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ABSTRACT 
In this paper, we look back at the evolution of Yahoo!’s geo-repli-
cated cloud data store from a research project called PNUTS to a 
globally deployed production system called Sherpa, share some of 
the lessons learned along the way, and finally, compare PNUTS 
with current operational cloud stores. 
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1.INTRODUCTION 
The vision of PNUTS in 2006 was to design and build a massively 
parallel, globally distributed database service for managing appli-
cation state at internet scale, delivered as a cloud service for teams 
building Yahoo! applications.  It was part of a broader evolution of 
the data ecosystem at Yahoo!, going beyond conventional rela-
tional database systems, to support three distinct scenarios: 

 A highly available, globally replicated operational store 
to support the company’s internet scale applications, 

 Cost-effective storage of both application data and ob-
servational data (web logs, telemetry), and 

 Extensive analytics to drive business decisions and im-
prove operational efficiencies.   

PNUTS addressed the first scenario. In addition, the company in-
vested in building an object store called MObStor [1] (e.g., for 
holding attachments from Yahoo! Mail) and of course Hadoop [2] 
for analytics.  The production version of PNUTS and Hadoop 
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could be thought as Yahoo!’s operational database and data ware-
house, respectively. 

At the time we set out to design and build PNUTS, Yahoo! relied 
on a specialized backend service for managing user logins and on 
relational databases for other applications.  There was an acute 
need for an operational store that was supported as a cloud service 
for developers to build on that offered sufficient flexibility to meet 
the needs of Yahoo!’s wide range of applications.  The following 
were among the top asks : (1) A highly available cloud service ra-
ther than software that developers needed to host themselves, (2) 
low-latency geo-replication to handle Yahoo!’s global user base 
(which often traveled, requiring dynamic re-affinitization of re-
lated data across regions), and (3) simple semantics for updates 
with some user-control (e.g., changes to an object appear con-
sistent; a writer always sees the result upon a subsequent read).   

Surprisingly, there was willingness to sacrifice some powerful 
RDBMS features in exchange for such a service, especially given 
cost and performance considerations.  Examples include ACID 
transactions across multiple objects and complex join queries. 
Therefore, we designed PNUTS to be a No SQL service, and this 
proved to be a good choice for Yahoo!’s operational needs. 

Over time, as the service matured, we got requests for additional 
features such as sorted tables and secondary indexes, which sug-
gest that the RDBMS feature set is indeed useful; it is simply the 
case that in many scenarios, developers are willing to trade some 
features for cost, performance and availability.  (We discuss our 
learnings further in Section 4.3.) 

Building a complex system required us to approach it in phases, and 
below we describe the journey of design, implementation and evo-
lution of PNUTS over several years. We then reflect upon lessons 
learned and briefly look at the current landscape of public cloud 
data serving services. The productionized version of PNUTS is 
called “Sherpa,” and we use the two names interchangeably 
throughout the paper. 

2.DATA MODEL AND OPERATIONS 
In this section, we outline the data model and operations supported 
in PNUTS.   
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2.1.Data Model 
PNUTS supports a basic key-value data model in which values are 
simply records as in a traditional RDBMS.  Records are automati-
cally stored in partitions, which are re-balanced by the system for 
scale-out, and users can control data organization by optionally 
specifying a composite key for sorting a given record collection (ta-
ble).  Secondary indexes can also be specified for efficient scatter-
gather operations. 

2.2.Transactions 
Transactions in PNUTS provide strongly consistent reads and 
writes to a single record. Each record goes through a time-ordered 
sequence of versions, where each write (insert, update or delete) 
creates a new version. All readers of the record will observe the 
same sequence of versions, regardless of which replica they read. 
We call this model “timeline consistency.” We provide no guaran-
tees about cross-record consistency. 

The architecture supports a generalization of timeline consistency 
in which we allow a group of records identified by a common key 
value to be transactionally modified.  Intuitively, all records in such 
a “record group” would be in the same physical partition and share 
the same timeline.  This generalization was not implemented in 
Sherpa. 

We chose the record timeline consistency model because it fit our 
requirements, while still providing high performance and scalabil-
ity. The use cases we had for PNUTS could be satisfied with trans-
actions updating a single record. For example, a user metadata da-
tabase only requires updates to a single user’s metadata at a time; a 
shopping listings database only requires updates to a single listing 
at a time.  

The model provides scalability, because we can always add more 
independent computing resources to scale up the number of inde-
pendent transactions we could execute. And by avoiding expensive 
protocols like two-phase commit, the model provides high perfor-
mance. 

When we were designing PNUTS, many replicated database sys-
tems provided either: 

 Full database consistency: Transactions can read and 
write multiple records with ACID guarantees. 

 Best effort consistency: Replicas were consistent in the 
common case, but could diverge even under normal (e.g., 
non-buggy) operation. 

Timeline consistency provides a useful intermediate guarantee. 
Writes to a single record are always consistent, unlike best effort 
consistency. But the complex machinery and performance cost of 
providing full database consistency can be avoided. 

As we built the system, we realized that some use cases could ben-
efit from eventual consistency. These use cases had tighter require-
ments for write latency, and were able to tolerate “last writer wins” 
semantics in the case of concurrent writes. Thus, we added a mode 
that was weaker than timeline consistency: replicas may diverge 
from a “canonical” timeline of versions, but would eventually syn-
chronize and store the same value. 

2.3.Reads 
The read API allows (indeed, forces) the client to make an explicit 
trade-off between latency and freshness. In particular, all reads are 
“consistent” (because they return a valid version from the canonical 
version timeline for the record). However, a client can choose to 
accept a potentially stale value in return for lower latency. The API 
provides three kinds of reads: 

 Read-latest: returns the latest version of the record that 
existed at the time the read was initiated. 

 Read-critical: returns a version of the record that is no 
staler than a client-specified version number. 

 Read-any: returns any version of the record. 

PNUTS records are geographically replicated, with one replica des-
ignated as the master (more details are in Section 3.3). A read-latest 
call must read from the master, since only the master knows for sure 
what the latest version is. If the master is far from the reader, the 
network propagation delay adds to the latency of the read. In con-
trast, read-critical can often read from the local replica, reducing 
the chance that a wide-area network hop is needed. Read-any can 
always read from the local replica. 

2.4.Writes 
There are two kinds of writes in the system: 

 Blind writes: A write that always succeeds. 

 Test-and-set writes: A write that only succeeds if the lat-
est version of the record matches the version specified by 
the client. 

Again, we have exposed to the client a trade-off between perfor-
mance and transactional guarantees. Blind writes always succeed 
on the first try, but it is possible that your update is overwritten by 
another client writing concurrently. This is perfectly acceptable for 
many use cases; for example, a user updating their password in the 
user database is likely only performing one of these transactions at 
a time.  

In contrast, many transactions need read-modify-write semantics: 
the data written depends on a previous read. An example is reading, 
and then incrementing, the view count on a shopping listing. Test-
and-set writes allow clients to implement read-modify-write trans-
actions by following these steps: 

1. Read a record, including its version number V 

2. Test-and-set write the record, specifying V 

Step 2 will fail, effectively causing a transaction abort, if another 
write intervenes between step 1 and step 2. This optimistic concur-
rency mechanism does not require database locks, which helps per-
formance by avoiding lock contention. However, as with all opti-
mistic concurrency schemes, if there is high write contention, per-
formance will decrease as many transactions have to abort in step 
2 and be retried. 

3.SYSTEM IMPLEMENTATION 
We now describe the architecture and implementation of the sys-
tem. The primary requirements that drove our design choices were: 

 Elastic scalability 
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 Geographic replication 

 Low latency reads and writes 

 Strong, record-level consistency 

3.1.Storage in a Single Data Center 
In order to achieve scalability, we partition a database table into 
“tablets,” each containing a set of records We then scatter these 
tablets across many independent servers, called “storage units,” 
(SUs) in a data center. Reads and writes for a record are served by 
the storage unit that hosts the tablet containing that record. Storage 
units consist of an RDBMS database (originally InnoDB/MySQL) 
stored on locally-attached disk, and a software layer that imple-
ments our read and write protocols and interacts with MySQL stor-
age. Each storage unit can hold many tablets from diverse tables. 
Because our workloads are easily partitionable along record bound-
aries, we achieve high scale simply by having many storage units. 

Next, to make this scalability elastic, we make it possible to move 
tablets between storage units. If we need to increase the serving 
capacity of the system, we can add more storage units, and move 
some of the tablets to the new servers. Elastic scalability only works 
if we can alleviate hotspots: adding servers has limited value if most 
operations still hit a single server. Thus, we make the assignment 
of tablets to servers completely arbitrary (rather than, say, using a 
deterministic hash-based assignment). Thus, if a storage unit is 
overloaded, we move some of its tablets to less loaded servers to 
spread out the hotspot. We also split a tablet into smaller partitions 
if multiple hot rows are in the same tablet. The decision of which 
servers host which tablets is made by the “tablet controller,” which 
is a singleton server (with a warm standby) in each data center. 

The arbitrary assignment of tablets to storage units means we need 
a way to route requests for a record to the correct storage unit. This 
is accomplished by adding a layer of “routers” that know the map-
ping from record keys to tablets, and from tablets to servers. A cli-
ent that wants to read or write a record contacts a router, which 
looks up the tablet and storage unit in its internal data structures and 
forwards the request to the appropriate server. The mapping of tab-
lets to servers is determined by the tablet controller, and the routers 
merely cache a copy of this mapping. 

Tables can be configured as hash or ordered tables. For hash tables, 
we divide the space of hash values into intervals, and each interval 
corresponds to a tablet. We hash each record key and find the inter-
val that the key hash falls into; that is the tablet that owns the record. 
Ordered tables are implemented in a similar manner, except without 
hashing: tablets correspond to intervals of the key space, and the 
interval containing a key determines the tablet that owns the record. 
In this way, we can use the same infrastructure for defining tablet 
boundaries, splitting tablets, and assigning keys to tablets for both 
hash and ordered tables.    

3.2.Replication 
So far, we have described the storage of records in a single dat cen-
ter. In fact, tablets (and thus records) are replicated to multiple data 
centers. This geographic replication is achieved by log-shipping: a 
storage unit writes updates for a tablet to a write-ahead log, which 
is then forwarded to servers in other data centers hosting replicas 
of that tablet. We decided to implement our write-ahead log using 
a pub/sub service that is separate from the storage unit. This service 

is called the Yahoo! Message Broker (YMB). We used a separate 
pub/sub service for a few reasons: 

 YMB provides reliable publishing and delivery of mes-
sages. It does this by storing copies of published mes-
sages on multiple servers in the data center. Thus, we en-
sure that redo records in the log are fault tolerant without 
having to make the storage unit itself more complex. 

 The replication mechanism is a natural fit for pub/sub, 
and thus it made architectural sense to separate serving 
(e.g., the storage unit) from replication (e.g., YMB). 

 Separating the write-ahead log from the storage unit al-
lows us to deal with some consequences of storage unit 
failures by writing directly to YMB, as described in the 
next section. 

 We were able to repurpose an existing Yahoo! pub/sub 
infrastructure for the first version of the YMB, accelerat-
ing development of the system. 

Because of our desire for low-latency transactions, we elected to 
consider writes committed once they had been acknowledged by 
the local YMB, rather than waiting for the actual replication to 
other data centers to occur. This is in contrast to some other systems 
[3,4] that consider writes committed only after a wide-area consen-
sus protocol (like Paxos [5]) had completed among multiple data 
centers. The trade-off we made was to accept that some catastrophic 
failures (like a data center burning down) would lead to data loss, 
in return for lower write latency in the common case. 

The system provided a “selective replication” option both for tables 
and records. Tables need not have copies in all data centers or rep-
licas. Depending on the needs of the application a table is replicated 
to at least two data centers. And over time this replication footprint 
could be changed, administratively, to add or remove data centers.  

Similarly, some records simply wouldn’t be replicated to some data 
centers. This allowed us to save resource costs: if a particular record 
was never accessed from a region, we would not pay the bandwidth 
and storage costs of keeping an up-to-date copy in that region. Also, 
for regulatory reasons, some data cannot be stored in certain places, 
and selective replication allowed us to support that. 

3.3.Record Masters 
Our timeline consistency model is implemented by assigning a 
“master” copy on a per-record basis. For example, the master of 
Brian’s record may be in California, while the master of Raghu’s 
record is in Washington. The master for a record can change over 
time: if Raghu goes on a business trip to England, and the applica-
tion writes to his record now come from his new locality instead of 
Washington, PNUTS will automatically move the mastership (us-
ing a robust, fault-tolerant protocol). 

Mastership is recorded in the record itself in a hidden field. When 
a storage unit receives a request to write a record, it can only exe-
cute that write if it is the master. Otherwise, the write is forwarded 
to the actual master. Similarly, storage units decide whether they 
can serve read-latest reads based on whether they are the master. 

Changes to the mastership use the same write mechanism as normal 
writes. That is, to change mastership, the master writes the identity 
of a different replica in the “mastership” field of the record. All 
replicas, including the new master, will see this update and thus 
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learn of the change. In theory, this reduces the complexity of the 
system, since we only need a single mechanism for both writes and 
mastership changes. In practice, as we implemented the system, we 
found that handling failures forced us to re-introduce some com-
plexity. If a storage unit hosting a replica had a hard failure, such 
that it could no longer commit writes, then writes to the record 
would be blocked until we forced a mastership change to another 
replica. This was accomplished by having the tablet controller write 
a mastership change directly to the YMB write-ahead log. Doing 
this properly is hard, because it requires correctly detecting that the 
storage unit has failed and will not come back to life and start com-
mitting writes again. 

In order to provide primary key constraints, we need a master for 
records that do not yet exist. That master will ensure that test-and-
set writes inserting a record for the first time are correctly executed. 
Since the record does not exist, we cannot use the record to store 
the master’s identity. Instead, mastership is assigned at the tablet 
level. Replicas of a tablet store the same data, and we assign one 
tablet in each set of replicas as the master for any newly inserted 
records in that set. Tablet mastership can also change. As with rec-
ord mastership, a hard failure of a storage unit results in the tablet 
controller forcing a mastership change by writing directly to YMB. 

3.4.Failure handling 
We now summarize how the system deals with different types of 
failures. 

3.4.1.Storage unit failures 
Storage units can fail in a variety of ways. The machine could ex-
perience a fail-stop failure, like a crashed server process or a failed 
power supply. A disk could become corrupted. Faulty RAM could 
corrupt in-memory state. For most of these failure modes, we rely 
on standard single-server fault tolerance: RAID arrays to tolerate 
loss of a single disk, checksums to deal with memory corruption, 
and so on. However, a key principle of the system is that it survives 
complete machine failures, so data is replicated to another machine 
in another data center. Whenever there is a full storage unit failure, 
reads can fail over to the other copy, and (after a record mastership 
change) so can writes. 

3.4.2 YMB broker failures 
The YMB can also experience failures, either in the server (a crash) 
or in the on-disk storage. Again, we utilize redundancy. Unlike the 
storage unit, there is no easy way to replicate YMB state across data 
centers, since it is the YMB itself that is carrying out the replication 
task. As a result, we replicate at the disk level: each YMB update 
is written to multiple disks on multiple servers. Then, an individual 
YMB machine failure is not sufficient to cause a committed trans-
action to be lost. 

3.4.3 Whole data center failures 
Occasionally, entire data centers fail, for example due to a natural 
disaster or network outage. One reason to replicate data to multiple 
data centers in multiple geographic regions is to survive such a 
large-scale event. A natural disaster which devastates a geographic 
region can be tolerated because data has been replicated elsewhere 
on the globe. One limitation of our approach is that a transaction is 
considered committed when it is written to the YMB in the same 
data center as the storage unit where the write originated. This 
means that transactions which had not yet been replicated outside 
the data center may be lost in the case of a whole data center failure. 
We made this trade-off because data center failures are rare, and 

committing only to a YMB in the same data center reduces write 
latency. 

3.4.4 Lost pub/sub messages 
It is possible that a message sent by the YMB fails to arrive at the 
destination broker. For example, a network issue might cause the 
message to timeout, or the receiving broker may crash before per-
sisting the message. Because the YMB stores messages locally until 
receiving positive acknowledgement of delivery everywhere, we 
can recover from a lost message by simply redelivering it. 

4.EVOLUTION FROM PNUTS TO SHERPA 
The PNUTS system was described in two 2008 papers—the system 
overview [6] and the description [7] of sorted tables, one of the dis-
tinctive features of the system. Subsequent PNUTS papers reported 
on parallelizing range queries [8], view maintenance [9], user-con-
trolled geo-replication [10], and a benchmark designed to evaluate 
cloud-serving systems such as PNUTS [11].  

On June 1st, 2009, we announced the launch of the production ver-
sion Sherpa [12], going public with Yahoo!’s investment in a glob-
ally replicated hosted NoSQL cloud service. The architecture of 
Sherpa was, and even today is, closely aligned with the PNUTS 
paper [6]. The loosely coupled architecture of the storage units 
(SU), routers, tablet controller and messaging system was well-
suited for horizontal scalability at the various layers. Application 
engineers used the client SDKs to connect and perform basic 
RESTful operations of Get (read), Set (write, insert), Delete and 
Scan. Version 1.0 of Sherpa supported both timeline consistency 
and eventual consistency for distributed hash tables. 

4.1.The Journey 
In 2010, we announced [13] support for distributed ordered tables, 
described in [7], so that applications can access a set of records 
based on a primary key prefix (e.g., retrieve the last 10 status up-
dates by user=ppsn). Under the covers, ordered tables were parti-
tioned by primary key ranges rather than the hash ranges of the pri-
mary key. While hashing has a nice property of uniform distribu-
tion, primary key based partitioning leads to imbalance of load and 
size of tablets. Therefore, it was imperative that we built a load bal-
ancer, which to this day, automatically balances the space utiliza-
tion and IO load of the SUs across a cluster. Each SU keeps track 
of the “heat” metric for itself and its tablets based on measurements 
like latency, requests, # of records, and size of data. The load bal-
ancer used this heat metric to move tablets from hot SUs to cold 
ones, keeping the overall heat in the system near the average. The 
tablet move algorithm enabled balancing without any impact to ap-
plications requests for the data. The load balancer could also per-
form splits or merges on tablets as another option to balance the 
heat metric.  

Within two years of launch, Sherpa was storing and serving data 
for properties and applications within Yahoo such as yahoo.com, 
Yahoo! News, Mobile, Social, Video, Sports, and Shopping. As 
bigger applications started using Sherpa, we decided to build isola-
tion mechanisms into the multi-tenant hosted architecture. With the 
introduction of SU banks, tables could be isolated to a subset of 
SUs, such that applications with certain read-write patterns would 
not negatively impact smaller applications in the cluster.  

One of the original use cases envisioned for PNUTS was user data 
storage. Adhering to local legal and jurisdictional considerations 
for global applications with global users meant building the right 
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data governance knobs. Selective record replication was an im-
portant feature we introduced for applications to choose where to 
store full copies of records dynamically. In 2011 [14], Sherpa be-
came the de facto store for all new user data in Yahoo which re-
quired data governance rules.  

The original design of the system did not support versioning, and 
primarily relied on multiple copies of data to recover from disk, 
node, cluster or data center failure. We soon realized that it was 
equally important to protect the data from inadvertent bugs intro-
duced either by Sherpa engineers or application engineers that may 
accidentally corrupt or erase data. In 2011 [14], we introduced the 
capability to perform regular table backups to off-line storage, from 
which applications could restore records or tables to a point in time.  

By 2012, we introduced secondary indexes with materialized fields 
that enabled applications to go beyond simple primary key lookup 
queries. The indexes were maintained asynchronously, so that ap-
plication perceived latency for updates were fast. While the ideas 
were novel, index maintenance added a layer of complexity to our 
consistency algorithms, and also made it complex for application 
engineers to reason with CAP trade-offs during reads.  

If we had to call out one pivotal feature of Sherpa in the last 10 
years, it would be providing a self-service portal to the Yahoo ap-
plication engineers. Up until 2014, provisioning of tables and ap-
plications on the multi-tenant platform was via a manual on-board-
ing process, after a review of the application workload and careful 
capacity planning. In late 2014, inspired by external cloud provid-
ers, we decided to make the application developer experience fric-
tionless, and opened up Sherpa usage with a click of a button to 
anyone inside Yahoo. In the six months after the launch of the por-
tal to the company, we witnessed a 300% increase in tables being 
created and used in production.  

Self-service provisioning required tracking usage for chargeback. 
Additionally, we decided to establish and implement quotas, and 
build throttling for protection from rogue applications. In 2015 
[15], we launched a distributed and decentralized rate limiting so-
lution which could scale to thousands of SUs, and respond to 
changing traffic patterns in real-time, while adding only a few mi-
croseconds per API request.  

When we initially built Sherpa, each local SU was based on In-
noDB/MySQL. In later years, two factors motivated us to look be-
yond MySQL. First, we noticed a demand for varying read-write 
access patterns. The high read workload was changing and the per-
centage of write workload was increasing. Second, both hardware 
and software technology was evolving, with interesting solutions in 
throughput/latency trade-offs for varying query workloads. Given 
our pluggable architecture of storage engines, we experimented and 
in 2015 [16] replaced InnoDB with RocksDB [17], which was able 
to support our write heavy workloads with lower cost, and at the 
same time provide similar latency characteristics.  

Over time we encountered applications requiring lower latency 
SLAs, in the range of 1-2 millisecond response time for reads, much 
lower than the typical 10-20ms provided by the initial implementa-
tion of Sherpa. In 2015, we deployed a low-latency (LL) tier of the 
service, which was used to launch new advertising initiatives such 
as Gemini at Yahoo. Based on PCIe Flash SSDs, the LL tier had 5x 
lower 99%ile read latency, and was 6x cheaper than public cloud 
NoSQL implementations. Our LL implementation was the second 
big architectural change from the original PNUTS design, since we 

moved the routing logic directly into the client SDK, thus reducing 
a network hop for requests.  

Finally, one of the key contributions of the PNUTS/Sherpa program 
was furthering the technology and innovations on distributed 
pub/sub messaging. Since PNUTS, Yahoo has built and open-
sourced key pieces of distributed computing such as Apache 
ZooKeeper and Apache Bookkeeper. After years of research, de-
velopment and testing at scale, we replaced the original messaging 
system for Sherpa with Pulsar, which was built using Zookeeper 
and Bookkeeper. Yahoo open sourced Apache Pulsar in 2016 [18], 
which is also used internally at Yahoo as a messaging service for 
applications across many properties such as Mail, Finance, Sports, 
and Advertising. 

4.2.Scale and Numbers 
The first deployment of Sherpa was in two US data centers, and 
each region had 25 storage units. Over the last ten years, this has 
grown tremendously. Sherpa now runs in 6 Yahoo data centers 
around the world, with two or more availability zones within each, 
thus leading to more than 14 replicas. The total number of storage 
units, as last known to the authors, exceeds 5000.  

Almost every major web and mobile property at Yahoo depends on 
Sherpa as a globally distributed serving store. The tables have more 
than a trillion records in aggregate [16] and several PB of storage. 
Given the growth in usage, the transaction rates have peaked at 
more than 3 million reads per second, and hundreds of thousands 
of writes per second. 

Running, deploying, upgrading and maintaining a system at this 
scale requires operational expertise developed over the years. As 
last known to the authors, the Sherpa team follows an agile devel-
opment methodology with release milestones every six weeks. To 
contrast, Sherpa had just two releases six months apart in 2009.  

The agility in building and deploying such a large-scale system was 
achieved through significant investment in testing and automation. 
Integration testing of all Sherpa components, including validating 
performance and scale, is done in under 12 hours. The tests include 
cross-data center replication and data integrity tests.  

As new code is rolled out, in an automated but carefully phased 
approach, deployment scripts monitor for performance regressions 
and error rates. During upgrades, applications automatically get re-
directed to replica copies in the same geographic zone, thus main-
taining high availability. A successful deployment of new software 
across the 6 data centers and thousands of servers is done in under 
3 days. New features are typically rolled out with feature flags, and 
all changes are backwards compatible. 

4.3.Learnings 
Looking back after ten years, our vision of building PNUTS and 
Sherpa was successful because we failed many times along the way. 
With each failure, we heard the developer needs, saw the evolving 
use cases, observed the changing market trends, and hardened the 
system. The learnings allowed us to pivot our focus in making the 
system bigger, faster, better and richer in features.   

4.3.1.Make it Frictionless 
“It is important to remember your competitor is only a click away” 

As mentioned earlier in this paper, having a frictionless self-service 
portal and dashboard was a fundamental adoption and growth 
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driver for Sherpa within Yahoo. Public cloud services such as 
AWS, Azure and GCP have made it easy for applications engineers 
to use their platforms. These engineers are setting the same ease of 
use expectations for internal enterprise platforms. 

4.3.2.Design for your Customer Base 
“Simple can be harder than complex: You have to work hard to get 
your thinking clean to make it simple” 

Building a large distributed system is fun, innovative and highly 
challenging. The urge to build unique and differentiated solutions 
ends up hiding the long-term costs of maintaining complexity. We 
spoke to engineers across Yahoo! early in the project, and the 
overwhelming ask was for a highly available, durable, low latency, 
geo-replicated serving system. We listened to this input, and some 
of our best decisions were the features we chose not to build—e.g., 
support for complex joins or cross-partition transactions—in order 
to focus on the core requirements. 

Over time, requests for additional features were steady, and we 
added support for data versions, secondary indexes, sorted tables, 
etc.  That said, we didn’t always make the right trade-offs.  Some 
features we invested in (e.g., selective record replication), while 
unique, did not get high adoption due to complex integration 
challenges and simpler alternatives (e.g., separate table per region.)  

The choices we made for building blocks also influenced our 
thinking heavily, and arguably kept us from exploring avenues our 
customers would have benefited from.  Our storage units were 
initially based on MySQL since our focus was on distributed 
aspects of the system rather than the individual nodes.  We were 
careful to make the choice of local engine pluggable and this later 
allowed us to replace MySQL with RocksDB.  However, we never 
explored the space of richly structured values in our key-value 
model of data.  Given the huge success of Mongo, Cosmos DB, 
etc., it is surprising that we did not consider this dimension; it 
would likely have resonated well with many of the developers 
building on Sherpa.  Arguably, the choice of a relational SU, even 
though it was pluggable, kept us from thinking about non-relational 
abstractions for the data model. 

4.3.3.Building is Hard, Operating is Harder 
“Events are called inevitable only after they have occurred” 

Durability was a core principle while designing PNUTS and 
building Sherpa. When using Sherpa to store data, application 
engineers expected that the data is always accessible, and there is 
no data loss. Over the years we realized that data loss was 
inevitable. Data loss can be caused by a variety of reasons: failures, 
bugs in code, incorrect protocols, process oversights, missing tests, 
human error, data center or network outages. As the system 
matured, we built many tools and capabilities that made it possible 
for us to detect data loss/inconsistencies (e.g., offline record 
sampling and compare) and then fix (e.g., backup/restore) it 
automatically with little or no operator intervention.   

4.3.4.Fail Fast and Make Different Mistakes 
“Success is not final, failure is not fatal” 

As Sherpa grew in usage and global footprint, we discovered bugs 
and protocols that were not robust. For example, we had designed 
and implemented an asynchronous reconciliation protocol via the 
messaging system. This broadcast protocol would enable storage 
units to find the correct latest version of the record in case of late 

or lost messages. However, we discovered a flaw in the protocol 
that led to flooding of our messaging system when it was already 
in backlogged situations, thus causing a self-inflicted DoS attack. 
We corrected the protocol by making it out-of-band rather than 
using the messaging system.  

4.3.5.Think Big  
“… and dream bigger” 

In hindsight, this is perhaps the biggest lesson of all.  Early on, we 
realized the value of having a geo-replicated operational cloud 
database, especially with the unique feature set (e.g., sorted tables, 
secondary indexes) that PNUTS supported.  We had many 
conversations about making it available as a public cloud service, 
perhaps in conjunction with MOBStor, the internal storage service 
at Yahoo! for blobs. The discussions expanded to whether Yahoo! 
should get into public cloud computing. Unfortunately, none of 
these proposals came to pass. On a related note, the Sherpa journey 
was well under way before Yahoo! fully embraced open-source 
development, and the codebase had many dependencies on Yahoo! 
internal libraries.  We never were able to create an open-source 
version of PNUTS.  In hindsight, the impact could have been 
considerably more had we open-sourced the project or delivered it 
as a public cloud service. 

5.CLOUD OPERATIONAL STORES 
In recent years, we’ve seen rapid growth of cloud databases, 
including operational or transactional database systems such as 
PNUTS. The ones most closely related to PNUTS are Cosmos DB, 
Dynamo DB and Spanner. Cosmos DB and Dynamo DB are No 
SQL services like PNUTS, and Cosmos DB and Spanner offer 
native  geo-replication support.  All four of these services are 
designed from the ground up to be cloud-native, i.e., leverage 
benefits like elastic scalability of resources while tolerating various 
kinds of failure modes and latency/bandwidth challenges.. 

Aurora and SQL Hyperscale, while not focused on geo-replication, 
are noteworthy in that they embody cloud-native architectures 
designed to handle on-premise relational DBMS workloads. 

5.2.Cosmos DB 
Azure Cosmos DB [3] is a globally replicated key/value store. 
Cosmos DB is designed to allow customers to elastically and 
independently scale write and read throughput and storage across 
any number of data centers. It offers SLAs for throughput, latency, 
read and write availability. 

Cosmos DB’s concurrency model provides richer semantics than 
PNUTS, with five consistency models (strong, bounded staleness, 
session, consistent-prefix and eventual) and multi-item transactions 
that do not cross partitions (i.e., server boundaries).  

Another notable feature of Cosmos DB is the rich underlying 
document model for values, with automatic schema-agnostic 
indexing.  Like PNUTS, Cosmos DB does automatic sharding and 
load balancing, and offers strong support for geo-replication.  
Whereas PNUTS uses primary copy concurrency control, Cosmos 
DB uses nested consensus with dynamic quorums with a Bayou 
style multi-master replication protocol. 

5.3.Dynamo DB 
Amazon’s Dynamo DB [19] is a single region replicated key/value 
store (i.e., the core replication protocol is scoped to a single region) 
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that can be configured across multiple regions by doing double 
writes. A defining feature of Dynamo DB is its “eventual 
consistency” model: if you write data, eventually all reads will 
observe that write. This is different than our timeline consistency 
model: 

 No bounded staleness: Dynamo DB offers the option to 
read the latest written data, or to read stale data. But there 
is no way to specify a bound on the staleness of the data. 
PNUTS provides a read-critical operation that allows 
clients to decide how much staleness is acceptable. 

 No read-modify-write transactions: All writes in 
Dynamo DB are blind writes. PNUTS provides a test-
and-set write that can be used to implement per-record 
ACID transactions, as described above. 

5.4.Spanner 
Google’s Spanner [4] is a geo-replicated relational database. There 
are several differences with PNUTS: 

 SQL: Spanner’s API is based on SQL. The PNUTS API 
provides CRUD operations. 

 Multi-item transactions: Spanner provides ACID read-
modify-write transactions that can involve any number of 
records in the database. PNUTS transactions are limited 
to a single record. While Spanner’s transactions are more 
powerful than those in PNUTS, multi-record transactions 
can lead to unexpected performance problems since the 
risk of lock contention increases as the scope of the 
transaction increases. 

 Commits require WAN communication: Spanner 
commits transactions by executing a multi-data center 
Paxos round. If the data centers are geographically 
distributed, this can lead to higher latencies than PNUTS 
transactions, which require only in-data center 
communication between the storage unit and YMB. 

5.4.Aurora 
AWS Aurora [20] is a relational DBMS based either on MySQL or 
PostgreSQL. Amazon provides more features, with the notable 
exception of geo-replication, but less scalability, than PNUTS. 

Aurora provides the standard MySQL and PostgresSQL APIs, and 
support for all their operations, such as multi-record transactions 
and expressive queries in SQL. PNUTS provides a CRUD API with 
more limited reads and writes, but allows for tables to be sorted and 
sharded across multiple globally distributed locations, with near 
real-time update synchronization. 

All operations in Aurora are confined to a single “cluster volume,” 
which is a database that currently cannot grow larger than 64 
terabytes (TB). PNUTS tables can grow to arbitrary size. 

5.5.SQL Hyperscale 
Microsoft’s Azure SQL Hyperscale [21] is a relational DBMS 
based on SQL Server. Like Aurora, it provides more features than 
PNUTS, again, with the exception of global geo-replication. 

Azure SQL provides all the capabilities of SQL Server (full 
transactional support, SQL queries, etc.), with a “Hyperscale” 

architecture that has no fixed size limits and has been tested at 100s 
of TBs. 

6.RELATED WORK 
The original PNUTS paper [6] lists a complete set of references. 
Here we highlight a few especially influential papers. 

The Bigtable paper [22] introduced and popularized many concepts 
around very large-scale structured data storage as represented by 
the “NoSQL” movement. Many of the architectural principles of 
BigTable, such as the idea of tablets of data that can be moved 
between servers for load balancing, influenced the design of 
PNUTS. 

The Dynamo paper [19] introduced the notion of a data store based 
on eventual consistency. Although our consistency model was 
based on the stronger notion of timeline consistency, we often 
discussed Dynamo during the design phase of PNUTS. In 
particular, we strove to understand the benefits, and costs, of 
adopting a consistency model that was stronger than eventual 
consistency. We also decided during the development of the system 
to support an eventual consistency mode as an option. 

Distributed hash tables (DHT), like Chord [23] provided an 
alternative architecture for scalable distributed databases. Unlike 
PNUTS, which allows arbitrary assignment of tablets to servers, 
Chord uses a consistent hashing scheme to deterministically map 
data to servers. Very early in the design phase of PNUTS we 
considered a DHT-like model. However, we decided that the extra 
flexibility provided by arbitrary tablet assignment gave us 
advantages for load balancing and latency (as we could avoid 
searching the Chord ring for data). 

7.KEY CONTRIBUTORS 
PNUTS began as a Yahoo! Labs project, and quickly became a 
collaboration with the product team that led to the Sherpa 
production system. Contributors from Labs include Parag Agrawal, 
Phil Bohannon, Jianjun Chen, Brian Cooper, Sudarshan Kadambi, 
Nick Puz, Raghu Ramakrishnan, Adam Silberstein, Utkarsh 
Srivastava, Erwin Tam, Eric Vee and Ramana Yerneni. Rodrigo 
Fonseca, Hans-Arno Jacobsen and Ymir Vigfusson worked on 
PNUTS while visiting Yahoo! Labs, and Hector Garcia-Molina 
was at Stanford. 

Many individuals in the Yahoo! product team, across engineering, 
infrastructure and operations organizations, were a core part of the 
team and contributed to building, deploying and running Sherpa. 
We would like to call out the key contributors to the Sherpa system.  

In Engineering, the following were responsible for building the 
features listed in this paper: Andrews Albert, Kevin Athey, Craig 
Bair, Del Bao, Maurice Barnum, Subramanyeswara Bhavirisetty, 
Roger Bush, Jayadev Chandrasekhar, Rupesh Chhatrapati, John 
Corwin, Kevin Dalley, Amanveer Dhillon, Joe Francis, Zeke 
Huang, Mohsin Khan, Eun-Gyu Kim, Varad Kishore, Prashant 
Kumar, Rajesh Kumar, David Lomax, Mukund Madhugiri, Marco 
Mar, Patrick Marion, Brad McMillen, Matteo Merli, Masood 
Mortazavi, Monoreet Mutsuddi, Michi Mutsuzaki, P.P.S. Narayan, 
Chuck Neerdaels, Jothi Padmanabhan, Yi Pan, Varalaxmi 
Raveendar, Farooque Sayed, Priyanka Shah, Scott Simpson, Subbu 
Subramaniam, Prasant TR Rao, Adwait Tumbde, Aditya Umrani, 
Tao Wang, Daniel Weaver, Kenneth Yin and Michael Yuvrovitsky. 
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Defining the roadmap aligned to business needs, while managing 
the ever-growing expectations of the engineers using Sherpa was 
not an easy task. This job was performed by the team of product 
managers: Satheesh Nanniyur, Toby Negrin and Sambit Samal. 

Running Sherpa at scale with astonishing growth, especially in the 
initial years when the system was still maturing, required true grit, 
determination, passion and persistence. The operations team 
members, past and present— Mohammed Abdurahiman, Brian 
Adams, Shabana Azmi, Lohith BK, Jennifer Davis, Vivian 
Fernandez, Mike Marino, David Pippenger, Ludwig Pummer, 
Smritidhara Saha, Venkatasubramanian Venkataraman — have 
kept the system humming and growing for the last ten years. 

Finally, Sherpa had key executive support through the years. 
Usama Fayyad, David Filo, Prabhakar Raghavan and Jay Rossiter 
from the executive team were strong sponsors of the technology. 
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