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ABSTRACT
We study clustering of bipartite graphs and Boolean matrix
factorization in data streams. We consider a streaming
setting in which the vertices from the left side of the graph
arrive one by one together with all of their incident edges.
We provide an algorithm which after one pass over the stream
recovers the set of clusters on the right side of the graph
using sublinear space; to the best of our knowledge this is the
first algorithm with this property. We also show that after a
second pass over the stream the left clusters of the bipartite
graph can be recovered and we show how to extend our
algorithm to solve the Boolean matrix factorization problem
(by exploiting the correspondence of Boolean matrices and
bipartite graphs). We evaluate an implementation of the
algorithm on synthetic data and on real-world data. On
real-world datasets the algorithm is orders of magnitudes
faster than a static baseline algorithm while providing quality
results within a factor 2 of the baseline algorithm. Our
algorithm scales linearly in the number of edges in the graph.
Finally, we analyze the algorithm theoretically and provide
sufficient conditions under which the algorithm recovers a set
of planted clusters under a standard random graph model.
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1. INTRODUCTION
Bipartite graphs appear in many areas in which interac-

tions of objects from two different domains are observed.
Hence, finding interesting clusters (also called communities)
in bipartite graphs is a fundamental and well-researched
problem with many applications; this problem is often called
biclustering. For example, in social networks the two domains
could be users and hashtags and an interaction corresponds
to a user using a certain hashtag; finding clusters in such a
graph corresponds to finding groups of hashtags used by the
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same users and groups of users using the same hashtags [41].
Biclustering has many applications across many domains
such as computational biology [15, 27], text mining [14] and
finance [20].
Many real-world bipartite graphs have three natural prop-

erties. First, the numbers of vertices on both sides of the
graphs are very large, while at the same time their density is
extremely low, i.e., the graphs are very sparse. For example,
consider a bipartite graph consisting of users on the left side
of the graph and movies on the right side of the graph, where
an edge indicates that a user rated a movie. Such graphs
often consist of millions of users and movies, but the average
degree is constant. Second, the degrees on one side of the
graph are usually bounded by a small constant, while on
the other side of the graph a few vertices have extremely
large degrees. Continuing the example from above, note that
users usually do not rate more than 1000 movies, but a small
number of popular movies is rated by millions of users. The
third property is that the clusters on the high-degree side of
the graph are usually relatively small. Again continuing the
above example, those groups of movies which are watched
by the same users typically do not consist of more than
50 movies.
Furthermore, for many real-world bipartite graphs, it is

natural to assume that the left-side vertices appear in a data
stream, for example, in Natural Language Processing [17],
market basket analysis, network traffic analysis and stock
price analysis [10]. For instance, in market basket analysis the
left-side vertices correspond to transactions in a supermarket
and incident edges indicate which products were bought.
To efficiently find interesting clusters in such datasets, we
need to develop streaming algorithms for the biclustering
problem. Another motivation to study the streaming setting
is that current static algorithms do not scale to the previously
mentioned real-world graphs with millions of vertices, because
these methods have prohibitively high memory consumptions
and running times. Streaming algorithms could mitigate this
issue due to improved memory efficiency and speed.
Our Contributions. In this paper, we address this ques-

tion and provide the first streaming algorithms for the biclus-
tering problem. In particular, we study a streaming setting
in which the vertices from the left side of the bipartite graph
arrive one after another, together with all of their incident
edges. Then after a single pass over the stream, the algo-
rithm must output the set of right-side clusters of the graph.
The algorithm is then allowed a second pass over the stream
in order to output the left-side clusters. See Section 2.1 for
the formal definition of the problem.
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To obtain our algorithms, we heavily exploit the previ-
ously mentioned properties of real-world bipartite graphs.
Formally, we assume that there exists a number s such that
the degree of all left-side vertices and the size of all right-side
clusters is at most s. This implies that, in total, the graph
contains O(ms) edges, where m is the number of vertices on
the left side of the graph.
We introduce the sofa algorithm which returns the right-

side clusters of the graph after a single pass over the stream
and using sublinear memory. To the best our of knowledge,
sofa is the first algorithm with this property. The running
time of sofa isO(ms·k lgm), where k is the number of clusters
to be recovered; note that this running time is within a
O(k lgm) factor of the size of the graph. During its running
time, sofa uses O(ks lgm) space; observe that this space
usage sublinear in the size in the size of the graph as long as
s = o(m/ lgm) which is realistic in practice (as we argued
before). Furthermore, we show that the left-side clusters of
the graph can be computed using a second pass over the
stream and using space O(m), which is optimal since we have
to output a cluster assignment for each of the m left-side
vertices of the graph.
We also provide theoretical guarantees for a version of

sofa. We show that under a standard random graph model, a
version of sofa returns a set of planted ground-truth clusters
with information-theoretically optimal memory usage; see
Theorem 1 for details. We also provide similar yet weaker
guarantees for the practical version of sofa.
Next, we show how sofa can be extended to solve the

Boolean matrix factorization problem, which is popular in
the data mining and machine learning communities. We
obtain similar guarantees on space and run-time as above.
Unfortunately, we cannot provide any quality guarantees here,
because the lower bounds from [11] rule out obtaining non-
trivial approximation ratios for practical BMF algorithms
(see Section 7 for details). Thus, sofa is a heuristic for BMF,
but our experiments show that it works well in practice.
We evaluate sofa on synthetic as well as on real-world

datasets. On synthetically generated random graphs, our
experiments show that sofa returns clusters, that are close
to the planted ground-truth clusters and that its running
time scales linearly in the number of edges in the graph.
On real-world datasets, our experiments show that sofa is
orders of magnitudes faster and more memory-efficient than
a static baseline algorithm, while at the same time achieving
objective function values within factor 2 of the baseline. In
concrete terms, sofa can process a graph with millions of
vertices, for which the static baseline algorithm runs out of
memory, using only 500 MB of RAM and, further, sofa can
process a graph with hundreds of thousands of edges within
less than three hours, while the baseline algorithm requires
several days to finish.
Outline of the Paper. Our paper is arranged as follows.

In Section 2 we formally define the problems we study. Then
in Section 3 we introduce sofa, which performs a single
pass over the left side of a bipartite graph and then returns
the right-side clusters. We show how the left-side clusters
can be recovered during a second pass over the stream in
Section 4. In Section 5, we discuss certain adjustments of
the algorithms that we made during the implementation
and then we evaluate sofa experimentally in Section 6. We
discuss related work in Section 7 and conclude the paper in
Section 8. Appendix A contains our theoretical analysis.

2. PRELIMINARIES
In this section, we formally introduce the problems we

study, we discuss their relationship and we introduce an
important subroutine of our algorithms.

2.1 Biclustering in Random Graphs
We study biclustering of random bipartite graphs. Let

G = (U ∪ V,E) be a bipartite graph, where U is the set
of vertices on the left side of the graph and V is the set of
vertices on the right side of the graph. We assume that U is
partitioned into subsets U1, . . . , Uk for k > 1 and V1, . . . , Vk

are subsets of V (it is not necessary that the Vj are mutually
disjoint or that their union is the set V ).
Now let p, q ∈ [0, 1] be probabilities with p > q. In our

random model, vertices u ∈ Ui have edges to vertices v ∈ Vi

with “large” probability and to vertices in v ∈ Vj with i 6= j
with “low” probability. More concretely, we assume that

Pr ((u, v) ∈ E) =

{
p, if u ∈ Ui, v ∈ Vi,

q, if u ∈ Ui, v ∈ Vj , i 6= j.
(1)

Now the computational problem is as follows. We assume
that our algorithms obtain as input a graph G generated
from the random model above and the parameters k, p and
q (but have no knowledge about the sets Ui and Vj). The
task is to recover the clusters Ui and Vj from G; that is,
the algorithm must output clusters Ũ1, . . . , Ũk ⊆ U and
Ṽ1, . . . , Ṽk ⊆ V , such that {Ũ1, . . . , Ũk} = {U1, . . . , Uk} and
{Ṽ1, . . . , Ṽk} = {V1, . . . , Vk}.
We decided to study the above random graph model for

two reasons. First, the model has been widely studied theo-
retically, e.g., in machine learning [32, 46] and in mathemat-
ics [2, 45], and similar models have been used to derive prac-
tical algorithms [36, 38]. Second, when dropping the random
graph assumption and assuming worst-case inputs, biclus-
tering problems are NP-hard [33] and require prohibitively
high running times [11].
In the streaming setting, the algorithm’s input is a stream

of the left-side vertices u ∈ U , where each vertex arrives
together with all of its incident edges. We further assume
that for some parameter s, each u ∈ U has at most s incident
edges and that |Vi| ≤ s for all i. Note that the stream
only contains left-side vertices u ∈ U and does not contain
the vertices v ∈ V . After single pass over the stream, the
algorithm must return the right-side clusters Ṽi. Then, the
algorithm is allowed a second pass over the stream to output
the left-side clusters Ũi.
Next, we state our theoretical guarantees. We prove that

after a single pass over the left-side vertices of a bipartite
graph, the planted right-side clusters can be recovered if
some conditions hold. We write A4B = (A \ B) ∪ (B \ A)
to denote the symmetric difference.

Theorem 1. Let G = (U ∪ V,E) be a random bipar-
tite graph with planted clusters U1, . . . , Uk and V1, . . . , Vk as
above. Let p ∈ [1/2, 0.99] and s = maxi|Vi|. There exist
constants K1,K2,K3,K4 such that if

q ≤ K1ps/n, |Ui| ≥ K2 lgn for all i,

|Vi| ≥ K3 lgn for all i, |Vi4Vi′ | ≥ K4s for i 6= i′,

then there exists an algorithm which w.h.p. returns clusters
Ṽ1, . . . , Ṽk such that {Ṽ1, . . . , Ṽk} = {V1, . . . , Vk}. The algo-
rithm uses O(ks) space and has a running time of O(mks).
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Let us briefly discuss this result and for simplicity assume
that the Vi are disjoint and have size |Vi| = s = Ω(lgn).
Then the bounds for p and q essentially require that p > 1/2,
q ≈ ps/n and |Ui| = Ω(lgn). While this is much weaker
than bounds derived for static algorithms for this type of
random graph model (e.g., [32, 46]), the static algorithms do
not use sublinear space. Furthermore, the bounds on p and
q are almost optimal when one wants to ensure that a greedy
clustering of the left-side vertices succeeds.
We also show that any algorithm recovering the planted

right-side clusters must use space Ω(ks). Thus, the space
usage of the algorithm from the theorem is optimal. We
prove the theorem and the proposition in Appendix A.

Proposition 2. Any algorithm solving the above biclus-
tering problem requires space Ω(ks).

2.2 Boolean Matrix Factorization (BMF)
In the Boolean Matrix Factorization (BMF) problem, the

input is a matrix B ∈ {0, 1}m×n and the task is to find
factor matrices L ∈ {0, 1}m×k and R ∈ {0, 1}k×n such that
‖B − L ◦R‖2 is minimized. Here, ◦ denotes matrix multipli-
cation under the Boolean algebra, i.e., for all i = 1, . . . ,m
and j = 1, . . . , n,

(L ◦R)ij =

k∨
r=1

(Lir ∧Rrj) .

In the streaming setting, the algorithm’s input is a stream
consisting of the rows Bi of B, where we assume that each
row Bi has at most s non-zero entries. After a single pass
over the stream, the algorithm must output the right factor
matrix R. Then, the algorithm is allowed a second pass over
the stream to compute the left factor matrix L.
While the biclustering problem and the BMF problem

might appear quite different at first glance, they are tightly
connected. Indeed, there is a one-to-one correspondence be-
tween bipartite graphsG = (U∪V,E) with U = {u1, . . . , um}
and V = {v1, . . . , vn} and Boolean matrices B ∈ {0, 1}m×n:
The rows of B correspond to the vertices ui ∈ U and the
columns of B correspond to the vertices vj ∈ V ; now one sets
Bij = 1 iff (ui, vj) ∈ E. This is yields a bijective mapping
between bipartite graphs and Boolean matrices; B is often
called the biadjacency matrix of G.
Furthermore, there exists a correspondence between clus-

terings U1, . . . , Uk ⊆ U and V1, . . . , Vk ⊆ V and the factor
matrices L and R: The clusters Ui correspond to the columns
of L and the clusters Vj correspond to the rows of R. More
precisely, consider the r’th column of L and set it to the indi-
cator vector of Uk, i.e., we set Lir = 1 iff ui ∈ Ur. Simililary,
we set Rrj = 1 iff vj ∈ Vr.
There are two main differences between the problems.

First, while in biclustering we try to recover a set of planted
ground-truth clusters, in BMF we try to optimize an objective
function. However, when p > 1/2 > q, a “good” biclustering
solution will also provide a good BMF solution and vice
versa. Second, in biclustering each vertex u ∈ U belongs to
exactly one cluster Ui (since the Ui partition U). This would
correspond to the constraint in BMF that each column of
the factor matrix L must contain exactly one non-zero entry.
However, in BMF we do not make this assumption and allow
each column of L to contain arbitrarily many non-zero entries.
Thus, in BMF the vertices u ∈ U are allowed to be member
of multiple clusters Ui1 , . . . , Uit (and the clusters Ui do not

have to be mutually disjoint). To address these differences,
in Section 4 we use different algorithms for computing the
left-side clusters Ui for biclustering and for BMF.

2.3 Mergeable Heavy Hitters Data Structures
Next, we recap mergeable heavy hitters data structures,

which we will use as subroutines in our algorithms.
Let X = (e1, . . . , eN ) be a stream of elements from a

discrete domain A. The frequency fa of an element a ∈ A
is its number of occurrences in the stream, i.e., fa = |{i :
ei = a}|. In the heavy hitters problem the task is to output
all elements with fa ≥ εN and none with fa < εN/2 after a
single pass over the stream for ε > 0.
Misra and Gries [31] provided a data structure which solves

the heavy hitters problem using O(1/ε) space. In fact, their
data structure can approximate the frequency of each element
a ∈ A with additive error at most εN/2. For the rest of the
paper, we will denote Misra–Griess data structures by MG.
Agarwal et al. [4] showed that Misra–Gries data structures

are mergeable: Let MG1 and MG2 be two Misra–Gries data
structures which were constructed on two different streams
X1 and X2. Then there exists a merge algorithm which on
input MG1 and MG2 constructs a new data structure, that
satisfies the same guarantees as a Misra–Gries data structure
which was built on the concatenated stream X1 ∪X2. We
write MG1 ∪MG2 to denote such a merged data structure.

Remark. While we use the mergeable version of the Misra–
Gries data structure, we could as well other mergeable heavy
hitters data structures such as the count-min sketch [12].
See [4] for more details on mergeable data structures.

3. PASS 1: RECOVER RIGHT CLUSTERS
We describe two algorithms for computing the right clus-

ters Ṽj . As described in Section 2, we assume that the
algorithms obtain as input a stream U = (u1, . . . , um) con-
sisting of vertices from the left side of the graph, where each
ui arrives together with all of its at most s edges to vertices
on the right side of the graph. After a single pass over U ,
the algorithm must return clusters Ṽ1, . . . , Ṽk on the right
side of the graph.
It will be convenient to identify the vertices u ∈ U with bit-

vectors xu ∈ {0, 1}n, where we set xu(j) = 1 iff (u, vj) ∈ E,
i.e., xu(j) = 1 iff vertex u is a neighbor of vj ∈ V . For two
vertices u, u′ ∈ U , we let d(xu, xu′) = |{j : xu(j) 6= xu′(j)}|
denote the Hamming distance of xu and xu′ , i.e., d(xu, xu′)
measures the number of vertices in V which are incident
upon u or u′ but not both.
We will first describe a simplified greedy algorithm to

highlight our main ideas; this is the algorithm mentioned
in Theorem 1. Then we provide a second, more practical,
algorithm in Section 3.2, which we implement and evaluate
in Sections 5 and 6.

3.1 Warm Up: Greedy Biclustering
We start by discussing a simplified greedy algorithm to

explain the main idea of our approach. This greedy algorithm
has the guarantees stated in Theorem 1.
Before describing the algorithm, let us first make two

observations about the properties of the random graph model
in Section 2.1: (1) Suppose we know a planted left-side
cluster Ui and we want to recover its corresponding right-
side cluster Vi. Then observe that by Equation 1 every vertex
v ∈ Vi has p|Ui| neighbors in Ui and every vertex v 6∈ Vi
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has q|Ui| neighbors in Ui. Thus, if Ui is large enough and p
is sufficiently larger than q, we can find a threshold θ such
that with high probability all v ∈ Vi have more than θ|Ui|
neighbors in Ui and all v 6∈ Vi have less than θ|Ui| neighbors
in Ui. Hence, recovering the cluster Vi essentially boils
down to identifying those vertices in Vi which are frequently
neighbors of vertices in Ui. In other words, we want to
find the heavy hitters among the neighbors of vertices in Ui.
(2) The second insight is that when processing the stream,
the vertices u, u′ ∈ Ui from the same cluster will have similar
neighborhoods in V and, hence, d(xu, xu′) is small. More
concretely, assume that d(xu, xu′) < α for some suitable
parameter α. On the other hand, if u ∈ Ui and u′′ ∈ Uj

with i 6= j, their neighborhoods will be quite different and
d(xu, xu′′) > α is large. Thus, a greedy clustering of the
vertices u ∈ U based on the distances of their corresponding
vectors xu suffices to recover the Ui. In Appendix A, we
show how θ and α can be picked under the conditions from
Theorem 1.
Roughly speaking, the algorithm works as follows. It as-

sumes that it obtains parameters θ and α with the above
properties as input. Now the algorithm greedily forms clus-
ters of all left-side vertices which have distance at most α;
this corresponds to Observation (2) above. To save memory,
the algorithm only stores a single vertex for each cluster.
Furthermore, for each cluster consisting of left-side vertices,
the algorithm keeps track how many of its edges are incident
upon each right-side vertex v ∈ V . Since we do not have
enough memory to store a counter for each vertex v ∈ V , the
algorithm uses the mergeable heavy hitters data structure
from Section 2.3 to approximately keep track of how many
times each right-side vertex appeared; this corresponds to
Observation (1) above.
Now we describe the algorithm more formally and present

its pseudocode in Algorithm 1. The algorithm obtains as
input U , a distance parameter α and a rounding threshold θ.
It maintains a set of centers C which is initially empty. For
each center c ∈ C, the algorithm stores a heavy hitters
data structure MG(c) with O(s) counters and a counter nc

denoting how many vertices have been assigned to c.
Now the algorithm processes the vertices u ∈ U as follows.

First, it checks whether xu has Hamming distance more than
α from all centers c ∈ C. If this is the case, the algorithm
opens u as a new center. That is, it sets C ← C ∪ {u}
and sets nu ← 1. Else, there exists a center c(u) ∈ C with
d(xu, xc(u)) ≤ α and the algorithm assigns u to c(u). When
assigning u to c(u), the algorithm first creates a heavy hitters
data structure MG(u) containing all j such that (u, vj) ∈ E
(note that the algorithm has access to this information since u
arrives together with all of its incident edges). Then it merges
MG(c(u)) and MG(u) and updates MG(c(u)) to this merged
heavy hitters data structure. Furthermore, the algorithm
increases the counter nc(u) by 1. Then it proceeds with the
next point from the stream.
When the algorithm finished processing the stream, it

performs a postprocessing step. It iterates over all centers
c ∈ C and sets Ṽc to all vertices vj ∈ V such that the
counter of j in MG(C) is at least θnc, where θ is the rounding
threshold from the input and nc is the number of vertices
that were assigned to c. Then the algorithm outputs the
clusters Ṽc as its solution.
Remark. Note that Algorithm 1 only delivers good results

when the parameters α and θ provide exactly those guaran-

Algorithm 1 Greedy-clustering (U , α, θ)
1: C ← ∅
2: for u← next vertex from stream
3: d← minc∈C d(xu, xc)
4: if d > α . open u as center
5: C ← C ∪ {u}
6: nu ← 1
7: else . Assign u to its closest center c(u)
8: c(u)← argminc∈C d(xu, xc)
9: MG(c(u))← MG(c(u)) ∪MG(u)
10: nc(u) ← nc(u) + 1

11: for all c ∈ C . Postprocessing
12: Ṽc ← {vj ∈ V : the counter of j in MG(c) is at least θnc}

tees which we discussed at the beginning of the subsection.
In Section A we show how α and θ can be set when the
parameters p, q and k are known for random graph mod-
els as introduced in Section 2.1; under this assumption we
show that the algorithm indeed returns the planted clusters
V1, . . . , Vk after a single pass over the stream and using es-
sentially optimal space. However, in practice it is unrealistic
that one has knowledge about these parameters. Especially
setting the parameter α seems troublesome; for example,
when setting α incorrectly, one cannot even guarantee to
obtain k clusters in total. We show how to resolve this issue
in the next subsection.

3.2 Biclustering Using Importance Sampling
We introduce the sofa algorithm which constitutes the main

contribution of our paper; sofa is short for Streaming bOolean
FactorizAtion. sofa performs a single pass over the vertices
u ∈ U and afterwards returns clusters Ṽ1, . . . , Ṽk. One can
view sofa as the more practical version of Algorithm 1, since
it it does not require the parameter α which is not available in
practice. In a nutshell, we will replace the greedy clustering
from Algorithm 1 by the streaming k-Medians algorithm
from Braverman et al. [9] which is based on importance
sampling. The pseudocode of sofa with all details is presented
in Algorithm 2.
Roughly speaking, sofa works as follows. sofa maintains a

set of centers C which is initially empty; we impose that C is
never allowed to contain more than cmax vertices, where cmax

is a user-defined parameter. As before, for each center c ∈ C,
the algorithm maintains a heavy hitters data structure MG(c).
When sofa processes the vertices from the stream and a new
vertex u arrives, sofa computes the distance d = d(xu, xc(u))
from u to the closest center c(u) in C. It then opens u as new
center with probability proportional to d; if u is not opened
as a center, sofa assigns u to c(u). Thus, if u is “close” to c(u)
then u is unlikely to become a new center and more likely
to be assigned to c(u); on the other hand, if u is “far away”
from c(u) (and, hence, all centers), then u is likely to become
a new center. As before, when a vertex u is assigned to c(u),
the indices of all neighbors of u are added to MG(c(u)). Next,
suppose that after opening a new center, the set C contains
cmax centers. Then sofa restarts on the stream which only
consists of the cmax centers in C and all unprocessed vertices
of the stream. When sofa restarts on the centers of C and
one of the previous centers ci is assigned to another previous
center cj , then sofa merges their corresponding heavy hitters
data structures MG(ci) and MG(cj) as described in Section 2.
Finally, after processing all vertices from the stream and
obtaining a set of centers C together with their heavy hitters
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data structures, we run a postprocessing step. At this point
C can contain more than k centers (but at most cmax). We
run a static k-Medians algorithm on the vectors xc for c ∈ C
to obtain a clustering of C into subsets C1, . . . , Ck. For each
Ci, we merge the heavy hitters data structures of the centers
in Ci and denote this merged data structure as MGi. As
before, we set Ṽi to all vertices vj ∈ V which have a counter
of value at least θ|Ci| in MGi.
We now elaborate on the details of sofa. At the beginning,

sofa initializes a lower bound LB on the k-Medians clustering
cost of the points xu in the stream to 1. It also maintains
an approximation of the current cost of the clustering which
we denote cost and initialize to 0. After that, sofa starts
processing the vertices from the stream. We maintain a set
of centers C for which we ensure that |C| < cmax at all times.
For each center we store a heavy hitters data structure from
Section 2.3 with O(s) counters.
When starting to process the vertices from the stream,

sofa computes a weight f ← LB/(k(1 + lgn)). As long as
there are unread vertices in the stream, |C| < cmax and
cost < 2LB, sofa proceeds as follows. It reads the next vertex
u from the stream and sets d to the distance d(xu, xc(u)) of
u to its closest center c(u). Now it opens u as a new center
with probability min{w(u) ·d/f, 1}, where w(u) is the weight
of u. sofa maintains as invariant that if u was a previously
unprocessed vertex from the stream, then w(u) = 1, and, if
u was a center before, then w(u) is the number of vertices
which were previously assigned to u. If u is opened as a new
center, we set C ← C ∪ {u}. If u is assigned to its closest
center c(u), then we increase cost by w(u) · d, increase the
weight of c(u) by w(u) and set MG(c(u)) to the merged heavy
hitters data structures of MG(c(u)) and MG(u).
If at some point |C| = cmax or cost > 2LB, then sofa

doubles LB. Furthermore, sofa restarts on the stream which
consists of the cmax vertices of C and all unprocessed vertices
from U (in this order). Note that the vertices c ∈ C still have
their previously assigned weights w(c), whereas the vertices
in the unprocessed part of U all have weight 1.
After sofa finished processing all vertices from the stream,

we perform a postprocessing step. We start by running a
static O(1)-approximate k-Medians algorithm on the points
xc for c ∈ C which uses only O(|C| · s) space and which runs
in time poly(|C| · s); this can be done, for example, using the
local search algorithm by Arya et al. [6]. This provides us
with a clustering of C into disjoint subsets C1, . . . , Ck. Now
for each i = 1, . . . , k, we set MGi to the merged heavy hitters
data structure of all vertices in Ci and |Ci| to the sum of the
weights of all vertices in Ci. Finally, we set Ṽi to all vertices
vj ∈ V such that the counter of j in MGi is at least θ|Ci|.
Space Usage and Running Time. We briefly argue that

sofa uses space O(ks lgm) and its running time is bounded by
O(mks lgm). Observe that the main space usage comes from
storing the set of centers C together with a heavy hitters
data structure for each center. Recall that we ensure that
|C| ≤ cmax at all times. Furthermore, each center has O(s)
incident edges (by assumption on our input stream) and
we set the number of counters for each heavy hitters data
structure to O(s). Thus, the total space usage is O(cmaxs).
In an upcoming online appendix, we show that we can obtain
provable guarantees for sofa if cmax = O(k lg|U |).
Remark. We use the streaming k-Medians clustering algo-

rithm from [9], because the centers it maintains are points
from the stream. Thus, if these points are sparse, the space

Algorithm 2 sofa (U , k, cmax, θ)
1: LB← 1, cost← 0 . Process the vertices from the stream
2: while there exist unread vertices in U
3: C ← ∅
4: f ← LB/(k(1 + lgn))
5: for u← next vertex from stream
6: d← minc∈C d(xu, xc)

7: openCenter ← True, with probability min{w(x) · d
f
, 1},

and False, otherwise
8: if openCenter = True . open u as center
9: C ← C ∪ {u}
10: w(u)← 1
11: else . Assign u to its closest center c(u)
12: cost← cost + w(u) · d
13: c(u)← argminc∈C d(xu, xc(u))

14: w(c(u))← w(c(u)) + w(u)
15: MG(c(u))← MG(c(u)) ∪MG(u)
16: if |C| = cmax or cost > 2LB
17: break and raise flag
18: if flag raised
19: U ← the stream consisting of the (weighted) vertices

in C and all unread vertices of U
20: LB← 2LB
21: (C1, . . . , Ck)← clustering of C using an O(1)-approximate

k-Medians algorithm . Postprocessing
22: for all i = 1, . . . , k
23: MGi ←

⋃
x∈Ci

MG(x)
24: |Ci| ←

∑
c∈Ci

w(ci)

25: Ṽi ← {v ∈ V : the counter of v in MGi is at least θ|Ci|}

usage of sofa for storing centers directly benefits from this.
Algorithms for streaming k-Means (e.g., [40]) often include
steps, which cause the centers to become dense. Thus, if we
used such an algorithm as a subroutine, sofa would require
more space. Here, however, we focused on setting close to the
information-theoretically minimum space usage and, hence,
we decided to use the algorithm by [9].

4. PASS 2: RECOVER LEFT CLUSTERS
In this section, we present algorithms for computing a

clustering Ũ1, . . . , Ũk ⊆ U of the left side of the graph during
a second pass over the stream U . We assume that our
algorithms obtain as input a set of clusters Ṽ1, . . . , Ṽk ⊆ V
from the right side of the graph. We will present two different
algorithms for biclustering and BMF, respectively.

4.1 Biclustering
We now present an algorithm which performs a single pass

over the stream U and assigns each u ∈ U to exactly one
cluster Ũi. We will use this algorithm for the biclustering
problem, where each vertex u ∈ U belongs to a unique
planted cluster Ui (see Section 2.1).
To obtain the clustering Ũ1, . . . , Ũk, the algorithm initially

sets Ũi = ∅ for all i = 1, . . . , k. Now the algorithm performs
a single pass over the stream of left-side vertices u ∈ U . For
each u, let Γ(u) denote the set of neighbors of u in V , i.e.,
Γ(u) = {v ∈ V : (u, v) ∈ E} ⊆ V . Now the algorithm assigns
u to the cluster Ũi∗ such that the overlap of Γ(u) and Ṽi∗ is
maximized relative to the size of Ṽi∗ . More concretely, the
algorithm computes

i∗ = arg max{|Γ(u) ∩ Ṽi|/|Ṽi| : i = 1, . . . , k} (2)

and then assigns u to Ũi∗ .
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Space Usage and Running Time. Observe that the al-
gorithm uses space O(m) (where m = |U |), since for each
vertex u ∈ U , we need to store to which cluster Ui it was
assigned. Furthermore, the running time of the algorithm
is O(mks): For each of the m vertices, we need to compute
i∗ as per Equation (2). Since we assume that each vertex u
has at most O(s) neighbors and that all Ṽi have size O(s), it
takes time O(s) to compute |Γ(u)∩ Ṽi|/|Ṽi| for fixed i. Thus,
computing i∗ can be done in time O(ks).

4.2 BMF
Next, we present an algorithm, which performs a single

pass over the stream and computes clusters Ũ1, . . . , Ũk, where
every vertex u ∈ U may be contained in multiple clusters
Ui1 , . . . , UiT . Recall from Section 2.2 that this corresponds
to computing a factor matrix L for the the BMF problem.
Our approach for computing the sets Ũi is similar to the

greedy covering scheme used in [29]. The main idea is that
for every u ∈ U , we greedily cover the set Γ(u) ⊆ V using
the clusters Ṽ1, . . . , Ṽk similar to the classic set cover prob-
lem. However, unlike in standard set cover, we do allow
for some amount of “overcovering”. Note that this greedily
minimizes the symmetric difference of Γ(u) and the sets Ṽi

used for covering Γ(u); thus, also their Hamming distance is
minimized.
Before we present our algorithm, let us first define our

score function for the covering process. For sets A,X, Y , we
define the score of A for covering X given that Y was already
covered as score(A | X,Y ) = |(X \ Y ) ∩A| − |A \ (X ∪ Y )|.

To better understand the score function, consider the case
that no elements of X were covered before, i.e., Y = ∅. Then
score(A | X, ∅) = |X ∩A|− |A\X| is the number of elements
in X, which get covered by A, minus the number of those
elements in A, which do not appear in X (these elements
“overcover” X). Now suppose that Y 6= ∅, i.e., some elements
of X were already covered before and these elements are
stored in the set Y . Then the score function takes this into
account by not adding score for elements in A ∩X ∩ Y that
are in A and X, but were already covered before. Also, the
score function does not subtract score for elements in A that
are not in X, but which were already overcovered before
(and, hence, are in Y ); more precisely, it does not subtract
score for the elements in (A ∩ Y ) \X.
We now describe our greedy algorithm for computing the

clusters Ũi. Initially, we set Ũi = ∅ for all i. Now we perform
a single pass over the stream U and for each u ∈ U , we do
the following. We initialize Yu = ∅ and, as before, let Γ(u)
denote the set of neighbors of u in V . Now, while there exists
an i such that score(Ṽi | Γ(u), Yu) > 0, we compute

i∗ = arg max
i=1,...,k

score(Ṽi | Γ(u), Yu). (3)

If score(Ṽi∗ | Γ(u), Yu) > 0, we assign u to Ũi∗ and we set
Yu = Yu ∪ Ṽi∗ . Otherwise, we stop covering u and proceed
with the next vertex from the stream.

Space Usage and Running Time. The space usage is O(km)
since each vertex can be assigned to as many as k clusters.
The running time of the algorithm is O(mk2s): First, note
that evaluating score(Ṽi | Γ(u), Yu) takes time O(s) because
all sets have size O(s). Second, for a single iteration of the
while-loop we need to evaluate the score function O(k) times
to obtain i∗ and there are at most k iterations. Hence, we
need to spend time O(k2s) for each of the m vertices in U .

5. IMPLEMENTATION
We implemented the sofa from Section 3.2 for recovering

the right-side clusters and the two algorithms from Section 4
for recovering the left-side clusters. Now we present certain
adjustments that we made to improve the results of the
algorithms and we discuss how to set certain parameters.
We implemented all algorithms in Python. To speed up the

computation, the subroutines for finding the closest centers
(Line 6 in Algorithm 2) and for finding the clusters with max-
imum score (Equation (3)) were implemented in CPython.
We did not use any parallelization, i.e., our implementations
are purely single-threaded. Our code is available online1.

5.1 Asymmetric Weighted Hamming Distance
During preliminary tests of sofa on real-world data, we

realized that sofa picked extremely sparse centers which often
only had a single non-zero entry. This resulted in almost all
vertices being assigned to this particular center (because the
Hamming distance of a vertex u to a center with a single
non-zero entry is the degree of u plus/minus 1 and, due to
the low degrees of the left-side vertices u, these distances are
usually small) which made the cluster recovery fail.
Hence, to promote denser centers, we introduce the follow-

ing asymmetric weighted version of the Hamming distance.
Let c ∈ C be a center maintained by sofa and let u be a
vertex which needs to be clustered. For each entry i of xc
and xu, we assign the following costs: If xc(i) = xp(i), then
the cost is 0; if xp(i) = 1 and xc(i) = 0 then the cost is 1;
if xp(i) = 0 and xc(i) = 1 then the cost is α < 1. Now the
asymmetric weighted Hamming distance of c and p is simply
the sum over the costs for all entries of xc and xp.
Note that by setting α = 1 the above results in the classic

(symmetric) Hamming distance. Furthermore, setting α < 1
promotes denser centers because the case of xc(i) = 1 and
xu(i) = 0 is penalized less than in classic Hamming distance.
For example, consider the vectors xc1 = (1, 1, 1, 1, 0), xc2 =

(0, 0, 0, 0, 1) and xu = (1, 0, 0, 0, 0). In vanilla Hamming
distance, u would be assigned to c2 since their distance is 2
and the distance of c1 and p is 3. With asymmetric weighted
Hamming distance and α = 0.1, u is assigned to c1 because
their distance is 0.3 and the distance is u and c2 is 1.1. Note
the assignment of u to c1 instead of c2 is also much more
suitable for the thresholding step in Line 25 of sofa.
In practice, our experiments showed that setting α = 0.1

was a good choice for all datasets and sofa benefitted heavily
from using asymmetric weighted Hamming distance.

5.2 Biclustering Algorithm
To solve the biclustering problem from Section 2.1, we im-

plemented sofa (Algorithm 2) together with the biclustering
algorithm from Section 4.1 for recovering the left clusters.
The only adjustment that we made was to use the k-Means
implementation of scikit-learn [35] in order to implement the
O(1)-approximate k-Medians algorithm in Line 21 of sofa.

5.3 BMF Algorithm
To solve the BMF problem from Section 2.2, we imple-

mented sofa (Algorithm 2) together with the BMF algorithm
from Section 4.2 for recovering the left clusters.
During preliminary tests we observed that on some datasets

we achieved better results when we completely skipped the

1https://cs.uef.fi/~pauli/bmf/sofa/
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k-Median algorithm in Line 21 of sofa. Instead, we compute
a cluster Ṽc for each center c ∈ C. Note that this might lead
to more than k clusters Ṽc but to at most cmax. Then we use
the BMF algorithm from Section 4.2 to compute a cluster Ũc

for each of the (potentially more than k) clusters Ṽc. While
computing the clusters Ũc, we keep track of the total score
of each cluster Ṽc; this can be done by maintaining a counter
sc for each c ∈ C and increasing sc by score(Ṽc | Γ(u), Yu)
whenever we compute i∗ in Equation (3). To ensure that our
algorithm only returns k clusters when it finishes, we sort the
clusters Ṽc by their score values sc in non-increasing order
and only keep the k clusters with the highest total scores.
This ensures that at the end we only return k clusters.
While sofa and the algorithm from Section 4.2 return

clusters Ũi and Ṽi instead of Boolean factor matrices L
and R as required for the BMF problem, we can transform
the clusters into factor matrices L and R as discussed in
Section 2.2. This gives raise to a matrix B̃ = L ◦ R which
approximates the biadjacency matrix B of the input graph G.

5.4 Setting the Rounding Threshold θ

A Heuristic for Determining θ. The supplemental ma-
terial of [32] presents a heuristic for setting θ. It essentially
works by observing that θ is a function of the parameters p
and q of the random graph model from Section 2.1. Then
it performs a grid search over different values of p and q
and picks the pair (p∗, q∗) for which the resulting round-
ing threshold θ∗ maximizes the likelihood of the counters
observed in the heavy hitters data structure from Line 23
of sofa. Due to lack of space we refer to the supplemental
material of [32] for the details of the heuristic. We will refer
to the version of sofa which uses this heuristic as sofa-auto.
Using Multiple Thresholds. Note that the only place

in sofa, where the rounding threshold θ is used, is in the
postprocessing step. Thus, given multiple rounding thresh-
olds θ1, . . . , θT , it is possible to compute a set of clusters
Ṽ

(t)
1 , . . . , Ṽ

(t)
k for each θt. Then for each t = 1, . . . , T , we can

compute corresponding left-side clusters Ũ (t)
1 , . . . , Ũ

(t)
k using

the algorithms from Section 4. Note that computing the
clusters Ũ (t)

i for all values of t = 1, . . . , T still only requires
a single pass over the stream: For each u ∈ U of the stream,
we can run the algorithms for computing Ũ (t)

1 , . . . , Ũ
(t)
k in

parallel for all t = 1, . . . , T .
In our experiments we will use the above strategy to gen-

erate clusters for multiple thresholds. Then we will eval-
uate their quality in a separate postprocessing step (see
Section 6.2). We will refer to the version of sofa which uses
multiple thresholds simply as sofa.

5.5 Static to Streaming Reduction
Since many static algorithms do not scale to datasets of

the size considered in this paper, we describe a reduction
for turning static biclustering/BMF algorithms into 2-pass
streaming algorithms. We will use this reduction to compare
sofa against static algorithms in our experiments.
The reduction works as follows. First, we sample a sub-

graph with m̃ left-side vertices and ñ right-side vertices,
where m̃� m and ñ� n are parameters of the reduction.
Then we run the static algorithm on the sampled subgraph
to determine a set of right-side clusters Ṽ1, . . . , Ṽk (details
below). In the second pass over the stream, we use the proce-
dure from Section 4 to infer the left-side clusters Ũ1, . . . , Ũk.

Now, we elaborate on the first pass over the stream. First,
we use reservoir sampling to obtain m̃ left-side vertices from
the graph uniformly at random; let U ′ = {u′1, . . . , u′m̃} denote
this set of left-side vertices. Let V ′ be the set of right-side
vertices which are adjacent to vertices in U ′. Note that
possibly |V ′| > ñ and let V ′′ be the set of ñ vertices in V ′ with
highest degree to vertices in U ′ (breaking ties arbitrarily).
Now we run the static algorithm on the subgraph with the m̃
left-side vertices U ′ and ñ right-side vertices V ′′. This gives
raise to clusters Ṽ1, . . . , Ṽk. Next, we add the (low-degree)
vertices v ∈ V ′ \ V ′′ to the clusters Ṽi by assigning each v
to the cluster Ṽi which “on average” has the most similar
left-side neighborhood compared to v. More concretely, for
each vertex v ∈ V ′ we define the vector xv ∈ {0, 1}m̃ such
that xv(i) = 1 iff (u′i, v) ∈ E. Next, for each cluster Ṽi define
the vector xi =

∑
v∈Ṽi

xv/|Ṽi| which describes the “average
left-side neighborhood” of the vertices in Ṽi. Now we assign
each v ∈ V ′ \ V ′′ to Ṽi∗ with i∗ = arg mini d(xi, xv). This
yields the final clusters Ṽ1, . . . , Ṽk.

6. EXPERIMENTS
We evaluate sofa on synthetic and on real-world datasets.

We conducted the experiments on a workstation with 4 In-
tel i7-3770 processors at 3.4 GHz and 16 GB of main memory.

6.1 Synthetic Datasets
We start by evaluating our biclustering version of sofa from

Section 5.2 on synthetic data. We ran sofa with different
numbers of centers cmax ∈ {100, 200} and with 100 and 200
counters in the heavy hitters data structures.
We compare sofa against three different algorithms. First,

a version of the algorithm from [32] which does not use
any spectral preprocessing; this algorithm is denoted static
sofa. static sofa can be viewed as a non-streaming version
of sofa, i.e., it performs the clustering offline using k-Means
(instead of streaming k-Median) and then it performs the
thresholding step (Line 25) using the exact frequency counts
(instead of the approximate frequency counts from the heavy
hitters data structures). Thus, static sofa essentially provides
an upper bound on how good the streaming version of sofa
can potentially get. Next, we turn the static biclustering
algorithms by Dhillon [14] and Zha et al. [44] into streaming
algorithms via the reduction from Section 5.5, where we set
m̃ = ñ = 5000, i.e., we sample subgraphs with 5000 vertices
on both sides. We denote these algorithms RSdhillon and
RSzhaEtAl, where RS stands for random subgraph.
Data Generation and Quality Measure. We gener-

ated the synthetic data as follows. We start with an empty
graph and then for each ground-truth cluster Ui, we insert
` vertices (see below for which values of ` we used in the
experiments). Then we inserted 8000 vertices on the right
side of the graph (i.e., |V | = n = 8000). To generate the
ground-truth clusters Vi, we simply picked r vertices uni-
formly at random from V for each i (see below for how r
was set in the experiments). Now the random edges were
inserted exactly as described in the random graph model
from Section 2.1.
When not mentioned otherwise, we have set the parameters

for the graph generation as follows: n = 8000, k = 50, ` = 200
(and, hence, |U | = m = k · ` = 10 000), p = 0.7, r = 30.
Furthermore, we set q such that in expectation every left-side
vertex obtains 20 random neighbors.
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To evaluate the output of the algorithms, let U1, . . . , Uk

be the planted ground-truth clusters and let Ũ1, . . . , Ũk be
the clusters returned by one of the algorithms. We define
the quality Q of the clustering Ũ1, . . . , Ũk as

Q =
1

k

k∑
i=1

max
j=1,...,s

J(Ui, Ũj) ∈ [0, 1],

where J(A,B) = |A ∩B|/|A ∪B| is the Jaccard coefficient.
That is, for each ground-truth cluster Ui, we find the cluster
Ũj which maximizes the Jaccard coefficient of Ui and Ũj . The
quality is then simply the sum over the Jaccard coefficients
for all ground-truth clusters Ui, normalized by k. Clearly,
higher values for Q imply a clustering closer to the planted
clustering. For example, if the clusters Ũj match exactly
the ground-truth clusters Ui then Q = 1. We evaluate the
quality of the clusters Ṽi in exactly the same way.
Experiments. Next, let us discuss the outcomes of our

experiments in different scenarios, where each time we vary
one of the parameters. For each set of parameters we gener-
ated 15 different datasets and we will be reporting averages
and standard deviations for the recovery quality of the algo-
rithms. Our results are reported in Figure 1.
Varying Amount of Signal. First, let us consider a varying

amount of signal, i.e., we set p ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. One
can see in Figures 1(a) and 1(b) that the quality of all
sofa-versions improves as p increases. Furthermore, static
sofa achieves the best quality for recovering the left and
right clusters. The second-best sofa-version is sofa with 200
counters and 200 centers and achieves between 0.05 and 0.1
less quality than static sofa; we ran significance tests and
these differences are significant. When only providing 100
centers, sofa has some problems for values p ∈ {0.5, 0.6};
this is not surprising since we planted 50 clusters and thus
only maintaining 100 centers is quite restrictive for sofa. The
right-side recovery of RSdhillon and RSzhaEtAl is relatively
constant, where RSdhillon is performing on a high level; we
explain the flatness of the curves by the spectral methods
used in the algorithms, which “denoise” the data well even for
small p. The left-side recovery of both algorithms is clearly
worse than those of the sofa-versions. Regarding the running
times (Figure 1(c)), we see that all versions of sofa are about
a factor 3 faster than static sofa; note that sofa with 100
centers is also significantly faster than the versions of sofa
with 200 centers. RSdhillon and RSzhaEtAl are about factor
1.5–2 slower than sofa.
Varying Size of Right Clusters. Next, we varied the sizes

r ∈ {15, 20, 30, 50} of the planted right clusters Vi. We can
see (Figures 1(d) and 1(e)) that most algorithms benefit from
larger r and that once again static sofa is the best method,
followed by sofa with 200 counters and 200 centers. When the
right clusters are very small (sizes 15, 20), sofa is much worse
than static sofa and RSdhillon. Indeed, for small values of r,
the vertices become much harder to cluster for sofa, because
the Hamming distances of the vertices get dominated by noise.
However, for r ≥ 30, the version of sofa with 200 counters
and 200 centers only has a 0.1 gap in quality compared
to static sofa. Furthermore, observe that the performance
of sofa with only 100 counters in the heavy hitters data
structures drops dramatically for r = 50; this is caused by
the frequency estimations of the right-side vertices getting
too inaccurate due to the too small number of counters in
the heavy hitters data structures. RSdhillon’s quality is again

relatively constant at roughly the same level as before, while
RSzhaEtAl clearly benefits from larger cluster sizes. The
running times of the algorithms (Figure 1(f)) slightly rise as
r increases since the datasets contain more non-zero entries.
Varying Size of Left Clusters. Finally, we varied the sizes

` ∈ {100, 150, 200, 300, 400, 500, 600} of the left clusters Ui,
which corresponds to adding more left-side vertices to the
bipartite graph (and, hence, also more edges). Figures 1(g)
and 1(h) show that the recovery quality is relatively unaf-
fected from this change in ` and that the ranking of the
algorithms is as before. However, note that the running
times of static sofa increase much more rapidly than those
of the streaming algorithms. For example, for ` = 100 the
running times of sofa and static sofa differ by a factor of less
than 2 but for ` = 600 this is already approximately 7.
Conclusion. We conclude that sofa can achieve recovery

qualities close to the static baseline even when its number
of centers is only 4k and its number of counters is within
factor 4 of the size of the right-side clusters. Furthermore,
sofa’s run-time scales much better than the static baseline’s.
While RSdhillon delivered good quality for right-side recovery,
its left-side recovery was rather poor. RSzhaEtAl performs
badly overall; we blame this on the data being too sparse,
which does not allow the algorithm to find good cuts.

6.2 Real-World Datasets
For the real-world experiments, it is more realistic to allow

the left-side clusters Ui to overlap. Thus, for the real-world
experiments, we use the version of sofa which solves the BMF
problem from Section 5.3.
Methods and Measures. For these experiments, we use

sofa and sofa-auto. For sofa, we set the threshold θ using
a line search over values θ ∈ {0.3, 0.4, 0.5, 0.6, 0.7}. The
remaining parameters were set as follows: cmax = 20k, where
k is the desired number of clusters; s = P99, the 99th quantile
of the degrees on the left-side vertices (see Table 1 for the
values for each dataset); and we set the number of counters
in the heavy hitters data structures to max{3s, 0.05n}.
As for the synthetic datasets, we compare sofa against

RSdhillon and RSzhaEtAl. We used m̃ = ñ = 15000 in the
reduction. With these parameters, RSdhillon and RSzhaEtAl
have running times comparable to sofa and already for m̃ =
ñ = 20000, our workstation would often run out of memory.
Further, we compare against the static (i.e., non-streaming)
algorithm basso2, which is an efficient implementation of the
asso algorithm [29]. basso has one hyperparameter, τ . We
try values τ ∈ {0.2, 0.4, 0.6, 0.8} and report the results with
the best value. For run-time and memory usage analysis,
we report average values over different thresholds. The time
complexity of basso is O(k|U |2|V |) and thus we flipped U
and V in the input for basso when |U | > |V |.
For all datasets, we computed clusterings consisting of

k = 50, 100, 200 clusters. Since for the real-world datasets
no information about the ground-truth clusters is available,
we use relative Hamming gain and recall as quality measures
to evaluate the obtained clusterings. Formally, let B be
the biadjacency matrix of the bipartite graph and let B̃
an approximation thereof. The relative Hamming gain is
defined as 1 − |{(i, j) : Bij 6= B̃ij}|/|{(i, j) : Bij = 1}|,
and it indicates how much better B̃ approximates B than
a trivial (all-zeros) matrix would. The recall is defined as

2basso v0.5 from https://cs.uef.fi/~pauli/bmf/asso/
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(a) Vary p: Left Cluster Quality (b) Vary p: Right Cluster Quality (c) Vary p: Running times (sec)

(d) Vary |Vi|: Left Cluster Quality (e) Vary |Vi|: Right Cluster Quality (f) Vary |Vi|: Running times (sec)

(g) Vary |Ui|: Left Cluster Quality (h) Vary |Ui|: Right Cluster Quality (i) Vary |Ui|: Running times (sec)

Figure 1: Results on synthetic data. Figures 1(a)–1(c) have varying p, Figures 1(d)–1(f) have varying sizes
of the right clusters Vi, Figures 1(g)–1(i) have varying sizes of the left clusters Ui. Markers are mean values
over 15 different datasets; error bars are one standard deviation over the 15 datasets.

|{(i, j) : Bij = 1 ∧ B̃ij = 1}|/|{(i, j) : Bij = 1}|, and it
indicates the fraction of edges (1s) in B which are “covered”
correctly by the matrix B̃ returned by one of the algorithm.
Explanation of Datasets. In our experiments, we used

six real-world datasets. Their basic properties are described
in Table 1. Notice that all datasets are very sparse, and
their left-side degrees (even in the 99th percentile) are small
compared to the number of vertices on the right side of the
graph. This empirically validates two of the three properties
we discussed in the introduction.
Let us briefly discuss each of the datasets. 20News3 con-

tains newsgroup postings on the left side and words on
the right side; edges indicate a word appearing in a post-
ing. The datasets Reuters and Flickr were taken from the
KONECT4 [23] website. Reuters has articles from the news
organization Reuters on the left side and words on the right.
Flickr encodes the group memberships (right) of Flickr users
(left). Wiki5 is from the SuiteSparse Matrix Collection [13]

3http://qwone.com/~jason/20Newsgroups/
4http://konect.uni-koblenz.de
5https://www.cise.ufl.edu/research/sparse/matrices/
Gleich/wikipedia-20051105

and consists of Wikipedia pages on both sides of the graph;
an edge (u, v) indicates that page u links to page v (note
that this relationship is asymmetric). Book6 [47] is a rating
matrix consisting of users on the left side and books on the
right side; an edge indicates that a user rated book. Movie7

is a rating matrix between users and movies [18].
Experiments. Results for relative Hamming gain and

recall are presented in Table 2. Note that basso did not finish
on the Wiki dataset, because it ran out of memory.
The results for relative Hamming gain show that, when it is

able to finish, basso is always the best method. This is to be
expected as it can make unlimited passes over the data. On
all datasets except Book and for all values of k, the results of
sofa and basso are within factor at most 2.2. For k = 200, the
results of sofa are at most 50% worse than those of basso on
20News, Reuters and Movie. With Book, on the other hand,
sofa is significantly worse (up to factor 5.8) but still much
better than RSdhillon and RSzhaEtAl. We believe this results
from Book being too sparse; indeed, the 50% percentile of
the degrees of the left vertices in book is 1 and thus sofa’s

6http://www2.informatik.uni-freiburg.de/~cziegler/BX/
7https://grouplens.org/datasets/movielens/20m/
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Table 1: Real-world dataset properties. Datasets are considered as bipartite graphs G = (U ∪V,E) and density
is |E|/(|U | · |V |). Average degree deg and the 99th percentile degree P99 are calculated from U and rounded to
the nearest integer.

Dataset |U | |V | |E| density deg P99

20News 18 773 61 056 1 766 780 0.0015 94 548
Reuters 38 677 19 757 978 446 0.0013 25 498
Book 105 282 340 550 1 149 779 < 0.0001 11 174
Movie 138 493 26 744 20 000 263 0.0054 144 1113
Flickr 395 979 103 631 8 545 307 0.0002 22 268
Wiki 1 562 433 1 170 854 19 753 078 < 0.0001 17 177

Table 2: Relative Hamming gain and recall in different real-world datasets
k Algorithm Relative Hamming gain Recall

20News Reuters Book Movie Flickr Wiki 20News Reuters Book Movie Flickr Wiki

50 sofa-auto 0.0298 0.0450 0.0198 0.0805 0.0380 0.0617 0.0446 0.0649 0.0201 0.1262 0.0480 0.0657
sofa 0.0424 0.0454 0.0212 0.1188 0.0453 0.0695 0.0483 0.0652 0.0214 0.1779 0.0474 0.0700
basso 0.0545 0.1005 0.1226 0.1394 0.0719 − 0.0683 0.1677 0.1226 0.2855 0.0760 −
RSdhillon 0.0042 0.0273 0.0008 0.1056 0.0040 0.0001 0.0069 0.0316 0.0009 0.1999 0.0088 0.0001
RSzhaEtAl 0.0001 0.0274 0.0008 0.0297 0.0000 0.0000 0.0004 0.0447 0.0014 0.0614 0.0001 0.0000

100 sofa-auto 0.0411 0.0792 0.0298 0.1028 0.0486 0.0730 0.0570 0.0991 0.0307 0.1597 0.0636 0.0777
sofa 0.0574 0.0777 0.0333 0.1367 0.0668 0.0824 0.0649 0.0987 0.0341 0.2030 0.0721 0.0840
basso 0.0793 0.1097 0.1783 0.1739 0.1068 − 0.0959 0.1907 0.1783 0.3143 0.1124 −
RSdhillon 0.0059 0.0307 0.0028 0.1378 0.0137 0.0262 0.0103 0.0430 0.0060 0.2400 0.0246 0.0302
RSzhaEtAl 0.0006 0.0342 0.0030 0.0696 0.0000 0.0000 0.0017 0.0500 0.0040 0.1182 0.0002 0.0000

200 sofa-auto 0.0624 0.1253 0.0427 0.1247 0.0663 0.0861 0.0788 0.1441 0.0435 0.1926 0.0837 0.0924
sofa 0.0930 0.1254 0.0472 0.1598 0.0817 0.1061 0.0991 0.1442 0.0479 0.2353 0.0906 0.1087
basso 0.1171 0.1334 0.2531 0.2376 0.1556 − 0.1321 0.2100 0.2532 0.3521 0.1603 −
RSdhillon 0.0092 0.0402 0.0024 0.1771 0.0203 0.0270 0.0159 0.0619 0.0030 0.2812 0.0317 0.0299
RSzhaEtAl 0.0014 0.0291 0.0017 0.1104 0.0007 0.0001 0.0022 0.0454 0.0027 0.1644 0.0021 0.0002

clustering seems to fails. Overall, the results of sofa and sofa-
auto improve significantly as k increases, showing that it can
be used for small and large values of k alike. RSdhillon and
RSzhaEtAl perform well when |V | is small (e.g., Movie and
Reuters), but as soon as |V | increases, their results decays
dramatically (e.g., Book, Flickr and Wiki); this appears to be
a limitation of the random sampling approach.
The results concerning the recall look very similar to rela-

tive Hamming gain: For all datasets except Book, sofa has
approximately 50% of the recall of basso, and in Book it
is again significantly worse. For Wiki, sofa has results that
are comparable to other datasets, thus, the size of Wiki
datasets does not seem to affect the quality. For RSdhillon
and RSzhaEtAl we observe a similar behavior as above.
Using the heuristic in sofa-auto to set the threshold typi-

cally leads to slightly worse results than setting it using line
search. Given that the heuristic is usually 3–4 times as fast,
there seems to be a tradeoff which version one should pick.
The running times and memory usages of the algorithms

are presented in Table 3. For sofa and sofa-auto, presented is
the total running time (with full line search in sofa); for basso,
the presented time is the average time for a single value of
the threshold parameter τ . Still, basso is consistently the
slowest method, often by orders of magnitude. The run-times
of RSdhillon and RSzhaEtAl scale well in k, since the size
of the sampled subgraph and, hence, the time spent on the
static computation, is largely unaffected by the choice of k.
Regarding the memory usage, basso again needs signif-

icantly more resources. sofa and sofa-auto can compute
clusterings of graphs with millions of vertices and edges,
while never using more than 500 MB of RAM. RSdhillon and

RSzhaEtAl have relatively large memory footprints (using
gigabytes of memory) due to the spectral methods they use.
Overall, the real-world experiments show that sofa can

achieve results that are not too far from a static baseline
method, while using only a fraction of resources.

7. RELATED WORK
Random graph models for bipartite graphs as presented

in Section 2 are usually studied under the name bipartite
stochastic block models (SBMs) [1]. This problem has re-
ceived attention in the past [25,42] and recently it was shown
that in bipartite graphs even very small clusters can be recov-
ered [32,37,46]. Furthermore, if all clusters have size Ω(n),
algorithms achieving the information-theoretically optimal
recovery thresholds were presented [2, 3, 45]. However, these
algorithms do not work in the streaming setting and (on the
hardware we used) none of them would be able to process
the real-world datasets we considered in Section 6.
Yun et al. [43] studied SBMs in a streaming setting and

provided algorithms using O(n2/3) bits of space when the
clustering does not have to be stored explicitly. However,
their algorithm does not apply to bipartite graphs and it
assumes that all clusters have size Ω(n) which is unrealistic
in bipartite graphs as we discussed in the introduction.
Alistarh et al. [5] consider a biclustering problem in random

graphs which is similar to the one studied in this paper. They
provide guarantees for recovering the left-side clusters of the
graph, but they do not provide recovery guarantees for the
right-side clusters. Furthermore, their data generating model
is more simplistic than the one used in this paper and their
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Table 3: Algorithm run-time and memory usage
k Algorithm Run-time in CPU minutes Memory in GB

20News Reuters Book Movie Flickr Wiki 20News Reuters Book Movie Flickr Wiki

50 sofa-auto 2.1 3.2 1.7 45.9 9.7 14.1 0.15 0.12 0.10 0.24 0.21 0.20
sofa 6.2 10.3 5.5 120.0 24.0 42.9 0.16 0.13 0.10 0.24 0.20 0.22
basso 22.7 13.2 2951.8 598.1 4667.8 − 0.40 0.66 10.81 1.80 11.48 −
RSdhillon 28.1 23.1 16.4 27.8 21.0 49.7 8.95 8.70 6.12 8.99 7.16 5.61
RSzhaEtAl 36.0 75.2 75.4 35.9 98.5 76.3 10.72 10.43 7.26 10.73 8.63 6.57

100 sofa-auto 5.2 8.3 4.7 102.2 19.9 25.8 0.19 0.14 0.11 0.33 0.27 0.30
sofa 15.6 25.4 16.5 311.6 52.7 70.4 0.20 0.17 0.13 0.33 0.26 0.30
basso 24.6 13.6 3003.8 932.3 5066.0 − 0.40 0.67 10.95 1.80 11.79 −
RSdhillon 26.9 23.7 18.1 31.2 23.0 55.5 8.96 8.70 6.09 8.99 7.20 5.54
RSzhaEtAl 41.6 81.2 80.7 39.7 172.3 63.7 10.71 10.40 7.26 10.73 8.58 6.63

200 sofa-auto 12.2 34.8 14.2 229.1 63.7 57.1 0.25 0.18 0.13 0.49 0.36 0.43
sofa 43.5 142.8 60.4 959.0 161.4 157.5 0.26 0.22 0.17 0.50 0.36 0.42
basso 26.7 14.3 3097.4 1441.2 5574.1 − 0.40 0.67 10.99 1.80 12.22 −
RSdhillon 25.3 23.1 20.8 42.2 25.8 68.3 8.96 8.68 6.00 8.98 7.18 5.57
RSzhaEtAl 39.4 90.0 68.6 51.5 350.8 100.9 10.72 10.46 7.30 10.73 8.54 6.63

algorithm can require up to O(kn) space in practice.
The BMF problem was introduced in the data mining

community by Miettinen et al. [29] and has been popular
in this community ever since [19,21, 26,28,30, 34]. Recently,
the problem was also studied in the machine learning com-
munity [22,24,36,38,39] and the theory community [7,16].
The only streaming algorithm for BMF is by Bhattacharya
et al. [8], who provided a 4-pass streaming algorithm which
computes a (1 + ε)-approximate solution for BMF. However,
their algorithm is of rather theoretical nature since it requires
space O(n · (lgm)2k · 2Õ(22k/ε2)) and since it uses exhaustive
enumeration steps which are slow in practice. Chandran et
al. [11] showed that under a standard assumption in complex-
ity theory, any approximation algorithm for BMF requires
time 22Ω(k)

or (mn)ω(1); this essentially rules out practical
algorithms for BMF with approximation guarantees.
We are not aware of any algorithm which (like sofa) per-

forms a single pass over the left-side vertices of a bipartite
graph and then returns a clustering of the right-side vertices.

8. CONCLUSION
We presented sofa, the first algorithm which after single

pass over the left-side vertices of a bipartite graph returns the
right-side clusters using sublinear memory. We showed that
after a second pass over the stream, sofa solves biclustering
and BMF problems. Our experiments showed that sofa is
orders of magnitude faster and more memory-efficient than
a static baseline algorithm while still providing high quality
results. Furthermore, we proved that under a standard
random graph model, a version of sofa can find the planted
clusters under a natural separation condition. In future work
it will be interesting to consider streaming settings in which
the edges arrive one by one. Since the main building blocks
of sofa (coresets and mergeable heavy hitters data structures)
extend to distributed settings, it will be interesting to make
sofa distributed.
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APPENDIX
A. THEORETICAL GUARANTEES
Proof of Theorem 1. For all proofs we assume that

the conditions from Theorem 1 hold. The concrete values
of the constants Kj are set inside the proofs. We start by
characterising the distances of vertices from the same cluster
Ui and vertices from different clusters Ui and Ui′ .

Lemma 3. Let u, u′ ∈ Ui and let u′′ ∈ Ui′ for i′ 6= i.
Then with probability at least 1−m−3,

d(xu,xu′) < 1.01 [2|Vi|p(1− p) + 2(|V \ Vi|)q(1− q)] ,
d(xu,xu′′) > 0.99[|Vi4Vi′ |(p(1− q) + q(1− p))

+ 2|Vi ∩ Vi′ |p(1− p) + 2|V \ (Vi ∪ Vi′)|q(1− q)].

Proof. First, recall that the neighbors of u, u′ and u′′ are
random variables such that if u ∈ Ui then Pr ((u, vj) ∈ E) =
p, if vj ∈ Vi, and Pr ((u, vj) ∈ E) = q, if vj ∈ V \ Vi. Since
u’s neighbors are random this implies that the vector xu
is a random vector with Pr (xu(j) = 1) = Pr ((u, vj) ∈ E).
Next, observe that we can rewrite the event {xu(j) 6= xu′(j)}
as {xu(j) = 1 and xu′(j) = 0}∪ {xu(j) = 0 and xu′(j) = 1}.
Together, this implies for vertices from the same cluster,

Pr (xu(j) 6= xu′(j)) =

{
2p(1− p), vj ∈ Vi,

2q(1− q), vj ∈ V \ Vi.

Similarly, we obtain for vertices from different clusters,

Pr (xu(j) 6= xu′′(j)) =


p(1− q) + q(1− p), vj ∈ Vi4Vi′ ,

2p(1− p), vj ∈ Vi ∩ Vi′ ,

2q(1− q), vj 6∈ Vi ∪ Vi′ .
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Next, using linearity of expectation we get that

E [d(xu, xu′)] =

n∑
j=1

Pr (xu(j) 6= xu′(j))

=2|Vi|p(1− p) + 2(|V \ Vi|)q(1− q),
E [d(xu, xu′′)] =|Vi4Vi′ |(p(1− q) + q(1− p))

+ 2|Vi ∩ Vi′ |p(1− p)
+ 2|V \ (Vi ∪ Vi′)|q(1− q).

Since |Vi| ≥ K3 lgn and |Vi4Vi′ | ≥ K4s ≥ K3K4 lgn,

E [d(xu, xu′)] ≥ 2p(1− p)|Vi| ≥ 2K3p(1− p) lgn,

E [d(xu, xu′′)] ≥ |Vi4Vi′ |(p(1− q) + q(1− p))
≥ K4p(1− q)s ≥ K3K4p(1− q) lgn.

A Chernoff bound and setting K3 large enough implies the
lemma (we will set K4 later independently of K3).

Next, we show that when setting α = 0.49K4s in Algo-
rithm 1, the algorithm clusters all left-side vertices correctly.

Lemma 4. The following events hold w.h.p.: (1) When
Algorithm 1 finishes, |C| = k and for all i, C contains exactly
one center c with c ∈ Ui. (2) For all i, there exists a center
ci ∈ C s.t. all points u ∈ Ui were assigned to ci.

Proof. First, we condition on the event from Lemma 3
occurring for each pair of vertices from U for the rest of
the proof. A union bound implies that this happens with
probability at least 1−m−1.
Second, consider u, u′ ∈ Ui. Then

d(xu, xu′) < 1.01 [2sp(1− p) + 2nq(1− q)]

≤ 1.01

[
s/2 + 2n

K1s

n

]
≤ 1.01(1/2 + 2K1)s,

where we used p(1− p) ≤ 1/4 and q ≤ K1ps/n ≤ K1s/n.
Third, for u ∈ Ui and u′′ ∈ Ui′ for i 6= i′,

d(xu, xu′′) > 0.99[|Vi4Vi′ |(p(1− q) + q(1− p))
+ 2|Vi ∩ Vi′ |p(1− p) + 2|V \ (Vi ∪ Vi′)|q(1− q)]
≥ 0.99[K4sp(1− q) + 0 + 0] ≥ 0.98K4s/2,

where we used that |Vi4Vi′ | ≥ K4s and further p(1− q) ≥
p−K1p

2s/n ≥ p−K1p
2 ≥ 0.98

0.99
· 1
2
, since p ≥ 1/2 and since

we can pick K1 small enough to satisfy the last inequality.
Pick K1,K4 with K4 ≥ 2.02

0.98
(1/2+2K1). Then we get that

d(xu, xu′′) > 0.98K4s/2 ≥ 1.01(1/2 + 2K1)s > d(xu, xu′).
Next, we show that Algorithm 1 satisfies the properties

of the lemma with α = 0.98K4s/2. To prove (1), suppose a
vertex u ∈ Ui is processed and for all c ∈ C, d(xu, xc) > α.
Then C cannot contain any point u′ ∈ Ui (if C contained
such a point, then the previous computation and the event
we conditioned on imply d(xu, xu′) ≤ α). Thus, opening u as
a new center is the correct choice and C contains exactly one
center from Ui. To prove (2), suppose that a vertex u ∈ Ui

is processed and d(xu, xc) ≤ α for some c ∈ C. The previous
computation and the event we conditioned on imply that
c ∈ Ui. Thus, all u ∈ Ui are assigned to the same c ∈ C.

Lemma 5. With probability at least 1− n−2, each vertex
u ∈ U has degree O(s).

Proof. Let u ∈ Ui and let d(u) be the degree of u. Then
E [d(u)] = p|Vi|+ q|V \ Vi| ≤ ps+ (K1s/n)n = O(s). Since
E [d(u)] ≥ p|Vi| ≥ K3p lgn, we apply a Chernoff bound to ob-
tain that d(u) ∈ [0.99E [d(u)] , 1.01E [d(u)]] with probability
at least 1− n−2 for large enough K3.

Now we show that Algorithm 1 indeed returns the correct
right-side clusters if we set θ = 0.75p.

Lemma 6. Algorithm 1 returns clusters Ṽ1, . . . , Ṽk such
that {Ṽ1, . . . , Ṽk} = {V1, . . . , Vk} w.h.p.

Proof. Condition on the events from Lemma 4. Let
i ∈ [k] and suppose c ∈ C satisfies c ∈ Ui. We show Ṽc = Vi.
Consider the heavy hitters data structure MG(c). Recall

that when a vertex u ∈ U is assigned to c, we added all
j ∈ [n] to MG(c) with (u, vj) ∈ E. Hence, the stream X
of numbers that were processed by MG(c) satisfies that the
frequency fj of j is exactly fj = |{u ∈ Ui : (u, vj) ∈ E}|.
From the random graph model we get that E [fj ] = p|Ui|

if vj ∈ Vi and E [fj ] = q|Ui| if vj 6∈ Vi. Using a Chernoff
bound and |Ui| ≥ K2 lgn, we get that when K2 is large
enough, fj > 0.99p|Ui| if vj ∈ Vi and fj < 1.01q|Ui| ≤
0.5p|Ui| if vj 6∈ Vi with probability at least 1− n−2. Using
a union bound, we get that the previous event holds for all
j ∈ [n] simultaneously with probability at least 1− n−1. We
condition on this event for the rest of the proof.
The total number of points inserted into MG(c) is |X| =∑
u∈Ui

d(u) and using Lemma 5 and a union bound, |X| =
O(|Ui|s) with high probability. Thus, if we run MG(c) with
ε = Cp/(2s) for some suitable constant C, we get that MG(c)

uses space O(1/ε) = O(s) and provides an approximation f̂j
of each fj within additive error ε|X| ≤ 0.1p|Ui|.
Thus, if vj ∈ Vi then f̂j ≥ fj − ε|X| ≥ 0.89p|Ui| and if

vj 6∈ Vi then f̂j ≤ fj + ε|X| ≤ 0.6p|Ui|. Setting θ = 0.75p

we get that the algorithm satisfies Ṽc = Vi.

Lemma 7. W.h.p. the space usage of Algorithm 1 is O(ks)
and its running time is O(mks).

Proof. Conditioning on Lemma 4, the algorithm only
stores k centers. Storing a single center takes space O(s) to
store its neighbors by Lemma 5. Furthermore, for a single
center we need to store its heavy hitters data structure. As
we argued in the proof of Lemma 6 it suffices to use the heavy
hitters data structure with O(s) counters for each center.
Thus, the total space usage is O(ks).
Observe that for each u ∈ U the running time is domi-

nated by computing d = minc∈C d(xu, xc). As there are only
k centers c ∈ C and since all u ∈ U and c ∈ C have only O(s)
neighbors, we can compute d in time O(ks). Merging the
heavy hitters data structures can be done in constant amor-
tized time. Thus, the total running time for the pass over
the stream is O(mks) since |U | = m. In the postprocessing
step, we only spend time O(ks) because each of the heavy
hitters data structures only contains O(s) counters.

Proof of Proposition 2. Any algorithm to solve the
biclustering problem must be able to output the planted
clusters V1, . . . , Vk. Suppose that each Vi consists of s vertices
and that all Vi are mutually disjoint. Then there are

(
n
ks

)
possibilities to pick the Vi. Thus, any algorithm that is
able to return the Vi exactly must use at least lg

(
n
ks

)
=

Ω(lgnks) = Ω(ks lgn) bits. Since the standard word RAM
model of computation is considering words of size Θ(lgn),
this yields a lower bound of Ω(ks) space.
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