GRANO: Interactive Graph-based Root Cause Analysis for
Cloud-Native Distributed Data Platform

Hanzhang Wang: Phuong Nguyen; Jun Li, Selcuk Kopru, Gene Zhang,
Sanjeev Katariya, Sami Ben-Romdhane
{hanzwang,phuonnguyen.junli5,skopru,genzhang,skatariya,sbenromdhane}@ebay.com
eBay Inc.

ABSTRACT

We demonstrate GRANO', an end-to-end anomaly detec-
tion and root cause analysis (or RCA for short) system for
cloud-native distributed data platform by providing a holis-
tic view of the system component topology, alarms and ap-
plication events. GRANO provides: a Detection Layer to
process large amount of time-series monitoring data to de-
tect anomalies at logical and physical system components;
an Anomaly Graph Layer with novel graph modeling and al-
gorithms for leveraging system topology data and detection
results to identify the root cause relevance at the system
component level; and an Application Layer that automat-
ically notifies on-call personnel and presents real-time and
on-demand RCA support through an interactive graph in-
terface. The system is deployed and evaluated using eBay’s
production data to help on-call personnel to shorten the
identification of root cause from hours to minutes.

PVLDB Reference Format:

Hanzhang Wang, Phuong Nguyen, Jun Li, Selcuk Kopru, Gene
Zhang, Sanjeev Katariya, Sami Ben-Romdhane. GRANO: Inter-
active Graph-based Root Cause Analysis for Cloud-Native Dis-
tributed Data Platform. PVLDB, 12(12): 1942-1945, 2019.
DOI: https://doi.org/10.14778/3352063.3352105

1. INTRODUCTION

Accurately identifying the root cause of an incident in
a timely manner is critical to maintain high availability to
business for most information technology companies. How-
ever, such a task in a cloud-native distributed data plat-
form poses a number of challenges. (1) The complexity
of architecture: To achieve availability and scalability, the
system often consists of thousands of different interdepen-
dent logical (e.g., database’s keyspaces, each keyspace con-
sists of multiple shards, and each shard is replicated across
multiple data centers) and physical components on which

*Equal contribution

LGRANO is the combination of GRAph and ANOmaly. It
also means grain in Italian and Spanish, or small piece of
something.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 12

ISSN 2150-8097.

DOIL: https://doi.org/10.14778/3352063.3352105

1942

the logical components are actually deployed (e.g., racks,
hosts, pods spanning across multiple data centers). NuData,
a geo-distributed database developed at eBay, is deployed
on thousands of hosts across data centers in eBay’s inter-
nal Kubernetes-based cloud infrastructure. Thus, it is time
consuming and troublesome to navigate through the sys-
tem components to identify the root cause. (2) The large
number of the system metrics and events: Each sys-
tem component is monitored with hundreds of metrics of
different categories, such as latency, throughput, resource,
and error. eBay’s NuData monitoring system captures 20
million metrics per scrape interval per data center. In ad-
dition, a large number of application events are produced
to provide operational insights of the system. Therefore,
it’s challenging to develop and maintain effectively a large
number of detection modules to digest the large amount
of metrics and events. Moreover, (3) System metrics
and events of distributed data platform are very dy-
namic and unpredictable, thus it is difficult to achieve
high detection accuracy of anomalies and root causes. In
fact, high sensitive rule-based alerting mechanisms and ma-
chine learning-based detection models that are often trained
with insufficient data? can produce a large number of false
positive alerts, which makes it challenging for on-call per-
sonnel to handle. The aforementioned challenges contribute
to the long time gap from detection to response. During
incidents, on-call personnel usually need to scan through
hundreds of different metric/event dashboards and alarms
to identify root cause. This process can take up to hours of
intense effort, and thus significantly affects the availability
to business.

In this paper, we present GRANO, an interactive RCA
system for cloud-native distributed data platform. First,
GRANO consists of a detection layer that supports anomaly
detection for a large number of system components and met-
rics. We take a human/analyst-in-the-loop approach for
anomaly detection, and we implement the detection algo-
rithms that expose model parameters that are intuitive to
tune and provide predictable model performance. Second,
the detection results, in combination with other rule-based
alerts and application events, are projected onto topology of
distributed data platform as a unified anomaly graph. Third,
we introduce a novel graph-based root cause relevance algo-
rithm that leverages the inter-dependencies between system
components, severity of anomaly, and metric importance to

2Lack of training data is a common challenge for a lot of
anomaly detection systems. Very often, only normal data, or
data with highly imbalanced class distribution are available.

Data Sources Grano Application Layer

A
App Event
Store On-Call
Anomaly Graph Layer
Alarm
Database
Ang::leyrf“r;:ph Anomaly Graph <: Knowledge
Algorithms Graph API
Metrics Time A A A
Series DB Graph DBs I
Anomaly Detection Layer
)
Metric Anomaly Detection p Model
Subscriber Services Model DB Management Service

Figure 1: GRANO’s system architecture

more accurately measure the relevance of each system com-
ponent to the root cause and reduce the effect of false pos-
itive. Last but not least, the anomaly graph and relevance
results are presented on an interactive knowledge graph in-
terface to allow users to easily navigate, connect, and triage
to identify the actual root cause.

Related Work. There is a large body of related work on
the topic of anomaly detection on graphs [2], mostly focus-
ing on the application-level graphs (e.g., social network, web,
retail networks). To the best of our knowledge, there is no
published anomaly detection work that use a graph-based
approach for the distributed data platform. Furthermore,
our end-to-end system leverages both logical and physical
components to minimize the effect of false positives and
identify the root cause more accurately. Other open-source
anomaly detection systems [1] mainly focus on first-level de-
tection. Root cause identification is also difficult to achieve
using black-box machine learning models such as deep learn-
ing [4], due to the lack of the interpretability of the detection
result. Cheng et al. [3] proposed a graph-based anomaly de-
tection approach using a kernel matrix but without detec-
tion models as the first layer before pushing to the graph.
Thalheim et al. [6] leverages call graph for anomaly detec-
tion. In GRANO, detection results are projected as new
nodes on the anomaly graph of both physical and logical
components for root cause identification.

2. SYSTEM OVERVIEW
2.1 System Architecture

GRANO’s system architecture is presented in Figure 1.
GRANO consists of three main layers: anomaly detection
layer, anomaly graph, and application layer.

The anomaly detection layer provides first level detec-
tion of anomalies for components and metrics of data plat-
form. Detection models consist of machine learning-based
and statistical anomaly detection models that are imple-
mented as RESTful services. Metric subscribers periodically
pull data from metric time series database and invokes de-
tection models to detect anomalies. Detection events are
created and dispatched to the alarm database. Model and
feature database maintains model configurations and com-
puted features used for online detection. Model manage-
ment service provides a set of APIs and interfaces for man-
aging model configurations, metric subscription, and easy
onboarding of new detection models.

The anomaly graph layer provides the second-level ag-
gregation of detection events and measures the root cause

1943

(<)
Figure 2: Examples of detection use cases: (a) A service pod (red
line) that behaves abnormally, compared to its peers (grey lines);
(b) A keyspace’s write TPS behaves abnormally from its historical
pattern; (c) Spurious increase in CPU usage of a pod.

relevance (or RCR for short) of each component by leverag-
ing system topology of distributed data platform. Anomaly
graph generator constructs an anomaly graph that consists
of all physical and logical system components and their inter-
dependencies (i.e., represented as edges), alarms (including
detection events produced by first level detection models and
rule-based alerts), and application events. Each alarm or
event is projected onto the anomaly graph as a node with an
edge connecting it to the corresponding system component
that triggered such alarm or event. The generated graph is
stored in a graph database and is used by the anomaly graph
algorithm to calculate the root cause relevance scores of the
system components (to be described in Section 3). All the
anomaly graph and relevance results can be retrieved via
anomaly graph APIs.

GRANO’s application layer consists of an interactive front-
end service, i.e., GRANO Faxplorer, that can be used by on-
call personnel to interact with the anomaly graph to triage
between system components and anomalies, and easily iden-
tify root cause using calculated RCR and knowledge graph.
Alarm Notification Service sends out critical alerts through
Slack with link to access detailed /enriched report of the alert
and connect the alert to GRANO’s Explorer tool for RCA.

2.2 Detection Models

We identify the most common anomaly detection use cases
in distributed data platform (Figure 2). First, it is to iden-
tify outliers from a group of targets sharing similar behavior
(Figure 2a). For this use case, we use density-based cluster-
ing algorithm to detect anomalies, as it does not require
to specify the number of clusters and also exposes intuitive
parameters to control the desirable density level of normal
clusters. Second, it is to identify if a target behaves differ-
ently from what it normally does (i.e., its temporal pat-
tern) on a given metric (Figure 2b). For this use case, we
implement a detection model based on additive decompo-
sition forecasting [5] to detect anomalies. In particular, a
forecasting service is run in batched mode to produce fore-
casts of the target metric, and the online detection model
compares the real-time metric data with the forecasts to de-
tect anomalies. The forecasting model also exposes intuitive
parameters to tune its flexibility to change points in data,
and its preservation of the temporal pattern in data. Third,
it is to identify if a metric behaves differently from its re-
cent behavior (Figure 2c). Exponential smoothing-based
detection model is implemented to detect anomalies in the
third use case. The model exposes data smoothing factor to
let analysts to easily tune how quick the model reacts to the
systematic changes in the metric time series.

In order to easily scale out and onboard detection to a
large number of targets and metrics, we use a model inheri-
tance approach for model implementation and deployment.

App Event Anomaly Graph
Store

Component
Node Scoring

=
==

» »

nst . Alarm Edge Anomaly Score . Anomaly Graph
= Anomaly Graph Scoring Propagation APIs
larm

Database i

Metrics Time
Series DB

Figure 3: Graph-based root cause relevance procedure.

Physical Hierarchy Logical Hierarchy

Zone

Keyspace
Rack
Detection /

/~ Prometheus

Alarms App

Shard Events

Host .

Pod Replica

Figure 4: Example of distributed data infrastructure topology.

Specifically, we abstract the implementation of detection
models, targets, and metric types. An actual instance of a
model is onboarded simply by extending the base detection
model with specific configurations of a target and a metric

type.

3. GRAPH-BASED ROOT CAUSE
RELEVANCE

In this section, we present in more details how our sec-
ond level graph-based RCA approach could help to leverage
the results from the first-level detection and provide better
insights to system component’s root cause relevance. The
basic concept used by GRANO is to use graph modeling and
propagation algorithm to measure the importance of detec-
tion events and minimize the effect of false positive alarms.
The alarm’s importance is then used to measure the root
cause relevance of system components. Final results are
presented on an interactive knowledge graph interface for
easy identification of root cause and causality.

In the following, we explain in detail the step-by-step pro-

cess (Figure 3) of measuring root cause relevance of sys-
tem component using graph-based representation of system
topology and alarm events.
Step 1 - Graph Construction: Our approach takes in-
put as the detection alarms from the first level anomaly
detection models, as well as rule-based alarms produced by
real-time monitoring system® and application events. Given
a time range, the set of alarms and events retrieved, de-
noted as A, are then projected on the topology graph of the
distributed data platform to form a unified anomaly graph
denoted as G = (V,E), where V = CU A with C being
the set of system components, and each edge in E represents
the interdependency between components (e.g., a container
is connected to a host that the container is provisioned on)
or the relationship between a component and an alarm.

Figure 4 shows an example of a common distributed data
platform topology that we will use throughout this paper
and demo scenarios. The graph’s vertices consist of logical
components, such as keyspaces, shards, and replicas, and
physical components, such as zone, rack, host, and pod.
Each keyspace corresponds to a database schema, and a

3We use rule-based alarms generated by Prometheus moni-
toring system.

1944

keyspace can be splitted into multiple shards, each shard is
replicated to multiple replicas for high availability. A replica
is deployed as a physical pod on the distributed infrastruc-
ture, and multiple pods are located on the same host. Zone
represents a data center that consists of multiple racks, each
rack houses multiple hosts.

Each alarm event is associated with a criticality, denoted

as pa, @ € A *. An alarm “edge” e(a,c) is created between
an alarm a and its corresponding component ¢ with a weight
that represents alarm severity, denoted as o¢(4,c) (to be de-
scribed).
Step 2 - Alarm Edge Scoring: The idea is to evaluate the
alarm’s importance to a connected system component. Since
alarms may appear to different components with different
severity and criticality, we calculate and assign a score for
each edge between an alarm and a component. For each
component, we treat the set of alarms it has during a given
time interval as a “bag-of-alarms”. Each alarm is measured
by: i) Alarm’s Severity: Based on how severe an alarm is
for a particular system component during the given time
interval; and ii) Alarm’s Component (or Inverse) Frequency:
Based on how frequent the alarm is across all components
during the given time interval.

Let us consider an alarm edge e(a, ¢) between alarm a and
system component c¢. During a given time interval, ¢ may
trigger alarm a multiple times (e.g., due to the dynamic
change of component metric) with different severity levels,
denoted as xo, 1, ..., T+, with 2;(0 < i < ¢) being the severity
at time 7. To measure the severity of e(a,c) (i.e., Te(a,c))
we aggregate different alarm severity levels during the time
interval using exponential smoothing formula:

0 j—
Te(a,c) — TO

=az; + (1 — a)o!

e

;ﬂ{c)(t > 0)

g :é(a,c)
Where « is the smoothing factor and the severity score cal-
culated in the last iteration is then used as the final severity
score of the edge e(a,).
The alarm edge score for the edge e(a,c) between a and
¢, denoted as s(q,c), is then calculated as follows:

IC|

c.)

Where C, is the set of system components that have trig-
gered alarm a. The score s.(4,¢) is normalized to (0, 1].
Step 3 - Component Node Scoring: After the previous
step, all alarm edges are assigned with a score which reflects
the importance of an alarm to a component. In this step,
we calculate the aggregated confidence score on the com-
ponents. The confidence score, denoted as cs, is calculated
using the criticality of the alarms and the edges’ score that
connected to a component c:

CS: = Z PaSe(a,c)

a€h.

Se(a,c) = Oe(a,c) lOg(

Where A, is the set of all alarms that are connected to the
component c.

Step 4 - Score Propagation: This step is designed to
leverage system topology to detect the actual root cause.
We design a customized algorithm to propagate confidence
scores on the nodes. The algorithm propagates the con-
fidence score on every node that is connected by at least

4Alarm criticality is based on domain knowledge

one alarm to all its connected components. Then the con-
nected components continues the propagation using its as-
signed score until reaching the end of the graph (Zone or
Keyspace node). For the receiving node ¢ that connects
to other components V. (including both alarms and system
components), the propagated score p. is calculated as fol-
low:

if |[Ve| =1
if |[Ve| > 1

Bese

Pc = { ,‘/Zéevc cs¢

Vel

where 8 and -y are algorithm parameters that we set to 0.9
and log(|V.|+1). All propagated scores will be added with
the initial score to calculated the final RCR score. This
score represents the overall relevance of this system node
being root cause.
Step 5 - Result Presentation: We define the customized
graph searches and scenarios to explore the graph. We re-
turn the results in a sorted and aggregated way. Therefore,
the users are able to browse over the root cause, the alarm
types, alarm frequency, and topology for the suspected inci-
dents.

4. DEMONSTRATION DESCRIPTION

To demonstrate the functionality of GRANO, and to make
it easy for analyst to inference the anomalies and identify
the root cause, we have built the complete system in Fig-
ure 1 and a web-based front-end interface. We describe our
demonstration scenarios in the following.

4.1 Manage Detection Model Life-cycle

For the first demo scenario, we will let attendees expe-
rience the process of onboarding new detection models on
GRANO. Users will use GRANO’s model management service
interface and follow step-by-step process to onboard new de-
tection model by selecting system metric and keyspace for
the new model, and then review the model definition that
is automatically generated by GRANO before submitting the
final model definition. Once the new model is submitted, we
will demonstrate how users can easily manage the life-cycle
of the new model on GRANO by controlling model subscrip-
tion and its parameters and observe the results via GRANO’s
detection event timeline. In particular, users will be able to
update model definition, such as intuitive model parameters,
detection interval, and subscription configuration, on-the-fly
and observe how new update influences the detection results
in real-time. From that, users can further experience how
to interactively tune the model to achieve desirable perfor-
mance via GRANO’s model management service.

4.2 RCA with Knowledge Graph

In the second scenario, we will demonstrate how to use our
Anomaly Graph to identify root cause using a real desensi-
tized data. Starting from a critical alert, attendees will be
able to use GRANO’s enrichment tool to quickly understand
more about the alert and affected keyspace.

Then, attendees will use the EXPLORER to retrieve real-
time RCR scores of all system components (including both
logical and physical components). In addition to RCR scores,
the Explorer also presents other component scores, repre-
sented as “Initial” and “Propagated” (which are calculated
from step 3 and step 4 in Section 3). On-call people can see
the system prediction about the initial root cause relevance
of each component and the propagated impact it receives

1945

“® Anomaly Graph View: shard_22006339

Select Select

Keyspace: Select + Replica: Select Pod: Host:

Rack: Select 4 Zone: Select

initialScore: 0

P propagatedImpact: 4.019334733837973
name: replica_22006602)
score: 4.019334733837973

_ criticality:

replica_22006602

|
repiical 22006831

rack 21006087

lica_22006754

. pod 22001190
ropliEa)22006506
replica_22006369 Po9-21996960

replica. 22006340 .
PR [
pod_ 22001874 ’

pod_22000437 -

rack Biomme17

Figure 5: GrRANO’s Graph Explorer.

from its connected components. The filter button can show
the results only for the connected components (directly or
indirectly though other different type of components) of any
selected platform entity. The user can also select a specific
time range to generate anomaly detection results and re-
fresh.

By clicking on a component to visualize a dynamic graph
which retrieves all connected system components and alarms
(rule-based and model detection) and app events of them.
Figure 5 presented an anomaly knowledge graph example
for a data shard component where different types of nodes
filled by different colors and the size of a node is based on
its RCR score (for system component nodes) or criticality
(for alarm/event nodes). For the edges between the alarms
and system components, the more alarm severity the thicker.
Users can see the detailed scoring and related information
of a node by moving the cursor over any node.

From the component’s graph view, users can also interac-
tively traverse the graph to search the root cause by select
one or multiple targeted entities on the top and updated
knowledge graph view.

S. CONCLUSIONS

We have presented an overview and demonstration de-
scriptions of GRANO, the anomaly detection framework for
cloud-native distributed data platform. The primary results
demonstrate the usefulness of using GRANO to quickly detect
anomalies and identify the root cause of system incidents. In
the future, we would like to focus more on bridging the gap
between component-level and system-wide anomalies, and
integrating GRANO with automated remediation engine.

gT REFERENCES

Anomaly detection projects.
https://github.com/rob-med/awesome-TS-anomaly-detection.
Accessed: 2019-03-15.

L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly
detection and description: a survey. Data mining and
knowledge discovery, 29(3):626-688, 2015.

H. Cheng, P.-N. Tan, C. Potter, and S. Klooster. Detection and
characterization of anomalies in multivariate time series. In
Proceedings of the 2009 SDM, pages 413-424. SIAM, 2009.

M. Du et al. Deeplog: Anomaly detection and diagnosis from
system logs through deep learning. In Proceedings of CCS 2017,
pages 1285-1298. ACM, 2017.

R. J. Hyndman and G. Athanasopoulos. Forecasting: principles
and practice. OTexts, 2018.

J. Thalheim, Rodrigues, et al. Sieve: actionable insights from
monitored metrics in distributed systems. In Proceedings of the
18th Middleware Conference, pages 14-27. ACM, 2017.

