
Effective and Efficient Relational Community Detection
and Search in Large Dynamic Heterogeneous Information

Networks

Xun Jian
The Hong Kong University of

Science and Technology
Hong Kong, China

xjian@cse.ust.hk

Yue Wang
∗

Shenzhen Institute of
Computing Sciences,
Shenzhen University

Shenzhen, China
yuewang@sics.ac.cn

Lei Chen
The Hong Kong University of

Science and Technology
Hong Kong, China

leichen@cse.ust.hk

ABSTRACT
Community search in heterogeneous information networks
(HINs) has attracted much attention in graph analysis. Gi-
ven a vertex, the goal is to find a densely-connected sub-
graph that contains the vertex. In practice, the user may
need to restrict the number of connections between vertices,
but none of the existing methods can handle such queries.
In this paper, we propose the relational constraint that al-
lows the user to specify fine-grained connection requirements
between vertices. Base on this, we define the relational com-
munity as well as the problems of detecting and searching
relational communities, respectively. For the detection prob-
lem, we propose an efficient solution that has near-linear
time complexity. For the searching problem, although it is
shown to be NP-hard and even hard-to-approximate, we de-
vise two efficient approximate solutions. We further design
the round index to accelerate the searching algorithm and
show that it can handle dynamic graphs by its nature. Ex-
tensive experiments on both synthetic and real-world graphs
are conducted to evaluate both the effectiveness and effi-
ciency of our proposed methods.

PVLDB Reference Format:
Xun Jian, Yue Wang, and Lei Chen. Effective and Efficient Rela-
tional Community Detection and Search in Large Dynamic Het-
erogeneous Information Networks. PVLDB, 13(10): 1723-1736,
2020.
DOI: https://doi.org/10.14778/3401960.3401969

1. INTRODUCTION

1.1 Motivations
In real-world applications, we often model the underlying

data as graphs. For example, the World Wide Web can be
treated as a graph, where each web page is represented by

∗Yue Wang is the corresponding author.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 10
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3401960.3401969

a vertex, and hyperlinks between pages are represented by
edges between vertices. Such a graph is also known as a
homogeneous network, since all vertices in this graph have
the same type (or label). Another kind of graph, in which
vertices have different types, are called heterogeneous infor-
mation networks (HINs). For example, Figure 1a shows an
HIN representing a bibliographical network. In this net-
work, vertices with labels A, P and V represent authors,
papers and venues, respectively. Edges connecting different
types of vertices have different semantics such as Author-
ship (author-paper) and Citation (paper-paper). Compared
to the homogeneous network, the HIN stores rich semantic
information and has attracted much attention recently in
research areas including search [32,35], clustering [17,36,37]
and data mining [31,33].

A

P

P

V

P

A

AP

PA

A

A

VV

(a) A bibliographical net-
work G.

A

P

P

V

P

A

AP

PA

A

A

VV

(b) The desired commu-
nity in G.

A

P

P

V

P

A

AP

PA

A

A

VV

(c) A 2-core in G.

A

P

P

V

P

A

AP

PA

A

A

VV

Motif: PA

(d) A maximal m-Clique
in G.

Figure 1: An example bibliographical network.

It is shown that many real-world networks have a signif-
icant property of community structure [14], where vertices
within a community are densely connected. Due to its wide
applications [6, 19, 29, 38], retrieving communities becomes
an important task in graph analysis, and has attracted much
attention in the literature.

In HINs, works like [11, 17, 20, 25] have been proposed to
query communities by adopting traditional models such as
k-core, k-truss and k-clique. However, there are still some

1723

users’ needs that cannot be handled by existing methods.
Sometimes, users want to find a community in which every
vertex of type A has at least k neighbors of type B. In fact,
they may have different requirements for different types of
vertices. Here we describe two typical situations in the fol-
lowing examples.

Example 1. Alice is studying the bibliographical network
in Figure 1a. To identify active research groups, she would
like to find some authors who frequently publish papers to-
gether. Specifically, she wants to find a community of au-
thors and papers, such that each author publishes at least 2
papers in the community, and each paper is co-authored by at
least 3 authors in the community. A possible community that
she wants is shown in Figure 1b. However, existing models
cannot accomplish this task very well. For example, if using
k-cores, she cannot set degree requirements for authors and
papers separately with a single parameter k. When setting
k = 2, the 2-core includes all authors and papers (Figure 1c).
When setting k = 3, then no results can be found. If using
m-Cliques [17], she may miss some interesting results be-
cause m-Clique is too restricted. In Figure 1d, even with the
simplest motif, she can only get part of the desired result.

Example 2. Bob is an entrepreneur who wants to form
a startup team by searching a human resource network, in
which each person can be a manager or an employee. In or-
der to help his team members get to know each other quickly,
he requires that each employee must have contacts with an-
other one. Similarly, he wants the manager to have con-
tacts with at least 3 employees. In addition, to save money,
he wants the team size to be minimal. Apparently, existing
models such as k-core, k-truss and m-Clique cannot handle
these requirements precisely, since they cannot handle spe-
cific constraints between different types of vertices. So, how
can Bob query a desired team in the network?

From the above examples, it is practical and important
to investigate methods for community detection/searching,
which can handle those fine-grained requirements.

1.2 Contributions
In this paper, we propose the relational community (r-

com) in HINs that considers vertex degree more precisely.
Instead of using a single parameter k of k-core, we use a
set of relational constraints, where each constraint describes
“every vertex in type Ta must have at least k neighbors in
type Tb”. By combining several constraints, we can control
the minimum degree between any pair of vertex types. Fig-
ure 2 shows 2 relational constraints, where Ta is shaded, and
Tb is unshaded. In summary, it says “each author published
≥ 2 papers, and each paper has ≥ 3 authors”. In an HIN,
we can find a subgraph, where every vertex satisfies these
relational constraints. We call such a subgraph a relational
community. In Figure 1, the maximum r-com in G that sat-
isfies these two constraints is exactly the desired community
of Alice.

A P

P A

2

3

Figure 2: Two relational constraints.

The number in each relational constraint controls the min-
imum degree between two types of vertices. As one con-
straint is applied to only one type of vertices, we can specify

flexible and precise requirements on every type of vertices
by combining multiple constraints. For example, in a biblio-
graphical network, we can set a large number on the paper-
paper relation, to require papers in the community densely
citing each other. Meanwhile, we can set a smaller number
on the author-paper relation, to ensure each author pub-
lishes a reasonable (not too many) number of papers.

In this paper, we study the problems of decomposing and
searching r-coms in HINs, which are referred to as relational
community detection (RCD), and minimum relational com-
munity search (MRCS), respectively. The RCD problem is
to find all maximal r-coms in an HIN. The output is use-
ful when the user wants to understand the properties of the
graph in a macro view. On the other hand, some users may
only care about a particular part of the graph around a
query vertex. Also, as Example 2 shows, they may require
the community to be small so as to fit their actual needs.
Based on this, we define the MRCS problem as to find the
smallest r-com containing a specific vertex.

By investigating these two problems, we show that, RCD
can be solved in polynomial time (PTIME). We further de-
sign a message-passing algorithm that runs in near-linear
time, which is close to optimal since we have to traverse the
whole graph. Nevertheless, MRCS is NP-hard and hard-to-
approximate. Despite its hardness, we propose one exact
algorithm and two heuristics to solve this problem. Specifi-
cally, we propose a greedy algorithm as well as a local search
approach, and design a novel round index to accelerate the
local search. Besides its efficiency, this index can handle
graph changes naturally, so we can also use it to maintain
an r-com when the graph is dynamically changing. This
is important because real-world networks are known to be
highly dynamic.

In summary, we make the following contributions.

• We propose a new community structure and formulate
its detection (RCD) and searching (MRCS) problems;
• We develop an efficient algorithm that runs in near-

linear time for RCD in static HINs;
• Though MRCS is NP-hard and hard-to-approximate,

we develop exact and approximate algorithms for it;
• We design the round index to accelerate the approxi-

mate algorithm for MRCS, and show that this index
can efficiently handle dynamic graphs;
• We conduct extensive experiments on large synthetic

and real-world HINs to evaluate (1) the effectiveness
of r-com in HIN analysis, (2) the efficiency of our pro-
posed algorithms for RCD and MRCS, and (3) the
efficiency of proposed methods for MRCS on dynamic
graphs. The results show that r-com well captures the
type information in HINs, and our methods can effi-
ciently solve the two problems.

The rest of this paper is organized as follows. In Section
2, we define the target problems and then investigate their
hardness. In Section 3 and Section 4, we propose several
algorithms to solve the RCD and MRCS problems, respec-
tively. An incremental algorithm is also devised to handle
dynamic graphs. In Section 5, we conduct extensive exper-
iments on both synthetic and real-world HINs, to show the
effectiveness and efficiency of both our proposed community
structure and the solutions. Section 8 surveys the related
works and compares them to our work. Finally, we conclude
in Section 7.

1724

2. PROBLEM DEFINITION
In this section, we first introduce some background terms

and definitions. Then we formally define the problems of
detecting and searching relational communities, and discuss
their hardness.

2.1 Problem Definition
In this work, we model an HIN as an undirected graph

G(VG,EG,LG, φ), where VG is the vertex set, EG is the edge
set, and LG is the label set. Function φ : VG → LG assigns
each vertex v a label φ(v). For any H ⊆ VG, its induced
subgraph in G, denoted as G[H], is a graph who has vertex
set H and edge set (H×H)∩EG. For vertex v, we define its
neighbors as its adjacent vertices, i.e. NG(v) = {u|(v, u) ∈
EG}, and its degree dv = |NG(v)|. More precisely, NG(v, l)
denotes the neighbors of v that have label l, i.e. NG(v, l) =
{u|(v, u) ∈ EG, φ(u) = l}.

In this work, we use relational constraints to test whether
a vertex belongs to a community. Formally, a constraint s
is a triplet 〈l1, l2, k〉, where l1, l2 ∈ LG, and k ≥ 1. It means
“each vertex with label l1 must have at least k neighbors
with label l2”. In other words, given any graph G′, vertex v
satisfies s = 〈l1, l2, k〉 if either of the conditions below holds:

1. φ(v) 6= l1, or
2. NG′(v, l2) ≥ k.

Here condition 1 means the constraint s is not applicable to
v, and for simplicity we also say v satisfies s in this situation.

Remark 1. We focus on HINs where edges have no labels
or directions in this work. Our techniques can be easily ex-
tended on directed and/or labeled edges by only changing the
relational constraints. For example, we can define the con-
straint s = 〈l1, l2, l3, k〉, which means “for each v with label
l1, there must be at least k vertices with label l2 that link to
v by an edge with label l3”. In this way, we can handle edges
with labels.

A user can use a set of constraints S = {s1, s2, . . . , st}
to specify composite requirements for different types of ver-
tices. It controls what a community looks like, and is thus
called the community schema. Together with S, the user
also implicitly defines a concerned label set LS that contains
all labels appeared in S, namely

LS = {l|〈l, l′, k〉 ∈ S or 〈l′, l, k〉 ∈ S}.

Labels that do not appear in any constraint are of no inter-
est to the user, so vertices with these labels can be excluded
automatically. This is important because a user may only
care about a few labels, while HINs like knowledge graphs
can contain hundreds or even thousands of them. In sum-
mary, given a graph G and a schema S, we say a vertex v is
qualified if (1) φ(v) ∈ LS and (2) v satisfies all constraints
in S. Otherwise, we say v is unqualified. Then we say G is
a relational community (r-com) if every vertex is qualified
with respect to S.

Definition 1 (Relational Community). Given S as
well as LS, a connected graph R is a relational community
(r-com) defined by S if and only if ∀v ∈ VR, (1) φ(v) ∈ LS;
and (2) v satisfies all constraints in S. When the context is
clear, we simply say R is a relational community.

Though a graph itself may not be an r-com, some of its
subgraphs might be. So detecting all maximal r-coms in a
graph is a practical and interesting problem.

Definition 2 (RCD). Given G, LS and S, to find all
subsets Hi ⊆ VG, such that

1. G[Hi] is a relational community, and
2. Hi is maximal, i.e., ∀V ′ ⊆ VG and V ′ ∩ Hi 6= V ′,

G[Hi ∪ V ′] is not a relational community.

On the other hand, in some applications, a user only wants
a small community in a specific area in the graph. We thus
propose the MRCS problem below.

Definition 3 (MRCS). Given G, LS, S and a query
vertex q, to find H ⊆ VG, such that

1. q ∈ H, and
2. G[H] is a relational community, and
3. |H| is minimized.

Discussion. The k-core is a specialization of the r-com
in homogeneous networks. A homogeneous network can be
treated as an HIN where all vertices have the same type,
say l0. In this case, the user can only specify one relational
constraint in the schema, which is 〈l0, l0, k〉. It requires that
every vertex in the r-com has at least k neighbors, so such
an r-com becomes exactly a k-core.

2.2 Problem Hardness
We now discuss the hardness of RCD and MRCS. In fact,

RCD can be solved in polynomial time. A simple solution
would be to gradually remove vertices that do not satisfy
some constraints in S. In section 3, we will first analyze
the correctness of this algorithm, and then propose a more
efficient method.

On the other hand, MRCS is NP-hard and even hard-to-
approximate, so it is unlikely to solve this problem accu-
rately in polynomial time. The decision version of MRCS
(MRCSD) is to determine whether a relational community
G[H] exists, where q ∈ H and |H| = m. We prove it to
be NP-complete by reducing from an existing NP-complete
problem, Maximum Clique (MC) [23]. Its decision version
(MCD) is to determine if a graph contains a clique of size k.

Lemma 1. MRCSD is NP-complete, and thus MRCS is
NP-hard.

Proof. It is easy to see that MRCSD is in NP, because we
can check whether G[H] is a relational community in poly-
nomial time. Now we show it is also NP-hard by reducing
MCD to it. Given an unlabeled graph G(V,E) and k, MCD

is to determine if we can find an H ⊆ V such that G[H] is
a k-clique. We can build another labeled graph G′(V ′, E′)
by adding a new vertex u that connects all vertices in V .
In addition, we assign label a to every vertex in V , and la-
bel b to u. Now we create an instance of MRCSD, where
C = {〈b, a, k〉, 〈a, a, k− 1〉}, q = u, and m = k+ 1. That is,
we want to find k+1 vertices (include u) in V ′, and they are
fully connected to each other. Apparently, a feasible solution
to this problem corresponds to a k-clique in G.

We further prove that MRCS is hard-to-approximate, i.e.,
there is no polynomial-time algorithm for MRCS with a con-
stant approximation factor unless P=NP.

Lemma 2. There is no polynomial-time algorithm for
MRCS with a constant approximation factor, unless P=NP.

Proof. We prove this by contradiction. Suppose that
there exists a polynomial-time algorithm Π1 for MRCS with
an approximation factor ρ. Then given graph G, schema S,

1725

vertex u and Π1’s output R, we have |VR| ≤ ρ · |VOu |, where
Ou is the optimal solution. We now show that using Π1 we
can solve the Minimum Subgraph of Minimum Degree ≥ d
(MSMDd) problem [2] with approximation factor ρ.

Given a graph G and an integer d, the MSMDd problem
is to find a d-core D, such that |VD| is minimized. Now we
design an algorithm Π2 that uses Π1 to solve MSMDd in
four steps:

1. Assign every vertex in G with label l0;
2. Create a schema S = {〈l0, l0, d〉};
3. For each vertex u in VG, use Π1 to find the minimum

r-com Ru that contains u;
4. Output R = argmin

Ru 6=∅
|VRu |.

It is easy to verify that Π2 runs in polynomial time. Be-
sides, each r-com defined by S is a d-core, and vise versa.
Thus, the final output R is a feasible solution of MSMDd.
Let OPT be the optimal solution of MSMDd, and u be a
vertex in VOPT , then OPT is also the optimal solution of
MRCS given u (i.e., Ou). According to our assumption, we
have |VR| ≤ |VRu | ≤ ρ·|VOu | = ρ·|VOPT |. That is, Π2 solves
MSMDd with approximation factor ρ. However, it is proved
that MSMDd is hard-to-approximate unless P=NP [2], so
our assumption is incorrect, and Π1 does not exist.

2.3 Community Schema Discovering
As Example 1 and Example 2 show, when the community

structure is clear, a user can easily construct the schema
S. However, it might be hard to choose what constraints to
use if the user is looking for a good schema through trial-
and-error. To help the user overcome such hardness, we
propose to reverse-engineering a high-quality schema S from
an exemplary community R.

Specifically, for each pair of labels l1, l2 ∈ LR, we put a
constraint 〈l1, l2, k〉 in S, where k = min

v∈VR,φ(V)=l1
|NR(v, l2)|.

That is, while keeping every vertex in VR satisfying all con-
straints in S, we put as many as constraints in S and set
the largest possible value for each of them. We expect that,
with only a few modifications, this relation can be used to
find communities that are similar to R. Intuitively, the
result schema S is a promising starting point for detect-
ing/searching good communities, because it is built from a
known community. In practice, we will illustrate how we
use this method to effectively detect communities from real-
world networks in section 5.

3. SOLVING THE RCD PROBLEM
In this section, we devise efficient solutions for the RCD

problem. Specifically, we first design a naive solution, which
runs in quadratic time with respect to the graph size. Then
we propose a non-trivial message-passing approach that runs
in near-linear time when the schema isn’t too large.

3.1 The Naive Solution
A simple idea to solve the RCD problem would be gradu-

ally removing vertices that are not qualified. After removing
those vertices, some originally qualified ones may become
unqualified due to the loosing of neighbors. By repeatedly
removing them, we finally get a graph in which all vertices
are qualified, and each connected component is a maximal
r-com. We summarize this algorithm in algorithm 1. It
iteratively identifies unqualified vertices (lines 3-5), and re-
moves them from G (line 6). When H = ∅, all rest vertices

in G are qualified, so it returns each connected component
in G as a maximal r-com. The correctness of algorithm 1

Algorithm 1: RCD Naive

Input : G, S.
Output: a set of maximal r-coms.

1 do
2 H ← ∅;
3 foreach v ∈ VG do
4 if v is not qualified then H ← H ∪ {v} ;
5 VG ← VG \H;

6 while H 6= ∅;
7 return all connected components in G;

can be justified by Proposition 1. Basically, if a vertex is
unqualified in G, it cannot be qualified in any of G’s sub-
graphs. This means we can remove v safely. It follows that
maximal r-coms have no overlaps with each other.

Proposition 1. Given S, G, V ′ ⊆ VG, and v ∈ V ′, if v
is unqualified in G, then v is also unqualified in G[V ′].

Proof. There are two cases if v is unqualified in G.
(1) φ(v) /∈ LS. This is a trivial case.
(2) v does not satisfy a constraint 〈φ(v), l, k〉 ∈ S, i.e.,
NG(v, l) < k. In this case, we have NG[V ′](v, l) < k since
NG[V ′](v) ⊆ NG(v).

Corollary 1. Given a maximal r-com G[H] and an ar-
bitrary r-com G[H ′], either H ′ ⊂ H, or H ∩H ′ = ∅.

Proof. If H ′ ⊂ H, it is trivial. Otherwise, since H is
maximal, G[H ∪H ′] is not an r-com. Therefore there is at
least one vertex v ∈ H ∪H ′, such that v is not qualified in
G[H ∪ H ′]. Suppose v ∈ H, then follow Proposition 1 we
know v is not qualified in G[H]. This contradicts with the
input that G[H] is an r-com. The same applies if v ∈ H ′.

It is obvious that algorithm 1 runs in polynomial time.
In each round, at least one vertex is removed from G, so
there are at most |VG| rounds. In a round, we enumerate
all vertices in VG, to check whether each of them is qualified
(line 4). Line 4 can be done by scanning the neighbors of
v once and counting the numbers of each label, and then
check each constraint in S one by one. So in summary, lines
3-5 scan each edge exactly twice, and scan S for |VG| times,
which takes O(|EG|+ |S| · |VG|) time. In line 10 we can use
breadth-first search to find connected components in G in
O(|EG|) time [16], so the total running time of algorithm 1
is O(|VG| · |EG|+ |S| · |VG|2).

3.2 A Message-Passing Approach
Though the naive algorithm runs in polynomial time, it

can be slow when the graph becomes large. The main draw-
back is it always checks every vertex in every round, even
there is no necessity. As an example, consider a qualified
vertex v in the ith round. If none of v’s neighbors is re-
moved in ith round, we immediately know that v will still
be a qualified vertex in the (i + 1)th round because NG(v)
does not change. In this case, we can pass v when enumer-
ating and checking vertices, and thus save the running time.
On the other hand, if one of v’s neighbor u is removed, we
know that v may become unqualified in the next round and
thus needs to be checked.

1726

To avoid unnecessary computations, we devise a message-
passing algorithm to remove unqualified vertices in a check-
when-necessary manner. Specifically, we first scan and check
every vertex for once. In this pass, unqualified vertices are
removed, and each of them sends a message for each of its
neighbors. A message has the form (v, u), which means “v’s
neighbor u is removed”. Then we check whether vertex v
remains to be qualified when a message (v, u) is received.

We summarize this algorithm in algorithm 2. In lines 3-
11, we scan all vertices once, remove unqualified vertices,
and push associated messages into a queue. In lines 12-18,
we handle messages in the queue one by one. For message
(v, u), we check if it is still in VG and becomes unqualified
(line 14). If so, we push a message in to the queue for each of
its neighbors, and remove it from VG. The correctness of al-

Algorithm 2: Message Passing

Input : G, S.
Output: a set of maximal r-coms.

1 Queue ← ∅, H ← ∅;
2 foreach v ∈ VG do
3 if v is not qualified then
4 foreach u ∈ NG(v) do Queue.push((u, v)) ;
5 H ← H ∪ {v};
6 VG ← VG \H;
7 while Queue 6= ∅ do
8 (v, u)← Queue.pop();
9 if v ∈ VG and v is not qualified then

10 foreach n ∈ NG(v) do Queue.push((n, v)) ;
11 VG ← VG \ {v};
12 return all connected components in G;

gorithm 2 can be proved by comparing the vertex removals
to those in algorithm 1. Consider a vertex v which is re-
moved in the 1st round in algorithm 1. In algorithm 2 it will
be removed after the first for-loop (line 11). Then we look at
vertex v′ which is removed in the 2nd round in algorithm 1,
which becomes unqualified after a set N ⊆ NG(v′) of its
neighbors are removed in the 1st round. We have shown
that all vertices in N will be removed in algorithm 2, so |N |
messages are pushed into the message queue for checking v′.
After processing the last message, v will be found unqual-
ified and removed. Thus, all vertices removed in the 2nd
round in algorithm 1 will also be removed in algorithm 2.
Following this way, we can prove that all vertices removed
in algorithm 1 will be removed in algorithm 2. On the other
hand, algorithm 2 does not remove qualified vertices, which
completes our proof.

The advantage of message-passing is eliminating part of
redundant calculations. It checks zero or one vertex for each
message pushed into the message queue, hence the total
number of checked vertices is no larger than the total num-
ber of pushed messages. Meanwhile, the number of pushed
messages is bounded by 2 · |EG|, because for each edge, the
removal of its either side produces one message. Therefore,
if checking a vertex takes O(|S|+dmax) time, the total run-
ning time of algorithm 2 is O((|EG| + |VG|) · (|S| + dmax)),
where dmax is the maximum degree of vertices.

Counting Index. Considering that |LS | might be small,
we can further reduce the running time using a counting
index for every vertex. The intuition is that we can use
messages as records of graph changes, to avoid scanning

neighbors of each vertex repeatedly. Specifically, we main-
tain a table T where Tv,l stores |NG(v, l)|. This table can be
constructed when we checking each vertex during the first
for-loop (line 4). Later when handling each message (v, u)
(line 14), we can simply deduct Tv,φ(u) by 1, and then check
the constraint 〈φ(v), φ(u), k〉. The total running time hence
reduces to O(|VG| · |S| + |EG|), which is near-linear time if
|S| is smaller than the average degree of G. On the other
hand, we only need to store counts for labels in LS , so the
space complexity is O(|VG| · |LS |).

4. SOLVING THE MRCS PROBLEM
As MRCS is NP-hard, it is unlikely that we can solve

it both accurately and efficiently. In this section, we first
design an exact algorithm which has exponential running
time, then we propose two approximation polynomial-time
algorithms, Greedy and Local Search.

4.1 An Exact Solution
Recall that the MRCS problem is to find the minimum

r-com that contains q, denoted as Rmin(q). A simple idea
would be enumerating all subsets H ⊆ VG containing q, and
pick the smallest one such that G[H] is an r-com. However,
in many cases G[H] is not an r-com, or even not connected.
To avoid encountering such trivial situations, we design an
algorithm to enumerate H in a vertex-removal manner.

Specifically, we start from the maximum r-com that con-
tains q, denoted as Rmax(q). From Corollary 1 we know that
Rmin(q) is a subgraph of Rmax(q). Thus, we can gradually
remove vertices in Rmax(q), until we get a minimal graph
R′ which is an r-com containing q. Then for all possible R′s,
the one having minimum vertices would be Rmin(q). Dur-
ing this procedure, the key is to check whether a candidate
R′ is an r-com and whether it is minimal. To facilitate our
analysis, we define the vertex group as follows.

Definition 4 (Vertex Group). Given schema S, an
r-com R, and v ∈ VR, the vertex group of v, denoted as
V G(R, v), is the minimum set V ′ ⊆ VR, such that (1) v ∈
V ′, and (2) R[VR\V ′] is either an empty graph or an r-com.

In other words, if we want to remove v from R, we must
remove all vertices in V G(R, v) as well, otherwise, there will
be unqualified vertices left in the graph. To get V G(R, v) for
a specific vertex v, we can first remove v from R, and then
use the message-passing algorithm for the RCD problem to
find reset vertices.

Instead of removing vertices one by one from Rmax(q),
now we can gradually remove vertex groups, which reduces
the search space, and Proposition 1 guarantees that we can
get the correct result. Besides, we cannot remove a vertex
group that contains q, so when all vertex groups contain q,
we know that the current r-com is minimal.

Proposition 2. An r-com R is the minimal one that
contains q, if and only if ∀v ∈ VR, q ∈ V G(R, v).

We summarize the above search algorithm in algorithm 3.
In line 1 it invokes the subroutine MessagePassing (algo-
rithm 2) to find all maximal r-coms in G. Then in line 2 it
picks the maximal r-com that contains q, which is Rmax(q).
Finally in line 3 it invokes another subroutine FindMinimum
(algorithm 4) to find Rmin(q) from Rmax(q).

Algorithm 4 searches for the Rmin(q) in a recursive way.
It first collects all vertex groups that can be removed (i.e., do

1727

Algorithm 3: MRCS Exact

Input : G, S, q.
Output: Rmin(q).

1 R← MessagePassing (G, S);
2 Rmax(q)← the r-com in R that contains q;
3 Rmin(q)← FindMinimum (Rmax(q), S, q);
4 return Rmin(q);

not contain q) in line 1. If no vertex group can be removed,
the current R is the minimal one, so the algorithm returns
R as the result. Otherwise in line 5, it tries to remove each
vertex group, and invokes itself recursively to find the min-
imum r-com in the rest vertices (here we use | · | to denote
the number of vertices in the returned r-com). Among all
choices, it picks the r-com with minimum vertices, and re-
turns as its result. This algorithm ends for sure, because
for each recursive call, the size of VR strictly reduces, and
the size of D is bounded by VR. In fact, in the worst case
∀v ∈ VR, V G(R, v) = {v}, then algorithm 4 needs to try
removing all combinations of vertex groups, the number of
which is 2|VR|. For each combination, identifying and re-
moving all vertex groups take in total O(|ER|) time, as they
are linear-time algorithms. Thus the running time of this
algorithm is O(2|VR| · |ER|). Its correctness is proved by the
discussion above.

Algorithm 4: Find Minimum

Input : R, S, q.
Output: the minimum r-com in R that contains q.

1 D ← {V G(R, v)|∀v ∈ VR, q /∈ V G(R, v)};
2 if D = ∅ then return R ;
3 H ′ ← argminH∈D |FindMinimum(R[VR \H], S, q)|;
4 return FindMinimum(R[VR \H ′], S, q);

4.2 A Greedy Approach
The main drawback of the exact solution is its exponential

complexity. When the graph is large, it is not practical to
wait for an exact result. Instead, we may look for approxi-
mate results that can be obtained in a reasonable time.

Here we propose a greedy algorithm, which is a simple
modification of the exact solution. The intuition is that,
other than globally minimizing the size of R, only picking
the local minimum at each step may still lead to a good
solution. Since we do not need to try every choice at each
step, the running time would be reduced significantly.

We summarize this approach in algorithm 5. In lines 1-
2, it gets Rmax(q), and in lines 3-9 it iteratively removes
the largest vertex group from the r-com. When there is no
vertex group can be removed, a minimal r-com is found and
returned as the result.

As for the time complexity, lines 1-2 take O(|EG|) time as
discussed before. In each iteration, line 4 takes O(|ER|·|VR|)
time to get the vertex group of every vertex in VR, and then
lines 6-7 take no more than O(|ER|) time to remove H ′. The
maximum number of iterations is |VRmax(q)|, given that in
each iteration at least one vertex is removed. Therefore, the
total running time is O(|EG|+ |ERmax(q)| · |VRmax(q)|2).

4.3 A Local Search Approach
Considering that in an r-com R which is a connected

graph, |ER| ≥ |VR| − 1, the greedy approach has a time

Algorithm 5: MRCS Greedy

Input : G, S, q.
Output: Rmin(q).

1 R ← MessagePassing (G, S);
2 R← the r-com in R that contains q;
3 do
4 D ← {V G(R, v)|∀v ∈ VR, q /∈ V G(R, v)};
5 if D 6= ∅ then
6 H ′ ← argmaxH∈D |H|;
7 R← R[VR \H ′]

8 while D 6= ∅;
9 return R;

complexity which is at least cubic to |VRmax(q)|. This would
be an issue when |VRmax(q)| is large. Another issue is that it
needs to traverse the whole graph G to find Rmax(q), which
is slow given that graphs are large in real applications.

To counter these two issues, we propose a local-search
approach that only reads the necessary part of the whole
graph. Basically, we start from a vertex set Q = {q}, and
gradually add vertices into Q, until an r-com R containing q
appears in G[Q]. Then we report a minimal r-com inside R
as the result. Intuitively, if a feasible solution happens to be
in a small area around the query vertex q, such an approach
can quickly find it. Meanwhile, it only reads vertices in Q
and their adjacent edges, so it can be applied even if the
graph cannot fit in the main memory.

Candidate Selection. When we gradually adding ver-
tices into Q, the order we adding them decides how quickly
we can find an answer. In this paper, we maintain a candi-
date set, in which each vertex is a neighbor of vertices in Q,
and always select the vertex with the largest priority as the
next one to be added. The priority of vertex v is defined as

pri(v) =
|NG(v) ∩Q|
dist(v)

, where dist(v) is the distance of v to q. This priority func-
tion balances the search depth (the less the more important)
and vertex connectivity (the more the more important). The
intuition is that we want to find vertices that are close to q
and densely-connected as well. After adding a vertex into
Q, we also add all its neighbors into the candidate set.

Candidate Pruning. A vertex should not be picked as
a candidate if it cannot be in any r-com. For example, by
Proposition 1, if a vertex is unqualified in G, it is not a can-
didate. Besides, when those vertices are identified, we may
find more vertices that cannot be in any r-com. A simple
example is shown in Figure 3, in which v5 is unqualified and
v4 “looks” qualified. Since v5 cannot be in any r-com, it
can be treated as not existed, and then we can identify that
v4 cannot be in any r-com, neither. To prune such vertices,
we maintain the counting index (Section 3.2) for each can-
didate. Whenever we identify a non-candidate, we deduct
the counting index for each of its neighbors in our candidate
set. Then more non-candidate vertices can be identified by
the updated counting index, and so on so forth.

In this approach, a key operation is to identify when such
an R appears while expanding Q. We can simply use al-
gorithm 1 or algorithm 2 to find R whenever adding a new
vertex, but the time complexity would be at least O(|Q|2),
which is not efficient. In this work, we propose a round in-

1728

P P

P A

1

2

A P

P

V

A

𝒗𝟏

𝒗𝟐

𝒗𝟒

𝒗𝟓

𝒗𝟕

Schema 𝐺

Figure 3: A candidate pruning example.

dex to “monitor” all r-coms when the graph changes, and
consequently identifies the appearing of R. It is expected
that when a new vertex is added into Q, we only need to
update part of the index by reading a few edges in G[Q] and
thus can improve the efficiency.

4.4 The Round Index
When using algorithm 1 to detect r-coms in G[Q], it re-

moves vertices round by round. In this part, we design an
efficient round index to track vertex removal, and to avoid
running algorithm 1 repeatedly.

The round index is designed as a round number rv (rv ≥
1) associated with each vertex v, indicating that v is removed
in the rv-th round. As a special case, for vertices that are
never removed (i.e., belong to an r-com), we set rv = ∞.
Given graph G′ = G[Q] and schema S, we say a round
index is correct if every vertex v ∈ VG′ is truly removed
in the rv-th round after running algorithm 1. We prove in
Lemma 3 and Lemma 4 that this correctness can be verified
by the following equation:

rv = argmin
i∈[1,∞]

(v is unqualified with respect to N i
G′(v)) (1)

, where N i
G′(v) is the neighbor set of v at round i:

N i
G′(v) =

{
{u|u ∈ NG′(v), ru ≥ i} , if i 6=∞;

∅ , if i =∞.

Lemma 3. Given graph G′ and schema S, vertex v be-
longs to an r-com if and only if Equation 1 holds for every
vertex and rv =∞.

Proof. (if) In Equation 1, for a sufficiently large (but
finite) i, N i

G′(v) = {u|u ∈ NG′(v), ru = ∞}. If rv = ∞,
then v is qualified with respect to N i

G′(v). Let H = {u|u ∈
VG′ , ru = ∞}, and A = G′[H], then NA(v) = N i

G′(v), and
thus v is qualified in A. It follows that every vertex in A is
qualified, and v belongs to an r-com in A.

(only if) We prove it by contradiction. Suppose v belongs
to an r-com R = G′[H], and rv 6=∞. Without loss of gener-
ality, we assume that rv is the smallest among all vertices in
H. Let i = min

u∈NR(v)
ru. It is obvious that N i

G′(v) = NR(v).

Since R is an r-com, v is qualified with respect to NR(v), so
according to Equation 1 we have rv > i = ru. This contra-
dicts with our assumption that rv is the smallest.

Lemma 4. Given graph G′ and schema S, vertex v is re-
moved in the i-th round in algorithm 1 if and only if Equa-
tion 1 holds for every vertex and rv = i 6=∞.

Proof. We prove it by strong induction. First, N 1
G′(v) =

NG′(v), so rv = 1 if and only if v is removed in the first
round. Now suppose this holds for i ≤ k, then the remaining
neighbor set of v is exactly N k+1

G′ (v). Therefore rv = k + 1
if and only if v is removed in the (k + 1)-th round.

Corollary 2. Given G[Q] and S, the round number of
each vertex is deterministic.

Proof. Algorithm 1 removes vertices synchronously in
each round, so within a round, the vertices to remove are
fixed. Vertices are also removed at the earliest possible round.
Together with Lemma 3 and Lemma 4, the round number of
each vertex is deterministic.

Given the round index, if rq = ∞, we immediately know
that an r-com containing q exists. It is obvious that this
round index has space complexity O(|Q|). We next present
the initialization and maintenance of the round index, as
well as how we apply it in the local search.

4.4.1 Index Initialization
At the beginning of the local search, Q contains a single

vertex q, so the round index contains a single integer rq. We
can simply scan S to determine rq’s value, which is either
∞ (if G[Q] is already an r-com) or 1. Therefore, the time
cost of initialization is O(|S|).
4.4.2 Index Updating

During the local search approach, vertices are gradually
inserted into Q, and the correct round number of each vertex
would also change. In fact, it can be proved that when
inserting/deleting a vertex into/from the graph, no round
number will decrease/increase, so we only focus on index
increases in this part.

Lemma 5. When inserting (resp. deleting) an edge (w, v)
in G[Q], no round number will decrease (resp. increase).
Specifically, for each vertex u ∈ Q, suppose its round number
ru changes to r′u, then ru ≤ r′u (resp. ru ≥ r′u).

Proof. We prove the case of inserting an edge by con-
tradiction, and its counterpart can be proved symmetrically.
Suppose there is a vertex u, such that ru > r′u.

Case 1: r′u = 1, which means u is unqualified even if non
of its neighbors is removed. Then because u had a smaller
or equal neighbor set before adding (w, v), ru should also be
1. This contradicts with our assumption.

Case 2: r′u = t, t > 1. In this case, since u does not lose
any neighbor but N t

G[Q](v) changes (Equation 1), there must

be a c ∈ NG[Q](u), whose round number rc decreases to r′c,
and r′c < t. If r′c > 1, we can apply the same analysis to c
to find its neighbor with a smaller round number. If r′c = 1,
it falls into Case 1, which contradicts our assumption.

Corollary 3. When inserting (resp. deleting) a vertex
v in Q, no round number will decrease (resp. increase).

Proof. we prove the case of inserting a vertex, and its
counterpart can be proved symmetrically. Inserting a vertex
v can be done in 2 steps. First, insert an isolated vertex
v into G[Q], and rv can be evaluated by Equation 1. After
this, the round index is still correct for G[Q]. Second, in-
sert adjacent edges of v into G[Q] one by one. According to
Lemma 5, no round number will decrease.

Basically, we handle vertex insertion as follows. When u
is inserted into Q, we first set ru = 0. Then it could be
verified that, among all vertices, Equation 1 does not hold
only for u, so we use algorithm 6 to evaluate Equation 1
for u. Suppose ru now changes to x, u’s neighbors may
have their round number changed, and so on. To handle all
subsequent changes, we devise algorithm 7. Typically, we
call “HandleIncrease(u, 0, x)” to handle subsequent changes

1729

Algorithm 6: CalcRN

Input : G[Q], S, v.
Output: rv.

1 while v is qualified do
2 u← argminu∈NG[Q](v)

ru;

3 NG[Q](v)← NG[Q](v) \ {u};
4 rv ← ru + 1;

5 if rv > |Q| then rv ←∞ ;
6 return rv;

induced by ru changing from 0 to x. We next describe the
details of algorithm 6 and algorithm 7.

In general, algorithm 6 evaluates Equation 1 by removing
v’s neighbors round by round. When v becomes unqualified,
it will be removed in the next round. A special case is
that, when the calculated round is larger than |Q|, it returns
∞. Its correctness can be proved in Lemma 6, and its time
complexity is O(dv · log(dv)).

Lemma 6. Algorithm 6 correctly evaluates Equation 1 for
v.

Proof. Lines 1-4 remove v’s neighbors round by round,
so after line 4 rv is the smallest round that v becomes un-
qualified, which is correct. Lines 5-6 deal with a special case
when rv > |Q|. When rv > |Q|, we know that there must be
a round k ≤ rv, in which no vertex is removed, and all re-
maining vertices belong to r-coms (have round numebr ∞).
Therefore, vertices have round number larger than k should
in fact have round number ∞.

Algorithm 7 is used to handle all consequent updates in-
duced by the increasing of rv (which increases from r0 to
r1). Overall it runs in a message-passing manner, in which
each message (v, r0, r1) means “the round number of v is
increased from r0 to r1”. For each message, it checks every
neighbor u of v, to see whether ru may change. According
to Equation 1, ru may increase only if N ru

G[Q](v) changes,

which means r0 < ru < r1. So, in this situation the algo-
rithm calculates the new round number r′u, and then pushes
a message if ru really increases (lines 7-8).

Algorithm 7: Handle Increase

Input : G[Q], S, v, r0, r1.

1 Queue ← {(v, r0, r1)};
2 while Queue 6= ∅ do
3 (v′, r′0, r′1) ← Queue.pop();
4 foreach u ∈ NG[Q](v

′) do
5 if r′0 < ru ≤ r′1 then
6 r′u ← CalcRN (u);
7 if r′u > ru then Queue.push((u, ru, r′u)) ;
8 ru ← r′u;

We prove the correctness of algorithm 7 in Theorem 1.
Its time complexity is given in Theorem 2. It should be
noted that this complexity is the worst-case complexity. In
practice, the updates usually stop quickly because (1) the
maximum round number is small, and (2) not all index val-
ues are changed.

Theorem 1. Algorithm 7 correctly updates the round in-
dex induced by a single index value change.

Proof. We have shown that if rv increases to r′v, there
are two possible cases.

Case 1: v is a neighbor of the new vertex. This case has
been handled when processing the first message.

Case 2: v’s neighbor u has its round number increased. In
this case, there must be a message 〈u, r0, r1〉 in the queue.
The updating of rv is handled when processing this mes-
sage.

Theorem 2. The complexity of algorithm 7 is O
(
rmax ·

(|EG[Q]| + dmax · log(dmax)
)
, where rmax is the maximum

finite round number in the index, and dmax is the maximum
degree in G[Q].

Proof. Each vertex can be updated for at most rmax
times, because each update increases its round number by
at least 1. We can use the counting index from Section 3.2
in CalcRN, so that if the round number of a vertex does
not changes, line 6 takes only O(1) time. Suppose in the
worst case, every vertex is updated for rmax times, then
the whole algorithm handles rmax · |VG[Q]| messages, and
reads each edge rmax times. The total complexity is thus
O
(
rmax · (|EG[Q]|+ dmax · log(dmax)

)
.

Similarly, we can handle index decreases symmetrically
with the same time complexity. For simplicity we ignore
the details in this paper. We use “HandleIncrease(u, r0,
r1)” and “HandleDecrease(u, r0, r1)” to denote calls to al-
gorithm 7 and its counterpart, respectively.

4.4.3 MRCS with Round Index on Dynamic Graphs
On dynamic graphs, where vertices and edges are fre-

quently inserted and deleted, continuously querying the min-
imum r-com with the same q and S could be useful. It is
expected that previous results can provide some knowledge
that helps find the new answer more quickly. In fact, we have
shown that the round index supports dynamic updates, so
it can naturally handle dynamic graphs.

In this paper, we consider four possible graph changes:
vertex insertion/deletion and edge insertion/deletion. Now
we discuss how these changes would affect G[Q] and the
round index.

• Inserting vertex v: Since v /∈ Q, this operation has no
effect on G[Q].
• Deleting vertex v: If v ∈ Q, we need to delete v from
G[Q]; otherwise this operation has no effect on G[Q].
• Inserting (resp. deleting) edge (u, v): If u, v ∈ Q, we

need to insert (resp. delete) this edge in G[Q], and
update the round index; otherwise this operation has
no effect on G[Q].

Following these rules, we use algorithm 8 to handle graph
changes. Specifically, we treat deleting a vertex as 2 equiv-
alent operations: deleting all its adjacent edges and then
deleting the isolated vertex. In this case, a batch of graph
changes can be summarized into two sets Ea and Ed, which
contain edges to insert and delete, respectively. After han-
dling these changes, the isolated vertices can be removed
easily according to discussions in Corollary 3.

In algorithm 8, lines 1-14 modify the graphG[Q] according
to Ea and Ed, and call “HandleIncrease/HandleDecrease”
to deal with index changes. After this, the round index is
guaranteed to be correct by Theorem 3. Line 15 deletes
vertices that are not reachable from q, because they do not
belong to any community which contains q. Finally, if rq 6=
∞, we need to continue the local search for a new community
R′ containing q.

1730

Algorithm 8: Handle Graph Changes

Input : G[Q], S, q, Ea, Ed.
1 foreach (u, v) ∈ Ea do
2 if u, v ∈ Q then
3 Insert (u, v) into G[Q];
4 if CalcRN (u) > ru then
5 HandleIncrease (u, ru, CalcRN (u));
6 if CalcRN (v) > rv then
7 HandleIncrease (v, rv, CalcRN (v));

8 foreach (u, v) ∈ Ed do
9 if u, v ∈ Q then

10 Delete (u, v) from G[Q];
11 if CalcRN (u) < ru then
12 HandleDecrease (u, ru, CalcRN (u));
13 if CalcRN (v) < rv then
14 HandleDecrease (v, rv, CalcRN (v));

15 Delete vertices in G[Q] that are not reachable from q;
16 Continue Local Search if rq 6=∞;

Theorem 3. Algorithm 8 correctly updates the round in-
dex given graph changes.

Proof. According to Theorem 1, HandleIncrease and
HandleDecrease can correctly update the index after a single
index value changes. Therefore, each time an edge (u, v) is
inserted or deleted, by calling HandleIncrease or HandleDe-
crease on u and v (if applicable), the index is correctly up-
dated.

Apparently lines 1-14 would call “HandleIncrease” or
“HandleDecrease” for at most 2 · (|Ea| + |Ed|) times. Line
15 can be done by finding all connected components, which
has complexity O(|EG[Q]|). Thus, the overall complexity

of algorithm 8 is O
(
rmax · (|Ea| + |Ed|) · (|EG[Q]| + dmax ·

log(dmax))
)
.

5. EXPERIMENTS
In this section we conduct the experimental study on the

proposed two problems. We first describe the algorithms,
datasets and parameter settings, and then present and an-
alyze experimental results. All algorithms are implemented
in C++ and are ran on a machine with an Intel Xeon X5650
CPU and 40GB main memory.

5.1 Experimental Setup
5.1.1 Datasets
Graphs. We test our algorithms on both synthetic and
real-world HINs, which are described as follows.

• IMDB1. This is the MovieLens-100K dataset from [15],
which has a simple structure. It contains four types of
vertices, i.e., “user” (U), “movie” (M), “actor” (A) and
“director” (D). Between vertices are three types of edges,
which are “user reviews movie”, “actor acts movie” and
“director makes movie”.
• Instacart2. This is a co-purchasing network from an on-

line shopping web site. In this network, each vertex is a
product that belongs to one of the 21 categories such as
“bakery” and “canned”. Each edge between two vertices
means that they are purchased in the same order for more
than 200 times.

1https://grouplens.org/datasets/movielens/100k/
2https://www.instacart.com/datasets/grocery-shopping-
2017

Table 1: Statistics of Real-World Datasets.
#vertices #edges #labels

Instacart 5,240 110,877 21
IMDB 45,913 614,580 4
YAGO 3,938,097 12,430,701 7,124

DIP Hsapi 3,559 13,821 59

• YAGO [10]. YAGO is a large knowledge base derived from
many other data sources. Its core graph contains a set
of vertices (entities) and edges (facts), where each vertex
belongs to one or more categories in the YAGO taxonomy.
In our experiments, we label each vertex by the highest-
rank category that it belongs to. For example, if a vertex
belongs to categories “seafood” and “food”, we label it
with the higher-rank category “food”.
• DIP Hsapi [41]. DIP Hsapi is a network of human pro-

tein interactions, where each edge represents an inter-
action between two proteins. The label of each protein
can be obtained from the GO database [3]. Each known
multi-protein complex, which consists of a set of proteins,
is obtained from the MIPS/CORUM database [30] as a
ground-truth community. In total there are 468 commu-
nities.
• Synthetic Graphs. We generate synthetic graphs for scal-

ability test. Specifically, while keeping vertex degrees and
labels following two distinct power-law distributions, we
vary the number of vertices |VG| from 105 to 5× 106, the
average degree dG from 10 to 40, and the number of labels
|LG| from 10 to 40. By default, we set |VG| = 5 × 105,
dG = 20, and |LG| = 20.

The important statistics of real-world datasets are summa-
rized in Table 1.
Schema. For each dataset, we randomly generate commu-
nity schema in the following steps.

1. Randomly pick the concerned set LS ;
2. For each pair of labels (l1, l2), l1, l2 ∈ LS , generate a

random number x, and then add constraint 〈l1, l2, x〉
into S.

Given a random schema, there may not exist any r-com
in the graph, and we only use schema that can query at
least one r-com from the graph. Meanwhile, to categorize
heterogeneous schema, we define the cardinality of a label
as the sum of constraints on it, i.e.,

Card(l) =
∑

〈l,l′,c〉∈S

c.

And then we group schema by their average cardinality,
which is denoted by k.
Query Vertices. In the MRCS problem, for every schema,
we randomly select one vertex in an r-com as the query
vertex. In this way, we guarantee that each query certainly
returns an r-com. Besides, we also conduct experiments to
illustrate the performance of each algorithm when the result
is empty.
Graph Updates. To synthetic dynamic graphs, we ran-
domly insert and delete edges according to the batch size
b. Specifically, to generate updates of batch size b, we ran-
domly select b/2 edges in the graph to delete, and b/2 pairs
of non-neighbor vertices as new edges to insert.

5.1.2 Parameter Settings
There are two parameters in our experiments, the average

cardinality k, and the graph update batch size b. For ex-

1731

periments on real-world graphs, we vary k from 2 to 9. For
experiments on synthetic graphs, we fix k = 3. For exper-
iments on dynamic graphs, we vary b from 10% to 50% of
the edge number of the original graph.

5.1.3 Algorithms
For the RCD problem, we compare naive and message

passing (mp). For the MRCS problem, we compare four
algorithms, which are exact, greedy, local search (ls) and
local search with round index (ls-ri). For MRCS on dynamic
graphs, we report the running time of ls-ri.

5.1.4 Evaluation Metrics
In efficiency experiments, we evaluate each method by its

running time in seconds. For ls-ri, we also record its index
size. For each testing, we run each algorithm on 100 different
queries, and report the average performance. The maximum
running time in all experiments is set to be 104 seconds.
Running time exceeding this limit is plotted as “inf”.

For effectiveness experiments, we also use two metrics.
One is the similarity between two vertices. Given a ver-
tex v, we can collect a multi-set of its neighbors’ labels
LN(v) = {φ(u)|∀u ∈ NG(v)}. Then for two vertices v, u with
the same label, we measure their similarity as the jaccard
similarity between LN(v) and LN(u). We do not measure
the similarity between vertices who have different labels, as
it is usually meaningless. In our case study, we borrow the
F1 score from [19] to evaluate the algorithm output against
ground-truth communities. Typically, let C and C be the set
of discovered communities and ground-truth communities,
respectively, then

F1 = max
f :C7→C

1

|f |
∑

C∈dom(f)

F1

(
C, f(C)

)
(2)

, where f is a (partial) mapping from C to C.
5.2 R-com Effectiveness
5.2.1 Node Similarity

We examine the average vertex similarity within r-coms
produced by ls-ri in this part. As a comparison, we also
search the degree-based community [8] (marked as “d-com”)
with the same query vertex. To make d-coms and r-coms
more comparable, we additionally set the cardinality of ev-
ery label to k. In this case, every r-com is also a d-com (i.e.,
every vertex has degree at least k).

We show the results in Figure 4. For the Instacart dataset,
we query r-coms among vertices that belong to four cate-
gories “bakery” (B), “canned” (C), “house” (H) and “other”
(O). For the IMDB dataset, we query r-coms among all types
of vertices. We also vary k from 2 to 9 to show the impact of
different schema. The missing bars indicate that we cannot
calculate the similarity score, which implies that no commu-
nity contains more than one vertex in that type.

It can be seen that the average vertex similarity in r-coms
is consistently higher than that in d-coms. For both meth-
ods, when k increases, the score of each vertex type also
increase, which shows that setting higher constraints can
improve the community quality. The missing bars indicate
that there is only one vertex with that type in each commu-
nity, so no similarity can be calculated.

5.2.2 A Case Study on DIP Hsapi
In this part, we examine the quality of r-coms against

ground-truth communities in DIP Hsapi. We use the method

Table 2: Results on DIP Hsapi.
|f | per query F1 per query

min max mean min max mean
d-com 1 3 1.6 0.02 0.72 0.20

r-com (RCD) 2 45 10.5 0.29 0.80 0.51
r-com (MRCS) 6 157 74.2 0.41 0.67 0.51

proposed in Section 2.3 to reverse-engineering 10 schemas
from 10 ground-truth communities. Then we further adjust
the schema by reducing the largest value in constraints by
one, if a schema cannot query more than one community.
It turns out that every schema can query more than two
communities with at most two adjustments. For the RCD
problem, we detect r-coms using these schemas in the net-
work. For the MRCS problem, we run ls-ri to query every
vertex with each schema and collect all results. In compar-
ison, we also detect d-coms in this network by varying all
possible d. The statistics are shown in Table 2.
RCD. It is shown that on average, r-com beats d-com in
not only the number of effective mappings (|f |) but also the
community quality. Considering that the results of different
queries may overlap, we collect all detected r-coms and d-
coms to evaluate the overall F1 score. It turns out that all
r-coms can be mapped to 92 ground-truth communities with
F1 score 0.48, while all d-coms can only be mapped to 8 with
a score 0.33. This again shows the effectiveness of r-coms.
MRCS. The r-coms of MRCS has competitive quality com-
pared with that of RCD. In fact, we find the most communi-
ties using ls-ri, and their minimum and mean F1 scores are
the highest. All found communities can be mapped to 400
ground-truth communities with an overall F1 score of 0.50,
which are both the highest. It turns out that, we can find
many more communities with competitive quality by using
community search.

5.3 Results on Real-World Graphs
5.3.1 Results for RCD

We show the running time of naive and mp in Figure 5.
The maximum construct time and maximum size of the
counting index are also reported. Due to its simple struc-
ture and low space cost, the counting index takes only a
few megabytes of storage and can be constructed in a few
seconds. It can be seen that both methods have consistent
performance when varying k. On smaller datasets, both
methods run faster, and mp can be an order of magnitude
faster than naive on the large dataset YAGO.

5.3.2 Results for MRCS
In Figure 6 we show the running time against k and the

size of the maximum community containing q (|Rmax(q)|),
which is the starting point of exact and greedy. In addi-
tion, we also show the index size (“index”) of ls-ri to exam-
ine its space cost. In general, exact fails to finish within the
time limit in most cases. The main drawback is its expo-
nential complexity. Other three methods can finish quickly
in most cases, while ls-ri is the fastest. In fact, ls-ri can
be orders of magnitude faster than other methods when the
search space (index size) is large, which illustrates the effi-
ciency of the round index. Meanwhile, the space cost of the
round index is at most hundreds of KBs, which is small com-
pared to the graph size. When looking at (d), (e) and (f),
it is easy to notice that the |Rmax(q)| values on all datasets
are large (> 105). In comparison, the search space of ls and

1732

O B C H
node types

0.00

0.25

0.50

0.75

1.00
av

er
ag

e
sim

ila
rit

y d-com
r-com

(a) Instacart k = 2.

O B C H
node types

0.00

0.25

0.50

0.75

1.00

av
er

ag
e

sim
ila

rit
y d-com

r-com

(b) Instacart k = 5.

O B C H
node types

0.00

0.25

0.50

0.75

1.00

av
er

ag
e

sim
ila

rit
y d-com

r-com

(c) Instacart k = 9.

A D M U
node types

0.00

0.25

0.50

0.75

1.00

av
er

ag
e

sim
ila

rit
y d-com

r-com

(d) IMDB k = 2.

A D M U
node types

0.00

0.25

0.50

0.75

1.00

av
er

ag
e

sim
ila

rit
y d-com

r-com

(e) IMDB k = 5.

A D M U
node types

0.00

0.25

0.50

0.75

1.00

av
er

ag
e

sim
ila

rit
y d-com

r-com

(f) IMDB k = 9.

Figure 4: The average similarity between vertices in each type.

Instacart IMDB YAGO
Dataset

100

101

102

103

ind
ex

 si
ze

 (M
B)

index size
construct time

10 1

100

101

102

co
ns

tru
ct

tim
e

(s
ec

on
ds

)

(a) The Counting Index.

2 3 4 5 6 7 8 9
k

0.00

0.25

0.50

0.75

1.00

ru
nn

ing
 tim

e
(s

ec
on

ds
)

naive
mp

(b) Instacart.

2 3 4 5 6 7 8 9
k

0.00

0.25

0.50

0.75

1.00

ru
nn

ing
 tim

e
(s

ec
on

ds
)

naive
mp

(c) IMDB.

2 3 4 5 6 7 8 9
k

0

10

20

30

ru
nn

ing
 tim

e
(s

ec
on

ds
)

naive
mp

(d) YAGO.

Figure 5: The efficiency for RCD.

ls-ri is < 104 in most cases. That demonstrates that local
search can drastically reduce the search space.

We also show the running time of each method when the
returned result is empty in Figure 7. It is clear that the
running time of all methods remains to be small in all cases.
Particularly, the running time of ls and ls-ri are close and
are significantly smaller than that of exact and greedy.
The reason is that the local search methods usually detect
the non-existence of the r-com at an early stage (i.e., when
the search space/index size is small) by our candidate prun-
ing strategy, while exact and greedy have to traverse the
whole graph. This shows another advantage of the local
search approach of detecting the non-existence of r-coms.

The accuracy of each method in terms of community size
is compared in Figure 8. For each method, we record the
best community it finds within the time limit, and compare
it with the ground-truth (“truth” in the figure). It is clear
that exact cannot find small communities due to the large
search space and time limit, and greedy is usually trapped
in local optimal. On the other hand, ls and ls-ri can usually
find communities with small size due to the advantage of
searching in a small local area. In most cases, their output
is close to the ground truth.

We show the update time of ls-ri (algorithm 8) on dy-
namic graphs in Figure 9. It is clear that the update time
is short when the graph only changes a bit. As the graph
changes more, it gradually approaches the running time on
static graphs. Meanwhile, the gap of running time between
dynamically updating and running from scratch is larger
when the graph is larger, which shows the importance of
developing dynamic algorithms for large graphs.

5.4 Scalability Test
We test the scalability of all methods on synthetic graphs.

The results are shown in Figure 10.

For the RCD problem, both methods can finish within 200
seconds even on large or dense graphs. As |VG| increases,
the running time of two methods increases sub-linearly, be-
cause the communities become bigger and the number of
removed vertices do not grow quickly. On the other hand,
their running time grows linearly to dG, because removing
each vertex takes more time on average. When |LG| is in-
creasing, more vertices should be removed since they do not
have the concerned types in LS , so the number of iterations
and the running time of naive both increase. For mp, it
is easier to identify a vertex to remove, so the running time
decreases a bit.

For the MRCS problem, exact and greedy do not scale
well and fail in almost all cases. When |VG| increases, the
running time of ls and ls-ri grows sub-linearly, because the
search space (index size) does not grow quickly when the
graph is large. When dG is increasing, the search space
drops, but the candidate set grows, so the running time of
ls and ls-ri only drops slightly. When |LG| grows, the con-
nectivity between vertices of the concerned types is sparser,
so the search space and running time of ls and ls-ri both
grow. Overall, both ls and ls-ri scale well when varying
|VG|, dG and |LG|.

6. RELATED WORK
This work is closely related to community detection and

community search on graphs.
Community Detection. On homogeneous networks, com-
munity detection, also known as network clustering, has
been extensively studied since it was first introduced in [14].
A variety of methods based on modularity [14], k-clique [24],
label-propagation [22,42], correlation [9] are proposed in the
literature to improve the quality and efficiency. This kind of
method takes only the network structure as input, and use
the given model to partition the network into subgraphs.

Recently, heterogeneous information network, which inte-
grates semantic information in vertices and edges, has at-
tracted much attention. Zhou et al. [44] propose the SA-
Cluster which utilizes the attribute information on edges to
improve community quality. Sun et al. [34] propose to inte-
grate incomplete attribute information in clustering. Wang
et al. [37] propose a clustering framework that uses text
information as indirect supervision, and incorporates sub-
type information of vertices. User-guided information such
as meta-path has been considered in clustering, to provide
desired results [36].

Most methods above are designed to detect communities
with few user-guided information. They enjoy simple and
user-friendly inputs, but fail to provide diverse results at
the same time. The only one that takes users’ desire into
consideration is [36], but how meta-paths control the results
is hidden by the probabilistic approach, making it hard for
the user to adjust inputs to get better results. In compar-
ison, our proposal in this paper is more suitable when the

1733

2 3 4 5 6 7 8 9
k

10 1

100

101

102

103

inf
ru

nn
ing

 tim
e

(s
ec

on
ds

)
exact
greedy
ls

ls-ri
index

100

101

102

103

104

ind
ex

 si
ze

 (K
B)

(a) Instacart.

exact
greedy
ls

ls-ri
index

2 3 4 5 6 7 8 9
k

10 1

100

101

102

103

inf

ru
nn

ing
 tim

e
(s

ec
on

ds
)

100

101

102

103

104

ind
ex

 si
ze

 (K
B)

(b) IMDB.

exact
greedy
ls

ls-ri
index

2 3 4 5 6 7 8 9
k

10 1

100

101

102

103

inf

ru
nn

ing
 tim

e
(s

ec
on

ds
)

100

101

102

103

104

ind
ex

 si
ze

 (K
B)

(c) YAGO.

0 2 4 6
|Rmax(q)|(×103)

100

102

104

ru
nn

ing
 tim

e
(s

ec
on

ds
)

exact
greedy

ls
ls-ri

(d) Instacart.

exact
greedy

ls
ls-ri

0 10 20 30 40 50
|Rmax(q)|(×103)

100

102

104

ru
nn

ing
 tim

e
(s

ec
on

ds
)

(e) IMDB.

0 5 10 15
|Rmax(q)|(×103)

102

104

ru
nn

ing
 tim

e
(s

ec
on

ds
)

exact
greedy

ls
ls-ri

(f) YAGO.

Figure 6: The running time for MRCS on static graphs.

2 3 4 5 6 7 8 9
k

10 2

10 1

100

ru
nn

ing
 tim

e
(s

ec
on

ds
) exact

greedy
ls

ls-ri
index

100

101

102

103

104

ind
ex

 si
ze

 (K
B)

(a) Instacart.

2 3 4 5 6 7 8 9
k

10 2

10 1

100

ru
nn

ing
 tim

e
(s

ec
on

ds
) exact

greedy
ls

ls-ri
index

100

101

102

103

104

ind
ex

 si
ze

 (K
B)

(b) IMDB.

2 3 4 5 6 7 8 9
k

100

101

102

103

ru
nn

ing
 tim

e
(s

ec
on

ds
) exact

greedy
ls

ls-ri
index

100

101

102

103

104

ind
ex

 si
ze

 (K
B)

(c) YAGO.

Figure 7: The running time for MRCS when the
result is empty.

2 3 4 5 6 7 8 9
k

0

10

20

an
sw

er
 si

ze

exact
greedy
ls/ls-ri
truth

(a) Instacart.

2 3 4 5 6 7 8 9
k

0

25

50

75

an
sw

er
 si

ze

exact
greedy
ls/ls-ri
truth

(b) IMDB.

2 3 4 5 6 7 8 9
k

0

25

50

75

an
sw

er
 si

ze

exact
greedy
ls/ls-ri
truth

(c) YAGO.

Figure 8: The accuracy for MRCS.

10% 20% 30% 40% 50%
graph changes

10 2

10 1

100

101

up
da

te
 tim

e
(s

ec
on

ds
) k=2

k=5
k=9

(a) Instacart.

10% 20% 30% 40% 50%
graph changes

10 2

10 1

100

101

up
da

te
 tim

e
(s

ec
on

ds
) k=2

k=5
k=9

(b) IMDB.

10% 20% 30% 40% 50%
graph changes

10 2

10 1

100

101

up
da

te
 tim

e
(s

ec
on

ds
)

k=2
k=5

k=9

(c) YAGO.

Figure 9: The dynamic updating time for MRCS.

naive
mp

1 5 10 50
|VG|(×105)

0

50

100

150

200

ru
nn

ing
 tim

e
(s

ec
on

ds
)

(a) Detection
varying |VG|.

naive
mp

10 20 30 40
dG

0

50

100

150

200

ru
nn

ing
 tim

e
(s

ec
on

ds
)

(b) Detection
varying dG.

naive
mp

10 20 30 40
|LG|

0

25

50

75

100

ru
nn

ing
 tim

e
(s

ec
on

ds
)

(c) Detection
varying |LG|.

exact
greedy
ls

ls-ri
index

1 5 10 50
|VG|(×105)

100

101

102

103

inf

ru
nn

ing
 tim

e
(s

ec
on

ds
)

100

101

102

103

104

ind
ex

 si
ze

 (K
B)

(d) Search varying
|VG|.

10 20 30 40
dG

100

101

102

103

inf

ru
nn

ing
 tim

e
(s

ec
on

ds
)

exact
greedy
ls

ls-ri
index

100

101

102

103

104

ind
ex

 si
ze

 (K
B)

(e) Search varying
dG.

exact
greedy
ls

ls-ri
index

10 20 30 40
|LG|

100

101

102

103

inf

ru
nn

ing
 tim

e
(s

ec
on

ds
)

100

101

102

103

104

ind
ex

 si
ze

 (K
B)

(f) Search varying
|LG|.

Figure 10: Scalability test results.

user has a clearer picture of what he/she wants, especially
for degree requirements.
Community Search. One of the main drawbacks of com-
munity detection is the need for traversing the whole graph,
which has a high cost for large graphs. Meanwhile, the out-
put of community detection might be redundant if the user

only cares about a small part of the graph. Considering such
inefficiency, methods are developed for searching a (small)
community that contains certain vertex(es). Most of them
are built upon structure-based models, such as k-core [8,13],
k-truss [1, 19,21], k-clique [7, 40,43] and k-ECC [4,18].

Efforts are spent on integrating heterogeneous information
with traditional models. For example, the k-core structure
is adapted to incorporate graph attributes like keyword [11],
location [12,39], temporal [28], influence [26,27] and profile
[5]. There are also methods that adopt k-truss [20] and
k-clique [25]. In [11], the user is allowed to provide a set
of keywords as part of the input, which implicitly controls
the output. Compared to other methods whose input is
just one or two parameters, it offers the user more room for
specifying and adjusting queries. However, it cannot handle
the relational queries proposed in this work.

7. CONCLUSION
In this paper, we study the problem of community search

in heterogeneous information networks. Specifically, we pro-
pose the relational community which is defined upon rela-
tional constraints. Using these constraints, the user can
specify fine-grained requirements on vertex degrees. We
propose efficient algorithms to detect relational communi-
ties using message-passing in near optimal-time. For the
community search problem, although it is NP-hard, we de-
vise an exact solution and three approximate algorithms,
namely greedy, ls and ls-ri. The advantage of ls and ls-ri
is that they avoid traversing the whole graph. Moreover,
the ls-ri algorithm naturally handles dynamic graphs. We
conduct extensive experiments on real-world graphs to show
that our proposed methods can provide high-quality results
in a short amount of time. Meanwhile, the ls-ri method can
handle graph updates efficiently, even with a large number
of graph updates.

8. ACKNOWLEDGEMENT
Lei Chen’s work is partially supported by the Hong Kong

RGC GRF Project 16214716, CRF Project C6030-18G,
C1031-18G,C5026-18G, AOE Project AoE/E-603/18, China
NSFC No. 61729201, Guangdong Basic and Applied Basic
Research Foundation 2019B151530001, Hong Kong ITC ITF
grants ITS/044/18FX and ITS/470/18FX, Didi-HKUST
joint research lab project, Microsoft Research Asia Collab-
orative Research Grant and Wechat and Webank Research
Grants. This work is also supported by the Guangdong Ba-
sic and Applied Basic Research Foundation
(No. 2019A1515110473).

9. REFERENCES
[1] E. Akbas and P. Zhao. Truss-based community search:

A truss-equivalence based indexing approach. PVLDB,
10(11):1298–1309, 2017.

1734

[2] O. Amini, D. Peleg, S. Pérennes, I. Sau, and
S. Saurabh. On the approximability of some
degree-constrained subgraph problems. Discrete
Applied Mathematics, 2012.

[3] E. Camon, M. Magrane, D. Barrell, V. Lee,
E. Dimmer, J. Maslen, D. Binns, N. Harte, R. Lopez,
and R. Apweiler. The gene ontology annotation (goa)
database: sharing knowledge in uniprot with gene
ontology. Nucleic acids research, 2004.

[4] L. Chang, X. Lin, L. Qin, J. X. Yu, and W. Zhang.
Index-based optimal algorithms for computing steiner
components with maximum connectivity. In ACM
SIGMOD, 2015.

[5] Y. Chen, Y. Fang, R. Cheng, Y. Li, X. Chen, and
J. Zhang. Exploring communities in large profiled
graphs. TKDE, 2018.

[6] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu. Efficient
core decomposition in massive networks. In ICDE,
2011.

[7] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang.
Online search of overlapping communities. In ACM
SIGMOD, 2013.

[8] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local
search of communities in large graphs. In ACM
SIGMOD, 2014.

[9] L. Duan, W. N. Street, Y. Liu, and H. Lu.
Community detection in graphs through correlation.
In SIGKDD, 2014.

[10] M. Fabian, K. Gjergji, W. Gerhard, et al. Yago: A
core of semantic knowledge unifying wordnet and
wikipedia. In WWW, 2007.

[11] Y. Fang, R. Cheng, Y. Chen, S. Luo, and J. Hu.
Effective and efficient attributed community search.
VLDBJ, 2017.

[12] Y. Fang, Z. Wang, R. Cheng, X. Li, S. Luo, J. Hu,
and X. Chen. On spatial-aware community search.
TKDE, 2018.

[13] Y. Fang, Z. Wang, R. Cheng, H. Wang, and J. Hu.
Effective and efficient community search over large
directed graphs. TKDE, 2018.

[14] M. Girvan and M. E. Newman. Community structure
in social and biological networks. PNAS, 2002.

[15] F. M. Harper and J. A. Konstan. The movielens
datasets: History and context. ACM TiiS, 2015.

[16] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient
algorithms for graph manipulation. Commun. ACM,
1973.

[17] J. Hu, R. Cheng, K. C.-C. Chang, A. Sankar, Y. Fang,
and B. Y. Lam. Discovering maximal motif cliques in
large heterogeneous information networks. In ICDE,
2019.

[18] J. Hu, X. Wu, R. Cheng, S. Luo, and Y. Fang. On
minimal steiner maximum-connected subgraph
queries. TKDE, 2017.

[19] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu.
Querying k-truss community in large and dynamic
graphs. In ACM SIGMOD, 2014.

[20] X. Huang and L. V. S. Lakshmanan. Attribute-driven
community search. PVLDB, 10(9):949–960, 2017.

[21] X. Huang, L. V. S. Lakshmanan, J. X. Yu, and
H. Cheng. Approximate closest community search in
networks. PVLDB, 9(4):276–287, 2015.

[22] X. Jian, X. Lian, and L. Chen. On efficiently detecting
overlapping communities over distributed dynamic
graphs. In ICDE, 2018.

[23] R. M. Karp. Reducibility among combinatorial
problems. In Complexity of computer computations.
1972.

[24] J. M. Kumpula, M. Kivelä, K. Kaski, and
J. Saramäki. Sequential algorithm for fast clique
percolation. Physical Review E, 2008.

[25] J. Li, X. Wang, K. Deng, X. Yang, T. Sellis, and J. X.
Yu. Most influential community search over large
social networks. In ICDE, 2017.

[26] R.-H. Li, L. Qin, F. Ye, J. X. Yu, X. Xiao, N. Xiao,
and Z. Zheng. Skyline community search in
multi-valued networks. In ACM SIGMOD, 2018.

[27] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Finding
influential communities in massive networks. VLDBJ,
2017.

[28] R.-H. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai.
Persistent community search in temporal networks. In
ICDE, 2018.

[29] L. Qin, R.-H. Li, L. Chang, and C. Zhang. Locally
densest subgraph discovery. In SIGKDD, 2015.

[30] A. Ruepp, B. Brauner, I. Dunger-Kaltenbach,
G. Frishman, C. Montrone, M. Stransky, B. Waegele,
T. Schmidt, O. N. Doudieu, V. Stümpflen, et al.
Corum: the comprehensive resource of mammalian
protein complexes. Nucleic acids research, 2007.

[31] J. Shang, J. Shen, L. Liu, and J. Han. Constructing
and mining heterogeneous information networks from
massive text. In SIGKDD, 2019.

[32] C. Shi, X. Kong, P. S. Yu, S. Xie, and B. Wu.
Relevance search in heterogeneous networks. In
EDBT, 2012.

[33] A. Spitz, D. Costa, K. Chen, J. Greulich, J. Geiß,
S. Wiesberg, and M. Gertz. Heterogeneous subgraph
features for information networks. In ACM GRADES,
2018.

[34] Y. Sun, C. C. Aggarwal, and J. Han. Relation
strength-aware clustering of heterogeneous
information networks with incomplete attributes.
PVLDB, 5(5):394–405, 2012.

[35] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu.
Pathsim: Meta path-based top-k similarity search in
heterogeneous information networks. PVLDB,
4(11):992–1003, 2011.

[36] Y. Sun, B. Norick, J. Han, X. Yan, P. S. Yu, and
X. Yu. Pathselclus: Integrating meta-path selection
with user-guided object clustering in heterogeneous
information networks. TKDD, 2013.

[37] C. Wang, Y. Song, A. El-Kishky, D. Roth, M. Zhang,
and J. Han. Incorporating world knowledge to
document clustering via heterogeneous information
networks. In SIGKDD, 2015.

[38] J. Wang and J. Cheng. Truss decomposition in
massive networks. PVLDB, 5(9):812–823, 2012.

[39] K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin.
Efficient computing of radius-bounded k-cores. In
ICDE, 2018.

[40] Y. Wang, X. Jian, Z. Yang, and J. Li. Query optimal
k-plex based community in graphs. DSE, 2017.

1735

[41] I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S.-M.
Kim, and D. Eisenberg. Dip, the database of
interacting proteins: a research tool for studying
cellular networks of protein interactions. Nucleic acids
research, 2002.

[42] J. Xie and B. K. Szymanski. Towards linear time
overlapping community detection in social networks.

In PAKDD, 2012.

[43] L. Yuan, L. Qin, W. Zhang, L. Chang, and J. Yang.
Index-based densest clique percolation community
search in networks. TKDE, 2017.

[44] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering
based on structural/attribute similarities. PVLDB,
2(1):718–729, 2009.

1736

	Introduction
	Motivations
	Contributions

	Problem Definition
	Problem Definition
	Problem Hardness
	Community Schema Discovering

	Solving The RCD Problem
	The Naive Solution
	A Message-Passing Approach

	Solving The MRCS Problem
	An Exact Solution
	A Greedy Approach
	A Local Search Approach
	The Round Index
	Index Initialization
	Index Updating
	MRCS with Round Index on Dynamic Graphs

	Experiments
	Experimental Setup
	Datasets
	Parameter Settings
	Algorithms
	Evaluation Metrics

	R-com Effectiveness
	Node Similarity
	A Case Study on DIP Hsapi

	Results on Real-World Graphs
	Results for RCD
	Results for MRCS

	Scalability Test

	Related Work
	Conclusion
	Acknowledgement
	References

