
LensXPlain: Visualizing and Explaining Contributing
Subsets for Aggregate Query Answers

Zhengjie Miao, Andrew Lee, Sudeepa Roy
Duke University, Durham, NC

{zjmiao, andrew, sudeepa}@cs.duke.edu

ABSTRACT
In this demonstration, we will present LensXPlain, an inter-
active system to help users understand answers of aggregate
queries by providing meaningful explanations. Given a SQL
group-by query and a question from a user “why output o
is high /low”, or “why output o1 is higher/lower than o2”,
LensXPlain helps users explore the results and find sub-
sets of tuples captured by predicates that contributed the
most toward such observations. The contributions are mea-
sured either by intervention (if the contributing tuples are
removed, the values or the ratios in the user question change
in the opposite direction), or by aggravation (if the query
is restricted to the contributing tuples, the observations
change more in the same direction). LensXPlain uses ensem-
ble learning for recommending useful attributes in explana-
tions, and employs a suite of optimizations to enable expla-
nation generation and refinement at an interactive speed. In
the demonstration, the audience can run aggregation queries
over real world datasets, browse the answers using a graph-
ical user interface, ask questions on unexpected/interesting
query results with simple visualizations, and explore and
refine explanations returned by LensXPlain.

PVLDB Reference Format:
Zhengjie Miao, Andrew Lee, and Sudeepa Roy. LensXPlain:
Visualizing and Explaining Contributing Subsets for Aggregate
Query Answers. PVLDB, 12(12): 1898-1901, 2019.
DOI: https://doi.org/10.14778/3352063.3352094

1. INTRODUCTION
In today’s world driven by data, many users with a va-

riety of backgrounds seek to extract high level information
from datasets by running aggregate queries. One common
use case while exploring aggregate query answers is by ask-
ing ‘why high/low ’ questions on the outputs: e.g., ‘why is
the expenditure of Q1 of a retail chain high? ’, or ‘why is the
profit of Q1 less than Q2? ’. While sophisticated visualiza-
tion tools like Tableau [1] exist for exploring aggregates on

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352094

a table, and OLAP operations like slice and dice or multi-
dimensional aggregates by data cube have been studied in
the database community, not much support exists for auto-
matically finding explanations in response to such questions
that are meaningful to a broad range of users.

To address this question, a formal framework of expla-
nations was presented in [4] based on intervention: find
summarized descriptions on input tuples by predicates as
explanations such that if we intervene on the database and
delete tuples depending on an explanation, the values of
the data points mentioned in the user question change (e.g.,
if the question was ‘why is the profit of Q1 less than the
profit of Q2 ’, now the ratio of the profits of Q1 and Q2 is
higher). The motivation comes from the literature on causal-
ity, a topic well-sudied in AI, Statistics, and Philosophy (see,
e.g., [3]), where by changing the value of a cause, the effect
changes. Building upon this concept, in this demonstration
we present LensXPlain, an interactive tool to automatically
explain user questions by finding the subsets of tuples that
contribute the most to the results mentioned in the question.
The main features of LensXPlain are as follows:

1. A simple visualization for aggregate group-by
query answers and asking questions: Before the
user asks a question, the user needs to easily see the re-
sults and compare them. LensXPlain provides a sim-
ple interface to enter a SQL GROUP-BY query and
visualize the results as a barchart as chosen by the
user. Then the user can ask the ‘why high/low’ or
‘why higher/lower’ question by clicking on the bars or
selecting from a list.

2. Intuitive explanations by intervention and ag-
gravation: The explanations are predicates capturing
a subset of tuples. The contribution of an explana-
tion predicate is measured either by intervention (if
the contributing tuples are removed, the values or the
ratios in the user question change significantly in the
opposite direction), or by aggravation (if the query is
restricted to the contributing tuples, the observations
change more in the same direction). LensXPlain re-
turns top-k explanations by both these approaches.

3. Visualizing the effect of an explanation:
LensXPlain ‘explains an explanation’ by showing the
effect of a selected explanation. If the user clicks on an
explanation, she can see how the explanation changes
the query answer by re-drawing the barchart.

4. Refine explanations: Since the explanations re-
turned by an automated approach may not be ‘ab-
solutely correct’, in LensXPlain, the user can give a

1898



feedback using thumbs up/down for each explanation.
The user feedback is used to refine the list (e.g., a
thumbs down updates the list by removing similar ex-
planations) as well as to update parameters in the ex-
planation generation algorithm. The user can also se-
lect attributes she wants in the explanation, and add
a limit on the size of the explanation predicates.

5. Recommending attributes in explanations: A
real dataset can contain hundreds of attributes, which
results in a huge search space for explanation pred-
icates. The earlier work [4] used a small number
of attributes hand-picked by the admin to generate
the explanations. LensXPlain uses a novel attribute-
recommendation approach to suggest attributes to the
user that can generate explanations with high scores.

To support the above functionality at an interactive speed,
LensXPlain uses a suite of algorithms and optimizations
that we discuss in Section 2 along with the framework and
implementation of LensXPlain. In Section 3 we present
a walk-through of the proposed demonstration using the
graphical user interface.

Related Work. In recent years, a number of visual data
analytic tools such as Tableau, Voyager, and Zenvisage[1,
8, 6] have been introduced. SEEDB [7] enables users to
explore SQL query results by recommending visualizations
automatically. [9, 4] proposed frameworks for intervention-
based explanations for outliers in aggregate query results.
LensXPlain is inspired by [4], but it provides a first end-to-
end easy-to-use system for automatically asking for, finding
and exploring explanations. A detailed related work can be
found in [4].

2. DETAILS OF LENSXPLAIN
Next we describe the framework of LensXPlain.

2.1 LensXPlain Framework
Given a relation R with attributes A1, ...,Am, LensXPlain

takes as input an SQL aggregate query Q of the form1

SELECT Ai1, Ai2, ..., Aig, agg(a)
FROM R
GROUP BY Ai1, Ai2, ..., Aig

Here Ai1 ,Ai2 , ...,Aig are categorical attributes2 and dir ∈
{high, low}. A user question indicates whether the user
thinks the aggregate value of t1[agg(a)]Q,R is higher/lower
than expected, or respectively, t1[agg(a)]Q,R is higher/lower
than t2[agg(a)]Q,R. A candidate explanation φ is a con-
junction of predicates on attributes: φ = ∧jφj , where each
φj is an atomic predicate of the form φj = [Ai = c], such
that Ai is an attribute of R and c is a constant. The inter-
vention ∆φ of φ denotes the set of tuples that satisfy φ, i.e.,
for all t ∈ R ∖ ∆φ, φ(t) = false. For better interpretability
and practical performance, we introduce a parameter p to
restrict that φ involves at most p atomic predicates.

Given the query Q and relation R, once the user asks a
user question Γ, LensXPlain returns top-k explanations ac-
cording to a scoring function µ for a user-specified parameter
k. The scoring function µ(φ) checks how an explanation φ

1The framework easily extends to filtering by WHERE
clause and joins of multiple tables.
2Numerical attributes can be discretized by preprocessing.

affects the values of the tuple(s) specified in the user ques-
tion Γ. The explanations can be of two types: (i) In the
default explanations by intervention, the predicate φ
characterizes a set of tuples whose removal will cause the
aggregate value in the user question to change in the op-
posite direction of dir. For instance, if the user question
was of the form why the value of t1 is high, µinterv(φ) =

−t1[agg(a)]Q,R∖∆φ , i.e., if the intervention ∆φ of φ signifi-
cantly lowers the value of t1, then the explanation φ has a
high score. If the user question Γ involves two tuples t1, t2,
and the question asks why the value of t1 is higher than that

of t2, then µinterv(φ) = −
t1[agg(a)]Q,R∖∆φ
t2[agg(a)]Q,R∖∆φ

, i.e., the explana-

tions that significantly lower the ratio of t1, t2 are ranked
higher. If dir = low in Γ, the sign of the function µ is re-
versed. Intuitively, if the tuples satisfying the explanations
were not there, that would significantly change the high or
low values or ratios as observed by the user, thereby po-
tentially contributing to the observation. Note that if the
question involves only one tuple t1, for a monotone query Q,
we cannot get any meaningful explanations by intervention
as by removing tuples the value of t1[agg(a)] can only be
lower. To address this, as well as to provide another view of
explaining the question asked by the user, LensXPlain also
supports explanations by aggravation. (ii) In explanations
by aggravation, the user is able to see what happens if the
query is restricted only to the intervention ∆φ of φ, i.e.,

µaggr(φ) = t1[agg(a)]Q,∆φ or =
t1[agg(a)]Q,∆φ
t2[agg(a)]Q,∆φ

if dir = high;

the sign is reversed if dir = low. Intuitively, explanations
by aggravation finds subset of tuples such that if the answer
is restricted to that subset, the higher or lower value ob-
served by the user is further aggravated, thereby potentially
contributing to the observation of the user.

2.2 Algorithms and Optimizations
Challenges. One of the key goals of LensXPlain is to

return top-k explanations (by intervention or aggravation)
at an interactive speed. While the problem can be easily
solved by a naive algorithm repeating over all possible ex-
planations φ and reevaluating the query Q by removing or
restricting to intervention ∆φ, this approach is not sufficient
due to the following challenges. First, Even for a relatively
low value of maximum number of components p in the pred-
icate φ, the number of potential predicates φ can be large,
and running a for loop to go over the all candidate expla-
nations takes a long time. Second, many datasets have a
large number of attributes (e.g., the natality dataset used
in [4] has more than 200 attributes). On the other hand,
to ensure that the explanations are meaningful and to avoid
overfitting, we want to limit the number of components p of
explanations. LensXPlain helps users choose the most ‘use-
ful’ attributes (or attributes according to the user’s choice)
for explanations out of many possible attributes.

Optimization with data cube. To circumvent the
first challenge, [4] used the OLAP data cube operator sup-
ported by many standard database systems. The original
aggregate query is translated into another aggregate query
with cube, which incorporates all attributes that can partic-
ipate in the explanation predicates in the Group By clause.
As an example, suppose the user’s aggregate query is:

Q1: SELECT A, B, count(*) as ct FROM R GROUP BY A, B

1899



Suppose the user selected a bar that corresponds to output
tuple t1 where A = a and B = b, and asked why the original
value of t1[ct] = x for this tuple is high. Let E1,E2,E3
be the attributes chosen for output explanations. Then the
new aggregate query to generate the top-10 explanations is

Q2: SELECT TOP 10 E1, E2, E3, x - count(*) as newct
FROM R WHERE A = a and B = b
GROUP BY CUBE(E1, E2, E3)
ORDER BY newct ASC

The rows in the output of query Q2 will have the new
value of query Q1 when tuples satisfying the corresponding
predicate of the form [E1 = e1 and E2 = e2 and E3 = e3] are
removed from the database; the data cube operator allows
the predicates to ignore some attributes, e.g., predicates of
the form [E1 = e1 and E3 = e3] may also be returned. Since
the user asked why the original value of the query Q1 at
A = a,B = b (i.e., x) was high, the Order By clause in query
Q2 favors explanation predicates that lower the value of x
to a large extent and thereby explain this observation.

Attribute selection. The use of data cubes enables
LensXPlain to efficiently evaluate the scores of a huge num-
ber of potential explanation predicates in real time. How-
ever, further optimizations are still needed to address the
second challenge of useful attribute selection. The frame-
work proposed in [4] does not address this question as the
attributes were hand-picked before running the explanation
generation algorithm. LensXPlain employs a combination of
two approaches to find relevant attributes for explanations.

(1) Using association rule mining. The first one
is inspired by the Association Rule Mining problem. As-
sociation rule mining searches for interesting relationships
between attributes in a database. A rule X ⇒ Y indicates
that the itemset X is related to the itemset Y . By regarding
values of attributes as items, we apply the classic Apriori al-
gorithm [2] in LensXPlain to find relevant attribute values
to the groups in the user question.

(2) Using a random forest classifier. While the first
approach models the attribute recommendation as an unsu-
pervised learning problem, our second approach models it as
a supervised learning problem. Consider the user question
involving two values in the query result that asks why the
count corresponding to A = a1 and B = b1 is high compared
to the count corresponding to A = a2 and B = b2. There are
two groups in the question, and we can regard each group
as a class and each tuple belonging to these two groups in
the original relation as an observation for the class. There-
fore, the attribute recommendation problem is transformed
to finding the attributes that are most important for dis-
criminating these two classes. In LensXPlain, we used Ran-
dom Forests of Scikit Learn and used its built-in measure
for variable importance to find relevant attributes.

An ensemble learner for attribute selection. For
user questions involving comparison of two result tuples, we
ensemble the rule mining approach and the random forest
approach in a boosting manner (scores from the Random
Forest approach are normalized; since we do not have test-
ing data here, initially, we just assign weights between them
equally). Once the explanations are shown, we adjust the
weights from the user’s feedback on the explanations. For
user questions including only one result tuple, the recom-
mendation is based on the result of association rule mining.

Other optimizations including discarding candidate pred-
icates with very low support values and caching a result set
in the frontend are also deployed.

Implementation of LensXPlain. LensXPlain uses Post-
greSQL 10.4 as the DBMS and the backend server is imple-
mented in Python 3.6 and Flask; the GUI is implemented
using Javascript and Vega-Lite [5].

3. DEMONSTRATION
The goals of our demonstration are (1) to illustrate that

the user interface of LensXPlain provides an interactive mech-
anism to explore aggregate query results, and more impor-
tantly, (2) to explore explanations interactively with the
help of the optimizations proposed in Section 2.

Datasets. We will illustrate LensXPlain using multiple
public real datasets: Natality dataset (birth records in the
USA in a year, ∼4M rows and ∼200 attributes), the NSF
grant dataset (∼1.4M rows in 3 tables and ∼25 attributes),
and the Adult dataset (∼48K rows and ∼14 attributes)3.

User interface. The web UI of LensXPlain shown in
Figure 1 has five main components: a : list of the available
tables, schema of current table, and buttons for attribute

recommendation and table content view, b : SQL query

constructor, c : visualization for query answers, d : user
question constructor and status panel, and e : list of expla-
nations. The user can interact with LensXPlain as follows:

(i) Forming a SQL Group-by query and visualiz-
ing the answers. The list of the available tables (and for
a table, the list of attributes) will be shown on the left pane
a , where the user can also view the content of the table.

In b , using a pre-populated query template, the user can
choose a table, type in the group-by attributes, and add a
where clause by clicking on the “+” button. After submit-
ting the query, a grouped barchart will be displayed in the
center view c . By default, each value of the first group-
by attribute corresponds to a group of bars, and each value
of the second group-by attribute corresponds to an individ-
ual bar (x-axis) as well as the color, and the the height of
the bars (y-axis) represents aggregate values. Furthermore,
query results with more than two group-by attributes are
also supported. The user can click on the “Visualization Set-
tings” button to update the column/x-axis/color attributes
in the visualization in the pop-up window. If there are more
than 3 group-by attributes, the user can also select values
of rest attributes in the pop-up. The color attribute can
be different from the column attribute and x-axis attribute,
and then a stacked barchart will be displayed.

(ii) Forming User Question. After the barcharts are
displayed, the user is able to explore the result and seek ex-
planations on unexpected/interesting results. For instance,
in Figure 1, the group-by query on income group, race

plots the number of people in high-income group and low-
income group by different races. Suppose the user observes
that the number of high-income black people is low com-
pared to the number of high-income white people. To find
most significant sub-populations contributing to this obser-
vation, she can simply click on these bars as shown in Figure
1 (the bars are highlighted upon clicking, and the value of

the drop-down menu in the user question constructor d ,
changes accordingly). Then she selects ‘high’ as the direc-
tion, and enters top-10 for parameter k. A parameter for the

3http://www.cdc.gov/nchs/data_access/ftp_data.htm,
https://www.nsf.gov/awardsearch/download.jsp,
https://archive.ics.uci.edu/ml/datasets/adult

1900

http://www.cdc.gov/nchs/data_access/ftp_data.htm
https://www.nsf.gov/awardsearch/download.jsp
https://archive.ics.uci.edu/ml/datasets/adult


Figure 1: Web user interface of LensXPlain.

number of atomic predicates can also be set. Although in
this example, the two groups correspond to the same value
of attribute ‘income group’, in general, the selected bars in
the two groups can be arbitrary, and the user is allowed to
ask questions on a single group or bar as well.

(iii) Explanations and ‘explaining explanations’.
Once the user question is entered and the ‘Explain’ button
is clicked, the top-k explanations returned by the algorithm
are displayed on the right side e in decreasing order of
their scores. The user is allowed to choose either explana-
tion by intervention or by aggravation from two tabs, and
then click on one explanation to dive into. A new barchart
of the intervened or aggravated query result will be plotted
below the original barchart, and the new value/ratio of the
selected query answers will also be displayed, along with a
natural language statement that describes how removing or
restricting to the set of tuples represented by the selected
explanation modifies the query result (see Section 2). This
facilitates comparison between the query results before and
after the intervention or aggravation for the selected expla-
nation predicate is enforced.

(iv) Refining explanations. There are two thumbs
up/down buttons next to each explanation. If the user
thumbs down an explanation, then all explanations contain-
ing this predicate will be removed from the list of expla-
nations, and the list will be updated. The user can keep
crossing out explanations she does not consider useful, until
a new user question is submitted.

(v) Recommending relevant attributes. As we dis-
cussed in Section 2, we want to restrict the number of at-
tributes used in the explanations to improve the perfor-
mance of explanation generation. Before the user clicks the
“Explain” button, she can choose which attributes to be
considered in the explanations by selecting the checkboxes in
the left-hand-side view a . Moreover, she can click “Recom-

mend attributes” to see what attributes are recommended
by our algorithm, and then decide whether to include them.

Acknowledgements. This work is supported in part
by NSF Awards IIS-1552538, IIS-1703431, and NIH award
1R01EB025021-01.

4. REFERENCES
[1] http://www.tableausoftware.com/.
[2] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In VLDB, pages
487–499, 1994.

[3] J. Pearl. Causality: models, reasoning, and inference.
Cambridge University Press, 2000.

[4] S. Roy and D. Suciu. A formal approach to finding
explanations for database queries. SIGMOD, pages
1579–1590, 2014.

[5] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and
J. Heer. Vega-lite: A grammar of interactive graphics.
IEEE transactions on visualization and computer
graphics, 23(1):341–350, 2017.

[6] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and
A. Parameswaran. Effortless data exploration with
zenvisage: an expressive and interactive visual analytics
system. PVLDB, 10(4):457–468, 2016.

[7] M. Vartak, S. Rahman, S. Madden, A. Parameswaran,
and N. Polyzotis. Seedb: efficient data-driven
visualization recommendations to support visual
analytics. PVLDB, 8(13):2182–2193, 2015.

[8] K. Wongsuphasawat, D. Moritz, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager:
Exploratory analysis via faceted browsing of
visualization recommendations. IEEE transactions on
visualization and computer graphics, 22(1):649–658,
2016.

[9] E. Wu and S. Madden. Scorpion: Explaining away
outliers in aggregate queries. PVLDB, 6(8):553–564,
2013.

1901

http://www.tableausoftware.com/

	Introduction
	Details of LensXplain
	LensXPlain Framework
	Algorithms and Optimizations

	Demonstration
	References

