
Incrementalization of Graph Partitioning Algorithms

Wenfei Fan1,2,3 Muyang Liu1 Chao Tian4 Ruiqi Xu1 Jingren Zhou4

1University of Edinburgh 2SICS, Shenzhen University 3BDBC, Beihang University 4Alibaba Group

{wenfei@inf., muyang.liu@, ruiqi.xu@}ed.ac.uk, {tianchao.tc, jingren.zhou}@alibaba-inc.com

ABSTRACT
This paper studies incremental graph partitioning. Given
a (vertex-cut or edge-cut) partition C(G) of a graph G and
updates ∆G to G, it is to compute changes ∆O to C(G),
yielding a partition of the updated graph such that (a) the
new partition is load-balanced, (b) its cut size is minimum,
and (c) the changes ∆O are also minimum. We show that
this tri-criteria optimization problem is NP-complete, even
when ∆G has a constant size. Worse yet, it is unbounded,
i.e., there exists no algorithm that computes such ∆O with
a cost that is determined only by the changes ∆G and ∆O.

We approach this by proposing to incrementalize
widely-used graph partitioners A into heuristically-bounded
incremental algorithms A∆. Given graph G, updates ∆G to
G and a partition A(G) of G by A, A∆ computes changes
∆O to A(G) such that (1) applying ∆O to A(G) produces a
new partition of the updated graph although it may not be
exactly the one derived by A, (2) it retains the same bounds
on balance and cut sizes as A, and (3) ∆O is decided by ∆G
alone. We show that we can deduce A∆ from both vertex-cut
and edge-cut partitioners A, retaining their bounds. Using
real-life and synthetic data, we verify the efficiency and
partition quality of our incremental partitioners.

PVLDB Reference Format:
Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou.
Incrementalization of Graph Partitioning Algorithms. PVLDB,
13(8): 1261-1274, 2020.
DOI: https://doi.org/10.14778/3389133.3389142

1. INTRODUCTION
Graph partitioning is to cut a graph into smaller parts

of roughly “equal” size, i.e., balanced, while minimizing its
cut, i.e., the number of edges crossing (or vertices replicated
in) different parts. It is a fundamental problem in graph
theory, and is crucial to parallel graph systems for supporting
computations on large-scale graphs [18, 22, 23, 33, 45].

A challenge is that real-life graphs are not only large
but also frequently updated. An evenly partitioned graph
often becomes skewed due to updates [37]. Worse yet, graph

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 8
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3389133.3389142

partitioning is expensive. It is NP-complete [10, 20, 59] and is
hard to approximate [8]. It is often too costly to re-partition
the graphs starting from scratch in response to updates.

These highlight the need for incremental partitioning. We
compute a partition C(G) of graph G once with a batch
algorithm C (a.k.a. partitioner). Given updates ∆G to
G, we compute minimum changes ∆O to C(G) such that
C(G) ⊕∆O = C(G ⊕∆G) is a partition of graph G ⊕∆G
of high quality, i.e., it is balanced and has minimum cut size.
Here ⊕ applies changes ∆O to partition C(G); similarly for
G⊕∆G. The need is evident because (1) changes ∆G are
typically small, e.g., less than 4% increase of articles for
English Wikipedia in the year of 2019 [6]; and (2) when ∆G
is small, ∆O is often small as well, and is much less costly
to compute than to re-partition G.

Challenges. No matter how important, incremental parti-
tioning is hard, for its intractability and unboundedness.

(1) Intractability. Incremental partitioning is a tri-criteria
optimization problem, to balance the load, minimize cut
sizes and minimize changes ∆O. Here |∆O| includes the
migration cost to move data among processors and balance
their load. We will show that the problem is NP-complete
even when the updates ∆G have a constant size, and when
we do not require either load balancing or minimum |∆O|.
(2) Unboundedness. A criterion for measuring the effective-

ness of incremental algorithms is boundedness [53, 44, 16].
An incremental partitioner is bounded if it computes ∆O such
that C(G)⊕∆O = C(G⊕∆G), the new partition C(G)⊕∆O
is balanced and has minimum cut size, and moreover, its
cost can be expressed as a polynomial function of the size
|CHANGED| of changes, where |CHANGED| = |∆G|+ |∆O|.
It ensures that the incremental cost is decided by small
|CHANGED| when ∆G is small, no matter how big G grows.

We show that boundedness is beyond reach for incremental
partitioning: no bounded incremental algorithms exist, for
either vertex-cut [31] or edge-cut [8] partitioning.

The intractability and unboundedness tell us that it is hard
to balance the partition quality and the partitioning cost.
While several incremental (a.k.a. dynamic) graph partitioners
are developed, e.g., [57, 48, 46, 38], none of these offers
guarantees on partition quality and efficiency.

Incrementalizing partitioners. To balance the cost and
partition quality, we propose to incrementalize existing parti-
tioners. A number of batch partitioners are already in place,
e.g., [8, 26, 40, 51, 24], which have been verified effective
after years of practice and are being widely used. Hence, we

1261

pick a successful partitioner A and deduce an incremental
algorithm A∆ from A. Given a graph G, updates ∆G to G
and a partition A(G) of G computed by A (along with aux-
iliary structures), A∆ computes changes ∆O to A(G) such
that A(G)⊕∆O is a partition of graph G⊕∆G, although
it may not be exactly A(G⊕∆G). Moreover, A∆ guarantees
both efficiency and partition quality, as follows.

(1) Efficiency. We require that A∆ is heuristically bounded.

That is, (1) the cost of A∆ is decided only by |CHANGED|,
and (2) the size of changes ∆O can be expressed by a poly-
nomial of |∆G|. This notion is less restrictive than the
boundedness of [44, 16] in that A∆ is not required to return
exactly the partition A(G⊕∆G), and that the cut size of
its output and the size |∆O| are not necessarily minimum.
After all, existing partitioners are mostly heuristic anyway.

Intuitively, |CHANGED| indicates the inherent updating
cost of incremental partitioning. When |∆G| is small, |∆O|
is also small since it is determined by |∆G| alone. Hence A∆

is often more efficient than A when given small ∆G.

(2) Quality. This said, A∆ also warrants to achieve the same
bound on the partition quality as A. Hence, its balance and
cut are comparable to those of A(G⊕∆G) recomputed by
partitioner A. If the users of A are happy with its partition
quality, the quality of A∆ is also acceptable to them. This
is more practical than to develop an incremental partitioner
starting from scratch, since for a newly developed one, its
partition quality needs to be verified by years of practice.

Contributions & organization. This paper studies incre-
mentalization of graph partitioners, from theory to practice.

(1) Fundamental results (Section 3). After formalizing the

incremental partitioning problem (Section 2), we show that
the problem is NP-complete, and the intractability is robust
even for rather restricted special cases. Moreover, we show
that this problem is unbounded for both vertex-cut and
edge-cut; the unboundedness proofs are nontrivial.

(2) Incrementalization (Section 4). We propose to incremen-

talize (batch) partitioners A that have been battle-hardened
in practice. This yields incremental partitioners A∆ that
retain the same bounds on partition quality as A and are
heuristically bounded. We model a class of widely-used par-
titioners, referred to as iterative partitioners, and provide
guidelines for incrementalizing such partitioners.

As proof of concept, we incrementalize popular iterative
partitioners, for both vertex-cut and edge-cut.

(3) Incrementalizing vertex-cut (Section 5). Following the
guidelines, we incrementalize the distributed neighbor ex-
pansion method of [24], denoted as DNE, which is a parallel
version of NE [59] and an iterative partitioner for vertex-cut.
DNE divides edges into disjoint sets and reduces the number
of replicated vertices. We incrementalize DNE into IncDNE,
and show that IncDNE is heuristically bounded and moreover,
retains the same partition quality bound as DNE.

(4) Incrementalizing edge-cut (Section 6). Under edge-cut,
we pick the distributed k-way greedy graph growing par-
titioner KGGGP [41]. It partitions the vertices into k sets
directly such that the number of crossing edges is small.
We show that it can also be incrementalized, denoted by
IncKGGGP, guaranteeing the heuristic boundedness and the
same partition quality bound as its batch counterpart.

Along the same lines, we have also incrementalized stream-
ing partitioners FENNEL [54] under edge-cut and HDRF [39]
under vertex-cut, both heuristically bounded.

(5) Experimental evaluation (Section 7). Using real-life and
synthetic graphs, we empirically verify the effectiveness of
the incrementalization method. We find the following. (a)
IncKGGGP and IncDNE are 5.4 and 7.9 times faster than
their parallel batch counterparts, respectively, when |∆G|
accounts for 10% of |G|, and are 1.7 and 3.9 times faster
even when |∆G| = 50%|G|. (b) IncKGGGP and IncDNE re-
tain comparable partition quality of their batch counterparts:
in fact, 20% and 10% better on average, respectively. (c)
Our (parallel) incremental partitioners scale well with |G|.
To partition a graph with 5.8 billion edges, IncKGGGP and
IncDNE take 102 and 51 seconds with 128 processors, respec-
tively, in response to 10% updates, while existing parallel
incremental partitioners take substantially longer time.

Related work. The related work is categorized as follows.

Graph partitioning. Various algorithms have been developed
for edge-cut and vertex-cut partitioning (see [12, 9] for sur-
veys), from local methods to global algorithms and multilevel
approaches. Local methods take as input an initial partition
of graph G and reduce its cut size iteratively via local search
strategies, e.g., KL [29], bubble framework [15], diffusion
based method [36], as well as PULP [50] and MLP [55]
based on label propagation [42]. In contrast, global methods
start with the entire G and compute a partition directly,
e.g.,exact algorithms [8, 32], spectral partitioning [11, 40],
graph growing [21], and vertex-cut partitioners NE [59] and
SBV-Cut [31]. Multilevel partitioner METIS [26, 27] splits
the process into three phases, to coarsen input graph G,
partition the small coarsened graph and map the partition
back to G. Hash partitioners offer high efficiency with low
memory cost, e.g., 2D-hash [23] and degree based hash [56].

To partition large-scale graphs, several parallel partitioners
are developed. ParMETIS [28] is a distributed version of
METIS; XtraPuLP [51] extends PULP with distributed-
memory parallelism, and Sheep [34] transforms graphs into
elimination trees for partitioning via MapReduce operations.
For vertex-cut, [43] proposes a parallel local algorithm.

There has also been work on dynamic partitioning.
Implemented in ParMETIS, [46] repartitions graphs by
diffusion. Using logs, LogGP [57] refines the results via
hyper-graph repartitioning. Leopard [25] integrates dynamic
partitioning and replication for fault tolerance. Hermes [38]
gives a lightweight repartitioner on top of the Neo4j platform.
Spinner [35], CatchW [48] and Mizan [30] adapt partitions
in the cloud. Another line of work is streaming partitioning,
in which elements of input graphs arrive in a sequence and
are processed on the fly, e.g., HDRF [39] and FENNEL [54].

This work differs from the prior methods in the following.

(1) Instead of developing yet another dynamic partitioner
starting from scratch, we propose to incrementalize batch
partitioners. We study incremental graph partitioning from
theory and methodology (Sections 3 and 4) to practical
incrementalization (Sections 5 and 6). None of these has been
studied in the previous work, to the best of our knowledge.

(2) Our incremental algorithms retain the same bounds on
partition quality as their batch counterparts and are heuris-
tically bounded, while most of the existing dynamic parti-
tioners do not offer any provable performance guarantee.

1262

(3) As opposed to streaming partitioners, the ordering of
the updates has no impact on our approach. Furthermore,
our incremental partitioners are capable of handling generic
updates, i.e., both edge insertions and deletions, while most
streaming methods are developed for insertions only.

Incrementalization. There has been work on incrementaliz-
ing batch algorithms, e.g., [7, 49, 58, 13]. In particular, [58,
13] incrementalize vertex-centric programs by memorizing
messages and reusing the computation of vertex functions;
they re-execute the entire program as long as a parameter is
changed. In contrast, we incrementalize (parallel) graph par-
titioners beyond the vertex-centric model and aim to minimize
recomputation when fragmenting graphs; the techniques of
[58, 13] are not applicable in this setting. Moreover, our
methods have provable performance guarantees on efficiency,
which are not provided by [58, 13].

Related to this work is also [16], which proposes relative
boundedness for assessing the quality of exact incremental
algorithms. In contrast, we propose heuristic boundedness
to cope with the heuristic nature of graph partitioners; we
also offer guidelines for incrementalizing partitioners.

2. GRAPH PARTITIONING PROBLEMS
We first state (incremental) graph partitioning problems.

2.1 Graph Partitioning
We consider undirected graphs G = (V,E), where (1) V is

a finite set of vertices (nodes); and (2) E ⊆ V × V is a set of
edges. For a subset Vs ⊆ V , we denote by E[Vs] the set of
edges that have both endpoints in Vs. For a subset Es ⊆ E,
we denote by V [Es] the vertices incident to the edges in Es.
We also write V (resp. E) in G as V [G] (resp. E[G]).

Partitions. We consider edge-cut and vertex-cut, also known
as vertex partition and edge partition, respectively.

(1) Edge-cut [8]. A k-way edge-cut partition CkE (G) of graph

G = (V,E) is a partition (V1, . . . , Vk) of nodes V such that
V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅, for i, j ∈ [1, k], i 6= j.

We refer to each Vi as a part of partition CkE(G).
The cut-set of CkE (G) includes cut edges e that cross differ-

ent parts, i.e., e 6∈ E[Vi] (i ∈ [1, k]). The cut size of CkE (G) is
CkE(G).ct = |E\

⋃
iE[Vi]|, i.e., the total number of cut edges.

Intuitively, the larger CkE(G).ct is, the higher the communi-
cation cost is incurred to computations on the partition.

(2) Vertex-cut [31]. In contrast to edge-cut, vertex-cut may

cut and replicate nodes. A k-way vertex-cut partition CkV(G)
of G is a partition (E1, . . ., Ek) of the edge set E, such that

E1 ∪ · · · ∪ Ek = E and Ei ∩ Ej = ∅ if i 6= j.
Each Ei is referred to as a part of CkV(G).

The cut-set of CkV(G) consists of cut vertices v that have
adjacent edges in different parts, i.e., there exists m≥1 such
that v ∈ V [Er0]∩V [Er1]∩· · ·∩V [Erm], where m is the num-
ber of replicas of v. The cut size of CkV(G) is CkV(G).ct =∑

i∈[1,k] |V [Ei]|−|V |, i.e., total number of the replicas.

Load balancing. We say that a k-way edge-cut (resp. vertex-

cut) partition CkE(G) (resp. CkV(G)) is ε-balanced if

|Vi| ≤ d(1 + ε)|V |/ke (resp. |Ei| ≤ d(1 + ε)|E|/ke
for each i ∈ [1, k]. Here ε is called the balance factor.

Intuitively, the lower ε is, the more balanced the partition is.
Unbalanced partition leads to skewed workload and hampers
the scalability of parallel graph computation.

Table 1: Notations
Symbol Notation

Ck(G), ε k-way partition of graph G and balance factor, resp.
A, A(G) batch partitioner and a partition it computes, resp.

A∆ incrementalization of A
∆G updates to graph G (edge insertions and deletions)
∆O updates to the old partition in response to ∆G
f , h update function and scope function, resp.

We write both CkE (G) and CkV(G) as Ck(G) if the partition
type is clear from context, and further as C(G) if k is clear.
We also use C to denote a partitioning algorithm.

Graph partitioning. The edge-cut (resp. vertex-cut) par-
titioning problem aims to compute ε-balanced edge-cut (resp.
vertex-cut) partitions while minimizing the corresponding
cut sizes for a given balance factor ε.

◦ Input: Graph G, positive integer k and balance factor ε.

◦ Output: A k-way edge-cut (or vertex-cut) partition Ck(G)
so that Ck(G) is ε-balanced and Ck(G).ct is minimized.

2.2 Incremental Graph Partitioning
We consider w.l.o.g. the following unit updates:

◦ edge insertion (insert e), possibly with new nodes, and

◦ edge deletion (delete e), along with endpoints of degree 0.

That is, a node is removed if all its adjacent edges are
deleted; and the adjacent edges of new nodes are inserted.
These can catch modification if extended to property graphs.

A batch update ∆G to G is a sequence of unit updates.

The incremental partitioning problem is stated as follows.

◦ Input: Graph G, old k-way edge-cut (or vertex-cut) par-
tition C(G) that is produced by a batch partitioner C,
balance factor ε, and a batch update ∆G to G.

◦ Output: Updates ∆O to the old partition of G such that
C(G⊕∆G) = C(G)⊕∆O, and in addition,

(1) new partition C(G⊕∆G) is ε-balanced;

(2) C(G⊕∆G).ct is minimized, i.e., C(G⊕∆G).ct ≤ C′(G⊕
∆G).ct for other ε-balanced C′(G⊕∆G); and

(3) the size of ∆O is minimized, i.e., |∆O| ≤ |∆O′| for any
updates ∆O′ to C(G) under conditions (1) and (2).

Intuitively, |∆O| contains the migration cost of incrementally
partitioning G, for moving data among processors.

This is a tri-criteria optimization problem. Its objective
is to ensure partition quality (conditions (1) and (2)) and
reduce cost (condition (3)) when computing new partitions.

The notations of this paper are summarized in Table 1.

3. FUNDAMENTAL PROBLEMS
We next investigate the complexity and boundedness of

the incremental partitioning problem. The results are mostly
negative, telling us that the problem is challenging.

(1) Complexity. We first settle its conventional complex-
ity. Its decision problem, also referred to as incremental
partitioning, is to decide, given graph G, partition C(G),
updates ∆G, balance factor ε, a bound η for cut sizes and
another bound λ on migration cost, whether there exists a
partition C(G⊕∆G) = C(G)⊕∆O such that (1) C(G⊕∆G)
is ε-balanced, (2) C(G⊕∆G).ct ≤ η, and (3) |∆O| ≤ λ.

It is known that both edge-cut partitioning and vertex-cut
partitioning are NP-complete [10, 20, 59]. We show that
their incremental counterparts are also intractable.

1263

To understand what factor dominates the complexity, we
drop one of the three conditions and investigate the problem.
We find that the intractability is robust: the problem remains
NP-hard as long as the bound on cut sizes is imposed, when
the constraint on either balance or migration cost is not
required, even when ∆G have a constant size.

Theorem 1: For both edge-cut and vertex-cut,

(1) incremental graph partitioning is NP-complete and re-
mains NP-hard even when (a) |∆G| is a constant, and (b)
either ε or λ is ∞, i.e., condition (1) or (3) is dropped; and

(2) it is in PTIME when η is ∞ (without condition (2)). 2

Proof: (1) We give an NP algorithm for incremental edge-cut
(resp. vertex-cut) partitioning that works as follows: (i) guess
a set ∆O of updates to the old partition C(G); and (ii) check
whether the three conditions of incremental partitioning are
satisfied by ∆O and C(G). The algorithm is in NP since the
checking in step (ii) can be done in PTIME.

For both edge-cut and vertex-cut, the NP-hardness of
incremental partitioning with λ =∞ (resp. ε =∞) is verified
by reduction from the decision problem of graph partitioning
stated in Section 2.1 [20, 59] (resp. the CLIQUE problem [19],
which decides whether there is a clique of size K or more).
Each reduction uses a unit edge insertion with two new
nodes as ∆G. When reducing from CLIQUE, we analyze the
impact on cut sizes if all nodes (resp. edges) of the K-clique
are put into the same part of the edge-cut (resp. vertex-cut)
partition, from which the one-to-one mapping is established.

(2) When η = ∞, we repeatedly move one vertex (resp.
edge) from the part having the maximum elements to a min-
imum one until the edge-cut (resp. vertex-cut) partition is ε-
balanced (“yes”) or λ changes are made (“no”), in PTIME. 2

(2) Boundedness. As suggested by [44], the effectiveness
of incremental algorithms can be evaluated by boundedness.
An incremental partitioner A∆ is bounded if it can compute
updates ∆O such that C(G ⊕∆G) = C(G) ⊕∆O and the
new partition satisfies the three conditions stated above,
and moreover, its cost can be expressed as a function of
|CHANGED|, where |CHANGED| = |∆G|+|∆O|. The incre-
mental graph partitioning problem is bounded if there exists
such a bounded A∆, and is called unbounded otherwise.

Following [44], we consider locally persistent algorithmsA∆,
in which each node maintains a block of storage including
pointers to its neighbors. It starts from an update in ∆G and
checks G following the pointers, where the choice of which
one to follow depends only on the information accumulated
in the current step. It does not allow global information such
as pointers to nodes other than neighbors.

Unfortunately, no bounded incremental partitioner A∆

exists at all for either vertex-cut or edge-cut.

Theorem 2: For both edge-cut and vertex-cut, the incre-
mental graph partitioning problem is unbounded, even under
a constant number of unit updates. 2

Proof: We give an elementary proof for each. (1) We first
show that incremental partitioning is unbounded for 2-way
edge-cut partitions, i.e., bisections under a constant number
of either unit edge insertions or deletions. We construct an
instance of the edge-cut partitioning problem, where ε = 0
and graph G has a bisection of cut size 0. Then we prove
by contradiction that there exists no bounded incremental
algorithm that can derive a new bisection C(G⊕∆G) of G⊕

∆G satisfying the three constraints in response to constant-
size updates ∆G. (2) Similarly, we construct an instance
of 2-way vertex-cut partitioning problem, and show that
any new partition satisfying the three conditions cannot be
computed by any bounded incremental vertex-cut partitioner.
The result holds when ∆G consists of edge insertions only
or edge deletions only, even if ∆G is of constant size. 2

4. INCREMENTALIZING PARTITIONERS
In light of Theorems 1 and 2, we propose to incrementalize

widely-used graph partitioners A. The objective is to both
(1) ensure small migration cost, and (2) retain the partition
quality of A, which has been verified by years of practice.

We formalize incrementalization (Section 4.1) and present
guidelines for incrementalizing partitioners (Section 4.2).

4.1 Incrementalization of Batch Algorithms
Pick a batch partitioner A that has proven effective in

practice. An incrementalization of A, denoted by A∆, is
an incremental partitioner that (1) is heuristically bounded,
and (2) retains the partition quality of A, defined as follows.

(1) Heuristically bounded. Given a graph G, updates ∆G to

G, a balance factor ε, the old partition A(G) produced by
a run of A on G with possibly auxiliary structures DA of
A, a heuristically bounded incrementalization A∆ computes
changes ∆O to A(G) such that A(G) ⊕∆O is a partition
of graph G⊕∆G, its cost can be expressed as a polynomial
function in |CHANGED|=|∆G|+|∆O|, and moreover, the size
|∆O| can be expressed as a polynomial of |∆G|.

As opposed to the boundedness adopted in Theorem 2, A∆

is not required to be exact, i.e., it does not necessarily return
A(G⊕∆G). After all, almost all practical partitioners are
non-deterministic heuristics. Hence we only require A∆ to
return a partition of G⊕∆G, which has to retain the quality
of A (see below). As will be seen in Sections 5 and 6, this
relaxed notion allows us to deduce partitioners that incur
only the cost necessary for incremental partitioning.

(2) Relative bound on partition quality. It is required that

the new partition A(G) ⊕ ∆O is also balanced w.r.t. the
same balance factor as A(G), and moreover, that A∆ retains
the same bound on the cut sizes as A.

As opposed to Theorem 2, A∆ does not have to minimize
the cut sizes. Instead, it guarantees partition quality “as
good as” that of A. Hence if A is widely used in practice,
then the quality of A∆ is also acceptable to the users of A.

4.2 An Incrementalization Approach
Given a batch partitioner A, how could we deduce its

heuristically bounded incrementalization A∆? Below we
first characterize a class of iterative partitioners A that
are commonly used in practice. We then provide general
guidelines for incrementalizing such partitioners.

Iterative partitioners. Consider a batch partitioner A.
When running A on graph G, A often builds auxiliary struc-
tures DA, which extends G with status variables associated
with the nodes and edges in G, and part sizes of partition
A(G). Structure DA keeps track of the computation and of-
ten evolves during the entire process. Hence we characterize
the partitioning process of A as continuous updates to DA.

In practice, the continuous updates are often carried out in
iterations by chronological orders. Denote by Dt

A the status

1264

of DA after t rounds of iterations. Then Dt+1
A is obtained

from Dt
A by applying the changes computed with update

function f on certain update region Ht:

Dt+1
A = Dt

A ⊕ f(Ht),

Ht = h(Dt
A).

As will be seen shortly, the update function f is decided by the
logic of A. The update region Ht for iteration t+ 1 consists
of certain status variables in DA, which are determined by
a scope function h of A, taking the latest status Dt

A as
input. The computation proceeds until it reaches a fixpoint,
i.e., Dt0+1

A = Dt0
A at some iteration t0. At this point Dt0

A
subsumes the resulting partition A(G).

We say that A is an iterative partitioner if its workflow
complies with the iterative computation model given above.

Intuitively, the scope function h identifies update region
by gathering information from the last iteration, i.e., status
variables of DA to be updated. The update function f de-
duces actual changes to those status variables, e.g., deciding
the part allocation for unassigned nodes and edges. That is,
the computation in an iterative partitioner A is guided by
the changes at runtime (change propagation).

Example 1: Consider the graph growing [21] that produces
2-way edge-cut partitions. It selects a starting node from a
graph and grows one part around it via breadth-first search
(BFS), until half of the nodes are included. The remaining
are put into the other part. For graph G of Fig. 1 (consider
solid edges only), graph growing can pick w′0 as the starting
node and put v1, . . . , v19, u′1, . . . , u

′
19, w′0 and w0 to part V1,

while the rest of nodes in G are allocated to part V2.

Graph growing is an iterative partitioner. Its status vari-
ables include the part id given to each node and part sizes.
In each iteration, its update function f takes as input a set of
unassigned vertices, a candidate part id and the size of that
part. It assigns the part id to these vertices and updates the
size accordingly. The scope function h returns unallocated
neighbors of the nodes that are newly assigned, i.e., BFS. 2

As will be seen in the later sections, the operations in
update function f and scope function h can be conducted
in parallel, e.g., allocating different vertices or edges at the
same time within a single parallel iteration.

One can verify that the following are iterative partitioners:
(1) graph growing [21], greedy growing [26], KGGGP [41] and
bubble methods [15] for edge-cut; (2) NE [59] and DNE [24]
for vertex-cut; and (3) FENNEL [54], HDRF [39], Ginger [14]
and Greedy [52] for the streaming setting; while the streaming
partitioners are developed for insertions only, they can still
be incrementalized to handle generic updates.

However, edge-cut partitioner METIS [26, 27] and vertex-
cut Sheep [34] are not in this class since they mutate the
topological structure of graphs during partitioning, beyond
the expressive power of the iterative computation model.

Approach. To deduce an efficient incrementalization A∆

from an iterative partitioner A, we identify essential changes
pertaining to updates ∆G, and apply such changes by using
(revised) update and scope functions of A, as follows.

(a) Resuming iteration. Given updates ∆G and the final

status DT
A after a batch run of A, A∆ first finds changes to

a (small) region covered by ∆G, and enforces them on DT
A

to get the new status DT+1
A , i.e., the partitioning process

is resumed with a new iteration. These are called essential

!

! !

!!
! !

G

v1 v9 v11 v19

v′19

u19 u′
19

u11 u′
11

u′
9u9

u1

v′1

u′
1

v′9 v′11

v′2

v2
u2 u′

2
u′
8

u′
10

u′
12

u′
18

v′18v′12v′10v′8

u8

u10

u12

u18

w′
1 w1 w2

w3

w0

v8 v10 v12v18
w′

0

Figure 1: Example graph

changes pertaining to updates. More specifically, the essential
changes f(HT) at the initial new iteration T + 1 is computed
by the update function f of A, where HT ⊆ ∆G is an
update region determined by a scope function h′ revised
from function h of A. The essential changes are applied to
the status variables in HT as in the batch partitioner A.

Based on the new status DT+1
A , the original scope function

h of A then identifies another update region HT+1 for the
next new iteration T + 2, such that the essential changes
pertaining to HT+1 can be determined as above. The update
function f is then applied to HT+1. The two steps iterate
in A∆ until no more changes can be made with functions f
and h along the same lines as that in the batch A, yielding

the new final status DT ′
A for this incremental run.

(b) Rebalancing. The input updates ∆G may make some

parts of the old edge-cut (resp. vertex-cut) partition A(G)
become overweight. When this happens, A∆ needs to remove
a set Ui of nodes (resp. edges) from each overweight Vi

(resp. Ei) to make it satisfy the balance constraint, and then
reallocates Ui using the same strategy as that in (a) above.
That is, the union of such sets Ui’s are also treated as updates
in A∆ at the beginning and are combined with the input
updates ∆G to compute essential changes.

In fact, A∆ reassigns some vertices or edges that are either
covered by the input updates or picked for rebalancing. As
verified in our experiments (see Section 7), this helps refine
the old partition since A∆ can make use of all the information
of the old partition. In some cases, this yields partition quality
even better than repartitioning with the batch A.

Example 2: Continuing with Example 1, consider a batch
update ∆G that deletes four edges (w0, v1), (w0, v2), (w1, v

′
18)

and (w1, v
′
19) from graph G.

Here the incrementalization A∆ of graph growing finds
the initial new update region directly using the revised scope
function h′, which finds the set of nodes covered by ∆G,
i.e., {w0, v1, v2, w1, v

′
18, v

′
19}; A∆ makes them unassigned,

updates the sizes of the corresponding parts, and deduces the
candidate part id’s based on the allocation of their neighbors.
It next reallocates these nodes iteratively using the original
update and scope functions of graph growing (Example 1),
putting w0 (resp. w1) into part V2 (resp. V1), and keeping
the allocation of all other nodes unchanged. That is, A∆

swaps the original allocation of just two nodes. 2

Justification. The key idea of the incrementalization A∆ is
to adopt the original semantics of A by means of continuous
updates to DA, and to restrain changes to the status variables
related to input updates and load balancing only.

It ensures heuristic boundedness when (1) the update
function f and the (revised) scope functions h and h′ are
incrementally computable in polynomial time in the size of

1265

updates. That is, f(d⊕∆d) (resp. h(d⊕∆d), h′(d⊕∆d)) can
be computed from f(d) (resp. h(d), h′(d)) and ∆d without
accessing the entire d; and (2) the cost for identifying each
set Ui from overweight parts is a polynomial in |Ui|.

Intuitively, some aggregate functions, e.g., sum and avg,
are incrementally computable, but the function for computing
eigenvectors in spectral partitioning method [40] is not.

Indeed, A∆ only re-evaluates update functions on those
regions with changes involved, and the size of changes is
bounded by a polynomial in |∆G| and

∑
i∈[1,k] |Ui| when the

functions are incrementally computable. One can verify that
the new balance constraint is satisfied after rebalancing if
|Ui| ≥ |∆G| for i ∈ [1, k]; and

∑
i∈[1,k] |Ui| can be bounded

by O(|∆G|). Note that rebalancing is conducted once when
A∆ starts. Thus both the overall cost of A∆ and the size
|∆O| are decided by |∆G| alone when the two conditions
above hold, i.e., A∆ is heuristically bounded. Moreover, if
A achieves balance w.r.t. a given factor ε, then A∆ ensures
balance by means of the same update and scope functions,
since the balance constraint is checked in these functions.

We should remark that there exist other classifications for
graph partitioning algorithms. We study incremetalization of
the iterative partitioners since they cover quite a few widely-
used methods and are formulated using simple update and
scope functions, which can be extended to express other
graph algorithms beyond partitioners.

As proof of concept, we next incrementalize vertex-cut and
edge-cut partitioners in Sections 5 and 6, respectively. It is
shown there that the incrementalization A∆ is able to retain
the same bound on cut sizes as that of A.

5. INCREMENTALIZING VERTEX-CUT
Following the guidelines of Section 4.2, we incrementalize

the distributed neighbor expansion (DNE) [24] for vertex-cut.
DNE parallelizes sequential partitioner NE [59], known for
its high partition quality. We review DNE in Section 5.1.

The main result of this section is the following. We will
incrementalize the iterative partitioner DNE and provide a
constructive proof of Theorem 3 in Section 5.2.

Theorem 3: There exists a heuristically bounded incre-
mentalization of the vertex-cut partitioner DNE that retains
the same bound on partition quality as DNE. 2

5.1 DNE: A Batch Vertex-Cut Partitioner
As vertex-cut partitioners, DNE and NE aim to minimize

the total number of replicas of cut vertices while keeping the
k-way edge partition (E1, . . . , Ek) of a graph G balanced.

NE creates each Ei iteratively following a neighbor expan-
sion heuristic. Each time it selects a node v from the set of
boundary vertices of Ei (or randomly if Ei = ∅), such that v
has minimal unassigned adjacent edges. Here the boundary
vertices include those nodes in V [Ei] that have unassigned
adjacent edges. It (a) allocates the remaining adjacent edges
of v to Ei, and (b) puts each (u,w) into Ei if (v, u) is assigned
in (a) and w ∈ V [Ei]. The set Ei is expanded in this way
until violating the balance constraint, followed by building
Ei+1. Observe that NE minimizes replicas in (a); and the
allocation of edges within two hops of boundary vertices in
(b) does not introduce any new replicas.

To scale with large-scale graphs, the parallel version DNE
[24] of NE performs the expansion of each edge set in parallel,

using a greedy heuristic similar to that of NE. It adopts the
generic shared-nothing model. Assume that k processors
P1, . . . , Pk are available and are connected by a network
of channels. Initially the graph G is distributed among k
processors via a random vertex-cut partitioner. Algorithm
DNE computes a k-way vertex-cut partition for G, i.e., the
number of parts in the partition is fixed as the number
of processors used. It employs two kinds of distributed
processes: expansion process and allocation process. The
selection of boundary vertex is done in expansion processes
in a local-optimal way as in NE. i.e., checking minimal
unassigned adjacent edges. The allocation processes detect
the one-hop and two-hop neighbor edges of the selected
vertices, as well as the corresponding new boundary vertices,
which will be sent to expansion processes for actual allocation.

The computation of DNE starts with k expansion processes
and k allocation processes; each one is deployed to one of
the processors distinctly. It expands edge sets iteratively
in synchronized rounds, in which each expansion process
begins with a randomly selected vertex and is responsible
for maintaining the boundary vertices and the edges of one
part of the partition, and for checking the balance constraint.
Different from NE, DNE can select multiple boundary vertices
during each iteration, e.g., top-K minimal vertices for a fixed
K. DNE allocates the edges following the same semantics
as NE, except that CAS (compare-and-swap) operation is
performed to resolve conflicts when different threads attempt
to allocate the same edge to different parts.

Example 3: Recall graph G from Example 1 and assume
that k = 4, balance factor ε = 0.001, and v10, v′10, u10 and
u′10 are initially picked as the boundary vertices for four parts
E1 to E4 by the expansion processes of DNE, respectively.
Suppose that DNE selects top-2 minimal boundary vertices.

In the first iteration, the allocation process for E1 detects
adjacent edges of v10 and creates a candidate part id 1 for
them. It also finds two-hop neighbor edges (v8, v9) and
(v11, v12) as assigning them to E1 does not increase the cut
size. Moreover, v8 and v12 will be selected as new boundary
vertices of E1 since they both have 2 unassigned adjacent
edges, which are local-minimal. All these are sent to the
expansion process for E1 to do the actual allocation and
start the next iteration. This is done in parallel with the
expansions of E2, E3 and E4, which include one-hop and two-
hop neighbor edges of v′10, u10 and u′10 in relevant processes.

DNE ends up with four parts, i.e., edge sets Ei =
{(xj , xj+1) | j∈[1, 18]}∪{(x2j , x2(j+1)) | j∈[1, 8]}∪{(y, x1), (y,
x2), (y′, x18), (y′, x19)} of graph G. Here we use variables
〈x, y, y′〉 to represent 〈v, w0, w

′
0〉, 〈v′, w′1, w1〉, 〈u,w0, w

′
1〉

and 〈u′, w′0, w1〉 for each i ∈ [1, 4], respectively. 2

5.2 Incrementalization of DNE
As a proof of Theorem 3, we next develop a heuristically

bounded incrementaliztion IncDNE for DNE. The challenges
include the following: (1) the old partitions derived by the
batch DNE can become skewed due to batch updates, and
(2) different unit updates may have impacts on each other
and hence change the course of the computation of DNE.

Overview. To retain the same bound on partition quality
as DNE, we apply essential changes pertaining to the updates
as suggested by Section 4.2. As shown there, the idea is to
identify and reuse the update function and scope function of
the iterative algorithm DNE.

1266

Update function. Recall that DNE generates partitions by
updating the status in terms of part assignments for edges,
the number of unassigned adjacent edges of each boundary
vertex, the boundary vertices for each part, and part sizes
(for checking balance) in parallel supersteps, i.e., iterations.
Thus it fits into the paradigm of iterative computation.

DNE has an update function f to revise the status variables
above, which takes as input a set of unassigned edges with
their candidate part id’s and corresponding part sizes, and a
set of new boundary vertices for different parts. It updates
the allocation of these edges using their candidate part id’s,
adjusts the part sizes according to the latest allocation, and
updates the number of unallocated adjacent edges for each
new boundary vertex v, referred to as the score sc(v) of
v. Based on the newly updated scores, it also selects the
minimal boundary vertices for the next iteration.

In fact, all the work of update function f is done by the
expansion processes of DNE in each synchronized round.

Scope function. The scope function h of DNE identifies un-
allocated one-hop and two-hop neighbor edges of each newly
selected boundary vertex v, and derives a candidate part id
for them from the parts in which v resides. These edges will
be finally assigned by update function. If an edge (u,w) is
detected here with a candidate part id i and if node u has
not been covered by the edge set Ei, scope function h also
marks u as a new boundary vertex for part Ei. All these are
conducted in parallel in the allocation processes of DNE.

Auxiliary structures. We next present auxiliary structures
used by IncDNE. We keep the following. (1) The assignment
part(e) for each edge e. (2) For each node v, a set S(v) to
store the id’s of the parts that cover v together with the
number of v’s adjacent edges assigned to these parts. (3)
The final size W (i) of each part Ei for i ∈ [1, k]. All the
structures are obtained as byproducts when running DNE.

Incrementalization. The incrementalization IncDNE is
shown in Algorithm 1. Following the guidelines of Section 4.2,
it discovers an initial new update region to resume the iter-
ation of the batch run and achieve load balancing. This is
done by a function revised from the scope function of DNE,
using a strategy to identify edges from overweight parts and
∆G. Starting from this region, it applies the original update
and scope functions of DNE to allocate edges.

More specifically, a designated coordinator (processor) Pc

collects from all processors the statistics of old assignments
at the beginning of IncDNE (line 1), i.e., how many edges
at processor Pi were allocated to part of id j for i, j∈[1, k].
Using this information, Pc deduces a list (r1, . . . , rk) of num-
bers for each overweight part of id j, such that canceling the
allocation of ri many edges to part Ej at processor Pi can
make this part satisfy the new balance constraint (lines 2-3).
The numbers are combined with the updated part sizes, and
sent to corresponding processors via messages (lines 4-5).
Coordinator Pc also distributes the updates ∆G, in which
the update of edge (u, v) is posted to one of the processors
that contain the old node u or v (line 6). Thereafter, proce-
dure LocalAdjE is executed at each processor to identify new
update region and continue allocation (line 7).

Procedure LocalAdjE. Upon receiving messages from coor-
dinator, LocalAdjE at each processor Pi first adjusts the
part sizes and local graph accordingly (lines 1-2). Then it
randomly selects certain number of edges, whose old allo-

Algorithm 1: IncDNE

Input: Graph G fragmented by vertex-cut, integer k, balance
factor ε, auxiliary information and batch update ∆G.

Output: Updated auxiliary information, including part(·).
// executed at the coordinator Pc

1 collect the statistics of the old allocation;
2 foreach overweight part of id j do
3 select a list (r1, . . . , rk) of non-negative integers s.t.∑

i ri ≥W (j)− (1 + ε)|E[G⊕∆G]/k|;
4 W (j) := W (j)−

∑
i ri; post W (j) to all processors;

5 foreach i∈[1, k] s.t. ri>0 do post 〈ri, j〉 to processor Pi;

6 distribute ∆G to corresponding processors;
7 invoke procedure LocalAdjE at each processor;

Procedure LocalAdjE // executed at each Pi, in parallel
Input: Local auxiliary information, messages from coordinator.
Output: Updated local auxiliary information.
1 update the part sizes according to W (j)’s received from Pc;
2 apply the update ∆Gi received from Pc on the local graph;

3 E∆ := ∅;
4 foreach pair 〈ri, j〉 received from Pc do
5 collect ri edges that are allocated to part of id j into E∆;

6 foreach edge e ∈ E∆ ∪ FilterE(V [∆Gi]) do part(e) := ⊥;

7 collect into L∆ the old nodes that are covered by E∆ ∪∆Gi;

8 foreach node v ∈ L∆ do
compute score sc(v), update S(v);

9 if L∆ 6= ∅ or there are newly inserted edges then
10 launch corresponding expansion processes and allocation

processes using L∆ as initial new boundary vertices;

cation need to be canceled as guided by the messages, for
rebalancing. These edges are collected into a set E∆ and
their part assignments are marked ⊥, denoting the status
of unallocated (lines 4-6). Moreover, the assignments for
some edges having endpoints in the local update ∆Gi are
assigned ⊥ (line 6), which will also be reallocated regarding
the new status. These edges are filtered by procedure FilterE
(not shown), which returns edge e if an endpoint of e has
a small number of adjacent edges assigned to part Ej and
part(e) = j. Intuitively, reallocating such edges may help
improve the partition quality. It next computes score value
sc(v) and adjusts the set S(v) for each old node in E∆ and
∆Gi (lines 7-8). By the definitions of sc and S, this can
be performed incrementally by checking E∆ ∪∆Gi and the
filtered edges only. All these constitute the operations of the
revised scope function and rebalancing.

LocalAdjE then determines the assignments for unallocated
edges by employing the update function (expansion processes)
and scope function (allocation processes) of DNE, where
nodes in L∆=E∆∪∆Gi are treated as initial new boundary
vertices and are given to update function (lines 9-10, see
details of the processes in Section 5.1 and [24]). That is, the
iteration resumes with the new update region L∆.

Example 4: Continuing with Example 3, consider a batch
update ∆G that deletes all edges incident to w0, v2, v3, u2,
u3, and inserts (w1, w2), (w1, w3) and (w2, w3). Now parts
E2 and E4 become overweight and hence IncDNE selects two
sets U2={(w′1, v′2), (w′1, v

′
1)} and U4={(w′0, u′1), (w′0, u

′
2)} of

edges and cancels their original allocation at corresponding
processors. Moreover, it computes the scores for w′0, u′1, u′2,
w′1, v′1, v′2 and w1; based on the results, it removes the part
id of 4 (resp. 2) from S(w′0) (resp. S(w′1)) since they now
have no adjacent edges assigned to E4 (resp. E2).

IncDNE next allocates the newly inserted edges and the
edges in U3 ∪ U4 using the same update and scope functions

1267

of the batch DNE. Here the old nodes w′0, u′1, u′2, w′1, v′1, v′2
and w1 are taken as new boundary vertices. For instance,
edge (w′0, u

′
1) is allocated to E1 in the first new iteration,

since w′0 is a minimal boundary vertex of E1 with sc(v) = 2
and part E4 cannot take any more edge due to the balance
constraint. Finally U2 ∪ {(w2, w3)} is included in E3, and
U4 ∪ {(w1, w2), (w1, w3)} is added to E1 in IncDNE. 2

IncDNE provides a constructive proof for Theorem 3.

Proof of Theorem 3: Algorithm IncDNE adjusts the sta-
tus part(·), S(·) and W (·) related to new update region, via
original update and scope functions of DNE. Based on their
semantics, one can verify that these functions are incremen-
tally computable (Section 4.2) with the auxiliary structures.
In fact, apart from newly inserted edges and those selected for
reallocation, the part assignments of all other edges remain
stable and they trigger no change to S(·) or W (·).

Moreover, the cost for rebalancing and identifying initial
new update region can be expressed as a polynomial in |∆G|,
since (1) IncDNE selects edges from each overweight part
randomly for assignment cancellation, and the total number
of such edges is bounded by a polynomial in |∆G|; and (2)
procedure FilterE only inspects edges adjacent to the nodes
covered by ∆G to cancel part assignments. Putting these
together, IncDNE is heuristically bounded.

For the cut sizes, note that IncDNE resumes the iterative
computation of DNE; hence we treat those uncanceled al-
location by DNE as if being decided in the same rounds of
IncDNE. We check the total number of vertices in all parts
to analyze the cut. This number is bounded by a function
as in [24, 59] (to be given below). Denote by Et

r (resp. St
i)

the set of unassigned edges (resp. nodes covered by Ei) at
the end of round t in DNE and IncDNE. Initially S0

i =∅ and
E0

r includes all edges of the graph. The function is given
as φt=|Et

r|+
∑

i |S
t
i |. Denote by ct the number of boundary

vertices randomly selected at round t.
One can verify that φt−φt−1 ≤ ct for t ≥ 1 since (a) each

edge assignment introduces at most one replica of cut vertex
except for those randomly selected ones. Moreover, (b) there
are at most |V |+ k random selections of boundary vertices,
since each node can be randomly selected as the boundary
vertex at most once when it has unassigned adjacent edges.
Observe that IncDNE adopts the original semantics of DNE
when allocating edges, and arguments (a) and (b) hold for
both the two methods. Indeed, IncDNE always puts (u, v)
into a part that is the same as the assignment for one of u’s
or v’s allocated adjacent edges if exist; hence reallocation of
old edges in IncDNE does not affect the upped bound for the
number of random selections. Thus φT ≤ φ0 +

∑
t∈[1,T] ct

when DNE and IncDNE terminate at round T . That is,∑
i |S

T
i |− |V [G⊕∆G]| ≤ |E[G⊕∆G]|+k when partitioning

the updated graph by DNE and IncDNE, i.e., the two achieve
the same upper bound on cut sizes and the bound coincides
with the one given in [24] for DNE. 2

6. INCREMENTALIZING EDGE-CUT
We next incrementalize the k-way greedy graph growing

method KGGGP [41] under edge-cut. KGGGP can be used
to partition the coarsened graphs in ParMETIS [28] and
METIS [26], two widely-used vertex partitioners for decades.

Below we first review parallel KGGGP (Section 6.1). We
then show that KGGGP can be incrementalized, and prove
the following performance bounds (Section 6.2).

Theorem 4: There exists a heuristically bounded incre-
mentalization of the edge-cut partitioner KGGGP that retains
the same bound on partition quality as KGGGP. 2

6.1 KGGGP: A Batch Edge-Cut Partitioner
KGGGP generates k-way edge-cut partitions (V1, . . . , Vk)

of an input graph G via greedy best-first search, which picks
the most promising vertices for each part Vi by certain rules.
As an extension of the greedy graph growing method [26]
for bi-partitioning, it computes the k-way partitions directly.
KGGGP starts with a randomly selected seed vertex vr and
expands each part Vi iteratively by adding boundary vertices
in the frontier of the best-first search from vr. The inclusion
of a vertex v in Vi is guided by a greedy score function

sc(v, i) =
∑

v′∈Vi,(v,v′)∈E

|v′| − v.unalloc,

where v.unalloc denotes the number of unallocated neighbors
of v. Each time a boundary vertex v with the maximal
sc(v, i) in the frontier is allocated to Vi as long as the balance
constraint is not violated. This is followed by continuing the
search at v and updating the scores for the neighbors of v.
Function sc(·, ·) is essentially a heuristic that selects vertices
with the largest decrease of the cut sizes.

KGGGP can be easily parallelized in a way similar to how
DNE parallelizes NE (Section 5.1). That is, different parts
are expanded in parallel rounds via distinct greedy best-
first searches; and multiple boundary vertices with top-K
maximal scores can be added to the same part in each syn-
chronized round. We consider parallel KGGGP in the sequel.

The parallel partitioner works on a graph G that is initially
fragmented across k processors (P1, . . . , Pk) via a random
edge-cut partitioner, where each Pi maintains a fragment,
i.e., a subgraph including all vertices allocated to Pi and their
adjacent edges. It computes a k-way edge-cut partition for
G. The number of parts of the partition is again fixed as the
number of processors. Similar to DNE, it adopts expansion
process and allocation process. Here (1) each expansion pro-
cess manages the frontier of a best-first search to select top-K
maximal boundary vertices for expanding one part, where a
node is picked at random as the initial boundary vertex (seed
of the search); and (2) allocation processes update the scores,
perform the best-first searches in a distributed manner and
generate potential allocation requests for boundary nodes,
which are transmitted to expansion processes for allocation.
If multiple best-first searches touch the same vertex v, it is se-
lected as the boundary vertex and allocated to only one part
in accordance with the maximum score associated with v.

There are k expansion processes and k allocation pro-
cesses launched in KGGGP, each one for a distinct processor.
They work as the update function and scope function of the
iterative partitioner KGGGP (see details below).

Example 5: Consider graph G and balance factor ε of
Example 3. Let k = 4 and v10, v′10, u10 and u′10 be the
seed vertices chosen by KGGGP to expand parts V1 to V4,
respectively. The seeds are firstly assigned to distinct
parts by expansion processes, as they are the only boundary
vertices. After this, the neighbors v8, v9, v11 and v12 of v10

are detected as new boundary vertices for V1 in allocation
processes, i.e., best-first search for V1 is continued at v10. In
addition, they trigger allocation requests for v9 and v11 to
V1 if KGGGP finds top-2 maximal boundary vertices. Note
that the latest scores sc(v9, 1) = sc(v11, 1) = 0 are now top-2

1268

maximal. Similarly, allocation requests are generated for
boundary vertices v′9 and v′11 (resp. u9 and u11, u′9 and u′11)
to V2 (resp. V3, V4) simultaneously in the same synchronized
round. All these will be assigned in the second iteration.

KGGGP terminates with a 4-way vertex partition of
V1 = {v1, . . . , v19} ∪ {w0}, V2 = {v′1, . . . , v′19} ∪ {w1},
V3 = {u1, . . . , u19}∪{w′1} and V4 = {u′1, . . . , u′19}∪{w′0}. 2

6.2 Incrementalization of KGGGP
We next present a heuristically bounded incrementaliza-

tion IncKGGGP of the iterative algorithm KGGGP and prove
Theorem 4. Along the same lines as Section 5.2, we start
with the update function and scope function of KGGGP along
with the auxiliary structures adopted.

Update function. Since KGGGP creates partitions by updat-
ing the status (i.e., scores, part assignments and part sizes)
in parallel rounds, it can be modeled as an iterative par-
titioner. Given a set of allocation requests, i.e., boundary
nodes with candidate part id’s and scores, and the part sizes,
the update function f of KGGGP applies the assignments for
those nodes with top-K maximal scores from the requests
and updates part sizes in response to the allocation.

In fact, expansion processes of KGGGP serve the purpose
of the update function. Each of the k expansion processes is
launched to expand one part Vi, as shown in Algorithm 2.
It maintains a set Bi of boundary vertices for Vi with their
scores, and adjusts Bi according to the allocation requests
received from allocation processes in each iteration (lines 1-
3), i.e., adding or removing vertices, or updating scores. The
boundary vertices with top-K maximal scores are selected
from Bi and are allocated to part of id i if Bi is nonempty;
otherwise an unassigned vertex is randomly picked for allo-
cation (lines 4-6). It also updates the part size W (i) and
synchronizes the new allocation with allocation processes by
broadcasting (lines 6-7). The termination of the process is
decided by whether part Vi is fully filled.

Scope function. Based on the newly allocated vertices, the
scope function h of KGGGP adjusts the score values of their
neighbors, and initiates allocation requests for the unassigned
neighbors, i.e., new boundary vertices.

The allocation processes in KGGGP carry out the function-
ality of h. Each allocation process (shown in Algorithm 2)
first updates the part assignments upon receiving the new
allocation (line 1). It then inspects the neighbors of newly
assigned ones, updates their scores and generates allocation
requests (lines 3-6). Each request consists of an unassigned
neighbor v′, the maximal score maxj sc(v

′, j) for v′ and a
part id jm from arg maxj sc(v

′, j); this will be sent to the
expansion process related to Vjm (line 7). If there has been
another request created for v′ with a different part id j′m, the
allocation process also notifies the expansion process w.r.t.
Vj′m to remove v′ from the boundary vertices maintained

there. Therefore, v′ can be assigned to a single part only.

Auxiliary structures. We maintain the following. (1) For
each vertex v, part(v) to track its assigned part. (2) The score
value sc(v, i) at the end of the batch partitioning process.
(3) The final part size W (j) (j ∈ [1, k]). All these are readily
obtained when running KGGGP.

Incrementalization. The incrementalization IncKGGGP
of KGGGP is outlined in Algorithm 2, which finds essential
changes to status concerning updates ∆G and load balancing.

Algorithm 2: IncKGGGP

Input: Graph G fragmented by edge-cut, integer k, balance
factor ε, auxiliary information and batch update ∆G.

Output: Updated auxiliary information, including part(·).
// executed at the coordinator Pc

1 I := ReBalance(∆G);
2 distribute I and ∆G to corresponding processors;
3 invoke procedure LocalAdjV at each processor;

Procedure LocalAdjV // executed at each Pi, in parallel
Input: Local auxiliary information, messages M from Pc.
Output: Updated local auxiliary information.
1 update W (·) and part(·) based on M ;
2 adjust local fragment with update ∆Gi received from Pc;
3 foreach node v in FilterV(V [∆Gi]) do part(v) := ⊥;

4 L∆ := {v | part(v) = ⊥ ∧ ∃(v, v′) s.t. part(v′) 6= ⊥};
5 foreach node v ∈ L∆ do
6 update sc(v, ·); create allocation request for v;

7 collect into R all the new allocation requests generated;
8 if there are unassigned nodes then
9 launch corresponding expansion processes and allocation

processes using R as initial new allocation requests;

Expansion Process // launched for each part Vi, in parallel
1 set Bi := ∅;
2 while part of id i can take in vertices and there are

unassigned nodes do
3 Bi.adjust(RecevieAllocationRequest());
4 if Bi 6= ∅ then Tmax := Bi.DeleteTopKMax();
5 else Tmax := RandomVertex();

6 Allocate(Tmax, i); update W (i);
7 SynchronizeAllocation(Tmax);

Allocation Process // launched at each Pi, in parallel
1 Trecv := RecevieAllocation(); update part(·) based on Trecv ;
2 Bsend := ∅;
3 foreach edge (v, v′) with v in Trecv do
4 update sc(v′, ·);
5 if v′ is not assigned then
6 Bsend := Bsend ∪ Request(v′, arg maxj sc(v′, j));

7 SendAllocationRequest(Bsend);

Similar to IncDNE, IncKGGGP has two phases. (1) It first
cancels a set of old assignments to satisfy the new balance
constraint and extracts an initial new update region related
to ∆G. (2) It then applies the original update and scope
functions of KGGGP to resume the iterative computation.

The rebalancing phase is performed in a way analogous to
that in IncDNE, in which coordinator Pc invokes procedure
ReBalance (line 1, not shown) to compute the number of
assignments to be canceled at each processor and the updated
part sizes. These cancellation requests and input updates
∆G are posted to different processors (line 2), followed by
executing procedure LocalAdjV in parallel (line 3).

Procedure LocalAdjV adjusts the old allocation, part sizes
and local graph in response to the messages received from
Pc (lines 1-2). Depending on the cancellation requests, the
vertices v’s are also selected randomly and each part(v) is
assigned the status ⊥. In addition, it computes a set of nodes
covered by the input updates using FilterV, and cancels their
old allocation (line 3). A vertex v is returned by FilterV if
it was allocated to part of j and sc(v, j) is relatively small.
Note that such old allocation introduces a large number of
cut edges and are badly needed to be re-inspected. LocalAdjV
next updates the scores and creates allocation requests for
those unassigned vertices L∆ that are connected to allocated
ones (lines 4-6). Here the scores are adjusted incrementally
w.r.t. the edges that are either involved in the input updates
or covered by nodes with unassigned status.

1269

Table 2: Real-world graphs
Dataset Abbr. Type |V | |E|

Road-CA[4] RCA road network 1.97M 2.77M
Wiki-de[5] WK hyperlink, dynamic 2.17M 86.3M
LiveJ.[3] LJ social network 4.84M 68.5M

FriendSter[2] FS social network 65.6M 1.80B
UK-Web[1] UK hyperlink 1.06B 3.72B

Finally the update function and scope function of KGGGP
are executed to continue the iteration, where nodes L∆ are
picked as the restarting points of best-first searches (line 9).

Example 6: Recall the graphG, balance factor ε and vertex
partition (V1, . . . , V4) from Example 5, and the updates ∆G
from Example 4. IncKGGGP first finds that parts V2 and V4

are overweight. It then cancels the allocation for two sets
U2={v′1} and U4 = {w′0} of vertices due to rebalancing. Since
w′0, v′1, w2 and w3 are the only nodes that remain unassigned
and are linked to assigned noes, IncKGGGP adjusts the scores
associated with these four nodes and generates new allocation
requests for them. For example, a request for putting w′0
into V1 is created as sc(w′0, 1) = 2 and is maximum for w′0.
Similarly, it generates another request for allocating v′1 to V3.
Note that V2 and V4 cannot take in any more nodes after
the rebalancing. Based on the new status, IncKGGGP only
adds {w′0, w2} to V1 and {v′1, w3} to V3. 2

Proof of Theorem 4: The heuristic boundedness of parti-
tioner IncKGGGP can be verified along the same lines as its
counterpart for IncDNE given in the proof of Theorem 3.

For the cut sizes, recall that each vertex is assigned in the
batch KGGGP when it is touched by the best-first searches
as a non-starting node or is taken randomly as the starting
node of a new search. A detailed analysis reveals that the cut
sizes of the partitions created by KGGGP is dominated by
the number Ns of starting nodes; intuitively, all the adjacent
edges of a starting node can be cut edges, while each non-
starting node is incident to at least one non-cut edge.

To see the number Ns of starting nodes in the partitions
produced by IncKGGGP, note that it adopts the same random
selection strategy of starting nodes as that in KGGGP, even
for the nodes chosen for reallocation in the rebalancing phase
and procedure FilterV. Indeed, the best-first searches of
KGGGP in the batch run are resumed in IncKGGGP without
adding any extra starting nodes for reasons other than that in
KGGGP. That is, each node with a canceled assignment will
be reallocated to one of the parts assigned for its neighbors
by IncKGGGP; and v is a starting node selected by IncKGGGP
if and only if it can be chosen as a starting node in KGGGP.
Consequently, the two partitioners have the same upper
bound on the number Ns of starting nodes and thus achieve
the same upper bound on cut sizes. 2

7. EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we conducted ex-

periments to evaluate the (1) efficiency, (2) scalability, (3)
partition quality of our incrementalized partitioners; and (4)
their effectiveness on running distributed graph applications.

Experimental setting. Five real-life graphs were used and
are summarized in Table 2. Among them, WK is a dynamic
graph whose edges are labeled by timestamps to record when
they were inserted or deleted. RCA is a road network with
a large diameter of 865, while the others are skewed graphs
following power-law degree distribution.

Table 3: Baseline partitioners
Method Model Parallel Incremental

KGGGP [41] edge-cut yes no
DNE [24] vertex-cut yes no

FENNEL [54] edge-cut no no
HDRF [39] vertex-cut no no

ParMETIS [47] edge-cut yes yes
Hermes [38] edge-cut yes yes

We also developed a generator to produce synthetic graphs
G, controlled by the number of vertices |V | (up to 250 million)
and the number of edges |E| (up to 6 billion).

Updates. The updates to WK were extracted from the real
timestamped changes by limiting certain periods of time. For
other graphs, we generated random updates controlled by
the size |∆G|, and they were mixed with equal amount of
edge insertions and deletions, unless stated otherwise.

Partitioners. In addition to IncDNE and IncKGGGP, fol-
lowing the same guidelines, we also incrementalized stream
partitioners HDRF [39] and FENNEL [54] into IncHDRF and
IncFENNEL, respectively. They are heuristically bounded,
but not parallel. Table 3 lists the baselines that we com-
pared with. We used the official package for ParMETIS, and
implemented the rest of methods in C++ with openMPI.

We evaluated an incrementalization A∆ of a batch
partitioner A as follows. Given graph G, updates ∆G and
partition A(G), we compared the efficiency and quality of
A∆ in computing the new partitions based on A(G) against
their batch counterparts obtained by running A on updated
graph G⊕∆G starting from scratch. Since |G|≈|G⊕∆G|
for mixed updates ∆G, the pre-partitioning time for G is
approximately the same as for partitioning G ⊕∆G using
batch algorithms; the latter is reported. For a fair compari-
son, ParMETIS and Hermes incrementally process partitions
of G created by KGGGP in response to updates ∆G.

We conducted all experiments on an HPC cluster. For
each test, we used up to 24 servers, each with 16 processors
of 2.20 GHz and 64 GB memory, up to 384 processors. Each
experiment was repeated 5 times. The average is reported.

Experimental results. We next report our findings. We
found that ParMETIS failed to handle large FS and UK. We
ensure that all output partitions are ε-balanced (ε=0.1) and
report partitioning time excluding that for loading inputs.

Exp-1: Efficiency. We first evaluated the efficiency of
(incremental) partitioners w.r.t. update size |∆G|, parts
(processors) k and update type. We also report normal-
ized migration cost, i.e., the ratio of the number of nodes
(resp. edges) that switch parts to the number of overlapped
nodes |V [G]∩V [G⊕∆G]| (resp. edges |E[G]∩E[G⊕∆G]|),
which indicates the cost of re-distributing G due to ∆G.

(1) Varying |∆G|. Fixing k = 128 for LJ, FS and UK and

k = 8 for (small) RCA, we varied |∆G| from 10% to 50% of
|G|. The results in Figures 2(a) to 2(e) tell us the following.

(a) IncKGGGP, IncDNE, IncFENNEL and IncHDRF consis-
tently outperform their (parallel) batch counterparts even
when |∆G| is up to 50% of |G|. Over LJ, FS and UK, on
average they are 5.4, 7.9, 6.8 and 5.8 times faster when |∆G|
accounts for 10% of |G|, respectively, and are 1.7, 3.9, 1.6
and 2.4 times faster even when |∆G| = 50%|G|.
(b) The four heuristically bounded incremental partitioners
take less time on smaller updates. In contrast, ParMETIS
and Hermes are not sensitive to |∆G|.

1270

KGGGP

IncKGGGP

DNE

IncDNE

FENNEL

IncFENNEL

HDRF

IncHDRF

ParMETIS

Hermes

 1

 10

 100

10% 20% 30% 40% 50%

T
im

e
(s

ec
)

(a) Varying |∆G| (LJ)

 100

 1000

10% 20% 30% 40% 50%

T
im

e
(s

ec
)

(b) Varying |∆G| (FS)

 1

 10

 100

 1000

10% 20% 30% 40% 50%

T
im

e
(s

ec
)

(c) Varying |∆G| (UK)

 0.01

 0.1

 1

10% 20% 30% 40% 50%

T
im

e
(s

ec
)

(d) Varying |∆G| (RCA)

 0.1

 1

10% 20% 30% 40% 50%

M
ig

ra
ti

o
n

 C
o

st

(e) Varying |∆G| (FS)

 1

 10

 100

 1000

8 16 32 64 128

T
im

e
(s

ec
)

(f) Varying k (UK)

 10

 100

 1000

8 16 32 64 128

T
im

e
(s

ec
)

(g) Varying k (FS)

 0.01

 0.1

 1

8 16 32 64 128

M
ig

ra
ti

o
n

 C
o

st

(h) Varying k (LJ)

 100

 1000

10% 20% 30% 40% 50%

T
im

e
 (

se
c
)

(i) Edge insertions (FS)

 100

 1000

10% 20% 30% 40% 50%

T
im

e
 (

se
c
)

(j) Edge deletions (FS)

 0.01

 0.1

 1

 10

JAN FEB MAR APR MAY
T

im
e
 (

se
c
)

(k) Varying time (WK)

 100

 1000

 10000

1.4B 2.5B 3.6B 4.7B 5.8B

T
im

e
(s

ec
)

(l) Varying |G|
Figure 2: Elapsed time and migration costs

(c) IncKGGGP and IncDNE consistently outperform other
methods when |∆G| ≤ 30%|G|. IncKGGGP (resp. IncDNE)
is 27 and 11 (resp. 8.4 and 3.6) times faster than ParMETIS
and Hermes, respectively, on LJ with 10% updates.

(d) Our heuristically bounded incremental partitioners also
work well on non-skewed RCA. As shown in Figure 2(d), they
are at least 1.5 times faster than their batch counterparts
when |∆G| is up to 50% of |G|.
(e) The incremental partitioners incur small migration costs.
As shown in Figure 2(e), IncKGGGP, IncDNE, IncFENNEL
and IncHDRF incur such costs less than 21%, 4.6%, 25% and
3.9% on FS with 10%|G| updates, respectively. In contrast,
these are 41%, 41%, 98% and 94% by batch counterparts.

These justify the need for incremental partitioners.

(2) Varying k. Fixing |∆G| = 10%|G|, we varied k from 8
to 128, to test the efficiency with different numbers of parts.
We find the following from Figures 2(f) to 2(h).

(a) All sequential partitioners take longer with larger k, due
to the increased workloads. However, the response time of
parallel partitioners, e.g., IncKGGGP, may decrease as k gets
larger, since k is also the number of the processors used.

(b) Over FS and UK, IncKGGGP, IncDNE, IncFENNEL and
IncDNE consistently outperform their batch counterparts.
They are efficient: on UK with k=8, they take 0.5, 7.9, 10.3
and 357 seconds, respectively. IncKGGGP is particularly fast
on UK(with loading time of 21.5s) as it reuses 98% of batch
partitioning result on vertices. These nodes cover 98% edges
in G⊕∆G as UK is a heavily skewed graph. IncKGGGP is
faster than Hermes by at least 3.7 times; and it incurs only
4.5% of the migration cost of ParMETIS on LJ (Fig. 2(h)).

(3) Type of Updates. Apart from the random mixed updates
adopted above, we also studied the impact of different types
of updates. The results are shown in Figures 2(i) to 2(k).

(a) Fixing k = 128, we generated random updates of edge
insertions only and edge deletions only over FS, respectively,
with |∆G| varying from 10% to 50% of |G|. We find that (a)
the response time of incremental partitioners increases with
the size of edge insertions, as expected; (b) not all incremental
partitioners take longer when given more edge deletions, since
the sizes of updated graphs may shrink substantially with
large amount of deletions; and (c) compared to batch ones,
our incrementalization achieves speedup of at least 1.26 times
for both 50% insertions and deletions,

(b) Fixing k=8, we extracted real-life updates for WK by in-
specting its status over 5 months in 2011 (Figure 2(k)). The
result is consistent with the results on randomly generated up-
dates: all our incremental partitioners are substantially faster
than their batch counterparts; IncKGGGP (resp. IncDNE) is
at least 11 (resp. 1.5) times faster than Hermes.

Exp-2: Scalability. We evaluated the scalability of our
incremental partitioners with larger synthetic graphs. Fixing
|∆G|=10%|G| and k=128, we ran partitioners on 5 synthetic
graphs by varying |G|=|V |+|E| from 1.4 billion to 5.8 billion.
As shown in Figure 2(l), (a) our incremental partitioners scale
well with |G|. When |G| is increased by 4.1 times, using the
same amount of computing resources, KGGGP, IncKGGGP,
DNE and IncDNE take 3.7, 6.4, 2.9 and 2.8 times longer. (b)
When |G| is 5.8 billion, IncKGGGP and IncDNE take only
102 and 51 seconds, to update partitions, respectively. In
contrast, Hermes, IncFENNEL and IncHDRF take 225, 1839
and 2162 seconds, respectively, while ParMETIS failed to
complete. (c) Heuristically bounded incremental partitioners
outperform their batch counterparts by up to 8.5 times; these
are consistent with the results in Exp-1.

Exp-3: Quality. We also tested the quality of partitions
computed. Since we have ensured all partitions to be ε-

1271

KGGGP

IncKGGGP

DNE

IncDNE

FENNEL

IncFENNEL

HDRF

IncHDRF

ParMETIS

Hermes

 0.4

 0.5

 0.6

10% 20% 30% 40% 50%

 2

 3

 4
E

d
g

e
C

u
t

S
iz

e

V
er

te
x

 C
u

t
S

iz
e

(a) Varying |∆G| (LJ)

 0.05

 0.1

10% 20% 30% 40% 50%
 0

 1

 2

 3

E
d

g
e

C
u

t
S

iz
e

V
er

te
x

 C
u

t
S

iz
e

(b) Varying |∆G| (UK)

 0.2

 0.4

 0.6

8 16 32 64 128

 1

 2

 3

E
d

g
e

C
u

t
S

iz
e

V
er

te
x

 C
u

t
S

iz
e

(c) Varying k (LJ)

 0

 0.05

 0.1

8 16 32 64 128
 0

 1

 2

E
d

g
e

C
u

t
S

iz
e

V
er

te
x

 C
u

t
S

iz
e

(d) Varying k (UK)

Figure 3: Normalized cut sizes

Table 4: Running distributed graph applications

Method
SSSP WCC PageRank

Time Comm. Time Comm. Time Comm.
KGGGP 80.8 18.6 33.4 21.9 127 108

IncKGGGP 63.4 15.9 31.0 19.9 105 107
FENNEL 72.5 11.8 36.6 21.1 135 87.6

IncFENNEL 66.4 8.86 31.5 20.1 113 82.2
Hermes 79.2 14.5 61.9 20.9 145 86.9
DNE 102 20.8 16.6 12.3 43.7 112

IncDNE 92.8 21.2 13.4 11.7 39.4 109
HDRF 216 50.8 20.1 21.0 47.8 188

IncHDRF 208 49.6 18.7 19.9 42.2 179

balanced (ε = 0.1), we only compared the normalized cut
sizes for different edge-cut (resp. vertex-cut) partitioners,
i.e., CkE(G).ct/|E| (resp. CkV(G).ct/|V |).
(1) Varying |∆G|. In the same setting as Exp-1(1), Fig-

ures 3(a) and 3(b) report the normalized cut sizes on LJ
and UK, respectively. We find that (a) compared to batch
ones, our incremental partitioners compute partitions with
comparable or even lower cut sizes for reasons given in Sec-
tion 4.2. Over LJ and UK, the cut sizes of IncKGGGP, IncDNE,
IncFENNEL and IncHDRF are on average 26%, 16%, 27% and
2% lower than their batch counterparts. (b) The edge cut
sizes of IncKGGGP are on average 10% and 5.3% lower than
Hermes on UK and LJ, respectively. (c) While the edge cut
sizes of ParMETIS are on average 12% lower than those of
IncKGGGP on LJ, ParMETIS cannot handle large graphs like
UK. These experimentally verify Theorems 3 and 4, i.e., the
efficiency of heuristically bounded incrementalization does
not come at a price of lower partition quality.

(2) Varying k. In the same setting as Exp-1(2), we evaluated
the impact of the number k of parts on partition quality. As
shown in Figures 3(c) and 3(d), (a) for all partitioners, their
cut sizes increase with larger k, as expected. (b) The cut
sizes of IncKGGGP, IncDNE, IncFENNEL and IncHDRF are
on average 80%, 89%, 81% and 98% of their batch counter-
parts. That is, our incremental partitioners retain the batch
partition quality. (c) Over LJ, the cut sizes of IncKGGGP
are on average 2.4% and 13% higher than those of Hermes
and ParMETIS, respectively, but IncKGGGP is substantially
faster, and ParMETIS cannot handle large graphs.

Exp-4: Effectiveness on running distributed appli-
cations. Finally, we studied the impact of different par-
titioning results on the performance of three common dis-
tributed graph applications, including Single Source Short-
est Path (SSSP), Weakly Connected Components (WCC)
and PageRank. We used the graph-centric programs im-
plemented on GRAPE [18, 17] under both vertex-cut and
edge-cut models. The partitions were computed for FS, with
|∆G| = 10%|G| and k = 128. ParMETIS again failed to com-
plete. The elapsed time (in second) and communication cost
(in GB) of the applications are reported in Table 4. It shows
that (a) for all three applications, the elapsed time over our

incremental partitions is at least 4% less than their batch
counterparts. (b) The communication cost on our incremen-
tal partitions is at least 5.8% (resp. 1.2%) lower for WCC
(resp. PageRank), and at most 1.8% higher for SSSP. (c)
Although Hermes partition incurs less communication than
IncKGGGP partition, its elapsed time is longer. These verify
that our incrementalized partitioners retain the partition
quality of the batch ones, consistent with Exp-3.

Summary. We find that our heuristically bounded incre-
mental partitioners substantially outperform their batch
counterparts in efficiency, and at the same time, achieve
comparable or even better partition quality. (1) IncKGGGP,
IncDNE, IncFENNEL and IncHDRF are 5.4, 7.9, 6.8 and 5.8
times faster than the batch ones when |∆G| = 10%|G|, re-
spectively, and are 1.7, 3.9, 1.6 and 2.4 times faster even
when |∆G| is 50%|G|. Moreover, the smaller the updates
are, the faster they run. These verify the effectiveness of
heuristic boundedness. (2) On average, IncKGGGP, IncDNE,
IncFENNEL and IncHDRF incur cut sizes that are 20%, 10%,
22% and 2% lower than their batch counterparts, respectively.
They also reduce at least 4% of runtime when running dis-
tributed applications. (3) Parallel IncKGGGP and IncDNE
scale well with k, |∆G| and |G|. It takes IncKGGGP and
IncDNE only 102 and 51 seconds, respectively, to partition
a graph with 5.8 billion edges in response to 10% updates,
using 128 processors. (4) IncKGGGP and IncDNE outperform
existing incremental ParMETIS and Hermes in efficiency with
comparable cut sizes. Over LJ, when k = 128, IncKGGGP
(resp. IncDNE) is on average 13 and 4.9 (resp. 6.4 and 2.2)
times faster than ParMETIS and Hermes, respectively.

8. CONCLUSION
While incremental graph partitioning is intractable and un-

bounded, we have proposed an approach to develop practical
incremental partitioners. The novelty of the work consists
of a new approach to incrementalizing partitioners, and a
notion of heuristic boundedness to characterize the effective-
ness of incremental heuristic algorithms. We have verified
the effectiveness of the new approach by incrementalizing
(parallel) batch partitioners, both edge-cut and vertex-cut,
and by conducing an experimental study.

One topic for future work is to generalize the incremental-
ization approach to graph algorithms beyond partitioners.

Acknowledgements. Fan, Liu and Xu are supported in
part by ERC 652976, Royal Society Wolfson Research Merit
Award WRM/R1/180014, EPSRC EP/M025268/1, Shen-
zhen Institute of Computing Sciences, and Beijing Advanced
Innovation Center for Big Data and Brain Computing. Liu is
also supported in part by EP/L01503X/1, EPSRC Centre for
Doctoral Training in Pervasive Parallelism at the University
of Edinburgh, School of Informatics.

1272

9. REFERENCES
[1] UKWeb. http://law.di.unimi.it/webdata/uk-2007-05/,

2011.

[2] Friendster. https://snap.stanford.edu/data/com-
Friendster.html, 2012.

[3] LiveJournal. http://snap.stanford.edu/data/com-
LiveJournal.html, 2012.

[4] Road-ca. http://snap.stanford.edu/data/roadNet-
CA.html, 2012.

[5] Wiki-de. http://konect.uni-koblenz.de/networks/link-
dynamic-dewiki, 2012.

[6] Size of Wikipedia. https://en.wikipedia.org/wiki/
Wikipedia:Size of Wikipedia, 2020.

[7] U. A. Acar. Self-Adjusting Computation. PhD thesis,
CMU, 2005.

[8] K. Andreev and H. Racke. Balanced graph partitioning.
Theory Comput. Syst., 39(6):929–939, 2006.

[9] C.-E. Bichot and P. Siarry. Graph partitioning. John
Wiley & Sons, 2013.

[10] F. Bourse, M. Lelarge, and M. Vojnovic. Balanced
graph edge partition. In KDD, 2014.

[11] T. N. Bui and C. Jones. A heuristic for reducing fill-in
in sparse matrix factorization. In PPSC, 1993.

[12] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent advances in graph partitioning. In
Algorithm Engineering - Selected Results and Surveys,
pages 117–158. 2016.

[13] Z. Cai, D. Logothetis, and G. Siganos. Facilitating
real-time graph mining. In CloudDB, 2012.

[14] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra:
Differentiated graph computation and partitioning on
skewed graphs. In EuroSys, 2015.

[15] R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw.
Shape-optimized mesh partitioning and load balanc-
ing for parallel adaptive FEM. Parallel Computing,
26(12):1555–1581, 2000.

[16] W. Fan, C. Hu, and C. Tian. Incremental graph com-
putations: Doable and undoable. In SIGMOD, 2017.

[17] W. Fan, M. Liu, R. Xu, L. Hou, D. Li, and Z. Meng.
Think sequential, run parallel. LNCS, 11180:1–25, 2018.

[18] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, Z. Zheng,
B. Zhang, Y. Cao, and C. Tian. Parallelizing sequential
graph computations. In SIGMOD, 2017.

[19] M. Garey and D. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, 1979.

[20] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer.
Some simplified NP-complete graph problems. Theor.
Comput. Sci., 1(3):237–267, 1976.

[21] A. George and J. W. Liu. Computer Solution of Large
Sparse Positive Definite. Prentice Hall Professional
Technical Reference, 1981.

[22] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, 2012.

[23] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph processing in
a distributed dataflow framework. In OSDI, 2014.

[24] M. Hanai, T. Suzumura, W. J. Tan, E. S. Liu,
G. Theodoropoulos, and W. Cai. Distributed
edge partitioning for trillion-edge graphs. PVLDB,

12(13):2379–2392, 2019.

[25] J. Huang and D. Abadi. LEOPARD: Lightweight
edge-oriented partitioning and replication for dynamic
graphs. PVLDB, 9(7):540–551, 2016.

[26] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SISC, 20(1):359–392, 1998.

[27] G. Karypis and V. Kumar. Multilevel k-way partition-
ing scheme for irregular graphs. J. Parallel Distrib.
Comput., 48(1):96–129, 1998.

[28] G. Karypis and V. Kumar. A parallel algorithm for
multilevel graph partitioning and sparse matrix ordering.
J. Parallel Distrib. Comput., 48(1):71–95, 1998.

[29] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell system
technical journal, 49(2):291–307, 1970.

[30] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,
D. Williams, and P. Kalnis. Mizan: A system for
dynamic load balancing in large-scale graph processing.
In EuroSys, 2013.

[31] M. Kim and K. S. Candan. SBV-Cut: Vertex-cut based
graph partitioning using structural balance vertices.
DKE, 72:285–303, 2012.

[32] R. Krauthgamer, J. Naor, and R. Schwartz. Partitioning
graphs into balanced components. In SODA, 2009.

[33] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein. Distributed GraphLab: A frame-
work for machine learning in the cloud. PVLDB,
5(8):716–727, 2012.

[34] D. W. Margo and M. I. Seltzer. A scalable distributed
graph partitioner. PVLDB, 8(12):1478–1489, 2015.

[35] C. Martella, D. Logothetis, A. Loukas, and G. Siganos.
Spinner: Scalable graph partitioning in the cloud. In
ICDE, 2017.

[36] H. Meyerhenke, B. Monien, and S. Schamberger.
Graph partitioning and disturbed diffusion. Parallel
Computing, 35(10-11):544–569, 2009.

[37] M. E. Newman. Clustering and preferential attachment
in growing networks. Physical review E, 64(2):025102,
2001.

[38] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen.
Hermes: Dynamic partitioning for distributed social
network graph databases. In EDBT, 2015.

[39] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and
G. Iacoboni. HDRF: Stream-based partitioning for
power-law graphs. In CIKM, 2015.

[40] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning
sparse matrices with eigenvectors of graphs. SIMAX,
11(3):430–452, 1990.

[41] M. Predari and A. Esnard. A k-way greedy graph
partitioning with initial fixed vertices for parallel
applications. In PDP, 2016.

[42] U. N. Raghavan, R. Albert, and S. Kumara. Near linear
time algorithm to detect community structures in large-
scale networks. Physical review E, 76(3):036106, 2007.

[43] F. Rahimian, A. H. Payberah, S. Girdzijauskas, and
S. Haridi. Distributed vertex-cut partitioning. In DAIS,
2014.

[44] G. Ramalingam and T. Reps. On the computational
complexity of dynamic graph problems. Theor. Comput.
Sci., 158(1-2), 1996.

1273

[45] S. Salihoglu and J. Widom. GPS: A graph processing
system. In SSDBM, 2013.

[46] K. Schloegel, G. Karypis, and V. Kumar. Multilevel
diffusion schemes for repartitioning of adaptive meshes.
J. Parallel Distrib. Comput., 47(2):109–124, 1997.

[47] K. Schloegel, G. Karypis, and V. Kumar. Parallel static
and dynamic multi-constraint graph partitioning. Con-
currency and Computation: Practice and Experience,
14(3):219–240, 2002.

[48] Z. Shang and J. X. Yu. Catch the wind: Graph
workload balancing on cloud. In ICDE, 2013.

[49] A. Shankar and R. Bod́ık. DITTO: Automatic incre-
mentalization of data structure invariant checks (in
Java). In PLDI, 2007.

[50] G. M. Slota, K. Madduri, and S. Rajamanickam. Pulp:
Scalable multi-objective multi-constraint partitioning
for small-world networks. In Big Data, 2014.

[51] G. M. Slota, S. Rajamanickam, K. Devine, and K. Mad-
duri. Partitioning trillion-edge graphs in minutes. In
IPDPS, 2017.

[52] I. Stanton and G. Kliot. Streaming graph partitioning
for large distributed graphs. In KDD, 2012.

[53] T. Teitelbaum and T. W. Reps. The Cornell pro-
gram synthesizer: A syntax-directed programming
environment. CACM, 24(9), 1981.

[54] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and
M. Vojnovic. FENNEL: Streaming graph partitioning
for massive scale graphs. In WSDM, 2014.

[55] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to
partition a billion-node graph. In ICDE, 2014.

[56] C. Xie, L. Yan, W. Li, and Z. Zhang. Distributed
power-law graph computing: Theoretical and empirical
analysis. In NIPS, 2014.

[57] N. Xu, L. Chen, and B. Cui. LogGP: A log-based
dynamic graph partitioning method. PVLDB,
7(14):1917–1928, 2014.

[58] T. A. K. Zakian, L. Capelli, and Z. Hu. Automatic
incrementalization of vertex-centric programs. In
IPDPS, 2019.

[59] C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and Z. Li. Graph
edge partitioning via neighborhood heuristic. In KDD,
2017.

1274

