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ABSTRACT

Translating natural language to SQL (NL2SQL) has received ex-
tensive attention lately, especially with the recent success of deep
learning technologies. However, despite the large number of stud-
ies, we do not have a thorough understanding of how good existing
techniques really are and how much is applicable to real-world sit-
vations. A key difficulty is that different studies are based on dif-
ferent datasets, which often have their own limitations and assump-
tions that are implicitly hidden in the context or datasets. Moreover,
a couple of evaluation metrics are commonly employed but they
are rather simplistic and do not properly depict the accuracy of re-
sults, as will be shown in our experiments. To provide a holistic
view of NL2SQL technologies and access current advancements,
we perform extensive experiments under our unified framework
using eleven of recent techniques over 10+ benchmarks including
a new benchmark (WTQ) and TPC-H. We provide a comprehen-
sive survey of recent NL2SQL methods, introducing a taxonomy
of them. We reveal major assumptions of the methods and classify
translation errors through extensive experiments. We also provide
a practical tool for validation by using existing, mature database
technologies such as query rewrite and database testing. We then
suggest future research directions so that the translation can be used
in practice.
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1. INTRODUCTION

Given a relational database D and a natural language question
qn1 to D, translating natural language to SQL (NL2SQL) is to find
an SQL statement gsq; to answer gp;. This problem is important for
enhancing the accessibility of relational database management sys-
tems (RDBMSs) for end users. NL2SQL techniques can be applied
to commercial RDBMSs, allowing us to build natural language in-
terfaces to relational databases.

In recent years, NL2SQL has been actively studied in both the
database community and the natural language community. [25}|35]
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from the database community have proposed rule-based techniques
that use mappings between natural language words and SQL key-
words/data elements. [3]] have improved the quality of the mapping
and inferring join condition by leveraging (co-)occurrence informa-
tion of SQL fragments from the query log. In the natural language
community, many studies [22] |44} |53| {46l [21] 24| 47, |6 |20] have
been conducted in recent years for the NL2SQL problem by using
the state-of-the-art deep learning models and algorithms.

Although the aforementioned studies evaluate the performance
of their methods, comparison with the existing methods has not
been performed properly. All of them compare to a limited set of
previous methods only. For example, the studies in the natural lan-
guage community [22| 44, 53| 46| |21l |24] exclude comparisons
with [25} [35]] from the database community. In addition, previous
studies evaluate their performance using only a subset of existing
benchmarks. For example, [44} 53} |46l |21} 24] use only the Wik-
iSQL benchmark [52], while [22] uses only the GeoQuery bench-
mark [49, 50, 32} 17} 22]], the ATIS benchmark [33} |12} [22} |51]],
and the Scholar benchmark [22]. [47} |6, |20] use only the Spider
benchmark [48]].

In this paper, we present comprehensive experimental results us-
ing all representative methods and various benchmarks. We provide
a survey of existing methods and perform comparative experiments
of various methods. Note that every NL2SQL benchmark has a
limitation in that it covers a limited scope of the NL2SQL problem.

A more serious problem in the previous studies is that all accu-
racy measures used are misleading. There are four measures: 1)
string matching, 2) parse tree matching, 3) result matching, and
4) manual matching. In string matching, we compare a generated
SQL query to the corresponding ground truth (called the gold SQL
query). This can lead to inaccurate decisions for various reasons,
such as the order of conditions in the where clause, the order of
the projected columns, and aliases. For example, if one query con-
tains “P; AND P»” in its WHERE clause, and another contains
“P> AND P;”, where P is “city.state_name = ‘california” and P»
is “city.population > 1M”, then the string match judges that both
queries are different. Parse tree matching compares parse trees
from two SQL queries. This approach has less error than the first
one, but it is still misleading. For example, a nested query and its
flattened query are equivalent, but their parse trees would be dif-
ferent from each other. Result matching compares the execution
results of two SQL queries in a given database. This is based on
the idea that the same SQL queries would produce the same results.
However, this would overestimate if two different SQL queries pro-
duce the same results by chance. In manual matching, users vali-
date the translation results by checking the execution results or the
SQL queries. This requires considerable manual effort and cannot
guarantee reliability.



In this paper, we perform extensive experiments using 14 bench-
marks including a new benchmark (WTQ) and TPC-H for measur-
ing the accuracy of NL2SQL methods. We conduct an experiment
to identify the problem of the measures introduced above. Specif-
ically, we measure the performance of the existing methods using
three existing measures, omitting the fourth one which involves the
manual inspection. We use a precise metric considering semantic
equivalence and propose a practical tool to measure it automati-
cally. In order to accurately measure the translation accuracy of
NL2SQL, we need to judge the semantic equivalence between two
SQL queries. However, the existing technique for determining se-
mantic equivalence [[11] is not comprehensive to use for our ex-
periments, since it only supports restrictive forms of SQL queries.
We propose a practical tool to judge semantic equivalence by using
database technologies such as query rewrite and database testing
and measure accuracy based on it. Note that this has been an im-
portant research topic called semantic equivalence of SQL queries
in our field. Nevertheless, we still have no practical tool for sup-
porting semantic equivalence for complex SQL queries.

The main contributions of this paper are as follows: 1) We pro-
vide a survey and a taxonomy of existing NL2SQL methods, and
classify the latest methods. 2) We fairly and empirically compare
eleven state-of-the-art methods using 14 benchmarks. 3) We show
that all the previous studies use misleading measures in their per-
formance evaluation. To solve this problem, we propose a practi-
cal tool for validating translation results by taking into account the
semantic equivalence of SQL queries. 4) We analyze the experi-
mental results in depth to understand why one method is superior
to another for a particular benchmark. 5) We report several surpris-
ing, important findings obtained.

The remainder of the paper is organized as follows. Section 2 in-
troduces fundamental natural language processing and deep learn-
ing concepts. We introduce existing NL2SQL benchmarks used in
recent studies in Section 3. In Section 4, we show a brief history
and review the state-of-the-art NL2SQL methods. We explain our
validation methodology and propose a practical tool for measuring
accuracy in Section 5. Section 6 presents experimental results and
in-depth analysis for them. We discuss insights and questions for
future research in Section 7. We conclude in Section 8.

2. BACKGROUND

Dependency parsing: A syntactic dependency [[15] is a binary
asymmetric relation between two words in a sentence. Each de-
pendency bears a grammatical function (e.g., subject, object, deter-
miner, modifier) of each word wrt. another word. It can be repre-
sented as a typed and directed arrow from one word to another. All
arrows in a sentence usually form a rooted tree, called a syntactic
dependency tree, where the words of the given sentence are nodes
and h is the parent of d for each arrow h — d. Dependency parsing
is a task for finding syntactic dependencies of a given sentence [23]].
Recurrent neural networks (RNNs): A basic RNN takes an in-
put sequence of vectors [ziz2...x,] of length 7 as well as an
initial hidden state ho, and generates a sequence of hidden states
[A1h2 ... k-] and a sequence of output vectors [y1y2 . .. y-]. Spe-
cifically, h; at time step ¢ is calculated by hy = fo(z¢, he—1),
where fy is a function with a parameter 6, which is commonly re-
ferred to as an RNN cell.

If an RNN cell is implemented as just a fully connected layer
with an activation function, it would not effectively accumulate in-
formation from previous time steps in its hidden state of the RNN.
Such a basic RNN would not effectively handle long sequences and
face the notorious vanishing and exploding gradient problem [5].
In order to avoid the problem, long short-term memory (LSTM),

gated recurrent units (GRUs), or residual networks (ResNets) have
been proposed. For example, an LSTM cell maintains an additional
cell state c; which remembers information over time and three gates
to regulate the flow of information into and out of the cell. That is,
h; and c¢; are computed using the gates from c;—1, hs—1, and x.
Sequence-to-sequence models: A sequence-to-sequence model
(Seq2Seq) translates a source sentence into a target sentence. It
consists of an encoder and a decoder, each of which is implemented
by an RNN — usually an LSTM. The encoder takes a source sen-
tence and generates a fixed-size context vector, while the decoder
takes the context vector C' and generates a target sentence.
Attention mechanism: One fundamental problem in the basic Seq-
2Seq is that the final RNN hidden state h. in the encoder is used
as the single context vector for the decoder. Encoding a long sen-
tence into a single context vector would lead to information loss
and inadequate translation, which is called the hidden state bottle-
neck problem [2]. To avoid this problem, the attention mechanism
has been actively used.

Seq2Seq with attention: At each step of the output word genera-
tion in the decoder, we need to examine all the information that the
source sentence holds. That is, we want the decoder to attend to
different parts of the source sentence at each word generation. The
attention mechanism makes Seq2Seq learn what to attend to, based
on the source sentence and the generated target sequence thus far.

The attention encoder passes all the hidden states to the decoder

instead of only the last hidden state [[1}/27]. In order to focus on the
parts of the input that are relevant to this decoding time step, the at-
tention decoder 1) considers all encoder hidden states, 2) computes
a softmax score for each hidden state, and 3) computes a weighted
sum of hidden states using their scores. Then, it gives more atten-
tion to hidden states with high scores.
Pointer network: Although the attention mechanism solves the
hidden state problem, there is another fundamental problem in lan-
guage translation, called the unknown word problem [19]]. In the
Seq2Seq model, the decoder generates a unique word in a prede-
fined vocabulary using a softmax classifier, where each word cor-
responds to an output dimension. However, the softmax classifier
cannot predict words out of the vocabulary.

In order to solve the unknown word problem, pointer networks
have been widely used. A pointer network generates a sequence
of pointers to the words of the source sentence [37]]. Thus, it is
considered as a variation of the Seq2Seq model with attention.

3. BENCHMARKS

Existing NL2SQL methods address limited-scope problems un-

der several explicit or implicit assumptions about ¢y, gsqi, or D.
These assumptions are directly related to the characteristics of its
target benchmark since each method is optimized for a particular
benchmark without considering the general problem.
WikiSQL: WikiSQL [52] is the most widely used and largest bench
mark, containing 26,531 tables and 80,654 (gni, gsq1) pairs over a
given single table. Tables are extracted from HTML tables from
Wikipedia. Then, each g.q; is automatically generated for a given
table under the constraint that the query produces a non-empty re-
sult set. Each g, is generated using a simple template and para-
phrased through Amazon Mechanical Turk.

All SQL queries in WikiSQL are based on a simple syntax pat-
tern, that is, SELECT <aggregation function> <column name>
FROM T' [ WHERE <column name> <operator> <constant val-
ue> (and <column name> <operator> <constant value>)* ],
where 7' is a given single table. This allows only a single projected
column and selection with conjunctions. Note that this grammar
expresses none of grouping, ordering, join, or nested queries.
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ATIS/GeoQuery: ATIS [33} |12} 22, |51] and GeoQuery [49, |50L
32,17, |22] are widely used for semantic parsing which is the task
of translating g,,; into a formal meaning representation. ATIS is
about flight booking and contains a database of 25 tables and 5,410
(qni, gsqi) pairs. GeoQuery consists of seven tables in the US ge-
ography database and 880 (gn1, ¢sq1) pairs [32]. Unlike WikiSQL,
all queries in ATIS and GeoQuery are on a single domain. Thus,
if we use them for training a deep-learning model, the model will
work on a specific domain only. Both benchmarks have various
queries including join and nested queries. ATIS does not have any
grouping or ordering query, whereas GeoQuery does.

MAS: MAS [25] has been proposed to evaluate NaLIR [25]. Mi-
crosoft Academic Search provides a database of academic social
networks and a set of queries. The authors of NaLIR select 196
queries of them. MAS is on a single domain like ATIS and Geo-
Query. It contains a database of 17 tables and 196 (gni, gsqt) pairs.
MAS has various SQL queries containing join, grouping, and nes-
ted queries, but not ordering queries. Each ¢,; in MAS has the
following constraints. First, g, starts with “return me”. While
a user may pose a query using an interrogative sentence or a list
of keywords in real world situations, MAS does not include such
cases. Second, each gy, is grammatically correct.

Spider: Recently, [48]] proposed a new NL2SQL benchmark named
Spider. [48] claims that existing benchmarks have limited quality,
that is, they have a few queries, simple queries only, or on a single
database. Spider is a large-scale cross-domain benchmark with 200
databases of 138 different domains and 10,181 (gni, gsqi) pairs.

4. NL2SQL METHODS
4.1 A brief history

The construction of natural language interfaces for databases has
been studied in both the database and natural language communi-
ties for decades. Figure [I]shows its brief history.

In the 1980s, methods using intermediate logical representation
were proposed [39, |I8]]. They translate g,; into logical queries
independent of the underlying database schema, and then convert
these logical queries to database queries. However, they still rely
on hand-crafted mapping rules for translation.

From the early 2000s, more advanced rule-based methods [31}
25\ 135, 43|, 3] were proposed. [31]] used an off-the-shelf natural
language parser in order to integrate the advances in natural lan-
guage processing without training a parser for a specific database.
However, the coverage was limited to semantically tractable ques-
tions [31]]. This limitation is mainly caused by the assumption that
there is a one-to-one correspondence between words in the question
and a subset of database elements. In order to broaden coverage,
[25} 143} |35] proposed a ranking-based approach. During the map-
ping between words in the question and the database elements, they
found multiple candidate mappings and calculated and ranked the
mapping score for each candidate. NaLIR [25]] further improved
performance with user interaction. ATHENA [35] intermediately
used a domain specific ontology to exploit its richer semantic in-
formation. SQLizer [43] parses gy, into a logical form using Sem-
pre [30], then iteratively refines the form. Templar 3] is an op-
timization technique for mapping and join path generation using
a query log. Although these methods achieved significant perfor-
mance improvement, they still rely on manually-defined rules.

Recently, deep-learning-based (DL-based) methods [22} 52} |42|
241 14,144, 21}, 53| 46, 47, 16, 20] have been actively proposed in
the NLP community by exploiting the state-of-the-art deep learn-
ing technologies. One of the main challenges in developing a DL-
based NL2SQL method is the lack of training data. NSP [22]] used

an interactive learning algorithm and a data augmentation tech-
nique using templates and paraphrasing. DBPal [4] used a data
augmentation technique similar to NSP, which uses more varied
templates and more diverse paraphrasing techniques than NSP. On
the other hand, a new benchmark named WikiSQL was published
in [52]]. Accordingly, many studies [42] 24} 44} 21} 53] |46] have
been conducted to improve accuracy on WikiSQL. Seq2SQL [52],
SQLNet [42], Coarse2Fine [24], and STAMP [53]] proposed a new
deep-learning model specific to WikiSQL. PT-MAML [21]] adapted
the latest learning algorithm called meta learning [14] for Wik-
iSQL. TypeSQL [46] tagged each word in the question with a data
type or a column name and used the tags as input to its deep learn-
ing model. More recently, as [48]] proposed a new NL2SQL bench-
mark named Spider, SyntaxSQLNet [47[], GNN [6], and IRNet [20]
targeting Spider have been proposed.

4.2 Taxonomy

We provide a general taxonomy for NL2SQL, and then classify
the recent methods according to the taxonomy. The taxonomy in
Figure [2] considers three dimensions and four sub-dimensions in
the technique dimension.

In our survey, we include existing methods published at ma-
jor conferences of database and natural language processing areas
from 2014 to September, 2019. We review a total of 16 meth-
ods [251 (35,143} 3,142} 24, |44} 21} |53, 146} 47, |6, 20]|.

4.2.1 Input

Regarding the input dimension, we have four sub-dimensions:
pre-processing of gn;; a table/database as input; schema only and
schema + value; and additional inputs (Figure[3). Existing methods
take two inputs, g,; and a database D, consisting of a set of tables
along with the database schema Sp. Here, each table has a set of
records, and each record has a set of column values, Vp. Note that
Templar is presented in the ‘technique’ dimension only, since it is
an optimization technique for rule-based methods.

All existing methods take an English text as gn;. They use dif-
ferent pre-processing techniques as follows: All DL-based methods
use pre-trained embedding vectors of tokens (in ¢y, Sp, or Vp) as
Word2Vec [28]]. For rule-based methods, NaLIR parses ¢y into the
corresponding dependency parse tree. SQLizer transforms gy into
a logical form using Sempre [30]. ATHENA uses a sequence of
words. Some techniques also require additional inputs: an open-
domain knowledge base such as Freebase [//] for detecting named
entities; domain-specific dictionary/ontology; a pre-built mapping
table between phrases in ¢,; and SQL keywords; WordNet [29];
and a word embedding matrix for calculating word similarity.

Although all methods use general pre-processing techniques, and
there is no explicit constraint on ¢,;, each method has implicit as-
sumptions on ¢,;. For example, NaLIR uses a manually-built map-
ping table between NL phrases and SQL keywords. To generate
proper SQL keywords, ¢,; must include phrases in the table.

For D, we examine their domain adaptability, constraints, and
utilization. Unlike other methods taking a (g, D) pair as an input
for inference, NSP and DBPal use D only for vocabulary building
during training. During inference, they assume that g, is over D
seen in the training. Some assume that D consists of a single table
only. ATHENA requires a specific dictionary and an ontology for
each D. For database utilization, some use Sp only, while others
use both Sp and Vp.

4.2.2 Technique: translation

We explain the translation dimension first for a better under-
standing of the existing methods (Figure [@). In the translation
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Figure 1: A brief history of natural language interface to relational databases.

Figure 2: An overview of the classification criteria.

Figure 3: Taxonomy over the ‘input’ dimension.

phase, each method translates g,; to gsq directly or to a certain
intermediate representation.

Rule-based methods: [25, 35, 43] generate gs, by applying a
fixed set of rules to q,;. NaLIR and ATHENA translate ¢y, into
a tree-structured intermediate representation. NaLIR transforms a
dependency parse tree into a valid parse tree. The transformation
is performed by using a simple algorithm which arbitrarily moves
a sub-tree of the initial tree and by applying a set of node-insertion
rules. ATHENA builds an interpretation tree of g,;, where each
node corresponds to a concept/property, and an edge represents a
relation in a given ontology. SQLizer transforms the input logical
form into gsq; by iteratively modifying the logical form.

During the translation, each method ranks candidate represen-

tations. NaLIR uses the edit distance between the initial tree and
the tree modified by the heuristic sub-tree movement; ATHENA
proposes a modified Steiner Tree algorithm; and SQLizer defines a
specific score function based on its own rules.
DL-based methods: [22] 52| 42} 24, 4, |44] 21} |53} 46| 47, 6,
20] generate gsq by using an encoder-decoder model. All of the
methods encode g,; by using an RNN. We classify these methods
according to how they treat Sp and how they generate gsq;.
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Figure 4: Taxonomy over the ‘translation’ dimension.

Each method treats Sp as either a part of the output vocabulary
(SaV) or the input (Sal). The SaV methods put all table/column
names into the output vocabulary and decode schema entities by
selecting words from the vocabulary. In contrast, the Sal methods
take the database schema as input and decode schema entities by
copying from the input based on the pointer mechanism.

Regarding the generation of g4, there exist three types of DL-
based methods: sequence-to-sequence, sequence-to-tree, and slot
filling. The sequence-to-sequence methods generate an SQL query
as a sequence of words. The sequence-to-tree methods generate
a syntax tree of an SQL query. The slot-filling methods treat an
SQL query as a set of slots, and decode the whole query by using a
relevant decoder for each slot.

NSP and DBPal, which are SaV methods, focus on with a limited
size of training data rather than the design of a specialized model.
Both of them use a Seq2Seq with attention. Unlike traditional ma-
chine translation methods that use large vocabulary, they take ad-
vantage of small vocabulary with only SQL keywords, table/col-
umn names, and constant values in training examples. This sig-
nificantly reduces the difficulty of translation problems. Before
training, we need to put SQL keywords, table/column names, and
constant values into the output vocabulary of the decoder. Then,
the decoder can generate an SQL query by selecting a sequence of
words from its output vocabulary. Since the SaV methods build vo-
cabulary from the training examples, they can process queries well
if they contain words in the vocabulary. Thus, they need to re-train
their model for a new database.

The Sal methods are subdivided into three classes according to
the structure of a schema encoder: a sequence, a set of tables/-
columns, and a graph. PT-MAML, TypeSQL, and Coarse2Fine
take Sp as a sequence of column names by using a single RNN.
Seq2SQL, SQLNet, STAMP, SyntaxSQLNet, and IRNet treat Sp
as a set of tables/columns by using an RNN for each table and for
each column. GNN treats Sp as a graph by using a graph neural
network [26] to utilize the structural information of Sp.

The Sal methods can also be classified into three categories ac-
cording to how they generate qsq;. PT-MAML and STAMP treat
gsqi as a sequence of words. The decoders of PI-MAML and
STAMP have three types of output layers: SQL keywords, col-



umn names, and constant values. PT-MAML decodes a sequence
guided by a fixed syntax pattern as in [38]], while STAMP dynami-
cally selects the type of layers for each decoding step. SyntaxSQL-
Net, GNN, and IRNet generate a syntax tree. Specifically, Syn-
taxSQLNet has nine types of modules for the individual parts of
SQL, such as aggregation, the WHERE condition, group by, order
by, and intersect/union. It dynamically selects one of the types to
be generated for each decoding step, guided by a specific subset of
the SQL syntax. GNN and IRNet use a grammar-based sequence-
to-tree decoder [41, 9} 45| 34] which generates a derivation tree
rather than a sequence of words. The grammar-based decoder can
immediately check for grammatical errors at every decoding step,
allowing the generation of various SQL queries, including join and
nested queries, without syntax errors. The other methods belonging
to slot-filling use the same fixed template as the syntax pattern of
WikiSQL, so they have three types of decoders, each for projection,
aggregation, and selection.

During the translation, IRNet generates an intermediate repre-
sentation named SemQL. The authors argue that, due to significant
difference between the SQL (context-free) grammar and the nat-
ural language grammar, it is difficult to translate g,; into gsq di-
rectly [20]. SemQL is more abstract than SQL and thus easily cap-
tures the intent expressed in ¢,;. For example, the SemQL query
does not have the GROUP BY, HAVING, or FROM clauses. In-
stead, only conditions in the WHERE and HAVING clauses need
to be expressed. IRNet has a method for translating a SemQL
query into the equivalent SQL query. When columns expressed
in SemQL are from multiple tables, the method heuristically adds
primary key-foreign key (pk-fk) join conditions during the transla-
tion to SQL. Clearly, many rich functionalities in SQL are lost in
SemQL, which is an inherent disadvantage of SemQL.

Unlike rule-based methods, the advantage of DL-based methods
is that they can learn the background knowledge of training exam-
ples, so that it is possible to generate the desired SQL even if ¢y, is
not concrete. For example, in GeoQuery, DL-based methods may
understand that a term such as “major cities” means “city.popula-
tion > 150,000” from the training data.

4.2.3 Technique: input enrichment

Before the translation phase, some NL2SQL methods try to ob-
tain or remove information about inputs. Six of the 16 methods are
omitted since there is no input enrichment in these methods.

Figure 5: Taxonomy over the ‘input enrichment’ dimension.

Tagging: TypeSQL performs string matching between phrases in
gni and the entities in a database or a knowledge base. Then, for
each entity mention, TypeSQL tags it with the name of the corre-
sponding entity (i.e., its type). The tag of each word is embedded
into a vector and is concatenated to an embedding vector of the
word. A sequence of the concatenated vectors of words in g, is
used as input to the natural language encoder.

PT-MAML performs tagging only for constant values using sim-
ilarity matching. After finding constant values in g,;, PT-MAML
normalizes it to the corresponding entity in Vp. The type of each
entity is added to gy, just before the position of the entity.
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Linking: GNN calculates a linking score between each word in gy
and the database schema entity (i.e., table or column). This tech-
nique, named schema linking, was developed to put information
about references into the entities of Sp within g¢,; for the model.
The schema linking module has two sub-modules; one is to cal-
culate similarity between word embedding vectors of the question
word and schema entity, and the other is to calculate similarity us-
ing a neural network with inputs of features obtained by directly
comparing words. The linking scores are input to both the g,; en-
coder and the Sp encoder. Unlike the string-matching-based tag-
ging of TypeSQL, GNN’s schema linking module is trainable and
is learned together with the encoder-decoder.

IRNet also uses a schema-linking technique, like GNN, but the
linking of IRNet is based on string matching like TypeSQL. Un-
like TypeSQL, however, IRNet does not use Vp and allows par-
tial matching. IRNet tags each entity mention with the type of the
corresponding entity. IRNet also tags each referenced entity in a
database with a unique ID indicating that it is referenced in the
question. IRNet uses heuristic rules to choose one of multiple en-
tities. The tags of each word and each database entity are used as
input to the ¢,; encoder and to the Sp encoder, respectively.

All rule-based methods construct mapping between phrases in
gn1 and entities of Sp or Vp based on similarity matching. NaLIR,
SQLizer, and Templar try to find the best mapping, while ATHENA
considers all mapping candidates in the translation phase. For rank-
ing, NaLIR and SQLizer use a similarity-based score, while Tem-
plar uses both similarity information and a given SQL query log.
Anonymizing: NSP and DBPal aim to reduce their vocabulary by
using constant value anonymization, which converts each constant
value into a specific symbol in g,,; and ¢s4;. DBPal does not specify
how it detects constant values in g,;. NSP uses a simple heuristic
algorithm to anonymize a constant value, that is, it finds a value
in the given ground truth SQL query by searching for a quotation
mark and then matches the value with some words in ¢,;. In fact,
this is not applicable in practice since the ground truth SQL query
for g, is unknown. In an ideal situation, NSP would not store
any word in its vocabulary except SQL keywords and database
schemas. This means that NSP assumes that constant values can
always be anonymized, which is impossible at the current level
of technology. NSP will fail to translate if a query has any non-
anonymous constant values.

4.2.4 Technique: post-translation

Some NL2SQL methods complete the translation by either fill-
ing in the missing information or by refining gs4; in the post-transla-
tion phase. Figure [6] shows four kinds of post-processing. NSP
and DBPal recover anonymized constant values in gsq;. ATHENA,
NaLIR, and IRNet, which use an intermediate representation, trans-
late the representation to ¢s4;. IRNet and SyntaxSQLNet complete
gsq by adding join predicates using a heuristic algorithm. Templar
infers join predicates by using the SQL query log. NaLIR and NSP
can utilize user feedback about the correctness of the translation.
DialSQL can encode a dialogue, so that it refines gsq; repeatedly
throughout the dialogue with a user.

4.2.5 Technique: training

Every DL-based method trains its model by supervised learning.
The following six DL-based methods propose modified learning al-
gorithms. NSP and DBPal augment training data with predefined
templates and paraphrasing techniques, such as [[16]. In order to
fine-tune the selection module, Seq2SQL and STAMP addition-
ally use reinforcement learning, which compares the execution re-
sults of the generated SQL statement with that of the corresponding



Figure 6: Taxonomy over the ‘post-translation’ dimension.

ground truth. PT-MAML exploits meta-learning techniques [[14] by
dividing queries into six tasks according to the aggregation func-
tion: sum, avg, min, max, count, and select. DialSQL constructs a
simulator to generate dialogues used in training.

Templar uses an SQL query log (i.e., a set of SQL queries) to
reinforce the key mapping and join inference. Specifically, given
D and an SQL log on D, it decomposes each query in the log into
individual query fragments and then constructs a query fragment
graph for D; the graph statistically captures the occurrence and
co-occurrence frequencies of query fragments in the log. Then, it
defines specific score functions for both keyword mapping and join
inference based on the query fragment graph.

4.2.6  Output

Figure [/| shows a taxonomy over the ‘output’ dimension. The
supported SQL syntax of every method is limited but it is often un-
clear, especially for rule-based methods. Hence, we group existing
methods into three categories, and we indicate which design choice
leads to the restriction. There are four reasons: 1) pre-defined syn-
tax patterns and/or types of slots, 2) heuristic translation rules, 3)
intermediate representations with limited coverage of syntax, and
4) limited training examples.

All methods generate ranked SQL queries and return the best
one. The rule-based methods use specific ranking algorithms as ex-
plained in Section[4.2.2] while the DL-based methods use implicit
ranking based on softmax scores.

5. VALIDATION METHODOLOGY

5.1 Semantic equivalence

One important issue in NL2SQL is how to measure translation
accuracy. Translation accuracy in NL2SQL is measured as the
number of correctly translated SQL queries over the total number
of test queries. We can judge the correctness by comparing each
translated SQL query using an NL2SQL method with the gold SQL
query given in the test dataset. In this section, we propose a tool
for validating translation results, which is based on the semantic
equivalence to overcome the limitations of existing measures.

First, we need a formal definition of semantic equivalence of two
SQL queries. Given two SQL queries g1 and g2, they are semanti-
cally equivalent iff they always return the same results on any input
database instance. Otherwise, they are semantically inequivalent.
To correctly compare two SQL queries, we must use the semantic
equivalence of the two queries.

Existing NL2SQL methods do not consider the semantic equiva-
lence, or require a lot of manual efforts when measuring accuracy.
Figure 8] shows the validation methodology of each method.

5.2 Validation tool

Despite a lot of research on semantic equivalence, the state-of-
the-art tools such as Cosette [[11}|10] support a limited form of SQL

Figure 7: Taxonomy over the ‘output’ dimension.

Figure 8: Taxonomy: validation methodology.

queries. Thus, we have to rely on expensive manual efforts for
judging semantic equivalence.

In order to reduce the manual effort significantly, we exploit re-
sult matching and parse tree matching. Both can be used as early
termination conditions in our tool. That is, if two queries have dif-
ferent execution results, we are sure that the queries are semanti-
cally inequivalent. If two queries have the same syntactic structure,
the queries are semantically equivalent.

We improve the quality of result matching by using database test-
ing techniques [8]. In database testing, we generate datasets (i.e.,
database instances), run queries over these datasets, and find bugs
in database engines. Thus, we generate different datasets so that
every query has non-empty results for at least one of these datasets.
As we increase the number of database instances, different queries
would produce different execution results for some database in-
stances. Thus, we can effectively judge that two queries are se-
mantically inequivalent by executing on the generated datasets.

We improve the quality of syntactic matching by exploiting query
rewriting techniques. We use a query rewriter which transforms an
SQL query into an equivalent, normalized query. This is done by
using various rewrite rules. If two SQL queries are semantically
equivalent to each other, the rewriter is likely to transform them into
the same normalized query. By comparing two rewritten queries,
we can determine whether they are semantically equivalent.

In this paper, we propose a multi-level framework for determin-
ing the semantic equivalence of two SQL queries (Figure [9). Note
that the order of the individual steps does not affect the overall
effectiveness (i.e. the number of resolved cases of whether two
queries are semantically equivalent or inequivalent). First, we com-
pare the execution results of two SQL queries. If their execution
results are not equivalent, we determine that they are semantically
inequivalent. However, when the size of a given database is small,
it is highly likely that two completely different SQL queries return
the same empty results. We resolve this problem by comparing ex-
ecution results on the generated datasets using the database testing
technique as well as on the given database. Next, we use an existing
prover, such as Cosette, that exploits automated constraint solving
and interactive theorem proving and returns a counter example or a
proof of equivalence for a limited set of queries. For queries that are
not supported by the prover, we use the query rewriter in a commer-
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cial DBMS and compare the parse trees of the two rewritten SQL
queries. Specifically, two queries are equivalent if their parse trees
are structurally identical; i.e., every node in one parse tree has the
corresponding matching node in the other. After a series of com-
parisons, unresolved cases can be manually verified. Alternatively,
the tool determines whether any unresolved cases are semantically
inequivalent, which would lead to slightly incorrect decisions. In
our extensive experiments, our tool achieved 99.61% accuracy.

Figure 9: A flowchart of our multi-level framework.

We implement the multi-level validation tool by using 1) Evo-
SQL [8] as a database instance generator, 2) Cosette as a prover,
and 3) the query rewriter in IBM DB2. The manual validation is
done by graduate-level computer science students.

6. EXPERIMENTS

In this section, we first show the effectiveness of the proposed
validation tool in Section 5] and then evaluate the performance of
the eleven methods reviewed in Sectionfd] (35} 43] 4 53] 44] are ex-
cluded from our evaluation since the authors did not disclose their
source codes or binary executables. This performance evaluation
consists mainly of two parts: 1) experiments using simple queries
(following the syntax pattern in WikiSQL) (Section @, and 2)
experiments using complex queries (Section [6.3)).

The main goals of this experimental study are as follows: 1)

We show that all existing accuracy measures are misleading. 2)
We evaluate the effectiveness of our validation tool. 3) We evalu-
ate the performance of the eleven NL2SQL methods by using 13
benchmarks including a new benchmark (WTQ). We additionally
use TPC-H[H 4) We analyze translation errors in depth and identify
the advantages and disadvantages of each method.
Benchmarks. We use a total of 13 NL2SQL benchmarks including
a newly released benchmark, WTQ. We additionally use TPC-H.
The WTQ benchmark consists of 9,287 randomly sampled ques-
tions from the existing WikiTableQuestions [30]. WikiTableQues-
tions has a salient feature, compared to the existing benchmarks:
complex questions in different domains. WikiTableQuestions con-
sists of questions for web tables on various domains, and it has
complex queries that include various operations such as ordering,
grouping, and nested queries. However, the WikiTableQuestions
benchmark contains g,;’s and their execution results without gold
gsqi’s. Thus, we collect gsq;’s through crowd-sourcing.

Table [1] shows the statistics of the 13 benchmarks. If the data
split (i.e., training, validation, and test examples) is published, we
use the published one, otherwise we perform the random split with
the ratio of 11:1:5.6, for training, validation, and test examples,

"http://www.tpc.org/tpch/
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respectively. For the Advising benchmark, we use two versions
of splits published in [[13]], namely question-based split and query-
based split. The question-based split is a traditional method used
in the other benchmarks. This method regards each pair (gni, @sqt)
as a single item so that each pair belongs to either a training set,
a validation set, or a test set. Meanwhile, the query-based split
ensures that each g4 belongs to either a training set, a validation
set, or a test set. We use validation examples for evaluating on
Spider since test examples of Spider are not published. For MAS,
IMDB, and YELP, we manually wrote a gsq for each gy, since
these benchmarks do not contain gold SQL queries. For ATIS, we
manually removed 93 incorrect examples.

Table 1: The statistics for the NL2SQL benchmarks.

Benchmark Tota.ll Tram.mg Vallda.tlon Tes-t Tables| Rows Size
queries| queries | queries |queries (MB)
WikiSQL [52] | 80654 | 56355 8421 15878 26531 | 459k | 420
ATIS
| 312,351 5317 4379 491 447 25 | 162k | 39.2
Advising [I3] 1307 | 2040 515 | 1832 | 15 | 332k | 43.8
(querysplit)
Advising [13] 1507 | 3595 | 220 | 573 | 15 | 332k | 43.8
(questionsplit)
GeoQuery
{49 [50,32)[17[23) 880 550 50 280 7 937 | 0.14
Scholar [22] 816 498 100 218 10 | 144M | 8776
Patients [4] 342 214 19 109 1 100 [0.016
Restaurant
36,321 251 157 14 80 3 18.7k | 3.05
MAS [25] 196 123 11 62 17 |54.3M|4270
IMDB [43] 131 82 7 42 16 [39.7M| 1812
YELP [43] 128 80 7 41 7 |4.48M| 2232
Spider [48] 9693 8659 1034 - 873 [1.57TM| 184
WIQ [30] 9287 5804 528 2955 | 2102 | 58.0k | 35.6
[Ours]

Since a simple query is defined for a given table, it can only be
found in WikiSQL, Patients, and WTQ where a table is specified for
each query. Table2]shows the number of simple queries, indicated
by the suffix “-s” to distinguish them from the original benchmarks.
Note that WikiSQL-s is same as WikiSQL.

Table 2: The statistics for simple queries.

Training | Validation Test Total
Benchmark . . . .
queries queries queries | queries
WikiSQL-s 56355 8421 15878 80654
Patients-s 61 8 33 102
WTQ-s 1090 63 315 1468

Experimental setup. We use the source codes provided by the
authors of each method. In order to show the effect on accuracy
caused by the use of database entities, we evaluate the accuracy
of TypeSQL with database values (TypeSQL-C) and without them
(TypeSQL-NC). For Templar, we evaluate the augmented NaLIR
as in [3]] by extending its SQL parser to support the benchmarks
used in our experiments. We use ¢sq:’s in training and validation
sets for the SQL log. For Spider, we use only the training set as
the log. We do not evaluate the augmented Pipeline since it re-
quires manual parsing of ¢,; into a set of keywords for all exam-
ples. For NaLIR and Templar, which assume that the SQL exe-
cution result is a set, we measure their accuracy by ignoring the
DISTINCT keyword in the SELECT clause. We fixed a bug in
the source code of PT-MAML that caused an error if a test query
contains words not in the training data. For DL-based methods,
if the authors published a hyper-parameter setting for a particular
dataset, we used the same setting. Otherwise, we performed exten-
sive grid searches using the hyper-parameters in Table [3] and re-
peated all experiments five times. For NSP on ATIS, the accuracy
variance was relatively high, so we repeated the experiment ten
times. The hyper-parameter tuning took about 3,600 GPU hours.



Coarse2Fine raises an error if all SQL queries in a mini-batch do
not contain a WHERE clause due to the numerical instability in
its algorithm. This error occurred in about 40% of experiments
during tuning hyper-parameters on WTQ-s. We applied the fol-
lowing stopping criteria: Each model was trained for 300 epochs,
and we set the checkpoint at the epoch that had the lowest vali-
dation loss. Our codes and benchmarks are publicly available at
https://github.com/postech-db-lab-starlab/NL2SQL.

Table 3: Hyper-parameters.

The dimension of Learning rate

a word embedding vector {100,300} (LR) ¢ {le-3, le-4}
The number of layers {1,2} Batch size {64,200}
Dropout rate {0.3,0.5} LR decay {1,0.98,0.8}
The dimension of context vector {50, 300, 600, 800}

Reproduction of DL-based methods. Table 4| contains accuracy
results of the original papers and our experiments with the origi-
nal source codes. Note that existing codes for measuring accuracy
have bugs, but we use them solely for the reproduction purposes.
For example, when a translated query contains syntax errors, acCez
in NSP judges that the query returns an empty result. Thus, when
the corresponding gold SQL returns an empty result, acce, in NSP
determines that they are equivalent, which is wrong. accsy, of GN-
N/IRNet has bugs in comparison with join predicates and group by
columns. Except for the results of GNN on Spider, we reproduced
all experiments with an accuracy difference of at most 2.14%. The
small discrepancies occurred whenever the authors did not spec-
ify the random seed they used. For GNN, the authors published
a hyper-parameter set which is better than that which was used in
their original paper. Hence, our result shows a higher accuracy.

Table 4: Reproduction of the accuracy in original papers (%).

Method |Benchmark (i)rrllagl- Ours|| Method |Benchmark ?;;“’I_ Ours
NSP GeoQuery | 82.5(80.36|| TypeSQL-C | WikiSQL | 75.4|74.97
NSP ATIS 79.24|78.13 || PI-MAML | WikiSQL | 62.8(62.72
NSP Scholar 67(67.43 || Coarse2Fine| WikiSQL | 71.7(70.78

TypeSQL- . Syntax- .
NC WikiSQL | 66.7[67.06 SQLNet Spider 189] 174

SQLNet | WikiSQL | 61.3[{61.27 GNN Spider 40.7| 47.2

Seq2SQL | WikiSQL | 51.6|51.33 IRNet Spider 53.2| 53.0

6.1 Validating translation results

We show that all accuracy measures used in the previous studies
are misleading. We define accsem as Nsem /N, where Ngep, is the
number of generated queries that are semantically equivalent to the
gold SQL queries, and N is the total number of queries. acces is
an accuracy measure comparing the execution results of two SQL
queries on a given database. accy, is calculated by comparing two
SQL queries through string matching. accsy, is based on syntactic
equivalence of two SQL queries. For the first step in Figure[9]and
acceq, We set an execution timeout to 30 seconds for each ggq;.

Table [5] shows the comparison results of accuracy measures on
various benchmarks. In this experiment, we measure accuracy for
the translation results of NSP. This experiment aims to compare
various accuracy measures, and it does not matter which NL2SQL
method is used. Using simple queries, however, the difference
among measures may not be revealed. Thus, we select NSP, which
can translate complex queries, without loss of generality. The re-
sults show that the measurement error of existing measures is sig-
nificant. acCsyn, acCeq, and accyy, differ from accgern by up to
59.96% on ATIS, 27.58% on Advising (questionsplit), and 70.25%
on ATIS, respectively. These would be even larger as SQL queries
become more complex.

1744

Table 5: Comparison of accuracy measures (%).

Benchmark aCCsem aCCsyn acCey acCsty,

WikiSQL 9.47 9.47 25.67 0.0
ATIS 70.25 10.29 77.18 0.0

Advising 0.27 027 | 208 | 027

(querysplit)

Advising 1 65 | 4415 | 7243 | 4415

(questionsplit)

GeoQuery 70.0 69.29 78.21 68.93
Scholar 48.17 37.61 46.79 33.49
Patients 69.72 68.81 69.72 68.81

Restaurant 63.75 63.75 76.25 56.25

MAS 51.61 46.77 53.23 46.77
IMDB 16.67 16.67 19.05 16.67
YELP 0.0 0.0 19.51 0.0
Spider 0.0 0.0 0.87 0.0
WTQ 2.06 1.83 541 0.03

We now show the effectiveness of our multi-level validation tool.
First, we demonstrate that each step of our tool is effective by cal-
culating the number of resolved cases at each step. We perform
this evaluation on the translation results of NSP. To ensure general-
ity, we excluded WikiSQL and Spider from this experiment; Wik-
iSQL has simple queries only which are easy to determine semantic
equivalence. NSP shows acce, near to 0% on Spider so that it is
easy to determine semantic inequivalence on Spider. We evaluate
on the other eleven benchmarks.

Figure 10| shows the ratio of resolved pairs of the translated and
gold queries at each step for each benchmark. Each legend cor-
responds to one of the six flows shown in Figure 0] As shown in
Figure [T0] the ratio of resolved cases at each step varies largely
depending on the dataset. The average ratio of resolved cases on
eleven benchmarks at “(A),” “(B),” “(C),” “(D),” “(E),” “(F),” and
“(G)” 18 69.59%, 10.27%, 6.39%, 0.77%, 9.64%, 0.39%, and 2.95-
%, respectively. The sum of the ratios of “(F)” and “(G)” is the
percentage of queries unresolved by our tool’s automatic process;
3.34% of the total pairs were unresolved by the automated process.
While we must rely on the manual inspection to achieve 100% ac-
curacy, our tool achieves 99.61% accuracy on average in the eleven
benchmarks by determining all of unresolved cases to be inequiva-
lent. Although the effect of the proposed tool may vary depending
on the dataset, it has a very small error (0.39%) on average.

—T=(A)
== (B)
== (C)
=== (D)
— (E)
== (F)

== (G)

ATIS

Advising (querysplit) |

Advising (questionsplit)

GeoQuery
Scholar \ \

Patients |

Restaurant
MAS
IMDB
YELP |
WTQ

v
Zb 4‘(] ()"[] 8‘[] 100 . .
es (%) for each step of our validation tool.

0
Figure 10: Resolved cas

We further measure the number of unresolved cases when ac-
tivating only one step at a time, i.e., each step corresponding to
“(A),” “(B),” “(C),” and “(D),” or “(E).” The average ratio of unre-
solved cases on the eleven benchmarks is 30.41%, 48.76%, 83.87%,
and 83.69%, respectively. These values are much larger than the
value of 3.34% which uses all steps. The results show that our tool
consists of complementary steps, and integrating these steps is an
effective approach for removing unresolved cases.

6.2 Experiments using simple queries

Since SyntaxSQLNet, GNN, and IRNet generate SQL queries
ignoring constant values, we compare their translation results with
gold SQL queries without constant values. Given a generated SQL



query and a gold SQL query, we replace all constant values in both
with indicators. Then, we compare the two queries using our vali-
dation tool. We denote the accuracy as acc_q;-

Table [f] shows acCsem and acc_yq; of all methods on the three

benchmarks which have simple queries. In order to analyze er-
rors in depth, we measure the accuracy for each part of the SQL
query (Table[7). We report accuracy values for projected columns
(accser), aggregation functions in the SELECT clause (accagg),
and columns, operators, and constant values in the WHERE clause
(acCwh, col> ACCwh,op, AN ACCwh, val, rEspectively).
Rule-based methods: The rule-based methods show low accu-
racy on all benchmarks. This is mainly due to the mapping table
used in the translation process, which significantly limits ¢,,;’s that
can be handled. For example, NaLIR mis-translates the question
(A) in Table [8] since the mapping table does not have a mapping
from “longest” phrase to “MAX” function. The accuracy of NaLIR
might be slightly improved by extending the mapping table for each
benchmark, but it must be done manually and requires considerable
effort. Although Templar enhances the mapping by using an SQL
log, such a linguistic mapping cannot be captured without using
gni’s together. Since this fundamental problem is left unsolved, it
does not improve accuracy in this experiment. This is because all
three benchmarks have little or no training query per table, so that
using a query log is not helpful. The join path generation technique
of Templar also has no impact for single-table queries.

Table 6: Accuracy on simple queries (%).

WikiSQL Patients-s WTQ-s

ACCsem | ACC_yqgl | ACCsem | ACC_yqgl | ACCsem | ACC_yql
NaLIR 0.49 0.50 0.00 0.00 1.59 1.59
Templar 0.49 0.50 0.00 0.00 1.59 1.59
NSP 9.49 10.84 81.82 81.82 0.32 0.32
SyntaxSQLNet - 4991 - 21.21 - 21.59
Seq2SQL 51.33 54.02 33.33 33.33 1.27 2.54
PT-MAML 60.65 63.54 39.39 39.93 18.41 20.00
SQLNet 61.27 67.92 33.33 39.39 1.27 2.22
TypeSQL-NC 67.14 72.50 45.45 63.64 5.71 9.84
Coarse2Fine 70.78 72.56 42.42 45.45 2.54 6.98
TypeSQL-C 74.97 76.52 48.48 51.52 10.16 14.60
IRNet - 73.60 - 57.58 - 44.13
GNN - 79.01 - 60.61 - 4.44

Adaptability to unseen databases: If a method performs well
for unseen databases, we say that the method has high adaptabil-
ity. NSP performs poorly for WikiSQL compared to the other DL-
based methods since NSP has limited adaptability to new databases.
In NSP, entities in Sp are stored as a part of the output vocabulary.
Therefore, NSP cannot support queries on tables not seen in train-
ing data. WikiSQL has 26,531 tables, and the vocabulary size is
55,294. The large size of vocabulary also results in significant per-
formance degradation of NSP. On the other hand, the other methods
need not maintain large vocabularies, since they use a schema as an
input and the pointer mechanism. Note that in Patients, the out-
put vocabulary size is 45. Another issue is that NSP cannot take a
particular database as input. This is due to the inability of NSP to
utilize the additional information about the table. We tested a mod-
ified NSP which selects the given table 7" for each ¢y,; in the FROM
clause, and selects columns from 7". However, accsen, of NSP stays
at 11.5%, which was still far lower than the other DL-based meth-
ods. Note that these two problems also occur on WTQ-s.

Robustness with small datasets: The data augmentation tech-
nique of NSP is helpful for Patients-s since the number of train-
ing queries in Patients-s is relatively small (61 queries). In order
to show the effectiveness of the data augmentation, we conduct
additional experiments by applying the technique to all DL-based
methods. The numbers of training examples after augmentation for
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Table 7: Partial accuracy on simple queries (%).

Benchmark | Method ACCse1 [ACCagg [ACCw R, col [ACCw A, op |ACCWR val
NaLIR 0.80 0.96 0.74 0.83 0.77

Templar 0.80 0.96 0.74 0.83 0.77

NSP 4192 7599 32.20 67.69 37.66
SyntaxSQLNet| 76.38| 89.54 68.21 92.51 -

s Seq2SQL 88.52| 89.75 65.43 92.54 84.05
WIikiSQL  'pTMAML | 85.70] 88.63]  8223]  90.12] 8539
SQLNet 90.75| 90.16 81.93 92.57 81.57
TypeSQL-NC 92.51] 89.94 86.44 93.97 86.01
Coarse2Fine 91.46| 90.41 86.01 96.13 92.87
TypeSQL-C 92.17] 90.12 92.13 96.12 94.97

TRNet 93.37] 89.71 85.43 93.69 -

GNN 94.43| 90.20 92.35 94.01 -

NaLIR 6.06 6.06 15.15 15.15 15.15

Templar 3.03 6.06 6.06 6.06 6.06

NSP 93.94] 9091 93.94 84.85 93.94
SyntaxSQLNet| 72.73| 51.52 66.67 72.73 -

Patient Seq2SQL 87.88| 63.64 60.61 63.64 60.61
PT-MAML 93.94| 57.58 81.82 75.76 93.94

SQLNet 81.82] 63.64 90.91 84.85 84.85
TypeSQL-NC 96.97| 69.70 90.91 90.91 72.73
Coarse2Fine 87.88] 51.52 87.88 90.91 96.97
TypeSQL-C 90.91| 72.73 81.82 84.85 96.97

IRNet 72773 66.67 75.76 78.79 -

GNN 87.88] 78.79 93.94 81.82 -

NaLIR 2.22 3.49 1.59 1.90 1.90

Templar 2.22 3.49 1.59 1.90 1.90

NSP 16.51| 33.65 11.43 29.84 9.21
SyntaxSQLNet| 43.17| 60.00 34.29 50.48 -

WTQ-s Seq2SQL 26.35| 85.08 28.89 65.71 27.30
PT-MAML 36.51| 49.52 38.10 43.17 40.63

SQLNet 26.03| 88.57 27.30 66.35 28.25
TypeSQL-NC | 40.00| 87.30 37.78 67.62 32.70
Coarse2Fine 27.30| 86.67 27.94 76.19 18.41
TypeSQL-C 39.68| 90.16 35.56 68.25 36.51

IRNet 62.86] 72.38 51.43 65.40 -

GNN 21.27| 50.16 13.33 31.75 -

Patients and Patients-s are 1,077 and 500, respectively. The results
show that most methods benefit from the data augmentation tech-
nique (0%-27.27%).

Even after applying the data augmentation technique to all meth-
ods, NSP still has the best performance (81.82%) for Patients-s.
The first reason is that 3.3% of test queries in Patients-s cannot be
generated in most DL-based methods except for NSP, GNN, and
IRNet. Since they generate constant values by using the pointer to
words mechanism in gy, they generate an incorrect gsq; if a con-
stant value does not appear in g,;. For example, the question (B)
in Table [§] doesn’t have the constant value “flu” which is a part of
the gold gsq:. On the other hand, NSP can generate constant values
correctly if the values exist in the output vocabulary. Furthermore,
it was helpful for NSP to use all training queries for training. The
accuracy of NSP trained with simple queries stays at 69.7%, which
is the same level as the accuracy of TypeSQL-NC with the data aug-
mentation. Even though SyntaxSQLNet, GNN, and IRNet do not
suffer from the problems described above, their accuracy is lower
than that of NSP. This shows that the simple model of NSP can
be more powerful on benchmarks with small numbers of training
examples. For example, given the question (A) in Table [§] NSP
predicts the correct column in the SELECT clause. NSP can infer
the mapping between ‘hospitalization period’ in g,; and the col-
umn ‘length_of_stay’ from four training examples. However, Syn-
taxSQLNet, GNN, and IRNet select the column ‘age,” which is the
most frequent one in the training data. Since the other methods are
clearly inferior to these methods, we omit their detailed analysis
due to space limitation.

NL complexity: The complexity of natural language is affected by
various factors such as linguistic diversity in questions, a variety
of domains, target operations of SQL, and number of sentences.
WTQ has high complexity since it has diverse forms of questions
including multiple independent clauses, 2,102 tables from diverse



domains, and complex queries containing group by, order by, and
nested queries. In this section, we first examine the first two, lin-
guistic diversity in questions and the variety of domains, with sim-
ple queries. The other two points will be discussed in Section

All methods have significantly poorer performance on WTQ-s

than WikiSQL. Since WTQ-s has a wide variety of ¢,;’s, various
(unseen) questions are in the test data. For example, the ques-
tion (C) in Table [§| has multiple independent clauses and negation,
where all methods fail to translate properly. Furthermore, compli-
cated column names/constant values in a number of tables result in
more complex questions. For example, in the question (D) in Ta-
ble[8] the column name ‘number of autos da fe’ is not English. Most
DL-based methods do not understand any column name which can-
not be found in the word embedding matrix.
Aligning table/column references in ¢,; to Sp: Exploiting the
associations between ¢,; and Sp can greatly affects the accuracy.
On WikiSQL, GNN has the highest value of acc_,q1 (79.01%),
and TypeSQL-C and IRNet hold the second and third ranks, re-
spectively. According to Table [/} GNN accurately predicted the
column names compared to the other methods. This is due to the
schema linking technique used by GNN. TypeSQL-C and IRNet
also show better accuracy of column prediction than the others ex-
cept GNN. Both use the tag information obtained by leveraging a
database schema. In conclusion, how well we exploit the associa-
tion greatly affects the accuracy in WikiSQL.

IRNet has significantly higher accuracy than all the other meth-
ods on WTQ-s. accyh,op OF accqagg of IRNet is similar to or less
than those of other methods. However, IRNet shows significantly
better accuracy in generating column names (acCse; and acCuyh, cot)-
IRNet chooses columns more accurately than other methods, espe-
cially when the column names are long, and there are several sim-
ilar columns in the table. For example, IRNet is the only method
that correctly translates the question (D) in Table IRNet per-
forms tagging in advance by comparing table/column names and
phrases in g,; during pre-processing, which can be a great help for
WTQ-s. TypeSQL and GNN have similar modules, but they are
not suitable for WTQ-s which has long and varied column names
containing unusual words; TypeSQL does not allow partial string
matching and does not perform schema linking but tagging, and the
schema linking of GNN is based on pre-trained word embedding.
Effectiveness of learning algorithms: We perform an additional
experiment with Seq2SQL and PT-MAML, which uses reinforce-
ment learning and meta learning respectively, after changing their
learning algorithm to supervised learning with teacher forcing [40]
which is used by the other DL-based NL2SQL methods. Without
their learning algorithms, Seq2SQL and PT-MAML showed aver-
ages of 2.9% and 4.9% degradation in accuracy, respectively. Both
methods gain their accuracy on average from their learning algo-
rithms, but they are not superior to other DL-based methods.

6.3 Experiments using complex queries

We evaluate the existing methods on all test queries in twelve
benchmarks, excluding WikiSQL which has simple queries only.
Table@] shows the accuracy of six methods, NaLIR, Templar, NSP,
SyntaxSQLNet, GNN, and IRNet. We exclude the other methods
from this experiment since they can support simple queries only.
In summary, all six methods have serious errors when translating
complex queries in the twelve benchmarks as seen in Table[9)}
Rule-based methods: Rule-based methods show low accuracy in
general, mostly due to the same issue discussed in Section [6.2]
While Templar has the same or better accuracy than NaLIR on most
benchmarks, it shows lower accuracy than of NaLIR on MAS. We
observe that, for MAS, Templar often fails to find the correct map-

ping. Given two query fragments, ¢ f1 and qf2, if g f2 has larger
co-occurrences in the query log than ¢ f1, the mapping of Templar
can be distracted to choose g f2, even if ¢f1 is more semantically
aligned with a given question. For question (E) in Table |8} ‘do-
main.name’ is ¢f; and ‘publication.title’ is gf2 in our example.
Templar incorrectly maps ‘area’ in q,; to ‘publication.title,” while
NaLIR correctly maps it to ‘domain.name.’

Adaptability: On Spider, Sal methods are more adaptable than
the others. Spider is a full cross-domain benchmark, that is, the
underlying databases for validation queries are not in the training
data. Thus, NSP cannot support queries in Spider at all, whereas
Sal methods, SyntaxSQLNet, GNN, and IRNet can, as explained
in Section #.2.2] However, SyntaxSQLNet showed lower perfor-
mance than GNN and IRNet. The accuracy of table prediction
of SyntaxSQLNet is 41.3%, which is much lower than 67.0% and
73.7% of GNN and IRNet. GNN and IRNet utilize the information
of association between ¢,,; and Sp and design a schema encoder
to handle various database schemas, whereas SyntaxSQLNet does
not. That is, even among Sal methods, adaptability greatly varies
depending on the way to treat Sp. The SQL log-based technique of
Templar has no impact on Spider, since it cannot utilize the query
fragment graph of the training SQL queries.

Robustness with small datasets: We observed that SyntaxSQL-
Net, IRNet and GNN are not trained properly in some benchmarks
having small numbers of examples. In particular, in Scholar, IRNet
was not properly trained, so we could not obtain any meaningful
trained model. In IMDB, SyntaxSQLNet makes the same query,
“SELECT T2.name FROM genre as T1 JOIN actor as T2 WHERE
Tl.genre = (value) OR T2.name = (value)” in 50% of test cases.
We also observed that GNN was not properly trained in Scholar,
MAS, IMDB, or YELP; regardless of the question, GNN produced
an odd output such as “SELECT DISTINCT company.name FROM
company WHERE company.id = company.id AND company.id AND
company.id = (value)”. This trend is evident when a benchmark
has fewer training queries relative to the high variety of questions.
SQL construct coverage: SyntaxSQLNet, GNN, and IRNet sup-
port limited forms of gsq; for the following reasons. SyntaxSQL-
Net uses limited types of slots as explained in Section The
grammar-based decoders of GNN and IRNet can generate more
general queries, but their grammars support a subset of the SQL
syntax. SemQL of IRNet has a much smaller coverage than SQL.
43.9% of test queries in the twelve benchmarks cannot be supported
by IRNet. Most seriously, 80.1% of test queries in ATIS, 47.1% of
test queries in Advising (querysplit), and 54.5% of test queries are
not supported by IRNet. The public implementation of GNN only
supports the minimal syntax of SQL to support Spider; it does not
support queries having OR conjunctions, parentheses, or join con-
ditions in the WHERE clause. It also does not support LIMIT state-
ments without ORDER BY or GROUP BY. Neither does it support
the IS NULL operator. We have extended the grammar of GNN
to support all of them. However, 37.4% of test queries in twelve
benchmarks are still unsupported due to the limitations of the in-
ternal data structure used by GNN. For example, it cannot handle
self-join, correlated nested queries, or arithmetic operations having
more than two operands. IRNet has similar limitations, too.

As queries become more complex and diverse, there has been an
increase in the case where NSP generates invalid queries that can-
not be executed. Table [T0]shows types of translation error by NSP.
Due to space limitation, we report the results on four benchmarks
with the most diverse error cases. 59.5% of these invalid queries
are due to translating incorrect table names or column names. An
SQL query that accesses a table that is not in the FROM clause can-
not be executed. For example, the gs4 for question (G) in Table E]

1746



Table 8: Translation examples. Mis-translated parts are colored

in red, where absent parts are shown with strikethroughs.

qnl Dataset

9sql

(Gold, NSP) SELECT

(A) Display the longest

MAX(length_of_stay) FROM patients

Patients (NaLIR) SELECT

hospitalization period.

MAX length_of_stay FROM patients

(GNN, IRNet) SELECT

MAX(age) FROM patients (SyntaxSQLNet) SELECT MIN(age) FROM patients

(B) What is the cumulation of durations of stay (Gold) SELECT

Patients

SUM(length_of _stay) FROM patients WHERE diagnosis = ‘flu’

of inpatients where diagnosis is influenza? (Coarse2Fine) SELECT

SUM(Iength_of_stay) FROM patients WHERE diagnosis = ‘influenza’

(Gold) SELECT

loser FROM 7 WHERE year = 1920

(TypeSQL-C) SELECT

year FROM T WHERE winner = ‘1920’

(C) Who ran in the year 1920,but did not win? WTQ (PT-MAML) SELECT

‘number of votes winner’ FROM T WHERE year = 1920

(SyntaxSQLNet) SELECT

year FROM T WHERE year = <val> OR winner = <val>

SELECT

(RNet) gy peT

year FROM T WHERE year = <val >INTERSECT
year FROM 7 WHERE year # <val>

(Gold) SELECT

tribunal FROM T WHERE ‘number of autos da fe’ =0

(D) Which Spanish tribunal (IRNet) SELECT

tribunal FROM 7 WHERE ‘number of autos da fe” = <val>

was the only one to not have WTQ (GNN) SELECT

tribunal FROM 7 WHERE -

any autos da fe during this time period? (SyntaxSQLNet) SELECT

< 5 Fautosdate—0
tribunal FROM T WHERE tribunal = <val>

(TypeSQL-C) SELECT

‘executions in effigie” FROM T WHERE penanced =

SELECT
(Gold, NaLIR) WHERE

(E) Return me the area of PVLDB MAS

DISTINCT d.name FROM journal j, domain_journal dj, domain d
jjid = dj.jid AND dj.did = d.did AND j.name = ‘PVLDB’

SELECT

(Templar) WHERE

DISTINCT p.title FROM journal j, publication p
j.jid = p.jid AND j.name = ‘PVLDB’

SELECT

(Gold) WHERE

Advising

DISTINCT pc.workload FROM course ¢, program_course pc
pe.course_id = c.course-id AND c.department = ‘EECS” AND c.number = 751

(F) How is the workload in EECS 751? (querysplit) (GNN) SELECT

DISTINCT name FROM program WHERE name = <val> AND name = <val>

SELECT

(question- WHERE

(GNN)

DISTINCT pc.workload FROM course ¢, program_course pc
pe.course_id = c.course_id AND c.department = <val> AND name = <val>

split) SELECT

(NSP) \WHERE

DISTINCT pc.workload FROM course ¢, program_course pc
pe.course_id = c.course_id AND c.department = ‘FEECS’ AND c.number = 559

SELECT
(Gold)  wHERE

(G) Number of papersin SIGIR conference Scholar

DISTINCT count(p.paperld) FROM paper p, venue v
p.venueld = v.venueld AND v.venueName = ‘SIGIR’

SELECT

(NSP)  \WHERE

DISTINCT writes.authorld, count(p.paperld) FROM paper p, venue v
p-venueld = v.venueld AND v.venueName = ‘SIGIR’

(Gold) SELECT
(H) Who has been an opponent WTQ

opponents FROM 7' WHERE opponents = ‘Guam’ OR opponents = ‘Bangladesh’

GROUP BY opponents ORDER BY COUNT (opponents) DESC LIMIT 1

SELECT

: anglz ?
more often, Guam or Bangladesh? (IRNet)

venue FROM 7 WHERE opponents = <val> OR opponents = <val>
s ORDER BY competition DESC LIMIT 1

(SyntaxSQLNet) SELECT

venue FROM T WHERE opponents LIKE <val> AND opponents LIKE <val>

GROUP-BY-opponents ORDER BY competition DESC LIMIT 1

Table 9: Accuracy on all test queries in various benchmarks (%).

B NaLIR [Templar| NSP SyntaxSQLNet| GNN | IRNet
enchmark
CCsem | ACCsem [ACCsem [ACC_val aCC-yal ACC_yqal|ACC_yal
ATIS 0.0 0.0 70.25 | 76.06 0.67 5.13 8.71

Advising [ 1 00 | 027 | 54 038 175 | 0.16

(querysplit)

Advising | 1 00 | 4485 | 79.76 0.0 23.73 | 13.79

(questionsplit)

GeoQuery | 0.36 0.0 70.0 72.5 49.64 38.21 | 60.36
Scholar 0.0 0.0 48.17 | 55.96 1.38 1.38 0.0
Patients 0.0 0.0 69.72 | 69.72 10.09 53.21 | 46.79

Restaurant 0.0 0.0 63.75 | 63.75 0.0 0.0 66.25

MAS 3226 | 1290 | 51.61 | 54.84 0.0 0.0 14.52
IMDB 0.0 11.90 | 16.67 | 21.43 0.0 238 | 14.29
YELP 4.88 9.76 0.0 9.76 0.0 0.0 7.32
Spider 0.39 0.39 0.0 0.0 14.70 45.16 | 50.87
WTQ 0.47 0.47 2.06 3.32 10.93 2.06 | 15.47

accesses the column writes.authorld, while the table writes is not
in the FROM clause. Therefore, this query results in a syntax er-
ror. Many queries are in this case, and most of these errors occur
in complex queries involving join. NSP memorizes join conditions
that appear in the training and generates one of the memorized join
conditions. This simple approach does not consider the relation-
ship among FROM, SELECT, and join, therefore it often generates
inappropriate join conditions.

Table 10: Error cases (NSP).

Single table queries Multiple table queries
Benchmark Incorrect Incorrect
Correct syntax Correct syntax | wron wron,
sy others sy ne "8 | others
error error | from/join | nesting
ATIS 46 0 15 268 43 3 53 19
Advising | g 4 | 23 | 229 | 23 35 27 | 204
(questionsplit)
GeoQuery 134 1 21 62 15 6 22 19
Scholar 0 6 1 105 39 13 4 50
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Generalizability to unseen examples: If a method performs well
for unseen SQL query patterns, we say that the method has high
generalizability. On Advising (querysplit), the accuracy of all DL-
based methods is close to zero. The query-based split is difficult
to handle, since all the SQL queries in the test data are ones that
have never been seen in the training [[13]. For the question (F) in
Table 8] for example, GNN generates gsq completely differently
from the correct translation on Advising (querysplit), while it cor-
rectly translates on Advising (questionsplit).

NL complexity: Diversity of g4 typically increases the complex-
ity of gn;. The number of possible expressions in g,; increases ex-
ponentially with the number of SQL operations in the correspond-
ing gsq1. For example, to properly translate question (H), one has to
understand both ‘more often’ and ‘Guam or Bangladesh.” No meth-
ods, including IRNet, that performed best on WTQ-s, understand
such varied patterns, and they suffer from low accuracy. Therefore,
their accuracy has been decreased on WTQ compared to WTQ-s.
Constant value anonymization: On Advising (questionsplit), the
difference between accsern, and acc_q; of NSP is 34.91%, which is
significant. This is the percentage of test queries that NSP correctly
translates except constant values. For example, NSP mis-translates
the question (F) in Table[8]by one constant value. This is because
the correct value “751” is not anonymized. This observation sug-
gests the following two points: 1) the constant value anonymization
technique of NSP is limited, and 2) there is a research opportunity
to precisely translate constant values.

Handling multiple sentence questions: In order to further ana-
lyze how well these methods translate more complex and realis-
tic queries, we conducted an additional experiment using the fa-
mous benchmark, TPC-H. TPC-H has a total of 22 queries to por-
tray the activity of a product supplying enterprise. Since TPC-H



doesn’t have enough queries to use for training, we train DL-based
methods using Spider, and then test them on the TPC-H queries.
In order for DL-based methods to better understand the database
schema of the TPC-H dataset, we changed the format of table and
column names slightly by removing meaningless symbols and sep-
arating each word. For example, we modify the column name
“L_EXTENDEDPRICE” to “extended price”. We use the given
explanation of each query named Business Question in the offi-
cial documentation as g,;. We rephrase them in a narrative format.
Note that all g,,; in TPC-H are multiple-sentence questions.

Surprisingly, all methods show 0% accuracy on TPC-H. NaLIR
relies on the manually-built mapping table and processes a single
sentence only, so it cannot handle long, complex gn;s in TPC-
H. Seq2SQL, SQLNet, PT-MAML, TypeSQL, and Coarse2Fine
also do not support any question since there is no simple query
in TPC-H. NSP doesn’t work either since the database (i.e., the
test dataset (TPC-H)) is different from the training dataset (Spider).
Templar also does not benefit from using the given query log. Syn-
taxSQLNet, GNN, and IRNet claim to support various queries in
cross-domain environments. However, they also fail to translate all
queries in TPC-H correctly. Table [TT]shows the error cases of the
three methods. IRNet cannot support all queries in TPC-H due to
the limited coverage of SemQL. SyntaxSQLNet and GNN can sup-
port two (Q2 and Q18) and three (Q2, Q6, and Q18) of 22 queries,
respectively, but it mistranslates all the queries. For example, Q6 is
for “SELECT SUM(lineitem.extended _price * lineitem.discount)
FROM lineitem WHERE lineitem.ship_date > ‘1994-01-01" AND
lineitem.ship_date < ‘1994-02-01’ AND lineitem. discount BE-
TWEEN 0.05 AND 0.07 AND lineitem.quantity < 24”, GNN an-
swers “SELECT SUM(lineitem.quantity) FROM lineitem WHERE
lineitem.discount BETWEEN (value) AND (value)”, which is com-
pletely wrong. This experiment clearly illustrates the limitations of
the latest deep-learning-based methods.

Table 11: Error cases on TPC-H (SyntaxSQLNet/GNN/IRNet).

Error cases # queries
Arithmetic operation (GNN) 11
. (IRNet, SyntaxSQLNet) 12
'% CASE-WHEN-THEN statement 3
2.[More than 2 values in IN statement 3
2 | CREATE VIEW or Nesting in FROM clauses 2
% [Function “extract’ 2
2 [SELECT count(¥*) as cnt ... ORDER BY cnt 2
Z [Correlated nested query 1
2 EXISTS statement 1
Self join 1
More than four columns in SELECT clause (IRNet) 2
‘Wrong translation (SyntaxSéfzgg ;
Total 22/22

7. INSIGHTS AND QUESTIONS FOR FU-

TURE RESEARCH

Table[T2]shows a summarized comparison of the eleven NL2SQL
methods. There is no consistent winner over all benchmarks since
all methods focus partially on limited-scope problems. Further-
more, the overall accuracy of each method is severely degraded
when ¢,; and/or g4 become more complex and diverse (0% on
TPC-H). As shown in Table[T2] there are lots of challenging issues
remaining in NL2SQL: handling unseen databases/qsq:’s, being ro-
bust on small training datasets, extending SQL construct coverage,
and supporting various g,; including multiple sentence questions.

For cross-domain adaptability, schema entities must be treated as
input rather than output vocabulary. On the other hand, in single-
domain benchmarks, NSP outperforms the Sal methods in general.
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Table 12: A comparison results summarized by whether each
method is poor (V), fair (-), or good (A) for each dimension.

=

@
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=[5 5

-l .4 =

=15 13|212]%|5|2
AHEEHEIHEEEEE
Ability ZIE|Z|& |2 |Z|E[C|&|C|&
Adaptability to new databases Y Y- - - - |- |- |A|A
Robustness with small datasets - | A= - - |- |- - |-
SQL construct coverage -|vy|vY| Y| V|V - |-
Generalizability to unseen ¢, v|iviv|Vv (V| V| V|V V|V
Supporting linguistic diversity v|iv|iV|V V|V | V|V|V]|V|V
Handling long, multiple sentences [V [V [V [V [V [V [Vv]Vv[V V]V

It would be an interesting research topic to develop a schema en-
coding technique that improves adaptability, while still enabling
high accuracy in a single domain.

Aligning table/column references in g, to Sp can help improve
accuracy. However, the existing techniques are still at a basic level
and need to be significantly enhanced. We have shown that the
alignment techniques of TypeSQL and GNN are effective only for
some benchmarks. String matching rather than the matching based
on word embedding vectors is often helpful especially for han-
dling long and varied database entity names. Real-world databases
may have a lot of rare words which cannot be found in the pre-
trained word embedding. In this case, IRNet, which is based on
the string match, shows a distinct benefit, as seen in our experi-
mental results on WTQ-s. However, its accuracy values for column
prediction (i.e., acCser and acCyp,cor) on WTQ-s are about 5-60%,
which are still low. Those become even worse on complex queries
(i.e., WTQ). If there is no phrase in gy, that partially matches the
corresponding schema entity name, as in question (C), IRNet fails
to find the correct alignment. Developing alignment techniques
is a remaining problem. Overcoming these limitations could be
a promising future research directions.

Generating constant values in SQL queries is another challeng-
ing issue. Specifically, in the experiments on complex queries, all
tested methods fail to correctly generate constant values in most
cases or even have no functionality for generating constant values
at all. Constant value anonymization of NSP does not work well
when there are many constant values in V. This could also be ab
important direction for future research.

8. CONCLUSION

In this paper, we present a comprehensive survey of existing
NL2SQL methods and perform thorough performance evaluations.
We introduce a taxonomy of NL2SQL methods and classify the lat-
est methods. We fairly and empirically compare the state-of-the-art
methods using many benchmarks. Specifically, we noticed the crit-
ical problem present in the previous experimental studies that use
misleading measures. Thus, we accurately measured the quality
of the NL2SQL methods by considering the semantic equivalence
of SQL queries. We analyzed the experimental results in depth
using various benchmarks including our one. From those results
and analysis, we reported several important findings. We believe
that this is the first work that thoroughly evaluates and analyzes the
state-of-the-art NL2SQL methods on various benchmarks.
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