
PNUTS to Sherpa: Lessons from Yahoo!’s Cloud Database

Brian F. Cooper
brianfrankcooper@gmail.com

P.P.S. Narayan
ppsnarayan@gmail.com

Raghu Ramakrishnan
raghu@microsoft.com

Utkarsh Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, Ramana Yerneni 1

ABSTRACT
In this paper, we look back at the evolution of Yahoo!’s geo-repli-
cated cloud data store from a research project called PNUTS to a
globally deployed production system called Sherpa, share some of
the lessons learned along the way, and finally, compare PNUTS
with current operational cloud stores.

PVLDB Reference Format:
B.F. Cooper, P.P.S. Narayan, R. Ramakrishnan, U. Srivastava, A.
Silberstein, P. Bohannon, H-A. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. PNUTS to Sherpa: Lessons from Yahoo!’s Cloud Da-
tabase. PVLDB, 12(12) : 2300 - 2307, 2019.
DOI: https://doi.org/10.14778/3352063.3352146

1.INTRODUCTION
The vision of PNUTS in 2006 was to design and build a massively
parallel, globally distributed database service for managing appli-
cation state at internet scale, delivered as a cloud service for teams
building Yahoo! applications. It was part of a broader evolution of
the data ecosystem at Yahoo!, going beyond conventional rela-
tional database systems, to support three distinct scenarios:

 A highly available, globally replicated operational store
to support the company’s internet scale applications,

 Cost-effective storage of both application data and ob-
servational data (web logs, telemetry), and

 Extensive analytics to drive business decisions and im-
prove operational efficiencies.

PNUTS addressed the first scenario. In addition, the company in-
vested in building an object store called MObStor [1] (e.g., for
holding attachments from Yahoo! Mail) and of course Hadoop [2]
for analytics. The production version of PNUTS and Hadoop

1 Current affiliations: Apple—P.P.S. Narayan, Nick Puz; Facebook—Daniel Weaver; Google—Brian Cooper, Adam Silber-
stein, Utkarsh Srivastava, Ramana Yerneni; Grail—Philip Bohannon; Microsoft—Raghu Ramakrishnan; U. Toronto—Hans-
Arno Jacobsen

could be thought as Yahoo!’s operational database and data ware-
house, respectively.

At the time we set out to design and build PNUTS, Yahoo! relied
on a specialized backend service for managing user logins and on
relational databases for other applications. There was an acute
need for an operational store that was supported as a cloud service
for developers to build on that offered sufficient flexibility to meet
the needs of Yahoo!’s wide range of applications. The following
were among the top asks : (1) A highly available cloud service ra-
ther than software that developers needed to host themselves, (2)
low-latency geo-replication to handle Yahoo!’s global user base
(which often traveled, requiring dynamic re-affinitization of re-
lated data across regions), and (3) simple semantics for updates
with some user-control (e.g., changes to an object appear con-
sistent; a writer always sees the result upon a subsequent read).

Surprisingly, there was willingness to sacrifice some powerful
RDBMS features in exchange for such a service, especially given
cost and performance considerations. Examples include ACID
transactions across multiple objects and complex join queries.
Therefore, we designed PNUTS to be a No SQL service, and this
proved to be a good choice for Yahoo!’s operational needs.

Over time, as the service matured, we got requests for additional
features such as sorted tables and secondary indexes, which sug-
gest that the RDBMS feature set is indeed useful; it is simply the
case that in many scenarios, developers are willing to trade some
features for cost, performance and availability. (We discuss our
learnings further in Section 4.3.)

Building a complex system required us to approach it in phases, and
below we describe the journey of design, implementation and evo-
lution of PNUTS over several years. We then reflect upon lessons
learned and briefly look at the current landscape of public cloud
data serving services. The productionized version of PNUTS is
called “Sherpa,” and we use the two names interchangeably
throughout the paper.

2.DATA MODEL AND OPERATIONS
In this section, we outline the data model and operations supported
in PNUTS.

This work is licensed under the Creative Commons Attribution-NonCommer-
cial-NoDerivatives 4.0 International License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any use beyond
those covered by this license, obtain permission by emailing info@vldb.org.
Copyright is held by the owner/author(s). Publication rights licensed to the
VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352146

2300

2.1.Data Model
PNUTS supports a basic key-value data model in which values are
simply records as in a traditional RDBMS. Records are automati-
cally stored in partitions, which are re-balanced by the system for
scale-out, and users can control data organization by optionally
specifying a composite key for sorting a given record collection (ta-
ble). Secondary indexes can also be specified for efficient scatter-
gather operations.

2.2.Transactions
Transactions in PNUTS provide strongly consistent reads and
writes to a single record. Each record goes through a time-ordered
sequence of versions, where each write (insert, update or delete)
creates a new version. All readers of the record will observe the
same sequence of versions, regardless of which replica they read.
We call this model “timeline consistency.” We provide no guaran-
tees about cross-record consistency.

The architecture supports a generalization of timeline consistency
in which we allow a group of records identified by a common key
value to be transactionally modified. Intuitively, all records in such
a “record group” would be in the same physical partition and share
the same timeline. This generalization was not implemented in
Sherpa.

We chose the record timeline consistency model because it fit our
requirements, while still providing high performance and scalabil-
ity. The use cases we had for PNUTS could be satisfied with trans-
actions updating a single record. For example, a user metadata da-
tabase only requires updates to a single user’s metadata at a time; a
shopping listings database only requires updates to a single listing
at a time.

The model provides scalability, because we can always add more
independent computing resources to scale up the number of inde-
pendent transactions we could execute. And by avoiding expensive
protocols like two-phase commit, the model provides high perfor-
mance.

When we were designing PNUTS, many replicated database sys-
tems provided either:

 Full database consistency: Transactions can read and
write multiple records with ACID guarantees.

 Best effort consistency: Replicas were consistent in the
common case, but could diverge even under normal (e.g.,
non-buggy) operation.

Timeline consistency provides a useful intermediate guarantee.
Writes to a single record are always consistent, unlike best effort
consistency. But the complex machinery and performance cost of
providing full database consistency can be avoided.

As we built the system, we realized that some use cases could ben-
efit from eventual consistency. These use cases had tighter require-
ments for write latency, and were able to tolerate “last writer wins”
semantics in the case of concurrent writes. Thus, we added a mode
that was weaker than timeline consistency: replicas may diverge
from a “canonical” timeline of versions, but would eventually syn-
chronize and store the same value.

2.3.Reads
The read API allows (indeed, forces) the client to make an explicit
trade-off between latency and freshness. In particular, all reads are
“consistent” (because they return a valid version from the canonical
version timeline for the record). However, a client can choose to
accept a potentially stale value in return for lower latency. The API
provides three kinds of reads:

 Read-latest: returns the latest version of the record that
existed at the time the read was initiated.

 Read-critical: returns a version of the record that is no
staler than a client-specified version number.

 Read-any: returns any version of the record.

PNUTS records are geographically replicated, with one replica des-
ignated as the master (more details are in Section 3.3). A read-latest
call must read from the master, since only the master knows for sure
what the latest version is. If the master is far from the reader, the
network propagation delay adds to the latency of the read. In con-
trast, read-critical can often read from the local replica, reducing
the chance that a wide-area network hop is needed. Read-any can
always read from the local replica.

2.4.Writes
There are two kinds of writes in the system:

 Blind writes: A write that always succeeds.

 Test-and-set writes: A write that only succeeds if the lat-
est version of the record matches the version specified by
the client.

Again, we have exposed to the client a trade-off between perfor-
mance and transactional guarantees. Blind writes always succeed
on the first try, but it is possible that your update is overwritten by
another client writing concurrently. This is perfectly acceptable for
many use cases; for example, a user updating their password in the
user database is likely only performing one of these transactions at
a time.

In contrast, many transactions need read-modify-write semantics:
the data written depends on a previous read. An example is reading,
and then incrementing, the view count on a shopping listing. Test-
and-set writes allow clients to implement read-modify-write trans-
actions by following these steps:

1. Read a record, including its version number V

2. Test-and-set write the record, specifying V

Step 2 will fail, effectively causing a transaction abort, if another
write intervenes between step 1 and step 2. This optimistic concur-
rency mechanism does not require database locks, which helps per-
formance by avoiding lock contention. However, as with all opti-
mistic concurrency schemes, if there is high write contention, per-
formance will decrease as many transactions have to abort in step
2 and be retried.

3.SYSTEM IMPLEMENTATION
We now describe the architecture and implementation of the sys-
tem. The primary requirements that drove our design choices were:

 Elastic scalability

2301

 Geographic replication

 Low latency reads and writes

 Strong, record-level consistency

3.1.Storage in a Single Data Center
In order to achieve scalability, we partition a database table into
“tablets,” each containing a set of records We then scatter these
tablets across many independent servers, called “storage units,”
(SUs) in a data center. Reads and writes for a record are served by
the storage unit that hosts the tablet containing that record. Storage
units consist of an RDBMS database (originally InnoDB/MySQL)
stored on locally-attached disk, and a software layer that imple-
ments our read and write protocols and interacts with MySQL stor-
age. Each storage unit can hold many tablets from diverse tables.
Because our workloads are easily partitionable along record bound-
aries, we achieve high scale simply by having many storage units.

Next, to make this scalability elastic, we make it possible to move
tablets between storage units. If we need to increase the serving
capacity of the system, we can add more storage units, and move
some of the tablets to the new servers. Elastic scalability only works
if we can alleviate hotspots: adding servers has limited value if most
operations still hit a single server. Thus, we make the assignment
of tablets to servers completely arbitrary (rather than, say, using a
deterministic hash-based assignment). Thus, if a storage unit is
overloaded, we move some of its tablets to less loaded servers to
spread out the hotspot. We also split a tablet into smaller partitions
if multiple hot rows are in the same tablet. The decision of which
servers host which tablets is made by the “tablet controller,” which
is a singleton server (with a warm standby) in each data center.

The arbitrary assignment of tablets to storage units means we need
a way to route requests for a record to the correct storage unit. This
is accomplished by adding a layer of “routers” that know the map-
ping from record keys to tablets, and from tablets to servers. A cli-
ent that wants to read or write a record contacts a router, which
looks up the tablet and storage unit in its internal data structures and
forwards the request to the appropriate server. The mapping of tab-
lets to servers is determined by the tablet controller, and the routers
merely cache a copy of this mapping.

Tables can be configured as hash or ordered tables. For hash tables,
we divide the space of hash values into intervals, and each interval
corresponds to a tablet. We hash each record key and find the inter-
val that the key hash falls into; that is the tablet that owns the record.
Ordered tables are implemented in a similar manner, except without
hashing: tablets correspond to intervals of the key space, and the
interval containing a key determines the tablet that owns the record.
In this way, we can use the same infrastructure for defining tablet
boundaries, splitting tablets, and assigning keys to tablets for both
hash and ordered tables.

3.2.Replication
So far, we have described the storage of records in a single dat cen-
ter. In fact, tablets (and thus records) are replicated to multiple data
centers. This geographic replication is achieved by log-shipping: a
storage unit writes updates for a tablet to a write-ahead log, which
is then forwarded to servers in other data centers hosting replicas
of that tablet. We decided to implement our write-ahead log using
a pub/sub service that is separate from the storage unit. This service

is called the Yahoo! Message Broker (YMB). We used a separate
pub/sub service for a few reasons:

 YMB provides reliable publishing and delivery of mes-
sages. It does this by storing copies of published mes-
sages on multiple servers in the data center. Thus, we en-
sure that redo records in the log are fault tolerant without
having to make the storage unit itself more complex.

 The replication mechanism is a natural fit for pub/sub,
and thus it made architectural sense to separate serving
(e.g., the storage unit) from replication (e.g., YMB).

 Separating the write-ahead log from the storage unit al-
lows us to deal with some consequences of storage unit
failures by writing directly to YMB, as described in the
next section.

 We were able to repurpose an existing Yahoo! pub/sub
infrastructure for the first version of the YMB, accelerat-
ing development of the system.

Because of our desire for low-latency transactions, we elected to
consider writes committed once they had been acknowledged by
the local YMB, rather than waiting for the actual replication to
other data centers to occur. This is in contrast to some other systems
[3,4] that consider writes committed only after a wide-area consen-
sus protocol (like Paxos [5]) had completed among multiple data
centers. The trade-off we made was to accept that some catastrophic
failures (like a data center burning down) would lead to data loss,
in return for lower write latency in the common case.

The system provided a “selective replication” option both for tables
and records. Tables need not have copies in all data centers or rep-
licas. Depending on the needs of the application a table is replicated
to at least two data centers. And over time this replication footprint
could be changed, administratively, to add or remove data centers.

Similarly, some records simply wouldn’t be replicated to some data
centers. This allowed us to save resource costs: if a particular record
was never accessed from a region, we would not pay the bandwidth
and storage costs of keeping an up-to-date copy in that region. Also,
for regulatory reasons, some data cannot be stored in certain places,
and selective replication allowed us to support that.

3.3.Record Masters
Our timeline consistency model is implemented by assigning a
“master” copy on a per-record basis. For example, the master of
Brian’s record may be in California, while the master of Raghu’s
record is in Washington. The master for a record can change over
time: if Raghu goes on a business trip to England, and the applica-
tion writes to his record now come from his new locality instead of
Washington, PNUTS will automatically move the mastership (us-
ing a robust, fault-tolerant protocol).

Mastership is recorded in the record itself in a hidden field. When
a storage unit receives a request to write a record, it can only exe-
cute that write if it is the master. Otherwise, the write is forwarded
to the actual master. Similarly, storage units decide whether they
can serve read-latest reads based on whether they are the master.

Changes to the mastership use the same write mechanism as normal
writes. That is, to change mastership, the master writes the identity
of a different replica in the “mastership” field of the record. All
replicas, including the new master, will see this update and thus

2302

learn of the change. In theory, this reduces the complexity of the
system, since we only need a single mechanism for both writes and
mastership changes. In practice, as we implemented the system, we
found that handling failures forced us to re-introduce some com-
plexity. If a storage unit hosting a replica had a hard failure, such
that it could no longer commit writes, then writes to the record
would be blocked until we forced a mastership change to another
replica. This was accomplished by having the tablet controller write
a mastership change directly to the YMB write-ahead log. Doing
this properly is hard, because it requires correctly detecting that the
storage unit has failed and will not come back to life and start com-
mitting writes again.

In order to provide primary key constraints, we need a master for
records that do not yet exist. That master will ensure that test-and-
set writes inserting a record for the first time are correctly executed.
Since the record does not exist, we cannot use the record to store
the master’s identity. Instead, mastership is assigned at the tablet
level. Replicas of a tablet store the same data, and we assign one
tablet in each set of replicas as the master for any newly inserted
records in that set. Tablet mastership can also change. As with rec-
ord mastership, a hard failure of a storage unit results in the tablet
controller forcing a mastership change by writing directly to YMB.

3.4.Failure handling
We now summarize how the system deals with different types of
failures.

3.4.1.Storage unit failures
Storage units can fail in a variety of ways. The machine could ex-
perience a fail-stop failure, like a crashed server process or a failed
power supply. A disk could become corrupted. Faulty RAM could
corrupt in-memory state. For most of these failure modes, we rely
on standard single-server fault tolerance: RAID arrays to tolerate
loss of a single disk, checksums to deal with memory corruption,
and so on. However, a key principle of the system is that it survives
complete machine failures, so data is replicated to another machine
in another data center. Whenever there is a full storage unit failure,
reads can fail over to the other copy, and (after a record mastership
change) so can writes.

3.4.2 YMB broker failures
The YMB can also experience failures, either in the server (a crash)
or in the on-disk storage. Again, we utilize redundancy. Unlike the
storage unit, there is no easy way to replicate YMB state across data
centers, since it is the YMB itself that is carrying out the replication
task. As a result, we replicate at the disk level: each YMB update
is written to multiple disks on multiple servers. Then, an individual
YMB machine failure is not sufficient to cause a committed trans-
action to be lost.

3.4.3 Whole data center failures
Occasionally, entire data centers fail, for example due to a natural
disaster or network outage. One reason to replicate data to multiple
data centers in multiple geographic regions is to survive such a
large-scale event. A natural disaster which devastates a geographic
region can be tolerated because data has been replicated elsewhere
on the globe. One limitation of our approach is that a transaction is
considered committed when it is written to the YMB in the same
data center as the storage unit where the write originated. This
means that transactions which had not yet been replicated outside
the data center may be lost in the case of a whole data center failure.
We made this trade-off because data center failures are rare, and

committing only to a YMB in the same data center reduces write
latency.

3.4.4 Lost pub/sub messages
It is possible that a message sent by the YMB fails to arrive at the
destination broker. For example, a network issue might cause the
message to timeout, or the receiving broker may crash before per-
sisting the message. Because the YMB stores messages locally until
receiving positive acknowledgement of delivery everywhere, we
can recover from a lost message by simply redelivering it.

4.EVOLUTION FROM PNUTS TO SHERPA
The PNUTS system was described in two 2008 papers—the system
overview [6] and the description [7] of sorted tables, one of the dis-
tinctive features of the system. Subsequent PNUTS papers reported
on parallelizing range queries [8], view maintenance [9], user-con-
trolled geo-replication [10], and a benchmark designed to evaluate
cloud-serving systems such as PNUTS [11].

On June 1st, 2009, we announced the launch of the production ver-
sion Sherpa [12], going public with Yahoo!’s investment in a glob-
ally replicated hosted NoSQL cloud service. The architecture of
Sherpa was, and even today is, closely aligned with the PNUTS
paper [6]. The loosely coupled architecture of the storage units
(SU), routers, tablet controller and messaging system was well-
suited for horizontal scalability at the various layers. Application
engineers used the client SDKs to connect and perform basic
RESTful operations of Get (read), Set (write, insert), Delete and
Scan. Version 1.0 of Sherpa supported both timeline consistency
and eventual consistency for distributed hash tables.

4.1.The Journey
In 2010, we announced [13] support for distributed ordered tables,
described in [7], so that applications can access a set of records
based on a primary key prefix (e.g., retrieve the last 10 status up-
dates by user=ppsn). Under the covers, ordered tables were parti-
tioned by primary key ranges rather than the hash ranges of the pri-
mary key. While hashing has a nice property of uniform distribu-
tion, primary key based partitioning leads to imbalance of load and
size of tablets. Therefore, it was imperative that we built a load bal-
ancer, which to this day, automatically balances the space utiliza-
tion and IO load of the SUs across a cluster. Each SU keeps track
of the “heat” metric for itself and its tablets based on measurements
like latency, requests, # of records, and size of data. The load bal-
ancer used this heat metric to move tablets from hot SUs to cold
ones, keeping the overall heat in the system near the average. The
tablet move algorithm enabled balancing without any impact to ap-
plications requests for the data. The load balancer could also per-
form splits or merges on tablets as another option to balance the
heat metric.

Within two years of launch, Sherpa was storing and serving data
for properties and applications within Yahoo such as yahoo.com,
Yahoo! News, Mobile, Social, Video, Sports, and Shopping. As
bigger applications started using Sherpa, we decided to build isola-
tion mechanisms into the multi-tenant hosted architecture. With the
introduction of SU banks, tables could be isolated to a subset of
SUs, such that applications with certain read-write patterns would
not negatively impact smaller applications in the cluster.

One of the original use cases envisioned for PNUTS was user data
storage. Adhering to local legal and jurisdictional considerations
for global applications with global users meant building the right

2303

data governance knobs. Selective record replication was an im-
portant feature we introduced for applications to choose where to
store full copies of records dynamically. In 2011 [14], Sherpa be-
came the de facto store for all new user data in Yahoo which re-
quired data governance rules.

The original design of the system did not support versioning, and
primarily relied on multiple copies of data to recover from disk,
node, cluster or data center failure. We soon realized that it was
equally important to protect the data from inadvertent bugs intro-
duced either by Sherpa engineers or application engineers that may
accidentally corrupt or erase data. In 2011 [14], we introduced the
capability to perform regular table backups to off-line storage, from
which applications could restore records or tables to a point in time.

By 2012, we introduced secondary indexes with materialized fields
that enabled applications to go beyond simple primary key lookup
queries. The indexes were maintained asynchronously, so that ap-
plication perceived latency for updates were fast. While the ideas
were novel, index maintenance added a layer of complexity to our
consistency algorithms, and also made it complex for application
engineers to reason with CAP trade-offs during reads.

If we had to call out one pivotal feature of Sherpa in the last 10
years, it would be providing a self-service portal to the Yahoo ap-
plication engineers. Up until 2014, provisioning of tables and ap-
plications on the multi-tenant platform was via a manual on-board-
ing process, after a review of the application workload and careful
capacity planning. In late 2014, inspired by external cloud provid-
ers, we decided to make the application developer experience fric-
tionless, and opened up Sherpa usage with a click of a button to
anyone inside Yahoo. In the six months after the launch of the por-
tal to the company, we witnessed a 300% increase in tables being
created and used in production.

Self-service provisioning required tracking usage for chargeback.
Additionally, we decided to establish and implement quotas, and
build throttling for protection from rogue applications. In 2015
[15], we launched a distributed and decentralized rate limiting so-
lution which could scale to thousands of SUs, and respond to
changing traffic patterns in real-time, while adding only a few mi-
croseconds per API request.

When we initially built Sherpa, each local SU was based on In-
noDB/MySQL. In later years, two factors motivated us to look be-
yond MySQL. First, we noticed a demand for varying read-write
access patterns. The high read workload was changing and the per-
centage of write workload was increasing. Second, both hardware
and software technology was evolving, with interesting solutions in
throughput/latency trade-offs for varying query workloads. Given
our pluggable architecture of storage engines, we experimented and
in 2015 [16] replaced InnoDB with RocksDB [17], which was able
to support our write heavy workloads with lower cost, and at the
same time provide similar latency characteristics.

Over time we encountered applications requiring lower latency
SLAs, in the range of 1-2 millisecond response time for reads, much
lower than the typical 10-20ms provided by the initial implementa-
tion of Sherpa. In 2015, we deployed a low-latency (LL) tier of the
service, which was used to launch new advertising initiatives such
as Gemini at Yahoo. Based on PCIe Flash SSDs, the LL tier had 5x
lower 99%ile read latency, and was 6x cheaper than public cloud
NoSQL implementations. Our LL implementation was the second
big architectural change from the original PNUTS design, since we

moved the routing logic directly into the client SDK, thus reducing
a network hop for requests.

Finally, one of the key contributions of the PNUTS/Sherpa program
was furthering the technology and innovations on distributed
pub/sub messaging. Since PNUTS, Yahoo has built and open-
sourced key pieces of distributed computing such as Apache
ZooKeeper and Apache Bookkeeper. After years of research, de-
velopment and testing at scale, we replaced the original messaging
system for Sherpa with Pulsar, which was built using Zookeeper
and Bookkeeper. Yahoo open sourced Apache Pulsar in 2016 [18],
which is also used internally at Yahoo as a messaging service for
applications across many properties such as Mail, Finance, Sports,
and Advertising.

4.2.Scale and Numbers
The first deployment of Sherpa was in two US data centers, and
each region had 25 storage units. Over the last ten years, this has
grown tremendously. Sherpa now runs in 6 Yahoo data centers
around the world, with two or more availability zones within each,
thus leading to more than 14 replicas. The total number of storage
units, as last known to the authors, exceeds 5000.

Almost every major web and mobile property at Yahoo depends on
Sherpa as a globally distributed serving store. The tables have more
than a trillion records in aggregate [16] and several PB of storage.
Given the growth in usage, the transaction rates have peaked at
more than 3 million reads per second, and hundreds of thousands
of writes per second.

Running, deploying, upgrading and maintaining a system at this
scale requires operational expertise developed over the years. As
last known to the authors, the Sherpa team follows an agile devel-
opment methodology with release milestones every six weeks. To
contrast, Sherpa had just two releases six months apart in 2009.

The agility in building and deploying such a large-scale system was
achieved through significant investment in testing and automation.
Integration testing of all Sherpa components, including validating
performance and scale, is done in under 12 hours. The tests include
cross-data center replication and data integrity tests.

As new code is rolled out, in an automated but carefully phased
approach, deployment scripts monitor for performance regressions
and error rates. During upgrades, applications automatically get re-
directed to replica copies in the same geographic zone, thus main-
taining high availability. A successful deployment of new software
across the 6 data centers and thousands of servers is done in under
3 days. New features are typically rolled out with feature flags, and
all changes are backwards compatible.

4.3.Learnings
Looking back after ten years, our vision of building PNUTS and
Sherpa was successful because we failed many times along the way.
With each failure, we heard the developer needs, saw the evolving
use cases, observed the changing market trends, and hardened the
system. The learnings allowed us to pivot our focus in making the
system bigger, faster, better and richer in features.

4.3.1.Make it Frictionless
“It is important to remember your competitor is only a click away”

As mentioned earlier in this paper, having a frictionless self-service
portal and dashboard was a fundamental adoption and growth

2304

driver for Sherpa within Yahoo. Public cloud services such as
AWS, Azure and GCP have made it easy for applications engineers
to use their platforms. These engineers are setting the same ease of
use expectations for internal enterprise platforms.

4.3.2.Design for your Customer Base
“Simple can be harder than complex: You have to work hard to get
your thinking clean to make it simple”

Building a large distributed system is fun, innovative and highly
challenging. The urge to build unique and differentiated solutions
ends up hiding the long-term costs of maintaining complexity. We
spoke to engineers across Yahoo! early in the project, and the
overwhelming ask was for a highly available, durable, low latency,
geo-replicated serving system. We listened to this input, and some
of our best decisions were the features we chose not to build—e.g.,
support for complex joins or cross-partition transactions—in order
to focus on the core requirements.

Over time, requests for additional features were steady, and we
added support for data versions, secondary indexes, sorted tables,
etc. That said, we didn’t always make the right trade-offs. Some
features we invested in (e.g., selective record replication), while
unique, did not get high adoption due to complex integration
challenges and simpler alternatives (e.g., separate table per region.)

The choices we made for building blocks also influenced our
thinking heavily, and arguably kept us from exploring avenues our
customers would have benefited from. Our storage units were
initially based on MySQL since our focus was on distributed
aspects of the system rather than the individual nodes. We were
careful to make the choice of local engine pluggable and this later
allowed us to replace MySQL with RocksDB. However, we never
explored the space of richly structured values in our key-value
model of data. Given the huge success of Mongo, Cosmos DB,
etc., it is surprising that we did not consider this dimension; it
would likely have resonated well with many of the developers
building on Sherpa. Arguably, the choice of a relational SU, even
though it was pluggable, kept us from thinking about non-relational
abstractions for the data model.

4.3.3.Building is Hard, Operating is Harder
“Events are called inevitable only after they have occurred”

Durability was a core principle while designing PNUTS and
building Sherpa. When using Sherpa to store data, application
engineers expected that the data is always accessible, and there is
no data loss. Over the years we realized that data loss was
inevitable. Data loss can be caused by a variety of reasons: failures,
bugs in code, incorrect protocols, process oversights, missing tests,
human error, data center or network outages. As the system
matured, we built many tools and capabilities that made it possible
for us to detect data loss/inconsistencies (e.g., offline record
sampling and compare) and then fix (e.g., backup/restore) it
automatically with little or no operator intervention.

4.3.4.Fail Fast and Make Different Mistakes
“Success is not final, failure is not fatal”

As Sherpa grew in usage and global footprint, we discovered bugs
and protocols that were not robust. For example, we had designed
and implemented an asynchronous reconciliation protocol via the
messaging system. This broadcast protocol would enable storage
units to find the correct latest version of the record in case of late

or lost messages. However, we discovered a flaw in the protocol
that led to flooding of our messaging system when it was already
in backlogged situations, thus causing a self-inflicted DoS attack.
We corrected the protocol by making it out-of-band rather than
using the messaging system.

4.3.5.Think Big
“… and dream bigger”

In hindsight, this is perhaps the biggest lesson of all. Early on, we
realized the value of having a geo-replicated operational cloud
database, especially with the unique feature set (e.g., sorted tables,
secondary indexes) that PNUTS supported. We had many
conversations about making it available as a public cloud service,
perhaps in conjunction with MOBStor, the internal storage service
at Yahoo! for blobs. The discussions expanded to whether Yahoo!
should get into public cloud computing. Unfortunately, none of
these proposals came to pass. On a related note, the Sherpa journey
was well under way before Yahoo! fully embraced open-source
development, and the codebase had many dependencies on Yahoo!
internal libraries. We never were able to create an open-source
version of PNUTS. In hindsight, the impact could have been
considerably more had we open-sourced the project or delivered it
as a public cloud service.

5.CLOUD OPERATIONAL STORES
In recent years, we’ve seen rapid growth of cloud databases,
including operational or transactional database systems such as
PNUTS. The ones most closely related to PNUTS are Cosmos DB,
Dynamo DB and Spanner. Cosmos DB and Dynamo DB are No
SQL services like PNUTS, and Cosmos DB and Spanner offer
native geo-replication support. All four of these services are
designed from the ground up to be cloud-native, i.e., leverage
benefits like elastic scalability of resources while tolerating various
kinds of failure modes and latency/bandwidth challenges..

Aurora and SQL Hyperscale, while not focused on geo-replication,
are noteworthy in that they embody cloud-native architectures
designed to handle on-premise relational DBMS workloads.

5.2.Cosmos DB
Azure Cosmos DB [3] is a globally replicated key/value store.
Cosmos DB is designed to allow customers to elastically and
independently scale write and read throughput and storage across
any number of data centers. It offers SLAs for throughput, latency,
read and write availability.

Cosmos DB’s concurrency model provides richer semantics than
PNUTS, with five consistency models (strong, bounded staleness,
session, consistent-prefix and eventual) and multi-item transactions
that do not cross partitions (i.e., server boundaries).

Another notable feature of Cosmos DB is the rich underlying
document model for values, with automatic schema-agnostic
indexing. Like PNUTS, Cosmos DB does automatic sharding and
load balancing, and offers strong support for geo-replication.
Whereas PNUTS uses primary copy concurrency control, Cosmos
DB uses nested consensus with dynamic quorums with a Bayou
style multi-master replication protocol.

5.3.Dynamo DB
Amazon’s Dynamo DB [19] is a single region replicated key/value
store (i.e., the core replication protocol is scoped to a single region)

2305

that can be configured across multiple regions by doing double
writes. A defining feature of Dynamo DB is its “eventual
consistency” model: if you write data, eventually all reads will
observe that write. This is different than our timeline consistency
model:

 No bounded staleness: Dynamo DB offers the option to
read the latest written data, or to read stale data. But there
is no way to specify a bound on the staleness of the data.
PNUTS provides a read-critical operation that allows
clients to decide how much staleness is acceptable.

 No read-modify-write transactions: All writes in
Dynamo DB are blind writes. PNUTS provides a test-
and-set write that can be used to implement per-record
ACID transactions, as described above.

5.4.Spanner
Google’s Spanner [4] is a geo-replicated relational database. There
are several differences with PNUTS:

 SQL: Spanner’s API is based on SQL. The PNUTS API
provides CRUD operations.

 Multi-item transactions: Spanner provides ACID read-
modify-write transactions that can involve any number of
records in the database. PNUTS transactions are limited
to a single record. While Spanner’s transactions are more
powerful than those in PNUTS, multi-record transactions
can lead to unexpected performance problems since the
risk of lock contention increases as the scope of the
transaction increases.

 Commits require WAN communication: Spanner
commits transactions by executing a multi-data center
Paxos round. If the data centers are geographically
distributed, this can lead to higher latencies than PNUTS
transactions, which require only in-data center
communication between the storage unit and YMB.

5.4.Aurora
AWS Aurora [20] is a relational DBMS based either on MySQL or
PostgreSQL. Amazon provides more features, with the notable
exception of geo-replication, but less scalability, than PNUTS.

Aurora provides the standard MySQL and PostgresSQL APIs, and
support for all their operations, such as multi-record transactions
and expressive queries in SQL. PNUTS provides a CRUD API with
more limited reads and writes, but allows for tables to be sorted and
sharded across multiple globally distributed locations, with near
real-time update synchronization.

All operations in Aurora are confined to a single “cluster volume,”
which is a database that currently cannot grow larger than 64
terabytes (TB). PNUTS tables can grow to arbitrary size.

5.5.SQL Hyperscale
Microsoft’s Azure SQL Hyperscale [21] is a relational DBMS
based on SQL Server. Like Aurora, it provides more features than
PNUTS, again, with the exception of global geo-replication.

Azure SQL provides all the capabilities of SQL Server (full
transactional support, SQL queries, etc.), with a “Hyperscale”

architecture that has no fixed size limits and has been tested at 100s
of TBs.

6.RELATED WORK
The original PNUTS paper [6] lists a complete set of references.
Here we highlight a few especially influential papers.

The Bigtable paper [22] introduced and popularized many concepts
around very large-scale structured data storage as represented by
the “NoSQL” movement. Many of the architectural principles of
BigTable, such as the idea of tablets of data that can be moved
between servers for load balancing, influenced the design of
PNUTS.

The Dynamo paper [19] introduced the notion of a data store based
on eventual consistency. Although our consistency model was
based on the stronger notion of timeline consistency, we often
discussed Dynamo during the design phase of PNUTS. In
particular, we strove to understand the benefits, and costs, of
adopting a consistency model that was stronger than eventual
consistency. We also decided during the development of the system
to support an eventual consistency mode as an option.

Distributed hash tables (DHT), like Chord [23] provided an
alternative architecture for scalable distributed databases. Unlike
PNUTS, which allows arbitrary assignment of tablets to servers,
Chord uses a consistent hashing scheme to deterministically map
data to servers. Very early in the design phase of PNUTS we
considered a DHT-like model. However, we decided that the extra
flexibility provided by arbitrary tablet assignment gave us
advantages for load balancing and latency (as we could avoid
searching the Chord ring for data).

7.KEY CONTRIBUTORS
PNUTS began as a Yahoo! Labs project, and quickly became a
collaboration with the product team that led to the Sherpa
production system. Contributors from Labs include Parag Agrawal,
Phil Bohannon, Jianjun Chen, Brian Cooper, Sudarshan Kadambi,
Nick Puz, Raghu Ramakrishnan, Adam Silberstein, Utkarsh
Srivastava, Erwin Tam, Eric Vee and Ramana Yerneni. Rodrigo
Fonseca, Hans-Arno Jacobsen and Ymir Vigfusson worked on
PNUTS while visiting Yahoo! Labs, and Hector Garcia-Molina
was at Stanford.

Many individuals in the Yahoo! product team, across engineering,
infrastructure and operations organizations, were a core part of the
team and contributed to building, deploying and running Sherpa.
We would like to call out the key contributors to the Sherpa system.

In Engineering, the following were responsible for building the
features listed in this paper: Andrews Albert, Kevin Athey, Craig
Bair, Del Bao, Maurice Barnum, Subramanyeswara Bhavirisetty,
Roger Bush, Jayadev Chandrasekhar, Rupesh Chhatrapati, John
Corwin, Kevin Dalley, Amanveer Dhillon, Joe Francis, Zeke
Huang, Mohsin Khan, Eun-Gyu Kim, Varad Kishore, Prashant
Kumar, Rajesh Kumar, David Lomax, Mukund Madhugiri, Marco
Mar, Patrick Marion, Brad McMillen, Matteo Merli, Masood
Mortazavi, Monoreet Mutsuddi, Michi Mutsuzaki, P.P.S. Narayan,
Chuck Neerdaels, Jothi Padmanabhan, Yi Pan, Varalaxmi
Raveendar, Farooque Sayed, Priyanka Shah, Scott Simpson, Subbu
Subramaniam, Prasant TR Rao, Adwait Tumbde, Aditya Umrani,
Tao Wang, Daniel Weaver, Kenneth Yin and Michael Yuvrovitsky.

2306

Defining the roadmap aligned to business needs, while managing
the ever-growing expectations of the engineers using Sherpa was
not an easy task. This job was performed by the team of product
managers: Satheesh Nanniyur, Toby Negrin and Sambit Samal.

Running Sherpa at scale with astonishing growth, especially in the
initial years when the system was still maturing, required true grit,
determination, passion and persistence. The operations team
members, past and present— Mohammed Abdurahiman, Brian
Adams, Shabana Azmi, Lohith BK, Jennifer Davis, Vivian
Fernandez, Mike Marino, David Pippenger, Ludwig Pummer,
Smritidhara Saha, Venkatasubramanian Venkataraman — have
kept the system humming and growing for the last ten years.

Finally, Sherpa had key executive support through the years.
Usama Fayyad, David Filo, Prabhakar Raghavan and Jay Rossiter
from the executive team were strong sponsors of the technology.

8.ACKNOWLEDGEMENTS
We thank all the users of Sherpa, especially those who drove the
design with their insightful asks.

9.REFERENCES
[1] N. Joneja. MObStor: Yahoo!'s unstructured data cloud. Yahoo!
Developer Network Blog
https://web.archive.org/web/20100612203230/http://developer.ya
hoo.net/blog/archives/2009/07/mobstor.html, July 17, 2009.

[2] E. Baldeschwieler. Yahoo! launches world’s largest Hadoop
production application. Yahoo! Developer Network Blog.
https://web.archive.org/web/20160307081144/https://developer.ya
hoo.com/blogs/hadoop/yahoo-launches-world-largest-hadoop-
production-application-398.html. Feb 18, 2008.

[3] D. Shukla, S. Thota, K. Raman, M. Gajendran, A. Shah, S.
Ziuzin, K. Sundaram, M.G. Guajardo, A. Wawrzyniak, S. Boshra,
R. Ferreira, M. Nassar, M. Koltachev, J. Huang, S. Sengupta, J.
Levandoski and D. Lomet. Schema-agnostic indexing with Azure
DocumentDB. PVLDB 8(12): 1668-1679, 2015.

[4] J.C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J.J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W.C.
Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D.
Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M.
Szymaniak, C. Taylor, R. Wang and D. Woodford. Spanner:
Google's globally distributed database. ACM Trans. Comput. Syst.
31(3): 8:1-8:2, 2013.

[5] L. Lamport. The part-time parliament. ACM TOCS 16.2 pp.
133–169, 1998.

[6] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H-A. Jacobsen, N. Puz, D. Weaver and R. Yerneni.
PNUTS: Yahoo!'s hosted data serving platform. PVLDB 1(2):
1277-1288, 2008.

[7] A. Silberstein, B.F. Cooper, U. Srivastava, E. Vee, R. Yerneni
and R. Ramakrishnan. Efficient bulk insertion into a distributed
ordered table. ACM SIGMOD, 765 – 778, 2008.

[8] Y. Vigfusson, A. Silberstein, B.F. Cooper and R. Fonseca.
Adaptively parallelizing distributed range queries. PVLDB 2(1),
682 – 693, 2009.

[9] P. Agrawal, A. Silberstein, B.F. Cooper, U. Srivastava and R.
Ramakrishnan. Asynchronous View Maintenance for VLSD
Databases. ACM SIGMOD, 179 – 192, 2009.

[10] S. Kadambi, J. Chen, B.F. Cooper, D. Lomax, R.
Ramakrishnan, A. Silberstein, E. Tam and H.G. Molina. Where in
the World is My Data? PVLDB 4(11): 1040-1050, 2011.

[11] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan and R.
Sears. Benchmarking cloud serving systems with YCSB. ACM
SOCC, 143 – 154, 2010.

[12] T. Negrin, Moving to the cloud. Yahoo! Developer Network
Blog
http://web.archive.org/web/20090605065217/https://developer.ya
hoo.net/blog/archives/2009/06/sherpa.html June 1, 2009.

[13] P.P.S. Narayan. Sherpa update. Yahoo! Developer Network
Blog
https://web.archive.org/web/20110126145148/https://developer.ya
hoo.com/blogs/ydn/posts/2010/06/sherpa_update/ June 8, 2010.

[14] S. Samal. Sherpa grows and scales in 2011. Yahoo! Developer
Network Blog
https://web.archive.org/web/20160729043838/https://developer.ya
hoo.com/blogs/ydn/sherpa-grows-scales-2011-50931.html Sep 16,
2011.

[15] V. Kishore and A. Sethuraman. Cloud Bouncer - Distributed
rate limiting at Yahoo!.
https://yahooeng.tumblr.com/post/111288877956/cloud-bouncer-
distributed-rate-limiting-at-yahoo Feb 17, 2015.

[16] S. Nanniyur. Sherpa Scales New Heights.
https://yahooeng.tumblr.com/post/120730204806/sherpa-scales-
new-heights June 4, 2015.

[17] RocksDB: A persistent key-value store for fast storage
environments. http://www.rocksdb.org

[18] J. Francis and M. Merli. Open-sourcing Pulsar, Pub/sub
Messaging at Scale,
https://yahooeng.tumblr.com/post/150078336821/open-sourcing-
pulsar-pub-sub-messaging-at-scale Sept 7, 2016.

[19] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall and W.
Vogels. Dynamo: Amazon's highly available key-value store. ACM
SOSP, 205 – 220, 2007.

[20] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta,
R. Mittal, S. Krishnamurthy, S. Maurice, T. Kharatishvili, X. Bao.
Amazon Aurora: Design considerations for high throughput cloud-
native relational databases. ACM SIGMOD, 1041 – 1052, 2017.

[21] P. Antonopoulos, A. Budovski, C. Diaconu, A. Hernandez
Saenz, J. Hu, H. Kodavalla, D. Kossmann, S. Lingam, U.F.
Minhas, N. Prakash, V. Purohit, H. Qu, C.S. Ravella, K. Reisteter,
S. Shrotri, D. Tang and V. Wakade. Socrates: The New SQL Server
in the Cloud. ACM SIGMOD, 1743 – 1756, 2019.

[22] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach,
M. Burrows, T. Chandra, A. Fikes and R.E. Gruber. Bigtable: A
distributed storage system for structured data. ACM OSDI, 205 –
218, 2006.

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. ACM SIGCOMM, 149 – 160, 2001.

2307

