did not
show much improvement. The same relative performance of
the systems is observed for the fast data generation rate (the
plot is included in the extended version of the paper [10]).
Experiment 9 (Continuous Query - Figure 8): We
perform an experiment with mixed workload and the sliding
window continuous query (CQ). We set the window length to
10 seconds and the length of the sliding to 5 seconds. Since
none of the DBMSs support stream processing, we imple-
mented the continuous query logic on the application side.
We buffered occupancy data of all the rooms in the last 10
seconds time window, followed by running a selection query
on the DBMS to discover the rooms of type “Lecture Hall”
and finally joined it with the buffered data. Figure 8 shows
the results for slow and fast data generation rate on a sin-
gle node as well as a multi-node (3 node) setup. Since the
query is executed as part of the application, the difference in
performance can be attributed to the DBMS ingestion rate
supported and performance of a simple selection query on a
static table. Hence, GridDB and InfluxDB performed signif-
icantly better because of their better ingestion performance
(discussed in more detail in Experiment 1).

6. CONCLUSION
The design of SmartBench and the analysis of the perfor-

mance results have lead to several interesting observations to
us: 1) In an IoT system, the data exhibits a lot of temporal
and spatial correlations among different entities and events.
Application queries are posed on such correlations as well
as on time-varying sensor data. 2) The mapping of hetero-
geneous sensor data to the database representation plays a
critical role for ingestion and query performances. 3) The
complexity of IoT query workload varies widely. It ranges
from simple selections on temporal attributes to multiway-
joins, grouping, and aggregations. Depending on applica-
tion context, efficient application level joins can be devised.
4) An IoT system must support a high rate of data arrival
and thus databases with higher ingestion rates are more ap-
plicable. Data follows an append-only pattern with rare up-
dates. The volume of data can be very large and hence scale
up and scale out functionalities of databases are required.

We highlight some key observations about the suitability
of DBMSs and implementation choices for IoT workloads:
• Specialized timeseries databases are suited for sensor data
(fast insertion and time-based selection queries) but they
do not provide natural ways to store other data needed to
build IoT applications (e.g., spatial relationships, entities,
events). For instance, InfluxDB does not provide any way
to store non-timeseries data (e.g., metadata). One can over-
come such limitations by storing such information in a differ-
ent database and appropriately co-executing a query across
both systems (as we did for InfluxDB using PostgreSQL).
• Document stores are suited to represent heterogeneous
data but an embedded representation comes at a high cost in

InfluxDB GridDB
MongoDB

AsterixDB
CrateDB

PostgreSQL
0

5k

10k

15k

20k

25k

30k

35k

In
ge

st
io

n 
Th

ro
ug

hp
ut

 (r
ow

s/
se

co
nd

)

Slow Rate (10,000 Rows/s)
Fast Rate (50,000 Rows/s)

(a) Single Node

GridDB
MongoDB

AsterixDB
CrateDB

0

5k

10k

15k

20k

25k

30k

35k

In
ge

st
io

n 
Th

ro
ug

hp
ut

 (r
ow

s/
se

co
nd

)

Slow Rate (10,000 Rows/s)
Fast Rate (50,000 Rows/s)

(b) Multi Node

Figure 8: Insertion throughput (CQ).

terms of performance compared to a normalized representa-
tion. For instance, queries with foreign key based joins, on
datasets with normalized documents, run faster compared
to queries without foreign key based joins with large denor-
malized documents. This holds even in a multi-node setting
where the smaller collection may not be even present on the
same node. Thus, a system that supports document level
specification, but (semi)-automatically maps such data to an
underlying structured representation could offer the best of
both worlds. Examples of such a strategy are closed datasets
in AsterixDB and JSON shredding in Teradata [11].
• Time series databases, such as InfluxDB and GridDB, per-
formed well on inserts, simple selection queries, and several
complex join queries by exploiting application-level joins.
This suggests an opportunity to write wrappers that split
SQL queries into a set of queries that can be executed
directly on such a system, and continue the remainder of
the query execution using application-level operators (e.g.,
application-level joins). Such a wrapper could provide a
timeseries database with the capability of executing full SQL
and still being better in terms of performance in situations
where at least one of the tables being joined is small, per-
haps, due to selection, as is the case in SmartBench.
• Traditional relational database systems like PostgreSQL
do well on both insert and query performance on single node
but do not scale horizontally. Document stores, while they
scale easily (specifically AsterixDB, which performs very
well with a large cluster), have query performance that is
not as good as a mature relational system on a single node.
• UDF technologies supported by today’s databases are not
adequate to enrich data during ingestion. Enrichment, to-
day, is performed outside the database (e.g., in application
code, or through a streaming engine) during ingestion. Such
an architecture can be sub-optimal specially if complex en-
richment function need to run queries to retrieve past data
[48]. Co-optimizing enrichment with ingestion (e.g., through
batching, or selectively choosing which enrichment to per-
form in real-time, and which to do progressively, etc.) is an
important challenge to support real-time smart applications.

Finally, our key observation (based on the discussion
above) is that, like in other domains, while different systems
offer different advantages, there is no single system that of-
fers the “best” choice. The emerging field of Polystores [26],
which aims to provide integration middleware allowing ap-
plications to store different parts of their data in different
underlying databases, may be a relevant solution.

Acknowledgements
This material is based on research sponsored by DARPA un-
der agreement number FA8750-16-2-0021. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright no-
tation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Govern-
ment. This work was also supported by NSF award CNS-
1925610 and Toshiba. We also want to thank Fangfang Fu
for her help in the development of the data generator tool.

1818



7. REFERENCES
[1] Apache Kafka, Stream Processing Engine.

https://kafka.apache.org/intro. [Online; accessed
June-2020].

[2] Apache Storm, Stream Processing Engine.
http://storm.apache.org/about/integrates.html.
[Online; accessed June-2020].

[3] Couchbase NoSQL Database.
https://www.couchbase.com/. [Online; accessed
June-2020].

[4] DB-Engines Ranking.
https://db-engines.com/en/ranking. [Online; accessed
June-2020].

[5] GridDB, NoSQL Database System For IoT.
https://griddb.net/en/. [Online; accessed June-2020].

[6] IBM DB2 Event Store.
https://www.ibm.com/products/db2-event-store.
[Online; accessed June-2020].

[7] InfluxDB, Timeseries Database System.
https://www.influxdata.com/ resources/. [Online;
accessed June-2020].

[8] MongoDB. https://www.mongodb.com/. [Online;
accessed June-2020].

[9] PostgreSQL, Relational Data Management System.
https://www.postgresql.org/. [Online; accessed
June-2020].

[10] SmartBench: A Benchmark For Data Management In
Smart Spaces. Technical Report, UCI, 2019.
http://github.com/ucisharadlab/benchmark.

[11] Teradata. http://www.teradata.com. [Online; accessed
June-2020].

[12] TIPPERS. http://tippersweb.ics.uci.edu/. [Online;
accessed June-2020].

[13] TPC-C Bechmark. http://www.tpc.org/tpcc/.
[Online; accessed June-2020].

[14] The Internet of Things: A survey. Computer
Networks, 54(15):2787 – 2805, 2010.

[15] The SSN ontology of the W3C semantic sensor
network incubator group. Journal of Web Semantics,
17:25 – 32, 2012.

[16] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm,
V. Borkar, Y. Bu, M. Carey, I. Cetindil, M. Cheelangi,
K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron,
Y.-S. Kim, C. Li, G. Li, J. M. Ok, N. Onose,
P. Pirzadeh, V. Tsotras, R. Vernica, J. Wen, and
T. Westmann. AsterixDB: A scalable, open source
bdms. PVLDB, 7(14):1905–1916, 2014.

[17] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S.
Maskey, E. Ryvkina, M. Stonebraker, and R. Tibbetts.
Linear road: a stream data management benchmark.
In 13th Int. Conf. on Very large data bases-Volume
30, pages 480–491. VLDB Endowment, 2004.

[18] M. Arlitt, M. Marwah, G. Bellala, A. Shah, J. Healey,
and B. Vandiver. Iotabench : an internet of things
analytics benchmark. In 6th ACM/SPEC Int. Conf.
on Performance Engineering, pages 133–144. ACM,
2015.

[19] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, et al. Spark sql: Relational data processing
in spark. In 2015 ACM SIGMOD Int. Conf. on
Management of Data, pages 1383–1394. ACM, 2015.

[20] V. Borkar, M. Carey, R. Grover, N. Onose, and
R. Vernica. Hyracks: A flexible and extensible
foundation for data-intensive computing. In 2011
IEEE 27th Int. Conf. on Data Engineering, pages
1151–1162. IEEE, 2011.

[21] M. Botts, G. Percivall, C. Reed, and J. Davidson.
OGC sensor web enablement: Overview and high level
architecture. In Int. Conf. on GeoSensor Networks,
pages 175–190. Springer, 2006.

[22] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache flink: Stream and
batch processing in a single engine. Bulletin of the
IEEE Computer Society Technical Committee on Data
Engineering, 36(4), 2015.

[23] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154.
ACM, 2010.

[24] T. P. P. Council. Tpc-h benchmark specification.
Published at http://www. tcp. org/hspec. html,
21:592–603, 2008.

[25] U. Dayal, C. Gupta, R. Vennelakanti, M. R. Vieira,
and S. Wang. An approach to benchmarking
industrial big data applications. In Workshop on Big
Data Benchmarks, pages 45–60. Springer, 2014.

[26] J. Duggan, A. J. Elmore, M. Stonebraker,
M. Balazinska, B. Howe, J. Kepner, S. Madden,
D. Maier, T. Mattson, and S. Zdonik. The bigdawg
polystore system. ACM Sigmod Record, 44(2):11–16,
2015.

[27] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess,
A. Crolotte, and H.-A. Jacobsen. Bigbench: towards
an industry standard benchmark for big data
analytics. In 2013 ACM SIGMOD int. Conf. on
Management of data, pages 1197–1208. ACM, 2013.

[28] C. Gormley and Z. Tong. Elasticsearch: The Definitive
Guide: A Distributed Real-Time Search and Analytics
Engine. ” O’Reilly Media, Inc.”, 2015.

[29] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and
P. J. Weinberger. Quickly generating billion-record
synthetic databases. In Acm Sigmod Record,
volume 23, pages 243–252. ACM, 1994.

[30] L. Gu, M. Zhou, Z. Zhang, M.-C. Shan, A. Zhou, and
M. Winslett. Chronos: An elastic parallel framework
for stream benchmark generation and simulation. In
2015 IEEE 31st Int. Conf. on Data Engineering
(ICDE), pages 101–112. IEEE, 2015.

[31] J. E. Hoag and C. W. Thompson. A parallel
general-purpose synthetic data generator1. In Data
Engineering, pages 103–117. Springer, 2009.

[32] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang.
The hibench benchmark suite: Characterization of the
mapreduce-based data analysis. In 2010 IEEE 26th
Int. Conf. on Data Engineering Workshops (ICDEW),
pages 41–51. IEEE, 2010.

[33] V. Kasavajhala. Solid state drive vs. hard disk drive
price and performance study. Proc. Dell Tech. White
Paper, pages 8–9, 2011.

[34] R. Lu, G. Wu, B. Xie, and J. Hu. Stream bench:
Towards benchmarking modern distributed stream
computing frameworks. In 2014 IEEE/ACM 7th Int.

1819



Conf. on Utility and Cloud Computing (UCC), pages
69–78. IEEE, 2014.

[35] M. S. Mahdavinejad, M. Rezvan, M. Barekatain,
P. Adibi, P. Barnaghi, and A. P. Sheth. Machine
learning for internet of things data analysis: a survey.
Digital Communications and Networks, 4(3):161 – 175,
2018.

[36] D. Massaguer, S. Mehrotra, R. Vaisenberg, and
N. Venkatasubramanian. Satware: a semantic
approach for building sentient spaces. In Distributed
Video Sensor Networks, pages 389–402. Springer,
2011.

[37] R. O. Nambiar and M. Poess. The making of tpc-ds.
In 32nd Int. Conf. on Very large data bases, pages
1049–1058. VLDB Endowment, 2006.

[38] K. W. Ong, Y. Papakonstantinou, and R. Vernoux.
The SQL++ query language: Configurable, unifying
and semi-structured. arXiv preprint arXiv:1405.3631,
2014.

[39] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker,
and B.-G. Chun. Making sense of performance in data
analytics frameworks. In 12th {USENIX} Symposium
on Networked Systems Design and Implementation
({NSDI} 15), pages 293–307, 2015.

[40] P. Pirzadeh, M. J. Carey, and T. Westmann. Bigfun:
A performance study of big data management system
functionality. In 2015 IEEE Int. Conf. on Big Data
(Big Data), pages 507–514. IEEE, 2015.

[41] M. Poess, R. Nambiar, K. Kulkarni,
C. Narasimhadevara, T. Rabl, and H.-A. Jacobsen.
Analysis of TPCx-IoT: The first industry standard
benchmark for iot gateway systems. In 2018 IEEE
34th Int. Conf. on Data Engineering (ICDE), pages
1519–1530. IEEE, 2018.

[42] A. Shukla, S. Chaturvedi, and Y. Simmhan.
Riotbench: An iot benchmark for distributed stream
processing systems. Concurrency and Computation:
Practice and Experience, 29(21):e4257, 2017.

[43] J. M. Stephens and M. Poess. Mudd: a
multi-dimensional data generator. In ACM SIGSOFT
Software Engineering Notes, volume 29, pages
104–109. ACM, 2004.

[44] Y. Tay, B. T. Dai, D. T. Wang, E. Y. Sun, Y. Lin, and
Y. Lin. Upsizer: Synthetically scaling an empirical
relational database. Information Systems,
38(8):1168–1183, 2013.

[45] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
a warehousing solution over a map-reduce framework.
PVLDB, 2(2):1626–1629, 2009.

[46] P. Tucker, K. Tufte, V. Papadimos, and D. Maier.
Nexmark–a benchmark for queries over data streams
(draft). Technical report, Technical report, OGI
School of Science & Engineering at OHSU,
Septembers, 2008.

[47] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He,
W. Gao, Z. Jia, Y. Shi, S. Zhang, et al. Bigdatabench:
A big data benchmark suite from internet services. In
2014 IEEE 20th Int. Symposium on High Performance
Computer Architecture (HPCA), pages 488–499.
IEEE, 2014.

[48] X. Wang and M. Carey. An idea: An ingestion

framework for data enrichment in asterixdb. PVLDB,
12(11):1485–1498, 2019.

[49] M. E. Yazid Boudaren, M. R. Senouci, M. A. Senouci,
and A. Mellouk. New trends in sensor coverage
modeling and related techniques: A brief synthesis. In
2014 Int. Conf. on Smart Communications in Network
Technologies (SaCoNeT), pages 1–6, 2014.

1820


