
Intermittent Query Processing

Dixin Tang
University of Chicago

totemtang@uchicago.edu

Zechao Shang
University of Chicago

zcshang@cs.uchicago.edu

Aaron J. Elmore
University of Chicago

aelmore@cs.uchicago.edu
Sanjay Krishnan

University of Chicago

skr@cs.uchicago.edu

Michael J. Franklin
University of Chicago

mjfranklin@uchicago.edu

ABSTRACT
Many applications ingest data in an intermittent, yet largely pre-
dictable, pattern. Existing systems tend to ignore how data ar-
rives when making decisions about how to update (or refresh) an
ongoing query. To address this shortcoming we propose a new
query processing paradigm, Intermittent Query Processing (IQP),
that bridges query execution and policies, to determine when to up-
date results and how much resources to allocate for ensuring fast
query updates. Here, for a query the system provides an initial
result that is to be refreshed when policy dictates, such as after a
defined number of new records arrive or a time interval elapses.
In between intermittent data arrivals, IQP inactivates query exe-
cution by selectively releasing some resources occupied in normal
execution that will be least helpful (for future refreshes) according
to the arrival patterns for new records. We present an IQP proto-
type based on PostgreSQL that selectively persists the state asso-
ciated with query operators to allow for fast query updates while
constraining resource consumption. Our experiments show that for
several application scenarios IQP greatly lowers query processing
latency compared to batch systems, and largely reduces memory
consumption with comparable latency compared to a state-of-the-
art incremental view maintenance technique.

PVLDB Reference Format:
Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, Michael
J. Franklin. Intermittent Query Processing. PVLDB, 12(11): 1427-1441,
2019.
DOI: https://doi.org/10.14778/3342263.3342278

1. INTRODUCTION
Databases maintain standing queries or materialized views over

growing datasets without knowledge of where and when new in-
serts will arrive – thus they make conservative decisions without
exploiting knowledge about new data. In many modern applica-
tions, it is possible to predict or know the arrival rates and relations
with inserts. Examples of these applications include sensor and IoT
data, data cleaning systems, admission controlled systems, and ex-
tract, transform, and load processes. While classical solutions offer
trade-offs between the latency of updating query results for inserts

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342278

and resource consumption, none of these solutions exploits knowl-
edge about data arrival patterns, which limits opportunities for new
planning and execution strategies.

Classical architectures that favor update latency (e.g. continuous
query databases [18, 10, 16, 49] or immediate incremental view
maintenance (IVM) [23, 4]) tend to keep nearly all state required
for processing the queries and update the query results immediately
after new data arrives. Not leveraging knowledge about data arrival
patterns can result in excess resource consumption from keeping all
state in memory and from using CPU cycles for integrating every
new record. On the other hand, architectures on the other end of
the spectrum favor efficient resource consumption (e.g. batch exe-
cution or deferred IVM [23]), and subsequently better query gen-
erality, but suffer from high update latency as they tend to discard
required state and entirely re-build them for updating the query re-
sult – even if the system expects new records in the near future.

This paper considers a system that exploits knowledge of incom-
ing data to accelerate updating the result of a standing query for
new data with limited resource consumption. More specifically,
we study querying an incomplete dataset with the remaining data
arriving in an intermittent yet predictable way. Since the missing
data arrives discontinuously or at a low rate, the query is not nec-
essarily active all the time (e.g. using deferred refresh), and can
release some resources during inactivity (e.g. memory). Due to
the predictable arrival patterns of missing data (i.e. the estimated
size of new data and distribution of the relations having new data),
the query execution engine can leverage this information to opti-
mize query processing, such as injecting new operators or discard-
ing states of existing operators, with limited resource consumption.
We find a few applications exhibiting intermittent and predictable
workloads [41, 61, 51, 24, 55] when the database is used either to
analyze data from external sources or as a component in an analyt-
ical pipeline. Here, we describe two representative applications.
• Late Data Processing: A user wants to query a dataset that

is newly collected from external sources (e.g. sensors). Most
data generated for a time interval can be collected under a time
threshold, but due to network disconnection or congestion some
data arrives late. The remaining data will arrive intermittently at
a low rate due to long-tail transfer times of Internet traffic [24].
To predict the arrival pattern of missing data, we build the cu-
mulative distribution functions (CDF) of the arrival time based
on historical statistics. With CDFs built, the system can tell the
estimated number of data items to arrive for a time window.
• Data Cleaning: We consider an analytical pipeline between a

data cleaning system and a database. A typical data cleaning
process includes two steps: error detection [14, 20, 38] and
cleaning [11, 21, 42, 60, 51]. Given a dirty dataset, the data

1427

cleaning system splits it into the clean partition, which includes
most of the data [51], and the dirty partition. Here, the clean
partition can be loaded into a database and is ready for answer-
ing queries. Then, the time-consuming cleaning phase is started
on the dirty partition, and inserts the cleaned tuples into the
database at a low rate. In fact, our experiment in Section 6.3
shows that cleaning 1 GB data can take hours for a state-of-the-
art data cleaning system. For this application, the arrival rate of
cleaned tuples for each relation is predictable because the data
cleaning system provides the database the information of the re-
lations it is cleaning and the estimated cleaned tuple rate.

For applications with predictable and non-continuous data ar-
rival, we put forth a new query processing paradigm, Intermittent
Query Processing (IQP), to balance latency for maintaining stand-
ing queries and resource consumption by exploiting knowledge of
data arrival patterns.

To address this challenge, an IQP system integrates three compo-
nents: a policy component, a query execution engine, and a planner.
After a user submits a long-term query and receives an initial query
result, the policy component repeatedly schedules the intermittent
execution to refresh the query result. Each intermittent execution
is defined by a trigger event that determines when to update or re-
fresh the query result, the estimated size of new data for each re-
lation, and how many resources are available to prepare for future
updates. An event policy can trigger intermittent execution in sev-
eral ways, such as periodically or by a predefined number of new
tuples. After the initial query processing or each intermittent execu-
tion, the planner component uses the knowledge of the next trigger
event to build a new execution plan for the query execution engine
that meets the resource usage constraint. With this new physical
plan, the query execution engine makes the query inactive by re-
leasing resources (i.e. memory) to explicitly control the amount of
resources used during inactivity. When the query re-activates, the
query execution engine uses IVM algorithms to incorporate new
data (a delta in this paper) to refresh the result. Afterwards, the
query execution will either terminate or inactivate if another delta
is expected, with the process repeating until termination.

IQP introduces a novel planner that couples policies with query
processing engines. The planner builds a query execution plan
based on knowledge of trigger events. In this paper, we propose an
IQP system, DISS (Delta-oriented Intermediate State Selection), to
prototype this planner. DISS generates a specification of a subset
of intermediate states to persist by the query execution and reuse
when processing and incorporating a delta into the prior result. Ex-
amples of such state include hash tables for joins and aggregations,
as well as materialized relational operators. DISS addresses the key
challenge of how to selectively keep the optimal subset of interme-
diate states according to intermittent delta prediction to minimize
query refresh latency while meeting a memory budget.

The major contributions of this paper include:
• We propose intermittent query processing (IQP) to efficiently

support querying an incomplete dataset with predictable and
intermittent arrival patterns by exploiting information of trig-
ger events.
• We design a prototype IQP system that can select interme-

diate states to keep in memory to minimize delta processing
time with constrained memory consumption.
• We implement DISS on top of PostgreSQL 10 and perform

extensive experiments to evaluate its efficiency. Compared
with batch processing and an incremental view maintenance
system, we have remarkable performance improvements and
significantly lower memory usage.

The rest of this paper is organized as follows: Section 2 provides
an overview of DISS. We discuss related work in Section 3. We
present our intermediate states selection algorithm, and its exten-
sions and system optimizations in Section 4 and Section 5 respec-
tively. Finally, we discuss the prototype implementation and its
evaluation in Section 6, and Section 7 concludes this paper.

2. DISS OVERVIEW
In this section we discuss major components of DISS and a query

life cycle, as shown in Figure 1. The key component for DISS is
the dynamic programming (DP) algorithm of the planner that runs
between the policy component and query execution engine to se-
lect intermediate states for processing deltas with a memory bud-
get. This algorithm has a linear running time with respect to the
number of intermediate states and can inject new operators into the
plan. Specifically, our algorithm considers three types of interme-
diate states: i) data structures along with intermediate tuples that
are maintained by blocking operators, with state that is material-
ized during query processing; ii) intermediate tuples generated by
each operator but not materialized (i.e. pipelining); iii) data struc-
tures that are not generated but may help upcoming delta processing
(e.g. additional hash tables for symmetric hash join).

End User

Incomplete Dataset

Terminate Query DISS

Refreshed Result

Operator with Intermediate State Marked as Dropped Operator with Intermediate State Marked as Kept in Memory

Old Plan New Plan

Policy Component

Query Execution Engine

Planner (DP Algorithm)

External Data Source

Trigger Event

Plan from
physical engine

Information about
the next delta

Estimate the
next delta

New plan for
physical engine

Insert new data

Monitor the
next delta

12

1 23

4

6

7

8

9

5

10

11

Figure 1: IQP Prototype Overview

DISS initially uses batch processing to execute a query over an
incomplete dataset with majority of the expected data present, and
uses delta processing to incorporate one or more data deltas into
the prior query result. Figure 1 shows an overview of a query life
cycle. A user first issues a query to DISS 1 , where the policy com-
ponent triggers one query execution over an incomplete dataset 2 .
The query is compiled and generated into a query plan as a tree of
operators. Before executing the query, the planner uses our core
DP algorithm to determine the intermediate states that should be
kept subject to a memory budget. It first extracts the query plan
from query execution engine 3 , and then obtains the information
from the policy component 5 according to the delta prediction
model 4 . The DP algorithm marks a subset of intermediate states
of the query plan for the execution engine to keep 6 . The query
engine, based on canonical IVM algorithms [13], executes the plan
and returns an initial query result to the end user 7 . After that, we
persist the intermediate states that are marked as kept in the query
plan and drop the rest. When new data is added to the database 8 ,
the policy component monitors the new data 9 and creates a trig-
ger event based on a defined policy 10 . If another delta is expected,
DISS repeats the DP algorithm and generates a new plan; other-
wise, we use the same plan. DISS then runs this plan to return
a refreshed result to the user 11 . This process repeats either the
dataset is complete or the user terminates the query 12 .

1428

3. RELATED WORK
We discuss related research on view maintenance, intermediate

state reuse, query suspension, and continuous queries. We empha-
size that none of these projects consider leveraging intermittent and
predictable delta arrival patterns to optimize query processing.

Incremental View Maintenance: The problem of updating a query
result is akin to incremental view maintenance (IVM), which con-
siders a materialized view that is derived from base realtions. When
base relations are updated, IVM finds a query plan to compute the
changes to the old view rather than recompute the view. We fo-
cus only on relational algebra and do not discuss other incremen-
tal solutions, such as matrix calculations [47, 48], or user defined
functions (UDFs) [12]. We refer the reader to a comprehensive
survey on materialized views [19]. Larson et al. introduce the
idea of IVM and propose algorithms for select-project-join (SPJ)
views [13]. Later work introduces methods to support material-
ized views with negation, aggregation, and recursive view defini-
tions [30], efficient IVM for nested queries [62, 46], optimized in-
cremental computation for acyclic joins [33], and how to exploit ids
in base relations [36]. We believe these algorithms are applicable
to IQP, as our work aims to bridge between the policy component
and query execution engines instead of designing IVM algorithms.

In addition to IVM algorithms, prior work also considers build-
ing additional auxiliary views for a materialized view to acceler-
ate view refreshing. Ross et al. selectively build additional views
according to the workload [52]. Its selection algorithm enumer-
ates all possible subsets of additional views, which has the com-
plexity of being exponential to the number of additional views.
DBToaster improves on this idea and supports fast immediate incre-
mental view maintenance by building additional recursive higher-
order views [4]. IQP differs from DBToaster in that it considers
information of trigger events and selectively keeps or builds inter-
mediate states according to the future deltas.

Multiple view maintenance policies, such as immediate or de-
ferred maintenance, have been proposed based on different consis-
tency requirements and performance objectives [22, 23]. Lazy view
maintenance [65] takes a similar approach to a deferred view [22]
by deferring the view maintenance work to the time when the sys-
tem has free cycles or when it is queried such that the overall per-
formance of maintaining and querying the view can be improved.
These projects decouple the policy component from the underlying
query execution engine, but do not consider leveraging information
from a policy component to optimize query processing.

Materialized View Selection and Reuse: Building materialized
views can accelerate query processing but with additional cost. Sev-
eral efforts exploit this trade-off in data warehouses [3, 31, 32,
37, 53]. Dynamic materialized views [66, 27] maintain partial
views according to hot/cold access patterns to answer parameter-
ized queries and reduce maintenance cost. In distributed systems,
pre-computation can achieve linear scalability [7] and selectively
materializing sub-expressions can minimize query response time at
“data center” scale [35]. Chaudhuri et al. incorporate materialized
views into query optimization [17] and Mistry et al. share materi-
alized views for multi-query optimization [43].

A related topic to materialized view selection is reusing interme-
diate states. Several projects explore caching intermediate states
based on its reuse frequency, performance contribution, and its cost
(i.e. memory size) [34, 45]. Dursun et al. consider reusing in-
termediate data structures from join algorithms in main-memory
databases [25]. ReCache studies the same problem for hetero-
geneous data sources [8]. Intermediate results can also acceler-
ate approximate query processing [26] and feature selection work-

loads [63]. IQP considers how to efficiently incorporate delta into
an existing query result, rather than storing materialized views or
intermediate states for future queries. In Section 6.5, we compare
IQP with a view cache algorithm [45] with a memory constraint,
and show that IQP’s ability to include the delta arrival pattern in its
decision making process improves query processing performance.

Query Suspend and Resume: Several previous projects study the
problem of suspending query execution due to system failures or
query scheduling, and then efficiently resuming the query later.
Chandramouli et al. [15] design lightweight asynchronous check-
pointing to store the states of operators during suspension phase,
and resume the query by restoring the consistent states of opera-
tors. Later work studies the same problem in the context of index
construction [28, 6]. Query suspend and resume is not viable for
IQP, as a suspended query does not necessarily finish processing
the desired partial workload and cannot present the corresponding
incomplete query result to end users.

CQ Processing and Stream Computing: Many research projects
explore continuous query processing and stream computing to ad-
dress the problems of late data and bursty workloads. To efficiently
process late data, some projects investigate buffering all interme-
diate states [50, 64] . Similar to these projects, modern dataflow
systems [5, 2, 44] keep intermediate states in memory for late data
processing, and further allow users to specify a time threshold of
how late the data is expected to be and discard data later than the
threshold [5]. Krishnamurthy et al. allow processing arbitrarily late
data, but limited support for aggregation operations [39]. Several
projects address bursty workloads by selectively discarding input
data to maximize the query result utility for end users [57, 9, 56],
but do not consider incorporating the discarded data into query re-
sults later. IQP can efficiently process late data under a constrained
resource by intelligently persisting a subset of intermediate states.

4. DELTA-ORIENTED INTERMEDIATE
STATE SELECTION

In this section, we introduce the intermediate states selection al-
gorithm for DISS. Materializing intermediate states and auxiliary
data structures speeds up delta processing, but comes with the cost
of higher memory consumption and longer initial batch process-
ing time. To strike a balance between batch processing and delta
processing, we carefully persist a subset of intermediate states and
build optional auxiliary data structures when necessary. This is en-
abled by our dynamic programming algorithm that considers the
cost of batch processing and delta processing together based on the
predicted information about the next delta. Our algorithm currently
does not consider using a different join order from the one gener-
ated by the database query optimizer: for this work we assume that
majority of the data for relations exists for the initial query and we
use the plan that is optimized for the initial data. Thus, we leave
adaptive query execution for future work. Since the applications
we have discussed so far are insert-only workloads, our algorithm
discussion in this section only considers insert-only deltas, and we
discuss how to process deletes and updates in Section 5. In this
section, we propose our dynamic programming-based optimization
algorithm that handles one delta at a time, and discuss the case of
processing multiple deltas in Section 5. We begin with a motiva-
tion in Section 4.1, present an overview of DISS in Section 4.2, and
elaborate on the algorithm in Section 4.3.

4.1 Motivation
We propose an IQP system DISS (Delta-oriented Intermediate

State Selection) that considers using a limited memory budget to

1429

Hash

Hash

𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚

𝑂𝑟𝑑𝑒𝑟𝑠 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

(a) Original query plan

Hash

Hash

𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚

𝑂𝑟𝑑𝑒𝑟𝑠 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

(b) Delta from Lineitem

Hash

HashHash

𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚

𝑂𝑟𝑑𝑒𝑟𝑠

Hash

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

(c) Delta from Customer

Figure 2: Examples of Intermediate State Selection

store a subset of intermediate states for efficient delta processing.
Intermediate states are critical to the performance of delta process-
ing and a major source of memory consumption. Consider a sim-
ple example query shown in Figure 2a: Lineitem ./ (Orders ./
Customer) implemented using hash joins. During the batch pro-
cessing, the hash table is built for the right sub-tree, and the left
sub-tree probes the hash table. If the delta only includes data for
Lineitem (i.e. Figure 2b), keeping the top hash table (colored in
Figure 2b) is enough to process this delta efficiently without recom-
puting Orders ./ Customer, and we can discard the other hash
table. However, if the delta only comes from Customer, these
two hash tables cannot help delta processing as we need to re-scan
Lineitem and Orders. This motivates us to consider building
new intermediate states for delta processing. Figure 2c shows a
possible solution using symmetric hash joins [58] (if we know delta
only includes data for Customer). During the batch processing,
we build two new hash tables for Lineitem and Orders. After
that, we discard two hash tables (not colored in Figure 2c) and keep
the other two (colored in Figure 2c) assuming the memory budget
permits. Building new intermediate states comes with additional
cost. DISS provides a holistic solution to choosing which interme-
diate states to keep, and if necessary where to build new states.

4.2 DISS Overview
In this subsection, we give an overview of DISS. It takes several

inputs: a query plan (e.g. tree of relational operators) T, meta-
information of all intermediate states, a cardinality estimator, and
an operator cost estimator (from the conventional RDBMS that ex-
ecuted batch processing), a memory budget M, and prediction of
the next delta (i.e. the numbers of new tuples for each base rela-
tion). Note that we currently use a static memory budget M set by a
user, and leave dynamic memory budget allocation for future work.
Similar to classical query optimization, we run the optimization
algorithm as if the cardinality estimates are accurate and the pre-
dicted delta position/sizes are precise; we later evaluate the impact
of prediction quality on IQP’s performance in Section 6.4. With
this information, DISS solves the problem of selecting a subset of
intermediate states to persist, where the sum of their sizes is within
the budget M, such that the summation of delta processing time and
the overhead of materializing new operators (based on the estima-
tor) is minimized. The query is compiled into a tree of operators
and each operator may include intermediate states. Using DISS to
select the optimal set of intermediate states includes four steps.

In the first step, DISS obtains the prediction about the next delta,
including which base relation(s) it belongs to and the number of
new tuples. Then, DISS propagates the delta information from base
relations to the top operator such that each operator knows the car-
dinalities of (delta) tuples from its child subtrees when the delta
will be processed. DISS reuses the cardinality estimator from the
underlying RDBMS (that handles batch processing).

After, for each operator DISS estimates the operator’s query pro-
cessing time using the RDBMS’ cost estimator. We may apply one
of several actions on each operator. For example, a join operator
may only contain a hash table for the right child. Thus, there are
at least four state configurations on the hash table: drop it; keep it;

Table 1: Notation Table

Notations Meaning
|R| size for relation R (also costs for read/write R)
M memory budget for IQP
T query plan tree
op an operator (vertex) in T

op.c unary operator op’s (single) child
op.l, op.r binary operator op’s two children

op⇓ a subtree of plan T: op and its descendants
D the dataset (for batch processing)

∆D the new dataset (for delta processing)
D+ D ∪∆D
Q a query (explicitly given or induced by op⇓)

RQ(D), R Q(D)
RQ(∆D), ∆R Q(D+)−Q(D) (not Q(∆D))
RQ(D+), R+ Q(D+)

Dop(m) min. cost for op⇓ to emit ∆R (c.f. Sec. 4.3.2)
Fop(m) min. cost for op⇓ to emit R+ (c.f. Sec. 4.3.2)

Cop(d), C(d)
cost for processing data d (d = D, ∆D, or D+)
(estimated by RDBMS’ cost estimator)

drop it and build a left one; keep it and build a left one. We need to
choose exactly one action for each operator, and each action incurs
a different time cost (for processing deltas) and memory cost.

Finally, the cost information and the query operator tree are used
by our core dynamic programming algorithm to decide which inter-
mediate states to keep (if they will be built by the batch processing)
or build (if batch processing does not build them). As in conven-
tional RDBMS query optimization, we use a normalized processing
time that combined both the main-memory processing time and I/O
time into a unified metric.

4.3 DISS Algorithm
Here, we discuss how to choose a subset of intermediate states

to keep, and build new intermediate states if necessary based on
one predicted delta, a memory budget M, and a query plan tree T
generated by the query optimizer. Without loss of generality, each
tree vertex is a relational operator op which has one child op.c or
two children op.l, op.r. For each operator op, we also consider it
as a query, which is made of op and its descendants. For simplicity,
we use op(D) to denote the evaluation of op and its descendants on
dataset D. We summarize our notations in Table 1.

4.3.1 Pre-processing
Before working on the problem of selecting the optimal subset

of intermediate state to build or keep for a future delta, the sys-
tem is ready to process the query on the existing set of data (batch
processing). Thus, for each operator op, we know the (estimated)
cardinality of its output. We also know the cardinality of each base
relation’s delta (from the delta predictor). For pre-processing, we
propagate the delta cardinality information to each operator, so we
know each operator’s input(s)’ sizes, which will be used in the next
step. We delegate the delta cardinality estimation to the RDBMS’
cardinality estimator.

4.3.2 Problem Definitions
Generally, for each query Q, dataset D, and a delta dataset ∆D,

there are two ways to compute the query result on the union of D
and ∆D: re-computation Q(D+) where D+ = D∪∆D, and in-
cremental computation, which finds a query Qincr(D,∆D) such
that Q(D+) = Q(D)⊕Qincr(D,∆D). For performance, ideally

1430

Algorithm 1: Memoization-based Dynamic Programming
Parameters : operator op, memory budget m

1 if Dop(m) and Fop(m) have been processed then
2 return the result from memoization

3 for op’s all available action act do
4 Dop(m) = Fop(m) =∞
5 if act is applicable under current setting then
6 Dop(m) = min(Dop(m), cost according to act)

7 Fop(m) = min(Fop(m), cost according to act)

8 end
9 memoize Dop(m) and Fop(m)

incremental computation is faster than re-computation. However,
incremental mechanisms do not always accelerate computation due
to two possible reasons.

First, in some cases fully supporting incremental computation
requires persisting intermediate states. It comes with extra cost
and can make the incremental approach less efficient compared to
re-computation. Consider joining two sub-trees L and R using a
simple hash join, which builds one hash table for one of its two
sub-trees (assuming R) and uses the result pulled from the other
sub-tree (i.e. L) to probe the hash table. To enable full incremental
computation for deltas from L and R, the hash join operator needs
to persist hash tables for both sub-trees and the output result of this
hash join. The extra overhead of building one more hash table (i.e.
for L) and materializing the output result might be larger than the
cost of re-computation, which includes re-scanning from the sub-
tree L and performing the join with the hash table of R.

Second, as discussed previously, since the deltas arrive in an in-
termittent way, the system may not have sufficient memory to keep
all intermediate states for all concurrent standing queries that are
waiting intermittent deltas. Thus, we have to drop some interme-
diate states, and incremental computation may be slower than the
re-computation due to lack of necessary intermediate states.

Therefore, since incremental computation is not always the faster
choice for all operators, each operator needs to choose what kind
of input it needs from its child operators depending on that this op-
erator chooses re-computation or not. Informally speaking, it may
only need to see the “new” input (generated due to the arrival of
delta) or ingest the “full” input (a combination of the “new” input
and previous inputs). Thus, for each operator op, we consider the
costs of two output requirements. One is how efficient can op out-
put a delta output (defined as Rop(∆D) = op(D+) − op(D));
the other is how efficient can op output a full output (defined as
Rop(D+) = op(D ∪ ∆D)). We emphasize that, depending on
the actual costs, a full output can be computed incrementally and a
delta output can be computed by re-execution as well.

Based on this observation, we define two cost functions. Assume
the memory budget for operator op⇓ (op and its descendants) is m
(0 ≤ m ≤ M). Dop(m) is the minimum cost for op⇓ to emit
delta output Rop(∆D). Similarly, Fop(m) is the minimum cost
for operator op⇓ to emit full output Rop(D+).

4.3.3 Recursive Dynamic Programming
We introduce a memoization-based top-down dynamic program-

ming algorithm. Assume the operation root is the root of query
plan T, the better (smaller) solution of Droot(M) and F root(M)
is the solution of the intermediate state selection problem. For any
operator op and a budget m, to compute Dop(m) (or Fop(m)),
we need to recursively calculate Dop′(m′) and/or F op′(m′) for

op’s descendant op′ and a budget m′ ≤ m. Throughout the recur-
sive computation process, we memoize all results for Dop(·) and
Fop(·), so we can reuse the existing results if we need them later.
This top-down memoization process is equivalent to a bottom-up
dynamic programming. We present the former for better clarity,
and analyze the complexity of our algorithm later. We emphasize
that our algorithm is different from classical query optimization
dynamic programming algorithms [54] in that we consider the cost
of batch processing and delta processing together with an memory
constraint rather than just the batch processing time.

In our recursive algorithm, we focus on one operator at one time.
Each operator has several action templates (actions for short). For
an operator op, each action corresponds to one configuration of op’s
intermediate states and/or auxiliary data structures. For example,
for a sort operator one action is to keep the sorted result, and an-
other is to drop the sorted result. Each action includes a constraint
indicating when this action is applicable based on a memory budget
and is associated with two formulasDop(·) and Fop(·), which rep-
resent the cost of computing the delta output ∆D and full output
D+ respectively. An example of action is illustrated in Action 1.

We assume a pipelined query execution engine, and consider in-
jecting new operators (e.g. Materialize) or building new data struc-
tures (e.g. hash table) for fast delta processing if necessary. DISS
currently supports the following operators:
• Scan including sequential scan, and index scan
• Materialize
• Sort
• Join1 including hash, sort-merge, and nested loop join
• Aggregate including hash aggregate and sort aggregate

We briefly introduce these operators and the corresponding actions.
It is straightforward to extend our DISS solution to support more
operators or more actions. We illustrate the framework of our dy-
namic programming solution in Algorithm 1, and discuss each ac-
tion as follows. For simplicity, the following discussion considers
the first delta after the initial batch processing. In this case, the DP
algorithm generates a specification of which intermediate states to
materialize. According to this specification, the query plan in the
batch phase is modified to materialize or build new intermediate
states that do not exist in the original plan. After batch processing,
a delta plan is generated by keeping and discarding corresponding
intermediate states based on the specification. Processing succes-
sive deltas is similar.

Scan (including Projection and Selection): Scan is a leaf opera-
tor, it performs projection and predicate filtering for tuples scanned
from base relations. Since we assume a pipelined execution engine,
a scan operator does not maintain any intermediate state. To avoid
re-scanning the base relations during delta processing, we can in-
ject a materialize operator as its parent.

Materialize: A materialize operator op can be inserted as the par-
ent of an operator to materialize their output tuples, which will be
used for future delta processing. There are two actions: no oper-
ation (i.e. do not materialize, Action 1), and materialization (Ac-
tion 2). If we do not materialize these tuples in the batch process-
ing, the cost of evaluating op over either delta data ∆D or full data
D+ (i.e. Dop(m) or Fop(m) in Action 1) includes the cost of
pulling the corresponding result from its child (i.e. Dop.c(m) or
Fop.c(m)) and the cost of delivering them to its parent operator
C(·). If the memory budget m is sufficient to keep R (the query
result of op) in the batch processing, we can choose to keep it for

1Our current design only considers inner joins.

1431

Action 1: No MaterializationOperator: Materialize
Applicable: Always

Cost:
Dop(m) = C(∆D) +Dop.c(m)
Fop(m) = C(D+) + Fop.c(m)

Action 2: Keep MaterializationOperator: Materialize
Applicable: |R| ≤ m

Cost:
Dop(m) = Cmat(R) + C(∆D) +Dop.c(m− |R|)
Fop(m) = Cmat(R) + C(∆D) +Dop.c(m− |R|)

+Cscan(R)

more efficient delta processing. In this case, we need to pay an ad-
ditional cost of materializing R (i.e. Cmat(R) in Action 2). Here,
if its parent operator asks for delta result ∆R, the time Dop(m) in
Action 2 includes the materialization time Cmat(R), the time of
pulling delta result from its child Dop.c(m − |R|), and delta pro-
cessing C(∆D) time. If the upper layer operator asks for a full
re-evaluation R+, the time Fop(m) in Action 2 for emitting full
result R+ needs to additionally account for the time of scanning
the materialized result Cscan(R).

We note that a materialize operator only applies to child oper-
ators when a new delta can be merged with the previous output
straightforwardly without additional effort, that is, the output only
requires bag semantics. For child operators that require richer se-
mantics, such as a sorted output, this materialize action does not
apply, and a specialized materialize action is required (i.e. Ac-
tion 3).

Action 3: Keep SortOperator: Sort
Applicable: |R| ≤ m

Cost:
Dop(m) = C(∆D) +Dop.c(m− |R|)
Fop(m) = C(∆D) +Dop.c(m− |R|)

+Cmerge(∆R,R)

Sort: A sort operator outputs sorted tuples. The drop action of a
sort operator is similar to Action 1, where the C(·) represents the
time of sorting data pulled from its child operator and delivering
them to its parent operator. We omit the drop action for space. If
the memory budget m is sufficient to keep the sorted intermedi-
ate result R, we can apply keep action shown in Action 3. Here,
keeping the intermediate result does not introduce additional time
cost because the sort operator is part of the original batch process-
ing. Therefore, the cost of emitting the delta result ∆R for a sort
operator (i.e. Dop(m) in Action 3) includes the cost of pulling
delta result from its child operator (Dop.c(m − |R|)), and the cost
of computing the delta result C(∆D). If the operator is expected
to output the full result R+, the keep action needs to account for
the cost of merging of sorted result ∆R and the sorted (i.e. R
Cmerge(∆R,R)).

Action 4: Drop AggregationOperator: Aggregate
Applicable: Always

Cost: Dop(m) = Fop(m) = C(D+) + Fop.c(m)

Action 5: Keep AggregationOperator: Aggregate
Applicable: |R| ≤ m

Cost:
Dop(m) = C(∆D) +Dop.c(m− |R|)
Fop(m) = C(∆D) + Cscan(R) +Dop.c(m− |R|)

Aggregate: Before introducing DISS for an aggregate operator,
we note that the aggregate operator is not a monotonic operator,
even if the aggregate function itself is mathematically monotonic.
Informally speaking, if an operator is monotonic, one delta (i.e.

new tuples) only generates zero or more extra output tuples. How-
ever, an aggregate operator may introduce extra tuples, and remove
existing ones: assume the SUM-aggregated result contains a tuple
(’Tom’, 15), so a delta (’Tom’, 3) turns the previous tuple
into (’Tom’, 18). In this paper, we define the delta result ∆R
contains these two tuples with appropriate annotations.

An aggregate operator can be implemented in hash-based or sort-
based approaches. For the former, a hash table is built with group-
by ID as the key and aggregated value as the value. For each tuple
from an aggregate operator’s child’s output, a hash aggregate oper-
ator identifies its group-by ID and incorporates that tuple into the
aggregated value. A sort aggregate operator assumes tuples from
the child operator are already sorted by the group-by ID. It scans the
tuples and aggregate numerical values that share the same group-
by ID. We use hash-based aggregate as an example, while our two
actions apply on both aggregate methods.

If we discard the intermediate state, regardless whether the oper-
ator is supposed to output a delta output ∆R or a whole output R+,
the aggregate operation has to redo the whole aggregate process to
generate the positive tuples (that are new due to deltas) and the neg-
ative tuples (that shall be removed due to deltas). Thus, the cost of
computing the delta and full output (i.e. Dop(m) and Fop(m) in
Action 4) equals the cost of pulling the full output from descendant
operators Fop.c(m) and redoing the aggregate C(D+).

If we keep the intermediate state (the hash table), for each new
tuple, we use its key to look up in the hash table. Based on the exist-
ing aggregated tuple and the new tuple’s value, we can calculate the
new aggregated value. Thus, the cost of generating the delta output
of the aggregate operator (Dop(m) in Action 5) includes the cost
of processing the delta input C(∆D), and the cost incurred by the
descendant operators Dop.c(m − |R|). Similarly, if we aim at the
whole output (Fop(m) in Action 5), we only need to merge new
tuples into the hash table and scan the whole table (i.e. Cscan(R)).

All the above discussions about aggregate functions assume the
aggregate function f is “incrementable”: in order to compute X =
f(a1, a2, . . . , an), we can find two functions g and h such that
X = h(g(a1, a2, . . . , an−1), an). Most of SQL’s standard aggre-
gate functions have this nice property: when f is MIN, g and h is
MIN as well; when f is STDDEV, g and h are not STDDEV, but
some simple arithmetic functions (sum and sum of squares). How-
ever, if the aggregate function f is a user-defined function (UDF),
it is not trivial, or even impossible to find the corresponding g and
h, or g and h are not efficient. Therefore, to process the UDF-
aggregate the default action is redo, unless the user hints otherwise.

Hash Join: DISS supports hash join2, nested-loop join, and sort-
merge join. We only discuss hash join here as nested-loop and sort-
merge join operators do not persist intermediate states, but let their
child operators do this job (i.e. sort operators for a sort-merge join
and materialize operators for nested-loop join). In the following
discussion, for a join operator op we use subscripts l and r to denote
its left and right child operators, as well as other values associated
with two sub-trees. For example, op.l is the op’s left child, Dl is the
data associated with the left sub-relation, query result of left sub-
tree Rl is op.l(Dl). For this discussion, CB(D) is the estimated
cost of building hash table for dataset D, CI(∆D,D) represents
the estimated cost of inserting the result of ∆D into the hash table
for D, and CHJ(DL, DR) denotes the estimated cost of scanning
tuples from DL and probing them to the hash table for DR.

2We currently only support simple hash-join as we only persist in-
termediate state in memory, but nothing in our approach limits sup-
porting other hash join algorithms.

1432

Action 6: Keep Right Hash Table OnlyOperator: Hash Join
Applicable: |Rr| ≤ m (|Rr| is right hash table’s size)

Cost:

Dop(m) = min
0≤ml≤m−|Rr|

ml+mr=m−|Rr|

F l(ml) +Dr(mr)︸ ︷︷ ︸
pull from both sub-trees

+ CB(∆Dr)︸ ︷︷ ︸
hash table for ∆Dr

+CHJ(∆Dl, Dr ∪∆Dr)︸ ︷︷ ︸
left delta

+CHJ(Dl,∆Dr)︸ ︷︷ ︸
right delta

Fop(m) = min
0≤ml≤m−|Rr|

ml+mr=m−|Rr|

F l(ml) +Dr(mr)︸ ︷︷ ︸
pull from both sub-trees

+ CI(∆Dr, Dr)︸ ︷︷ ︸
insert ∆Dr into right hash table

+CHJ(Dl ∪∆Dl, Dr ∪∆Dr)︸ ︷︷ ︸
full hash join

For a hash join operation, a hash table is built on one of two
joined sub-trees’ keys. After the hash table is built, the hash join
iterates through the tuples from the other sub-tree and probes the
hash table based on join keys. Without loss of generality, we as-
sume the hash table is always built for the right side. Here, it is
easy to incrementally process deltas from the left side (given the
right hash table is built), but processing deltas from the right side re-
quires recomputing the full result from the left sub-tree. To address
this issue, our algorithm additionally considers building left hash
table if necessary (also known as symmetric hash join [59]). There-
fore, we discuss three actions: keep the right hash table only, keep-
ing the right hash table and building a left one, and drop both. Other
possible actions, including building the left hash table and dropping
the right one, can be handled in a similar approach. Throughout the
discussion, we assume that both sides have deltas, and other cases
(e.g. only left side has delta) can be easily derived from this one.

We begin with discussing the case of keeping the right hash table
only. The cost of computing the delta result and full result is shown
in Action 6. The cost of computing the delta result (i.e. Dop(m))
includes four parts:

• Pulling full output from the left sub-tree and delta output
from the right sub-tree. To find the minimum cost, we need
to enumerate all possible memory allocation of the remain-
ing memory budget m−|Rr| into two sub-trees (i.e. ml and
mr). The cost for this part is F l(ml) +Dr(mr).
• Afterwards, we build a hash table for the right delta ∆Dr ,

which is used to process the data pulled from the left sub-
tree. The cost for building this hash table is CB(∆Dr).
• Next, we begin the join process for the left delta ∆Dl. It

joins with Dr∪∆Dr using the right hash table we have kept
and the newly built hash table in the last step. The cost here
is CHJ(∆Dl, Dr ∪∆Dr).
• Finally, the right delta ∆Dr joins with Dl by scanning Dl

and probes the hash table of ∆Dr . The cost of this part is
CHJ(Dl,∆Dr).

The cost of computing the full result (Fop(m) in Action 6) is
similar toDop(m). We first insert the right delta into the right hash
table (i.e. CI(∆Dr, Dr)). Then we join the full result pulled from
the left sub-tree with this hash table via the hash join.

Next, we discuss the case of building a left hash table and keep-
ing the right table at the same time. Since the left hash table is not
originally built in the batch processing, building it costs CB(Dl)
for either computing the delta output or full output. If the operator
needs to compute the delta output, the right delta ∆Dr is first in-
serted into the right hash table, and probes the left hash table. The
left delta then joins with the right hash table as well. If the operator
need to emit the full result, we also insert the right delta ∆Dr into
the right hash table and probe it by scanning the left hash table and
the left delta. We omit the action description for space limits.

The final action is to drop the right hash table. In this case, we
do not keep any intermediate states, so we need to recompute the
join. We pull full results from both sub-trees, build a hash table for

the right sub-tree, and use the left full result to probe it. Its action
description is similar to the previous two and we omit it here.

4.3.4 Computational Complexity
The time complexity depends on two factors: the number of

operators and the complexity for applying actions for each oper-
ator. In our algorithm, each operator takes a memory budget m
(0 ≤ m ≤ M) as input and evaluates all associated actions. The
number of different budgets depends on the granularity of budget:
if M =1 GB, we could use Byte as the basic unit of memory, or
round each intermediate state’s size up to the nearest MB. Assum-
ing there are M budget units and the query plan tree has N opera-
tors, the computational complexity of applying actions of all opera-
tors is O(NM). The computational complexity for each action de-
pends on the action itself. For all the actions except join discussed
in this paper, their computational complexities are O(1). The time
complexity for join operators is O(M) because they require enu-
meration on the memory allocated to each sub-relation. Thus, the
overall complexity is O(NM2).

5. EXTENSIONS AND OPTIMIZATIONS
In this section we describe how to extend DISS to support up-

dates and deletes, multiple subsequent deltas, and optimizations for
our DP algorithm.

Processing Deletes and Updates: As one update can be modelled
as a delete and an insert, we only discuss how to process deletes
here. To extend our framework to support deletes, we require that
the underlying IVM system can incrementally process deletes, and
estimate the corresponding cost, cardinality, and selectivity. Here,
cost formulas in each action should be modified to consider the
cost of deletes. We modify the underlying IVM system to support
deletes for the operators we have discussed so far. Due to space
limits, we only discuss an IVM algorithm of processing deletes for
symmetric hash join, and use it as an example of explaining how to
support deletes in DISS. For other IVM algorithms for processing
deletes, we refer the reader to a comprehensive survey on material-
ized views [19].

Each delete is represented as a new tuple with an additional flag
field indicating the deletion. Processing a new tuple for symmetric
hash join includes two basic steps: 1) maintaining the hash table
that is built on the same side where the new tuple comes from, and
2) probing the hash table of the other side to generate new tuples.
For the first step, one delete needs to delete the tuple of the hash
table on the same side. It finds the corresponding bucket of the
hash table and scans the list of tuples associated with that bucket to
find the exact tuple to delete. Its cost could be higher than inserting
a new tuple because for insert operation, once the right bucket is
found, the inserted tuple is added to the list of tuples for that bucket
without scanning it. Therefore, the corresponding cost formulas
are modified to account for this cost. For example, for Fop(m) in
Action 6, if the delta includes deletes, we need to split the cost of
inserting a delta into the right hash table (i.e. CI(∆Dr, Dr)) into
two parts, where one represents the cost of inserts and the other

1433

represents the cost of deletes. For the second step, the cost of gen-
erating new tuples for a delete by probing the hash table of the
other side is the same as an insert. Other operators discussed in
Section 4.3.3 can be supported in a similar way.

Multiple Deltas: Until now we only consider one delta at one time,
containing tuples for one or more relations. In practice, there will
likely be multiple deltas. For this case, there are two possible so-
lutions. If we are able to predict multiple deltas together in the
future, we can extend our DP algorithm to minimize the running
time of batch processing and multiple delta processing as a whole.
However, this approach makes computational complexity of the DP
algorithm too high. For one delta, each operator needs to find the
minimal cost of computing delta output (i.e. Dop(m)) and the min-
imal cost of computing full output (i.e. Fop(m)). If we consider
K deltas together, all possible output combinations for K deltas are
O(2K), and computing the cost for one possible combination is K.
Combined with the complexity for one delta, the complexity for K
deltas is O(K2KNM2). Therefore, we choose an alternative way
of applying our DP algorithm for one delta at a time. Specifically,
we choose to select a new subset of intermediate states to persist
and build if the predicted next delta is different from the current
delta (i.e. the sizes of new tuples for base relations). Otherwise, we
use the same plan. We emphasize that to determine the intermedi-
ate states for the next delta, we run our algorithm before processing
the current delta because we can only build intermediate states, if
any, while we process the current delta (or initial data).

Accelerating DP Algorithm: Here we propose an optimization
of our DISS algorithm. The optimization is based on an observa-
tion that intermediate states’ sizes are usually sparse, so the optimal
intermediate states usually stays the same when the memory bud-
get does not change drastically. Although theoretically there are
M possible values, in practice the number of distinct Dop(·) and
Fop(·) is far less than M .

We exploit the sparsity of unique Dop(·) and Fop(·) values to
optimize our algorithm. The key observation is that both Dop(·)
and Fop(·) are non-increasing monotonic functions with respect
to memory budgets. Therefore, instead of computing cost values
from child operators for all possible memory budgets from 0 to M ,
we run a binary search of memory budgets. Specifically for each
operator, we start with computing its cost values with the memory
budget 0 and M respectively. If they have the same value, the costs
with memory budgets between 0 and M are the same and we do not
need to compute them from child operators; otherwise, we divide
this range [0,M] into two equal ones and repeat the aforementioned
process to compute the two separate ranges until all cost values are
computed for this operator.

6. EXPERIMENTS
Our experimental study addresses the following questions:

• How much does DISS lower delta processing latency and
memory consumption compared with IVM and (re-)batch
processing under IQP applications? (Section 6.3)
• What is the impact of delta prediction quality on DISS per-

formance? (Section 6.4)
• How does DISS’s dynamic programming algorithm grace-

fully trade memory consumption for efficient delta process-
ing compared to greedy algorithms? (Section 6.5)
• What is the benefit and cost of injecting operators or build-

ing new states (i.e. MATERIALIZE and SYMMETRIC HASH
JOIN) into the query plan? (Section 6.6)

• How much does DISS lower delta processing time in work-
loads with deletes? (Section 6.7)

We evaluate the performance of DISS on a machine with two
Intel Xeon Silver 4116 processors (i.e. 2.10GHz), 192 GB of RAM,
and Ubuntu 16.04 operating system. For all experiments we report
single threaded query execution with no concurrent requests.

6.1 Prototype Implementation
We implement the DISS prototype in PostgreSQL 10. When a

query is issued to DISS, it uses the query optimizer of PostgreSQL
to process this query and generate a query plan. DISS then obtains
information about new data from a delta predictor without requir-
ing any user specification. DISS periodically asks for information
about the next delta that specifies how many new tuples are ex-
pected to arrive for each incomplete table and whether that table
will be complete after the next delta. We discuss two scenarios of
obtaining such information in Section 6.3. After, we use DISS to
choose intermediate states to keep (and to rebuild). Intermediate
states that are marked as kept will be materialized during the ini-
tial query processing. Specifically, if DISS chooses to materialize
the output tuples of an operator it inserts a Materialize node, and
if DISS chooses a symmetric hash join it adds a Hash node. DISS
adopts the execution engine of PostgreSQL to run this modified
query plan over the incomplete dataset and when it finishes, DISS
discards unnecessary intermediate states and waits for a delta. We
also modify PostgreSQL to keep the query alive after the initial
query result is returned and the client is able to refresh the query
result when the next delta is processed.

We generate delta tuples using INSERT SQL statements of Post-
greSQL. We modify the insert operation such that it not only inserts
tuples into the database, but also notifies the queries (e.g. a delta
log [29, 19]). For this prototype, each query monitors the number
of delta tuples and when it exceeds a threshold or when an pre-
defined time elapses, delta processing is triggered. DISS repeats
the aforementioned process to generate a modified query plan that
specifies the intermediate states to persist, and delegate query pro-
cessing to PostgreSQL. During delta processing, we use our mod-
ified operators (based on the implementation of PostgreSQL) to
incrementally process delta tuples or re-generate full output from
child operators. The query terminates when the delta predictor in-
forms that there will be no additional deltas.

We compare DISS against a state-of-the-art incremental view
maintenance system, DBToaster [4], that supports continuous query
processing. Different from DISS, which selectively materializes in-
termediate states by considering intermittent and predictable arrival
patterns, DBToaster recursively maintains all higher-order views
(i.e. intermediate states with indexes) to support frequently re-
freshing query results in response to high-velocity data streams.
To make a fair comparison of the query execution plan between
DISS and DBToaster, we migrate DBToaster’s query plans to Post-
greSQL (denoted as DBT-PG). This includes which intermediate
states to materialize and physical execution steps of maintaining
those intermediate states for each new tuple. DBToaster uses hash
join as its physical join operator implementation. We use TPC-H
Q3 to explain the execution of DBToaster in PostgreSQL. Q3 joins
three relations Lineitem ./ Orders ./ Customer. The recur-
sive view maintenance algorithm of DBToaster not only builds hash
tables for Lineitem, Orders, and Customer, but also builds
hash tables for Lineitem ./ Orders and Orders ./ Customer.
To process a new tuple from Lineitem, DBToaster joins it with
the hash table for Orders ./ Customer, and also inserts it to re-
lated hash tables such as the ones for Lineitem and Lineitem ./

1434

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q14 Q19
0

20

40

60
Ti

m
e

(s
)

XDNF 79s 250s

Batch (100%) ReBatch DBT-PG DISS

(a) Execution time of initial query processing.

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q14 Q19
0

1

5
10

50
100

Ti
m

e
(s

)

XDNF

ReBatch DBT-PG DISS

(b) Average execution time of delta processing.

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q14 Q19
0

50

100

150

200

250

Ti
m

e
(s

)

X
DNF 330s

X
DNF

X
DNF

X
DNF

X
DNF

X
DNF

Batch (100%) ReBatch DBT-PG DISS DBToaster

(c) Total query processing time (i.e. initial query processing time plus all delta processing time).

Q1 Q3 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q14 Q19

1x

5x

10x

15x

20x

Re
la

tiv
e

M
em

or
y

C
on

su
m

pt
io

n X
DNF

(d) DBT-PG’s relative memory consumption against
DISS.

Figure 3: DISS with late data processing on TPC-H scale factor 5.

Orders. Processing tuples from Orders and Customer follows
the similar steps. This approach has the benefit of reducing the
number of joins for maintaining the final join results, but comes
with the cost of maintaining additional materialized views.

Our experiments also include a conventional batch processing in
PostgreSQL. After the initial query processing or each delta pro-
cessing, it discards all intermediate states and re-computes on ar-
rivals of deltas. Note that this is how PostgreSQL supports refresh-
ing materialized views [1]. We denote this as ReBatch in our tests.

6.2 Benchmark Setup
Our experiments use the TPC-H benchmark, a decision support

benchmark that analyzes the activity of a wholesale supplier, and
join ordering benchmark (JOB) [40] that is built on IMDB datasets
to test queries with many joins (i.e. up to 16-way join). Our
current prototype supports flat select-project-join-aggregate (SPJA)
queries, which covers 11 queries of TPC-H and all 33 queries of
JOB. We generate an incomplete dataset by removing some por-
tion of tuples from the complete dataset and then insert them back
as deltas. We build a primary index for each relation in TPC-H and
JOB. We assume small dimension relations including REGION and
NATION are always complete for TPC-H and relations having less
than 10,000 tuples are always complete for JOB. We use a dataset
with scale factor 5 for TPC-H since DBT-PG exceeds memory lim-
itation on larger scale factors on our test machine. We also test a
large scale factor (SF=50) in a larger machine and find they result in
similar observations, which we omit here due to space limits. JOB
includes 21 IMDB tables with 4.3 GB of data in total. In our exper-
iments, we run each test three times and take the average number.
For experiments of DISS, DBT-PG, and ReBatch, we use hot start,
which means all base tables are either in buffer pools or OS caches.

6.3 IQP Use Scenarios
We verify the performance of DISS on two representative sce-

narios: late data processing and data cleaning. For each scenario,
we explain how to predict delta information and discuss experiment
setups and results.

6.3.1 DISS with Late Data Processing
We consider a scenario where a dataset is collected from exter-

nal sources (e.g. sensors), and users demand the refreshed results

periodically. While most data arrives on time, some data items can
be delayed due to network conditions (i.e. long-tail network traf-
fic). In this application, we can predict the arrival pattern of missing
data using historical statistics (e.g. building cumulative distribution
functions).

In this experiment, we model the long-tail of late data by a geo-
metric distribution. Specifically, the arrival time of each data item
is independent from each other. Each data item arrives within a
time interval with a probability p, and if not, it has the same proba-
bility to arrive in the next time interval. We set p as 0.9 and the time
interval as 60 seconds. We assume there are three deltas: 90% of
the complete dataset are available initially, and the incoming three
deltas are 9%, 0.9%, and 0.1% respectively. DISS refreshes query
result every 60 seconds after the initial query processing is finished.
We assume all relations (except REGION and NATION) have deltas.
For reference we also include the result of batch processing on a
complete dataset, denoted as Batch (100%). We also assume the
memory budget is sufficient. If a query cannot finish within 500
seconds, we mark it as DNF (i.e. Did Not Finish).

The experiment results are shown in Figure 3, where we report
the initial query processing time (Figure 3a), average delta pro-
cessing time (Figure 3b), total query processing time, which is the
sum of initial query processing time and all delta processing time
(Figure 3c), and relative memory usage of DBT-PG compared with
DISS (Figure 3d). In Figure 3a, DISS is slower than ReBatch in the
initial query processing because it needs to build more intermediate
states (e.g. hash table in symmetric hash join) to accelerate future
delta processing. On the other hand, DISS is much faster than DBT-
PG because it builds fewer views and fewer intermediate states. For
the delta processing time shown in Figure 3b, we see that DISS
performs better than both ReBatch and DBT-PG because it selec-
tively keeps intermediate states that are useful for delta processing,
without introducing the heavy cost of maintenance. Specifically for
queries with 5-way join or more (i.e. Q5, Q7, Q8, and Q9), the delta
processing of DISS is at least 2.1x faster than DBT-PG. The reason
is that DBT-PG not only builds more intermediate states with more
joins present (e.g. 21 materialized hash tables for Q9 with 6-way
join), but also is unable to avoid large intermediate state. For ex-
ample, DBT-PG needs to materialize the joined results of tables
Customer and Supplier on nationkey for Q5. This means that on
average each tuple in Supplier can successfully join 30000 tuples

1435

0 200 400 600 800 1000 1200 1400 1600
The number of query result refresh

100

101

102

103
Ex

ec
ut

io
n

tim
e

(m
s)

ReBatch DBT-PG DISS

(a) Execution time of delta processing

101

102

103

M
em

or
y

(M
B)

DISS-1
DISS-2
DISS-3

DISS-4
DISS-5
DBT-PG

(b) Memory usage after delta phase

Figure 4: DISS with HoloClean (Q8)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Memory budget (GB)

0
3
6
9

12
15

Ti
m

e
(s

)

small delta, correctly predict small delta
small delta, wrongly predict big delta
big delta, correctly predict big delta
big delta, wrongly predict small delta

Figure 5: Quality of cardinality
prediction (Q8)

Table 2: Aggregated results of join ordering benchmark

ReBatch DBT-PG DISS
Number of Query Finished 33 28 33

Total Query Processing Time
of One Query (s)

Avg 15.9 77.5 10.6
Max 112.6 430 72.1
Min 2.7 3.0 2.2

Memory Consumption (GB)
Avg 0 14.3 1.5
Max 0 86.7 12.1
Min 0 0.35 0.2

in Customer. Such joins with extremely high selectivity should be
avoided. For DISS, this case can be avoided by leveraging the query
optimizer of underlying databases. While DBT-PG runs faster than
ReBatch in most queries, in some cases the cost of maintaining
intermediate states dominates and makes DBT-PG slower than Re-
Batch (e.g. Q9). Figure 3c and Figure 3d show the total query
processing time and relative memory consumption of DBT-PG to
DISS. We see that DISS uses less overall query processing time
than ReBatch and DBT-PG, and consumes less memory than DBT-
PG. These figures show DISS strikes a good trade-off between re-
source consumption and delta processing efficiency. Specifically,
DISS is up to 240x and 25x faster than ReBatch and DBT-PG re-
spectively during delta processing, and only consumes at best 5.6%
of the memory consumed by DBT-PG.

We also include the total query processing time of the native
DBToaster system (the latest release of the C++ version) in Fig-
ure 3c for reference. We find that DBToaster cannot finish for 5
queries, and performs worse than DBT-PG for many queries. One
reason we observed during testing is that DBToaster’s generated
code consumes enormous amounts of memory, which we believe is
due to memory management issues. For example, we observed the
execution of Q7 for 20 minutes, and found it consumes 70% mem-
ory of our test machine, which translates to 137 GB. By contrast,
DBT-PG only consumes 3.6 GB. For Q19, it does not consume
much memory, but is very slow when it performs string matching
for predicate evaluation. We also test a smaller-scale (i.e. SF 0.1)
dataset and find that while all queries are finished by DBToaster,
DBT-PG is faster in most cases.

We also test the performance of DISS for JOB. Our test starts
with 99% of data in the batch phase, and inserts a 1% delta. If a
query cannot finish within 500s, we mark it as DNF. In this test,
we assume the memory budget is sufficient for DISS. We report
the results of variant A for 33 queries; other variants, which have
different values on predicates, result in similar performance.

Table 2 shows the number of queries that finish within 500s, total
query processing time of one query (batch and delta), and memory
consumption after batch processing. We find the results are consis-
tent with TPC-H. DISS can finish all queries, and is faster than both
ReBatch and DBT-PG. Seven queries cannot finish for DBT-PG be-
cause it takes too much time to recursively materialize intermediate

states. For example, Q29 involves a 16-way join, which leads DBT-
PG to materialize more than 1000 intermediate states. In addition,
DISS consumes much less memory than DBT-PG, which also val-
idates the memory consumption results of TPC-H.

6.3.2 DISS with HoloClean
Our second IQP use scenario is a data cleaning system Holo-

Clean [51]. Given a dataset with dirty tuples HoloClean detects
dirty tuples based on pre-defined rules, and then executes a cleaning
algorithm over the identified dirty tuples. The cleaning algorithm
trains a statistical model based on clean tuples and uses the model
to predict correct values for dirty tuples. We build a full pipeline be-
tween HoloClean and DISS, where DISS executes queries over the
initial clean tuples (i.e. initial query processing), receives cleaned
tuples (i.e. delta tuples) from HoloClean, and incorporates delta
tuples into the query result. DISS obtains the information about the
next delta from HoloClean regarding which relations it is cleaning
and the pace (tuples/sec) of cleaning for each relation.

In this experiment, we use TPC-H dataset and assume 20% of the
records are dirty. We set scale factor as 1 to allow HoloClean to fin-
ish within a reasonable amount of time. HoloClean cleans dirty re-
lations one by one and delivers cleaned tuples to the data processing
engines (e.g. DISS and ReBatch), which refreshes the query result
every 5 seconds regardless whether new data appears. We report
the results on Q8, which includes five dirty relations (SUPPLIER,
CUSTOMER, PART, ORDERS, LINEITEM), and report the
execution time of refreshing the query result each time in Figure 4a.
We also show memory consumption of DISS when the query is in-
active for each relation cleaning in Figure 4b. For example, DISS-1
in Figure 4b represents the memory consumption when HoloClean
is cleaning the first relation SUPPLIER. Figure 4b also includes
average memory consumption of DBT-PG along with its minimum
and maximum cost shown as error bars. Note that we use log scale
for y-axis in Figure 4b.

In Figure 4a, HoloClean repeats the process of training statistical
models and cleaning tuples via the trained models for each relation.
Query result refreshing is trivial when HoloClean is training and the
data processing engine is inactive (i.e. refresh execution time is 0
ms). When HoloClean is cleaning (and delivering cleaned tuples
continuously), we see that DISS refreshes the query result much
faster than ReBatch and DBT-PG in most cases except when the
cleaned tuples come from a different relation. This only happens
when HoloClean completes one relation and moves on to the next
(for example, the 310th refresh). In this case, DISS needs to build
and keep new intermediate states for processing delta tuples from a
different relation, and we find that it has comparable performance
to ReBatch here. In other cases, DISS outperforms DBT-PG and
ReBatch by up to 6x and 500x. Additionally, DISS only needs to
keep no more than 15MB of data in most cases and 600MB in the

1436

ReBatch DBT-PG DISS (Right Prediction) DISS (Wrong Prediction)

54321
Number of actual tables having deltas

0

14

28

42

56

70
Ti

m
e

(s
)

(a) Overestimation (Batch)

54321
Number of actual tables having deltas

0

2

4

6

8

10

Ti
m

e
(s

)

(b) Overestimation (Delta)

54321
Number of estimated tables having deltas

0

14

28

42

56

70

Ti
m

e
(s

)

(c) Underestimation (Batch)

54321
Number of estimated tables having deltas

0

2

4

6

8

10

Ti
m

e
(s

)

(d) Underestimation (Delta)

Figure 6: Impact of individual relation’s completeness prediction’s quality (Q8): effect of overestimation and underestimation of the number
of incomplete relations. For overestimation (i.e. the first two figures), DISS predicts all relations being incomplete, while the number of
incomplete relation varies (in x-axis). For underestimation (i.e. the last two figures), all relations are incomplete while DISS foresees a subset
of them (in x-axis).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Memory budget (GB)

102

103

104

105

Ti
m

e
(m

s)

Q3

ReBatch DBT-PG DISS-DP DISS-Recycler

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Memory budget (GB)

102

103

104

105

Ti
m

e
(m

s)

Q7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 (17.5)
Memory budget (GB)

102

103

104

105

Ti
m

e
(m

s)

Q8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 (57.0)
Memory budget (GB)

102

103

104

105

Ti
m

e
(m

s)

Q9

Figure 7: Delta processing time under different memory budgets (all relations have a single 1% delta): DISS and ReBatch can work for all
memory budgets, but DBT-PG only works when the memory budget is larger than the vertical dashed line. (Y-axis is log-scale)

worst case (i.e. the third relation PART), whereas DBT-PG con-
sumes about 3000MB of memory all the time. This experiment
shows that in a real application, DISS can quickly process delta
tuples and at the same time consume limited memory.

6.4 Impact of Prediction Quality
In previous experiments, we assume that the prediction of delta is

always accurate. Here we inspect how imperfect prediction affects
the performance of DISS. Our experiment investigate two situa-
tions: carnality discrepancy and categorical discrepancy. We report
our results on TPC-H’s Q8.

In the first experiment, we assume the predictor correctly pre-
dicts that all relations are incomplete, but the prediction of deltas’
sizes could be wrong. A relation being incomplete means that it
expects new data in the future. Such information is obtained from
the delta predictor. For example, HoloClean can tell the predic-
tor that a table is complete if it has completely cleaned that table.
Here, we assume that the initial batch contains 70% data and con-
sider four possible scenarios: the actual delta as big or small, and
the predicted delta as big or small. A small delta contains 1% of
the complete relation, and a big delta contains 30%. We vary the
memory budget from 0 to 2 GB, and report the delta processing
time in Figure 5. We find the performance of right and wrong delta
prediction are close. This is because the cost of rebuilding the in-
termediate states dominates the cost of delta processing, so DISS
chooses the correct intermediate states to keep even if the predic-
tion is not perfect.

Next, we consider the impact of incorrect completeness predic-
tion. We assume the delta size as 1% for the following experiments.
We separate the overestimation and underestimation scenarios. For
the overestimation case (Figure 6a and Figure 6b), the predictor
asserts all 5 relations are incomplete and the actual number of in-
complete relations varies from 1 to 5. We assume larger relations
are more likely to be incomplete and are chosen as incomplete re-

lations first (e.g. when there is only 1 incomplete relation, it is
LINEITEM). For the underestimation case (Figure 6c and Fig-
ure 6d), all relations are actually incomplete, but the prediction only
contains a subset of them. Here, we vary the number of predicted
incomplete relations from 1 to 5. Figure 6 shows that in the overes-
timation case, the batch processing time of a wrong prediction for
DISS (i.e. DISS (Wrong Prediction) in Figure 6a) is higher because
it keeps more intermediate states for the future delta processing, but
DISS’s delta ingestion performance is stable regardless the predic-
tion. Conversely, DISS has a longer delta processing time but a
shorter batch processing time in the underestimation cases. Com-
pared to ReBatch and DBT-PG, DISS has a similar performance of
delta processing to ReBatch in its worst case and has better per-
formance than DBT-PG when we can correctly predict at least 3 in-
complete relations out of all 5 (shown in Figure 6d). The above two
experiments show that DISS can outperform ReBatch and DBT-PG
even when the prediction is not perfect.

6.5 Effectiveness of State Selection
Here, we test the effectiveness of intermediate state selection of

our dynamic programming algorithm. We vary the memory bud-
get, and measure the performance of delta processing based on our
dynamic programming algorithm (DISS-DP) and an intermediate
state cache algorithm [45] (DISS-Recycler). DISS-Recycler caches
a subset of intermediate states for future queries with respect to a
memory budget. The cache algorithm is based on a heuristic metric
BENEFIT associated with each intermediate state. It represents the
cost of recomputing it from other cached intermediate states or base
relations, multiplied by the number of times it has been (or will be)
used, and then divided by its memory usage. For a new interme-
diate state, DISS-Recycler chooses to cache it if there is enough
memory or DISS-Recycler can find a set of cached intermediate
states to evict with a lower average benefit such that these interme-
diate states can create enough memory to cache the new state. Note

1437

Q3 Q7 Q8 Q90

10

20

30

40
Ti

m
e

(s
)

Initial batch

Q3 Q7 Q8 Q90

5

10

15

20

Ti
m

e
(s

)

Delta processing

Q3 Q7 Q8 Q90

1

2

3

4

M
em

or
y

(G
B)

Memory consumption
No Operator Injection Injecting Materialize Only Injecting Materialize and Symmetric Hash Join

Figure 8: Impact of injecting operators in DISS Figure 9: Average, min, and max delta processing
time by varying percentage of deletes (1% delta)

that if one intermediate state is updated, DISS-Recycler regards it
as a new state and repeats the aforementioned algorithm. For ref-
erence, we compare their performance with ReBatch and DBT-PG,
which do not choose a subset of intermediate states to materialize.

We vary the memory budget from 0 to 4 GB with a step of 0.5
GB and report the delta processing time for Q3, Q7, Q8, and Q9
of TPC-H. We choose these queries because they have the most
number of joins (and also intermediate states) and can be finished
by DBT-PG. With more intermediates states in a query plan, we
can better observe the behavior of our DP algorithm compared to
other approaches. Here we test a single 1% delta that includes delta
tuples for all relations (except REGION and NATION). The exper-
imental results are shown in Figure 7. We see that the DP algo-
rithm has lower delta processing time than DISS-Recycler, because
DISS-Recycler does not consider information about a future delta.
Specifically, DISS-DP is to up 30x faster than DISS-Recycler.

ReBatch fails to utilize the available memory budget to accel-
erate delta processing. DBT-PG, however, only works after we
provide enough memory (i.e. after the vertical dashed line) and
is not always the most time-efficient since it has to maintain the ex-
tra intermediate states. When there is no memory budget available,
DISS-DP uses the approach of ReBatch by discarding all interme-
diate states after the initial query processing and recomputes from
base relations for delta processing. Therefore, it has the same per-
formance as ReBatch when the memory budget is 0. As the mem-
ory budget increases, DISS-DP keeps more intermediate states and
becomes close to the performance of continuous query processing
(i.e. DBT-PG) for delta processing. By materializing a subset of
intermediate states, DISS-DP even outperforms DBT-PG with less
memory consumption. Overall, these results show that DISS-DP
improves the performance by selectively persisting intermediate
states with limited memory consumption.

6.6 Impact of Additional Operators
In this paper, we assume a pipelined execution engine, but also

consider injecting new operators (e.g. MATERIALIZE) to improve
delta processing efficiency when necessary. We measure the ben-
efit and cost of injecting operators for materializing pipelined op-
erators and converting hash-joins to be symmetric (i.e. injecting
HASH operator). Specifically, we consider DISS on four TPC-H
queries. There are three possible scenarios: the original pipelined
query plan without operator injection, the DISS-optimized plan
which only allows extra MATERIALIZE operators, and the DISS-
optimized plan which may MATERIALIZE and build extra interme-
diate states (i.e. HASH for symmetric hash join). We report the
initial batch processing time, delta processing time, and the mem-
ory consumption for storing intermediate states. We assume all
relations have a single 1% delta and the memory is sufficient.

Figure 8 shows when building intermediate states is permitted,
DISS has a much lower delta processing time, but at a higher initial
query processing time and higher memory consumption. This is be-
cause DISS can keep or build more states for delta processing, but
has to pay the corresponding costs during initial query processing.

Our DP algorithm can intelligently select the intermediate states to
keep or to build, and thus minimizes the overall query processing
time, especially in the presence of multiple deltas.

6.7 Performance Impact of Delete Workloads
We test 11 TPC-H queries using delta data with mixed inserts

and deletes. We start with 99% data in the batch phase, and then
processes a single 1% delta. We vary the percentage of deletes in
the delta to be 0%, 25%, 50%, 75%, and 100%. We report the aver-
age delta processing time along with minimum and maximum time
in Figure 9 and find that DISS always outperforms DBT-PG and
ReBatch. An interesting observation is that with a higher percent-
age of deletes, delta processing time for DBT-PG increases too,
while the processing time for ReBatch and DISS stays the same.
The reason is DBT-PG cannot avoid materializing join operators
with high selectivity (i.e. a tuple from one table can successfully
join many tuples of the other one). One such example is that in
Q9 DBT-PG needs to materialize the join results of tables Supplier
and Lineitem joined on supplier key. Since there are no predicates
on the two tables, each Supplier tuple joins 600 Lineitem tuples
on average. With the hash table for Lineitem built on supplier key,
deleting one tuple from Lineitem’s hash table needs to find the right
bucket and scan through the list of tuples associated with the bucket
(i.e. at least 600 for each bucket) to find the right one to delete. In
contrast, DISS uses PostgreSQL’s query optimizer to join Lineitem
with other tables having lower selectivities first, and then join Sup-
plier, which greatly reduces the cost of finding the tuple to delete.

7. CONCLUSION
We introduce IQP as a new query processing paradigm for ongo-

ing queries that balances query processing latency and controlled
resource consumption by exploiting knowledge of data arrival pat-
terns. We develop an IQP prototype, DISS, based on PostgreSQL
that selects a subset of intermediate states from query execution
to persist for efficient processing of future data arrivals; this state
selection algorithm minimizes resource consumption for queries
when not updating results, and lowers query refresh time by se-
lecting a set of intermediate states within a budget constraint. Our
experimental evaluation shows that DISS is able to achieve low la-
tency and limited memory consumption simultaneously for many
applications and offers significant performance improvements over
state-of-the-art IVM systems that do not leverage knowledge about
future data arrivals.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers, Goetz Graefe, Arnab Nandi,

Aditya Parameswaran, Andy Pavlo, and Eugene Wu for their valu-
able feedback. This work was supported by a gift from Google and
NSF grant CCF-1139158.

1438

9. REFERENCES
[1] Refresh materialized view.

https://www.postgresql.org/docs/10/
static/sql-refreshmaterializedview.html.

[2] Spark structured streaming.
https://spark.apache.org/docs/latest/
structured-streaming-programming-guide.
html.

[3] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated
selection of materialized views and indexes in SQL
databases. In VLDB 2000, Proceedings of 26th International
Conference on Very Large Data Bases, September 10-14,
2000, Cairo, Egypt, pages 496–505, 2000.

[4] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster:
Higher-order delta processing for dynamic, frequently fresh
views. PVLDB, 5(10):968–979, 2012.

[5] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,
F. Perry, E. Schmidt, and S. Whittle. The dataflow model: A
practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing.
PVLDB, 8(12):1792–1803, 2015.

[6] P. Antonopoulos, H. Kodavalla, A. Tran, N. Upreti, C. Shah,
and M. Sztajno. Resumable online index rebuild in SQL
server. PVLDB, 10(12):1742–1753, 2017.

[7] M. Armbrust, E. Liang, T. Kraska, A. Fox, M. J. Franklin,
and D. A. Patterson. Generalized scale independence through
incremental precomputation. In Proceedings of the ACM
SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages
625–636, 2013.

[8] T. Azim, M. Karpathiotakis, and A. Ailamaki. Recache:
Reactive caching for fast analytics over heterogeneous data.
PVLDB, 11(3):324–337, 2017.

[9] B. Babcock, M. Datar, and R. Motwani. Load shedding for
aggregation queries over data streams. In Proceedings of the
20th International Conference on Data Engineering, ICDE
2004, 30 March - 2 April 2004, Boston, MA, USA, pages
350–361, 2004.

[10] S. Babu and J. Widom. Continuous queries over data
streams. ACM Sigmod Record, 30(3):109–120, 2001.

[11] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin. On the
relative trust between inconsistent data and inaccurate
constraints. In 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12,
2013, pages 541–552, 2013.

[12] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and
R. Pasquin. Incoop: Mapreduce for incremental
computations. In ACM Symposium on Cloud Computing in
conjunction with SOSP 2011, SOCC ’11, Cascais, Portugal,
October 26-28, 2011, page 7, 2011.

[13] J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently
updating materialized views. In Proceedings of the 1986
ACM SIGMOD International Conference on Management of
Data, Washington, DC, USA, May 28-30, 1986., pages
61–71, 1986.

[14] P. Bohannon, W. Fan, F. Geerts, X. Jia, and
A. Kementsietsidis. Conditional functional dependencies for
data cleaning. In Proceedings of the 23rd International
Conference on Data Engineering, ICDE 2007, The Marmara
Hotel, Istanbul, Turkey, April 15-20, 2007, pages 746–755,
2007.

[15] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang. Query
suspend and resume. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Beijing,
China, June 12-14, 2007, pages 557–568, 2007.

[16] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. A. Shah.
Telegraphcq: Continuous dataflow processing for an
uncertain world. In CIDR 2003, First Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA,
January 5-8, 2003, Online Proceedings, 2003.

[17] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views. In
Proceedings of the Eleventh International Conference on
Data Engineering, March 6-10, 1995, Taipei, Taiwan, pages
190–200, 1995.

[18] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A
scalable continuous query system for internet databases. In
Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, May 16-18, 2000,
Dallas, Texas, USA., pages 379–390, 2000.

[19] R. Chirkova and J. Yang. Materialized views. Foundations
and Trends in Databases, 4(4):295–405, 2012.

[20] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial
constraints. PVLDB, 6(13):1498–1509, 2013.

[21] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning:
Putting violations into context. In 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013, pages 458–469, 2013.

[22] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and
H. Trickey. Algorithms for deferred view maintenance. In
Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996., pages 469–480, 1996.

[23] L. S. Colby, A. Kawaguchi, D. F. Lieuwen, I. S. Mumick,
and K. A. Ross. Supporting multiple view maintenance
policies. In SIGMOD 1997, Proceedings ACM SIGMOD
International Conference on Management of Data, May
13-15, 1997, Tucson, Arizona, USA., pages 405–416, 1997.

[24] A. B. Downey. Evidence for long-tailed distributions in the
internet. In Proceedings of the 1st ACM SIGCOMM Internet
Measurement Workshop, IMW 2001, San Francisco,
California, USA, November 1-2, 2001, pages 229–241, 2001.

[25] K. Dursun, C. Binnig, U. Çetintemel, and T. Kraska.
Revisiting reuse in main memory database systems. In
Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017, Chicago,
IL, USA, May 14-19, 2017, pages 1275–1289, 2017.

[26] A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and
T. Kraska. Revisiting reuse for approximate query
processing. PVLDB, 10(10):1142–1153, 2017.

[27] J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araújo,
M. Ek, E. Kohler, M. F. Kaashoek, and R. T. Morris. Noria:
dynamic, partially-stateful data-flow for high-performance
web applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad,
CA, USA, October 8-10, 2018., pages 213–231, 2018.

[28] G. Graefe, W. Guy, and H. A. Kuno. ’pause and resume’
functionality for index operations. In Workshops Proceedings
of the 27th International Conference on Data Engineering,
ICDE 2011, April 11-16, 2011, Hannover, Germany, pages
28–33, 2011.

1439

[29] A. Gupta and I. S. Mumick. Materialized views: techniques,
implementations, and applications. MIT press, 1999.

[30] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In Proceedings of the 1993
ACM SIGMOD International Conference on Management of
Data, Washington, DC, USA, May 26-28, 1993., pages
157–166, 1993.

[31] H. Gupta and I. S. Mumick. Selection of views to materialize
under a maintenance cost constraint. In Database Theory -
ICDT ’99, 7th International Conference, Jerusalem, Israel,
January 10-12, 1999, Proceedings., pages 453–470, 1999.

[32] H. Gupta and I. S. Mumick. Selection of views to materialize
in a data warehouse. IEEE Trans. Knowl. Data Eng.,
17(1):24–43, 2005.

[33] M. Idris, M. Ugarte, and S. Vansummeren. The dynamic
yannakakis algorithm: Compact and efficient query
processing under updates. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages
1259–1274, 2017.

[34] M. Ivanova, M. L. Kersten, N. J. Nes, and R. Goncalves. An
architecture for recycling intermediates in a column-store. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2009, Providence, Rhode
Island, USA, June 29 - July 2, 2009, pages 309–320, 2009.

[35] A. Jindal, K. Karanasos, S. Rao, and H. Patel. Selecting
subexpressions to materialize at datacenter scale. PVLDB,
11(7):800–812, 2018.

[36] Y. Katsis, K. W. Ong, Y. Papakonstantinou, and K. K. Zhao.
Utilizing ids to accelerate incremental view maintenance. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, pages 1985–2000, 2015.

[37] Y. Kotidis and N. Roussopoulos. Dynamat: A dynamic view
management system for data warehouses. In SIGMOD 1999,
Proceedings ACM SIGMOD International Conference on
Management of Data, June 1-3, 1999, Philadelphia,
Pennsylvania, USA., pages 371–382, 1999.

[38] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:
similarity measures and algorithms. In Proceedings of the
ACM SIGMOD International Conference on Management of
Data, Chicago, Illinois, USA, June 27-29, 2006, pages
802–803, 2006.

[39] S. Krishnamurthy, M. J. Franklin, J. Davis, D. Farina,
P. Golovko, A. Li, and N. Thombre. Continuous analytics
over discontinuous streams. In Proceedings of the ACM
SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10,
2010, pages 1081–1092, 2010.

[40] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper,
and T. Neumann. How good are query optimizers, really?
PVLDB, 9(3):204–215, 2015.

[41] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo, and
G. J. Gordon. Query-based workload forecasting for
self-driving database management systems. In Proceedings
of the 2018 International Conference on Management of
Data, pages 631–645. ACM, 2018.

[42] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: a
database approach for statistical inference and data cleaning.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2010,
Indianapolis, Indiana, USA, June 6-10, 2010, pages 75–86,

2010.
[43] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham.

Materialized view selection and maintenance using
multi-query optimization. In Proceedings of the 2001 ACM
SIGMOD international conference on Management of data,
Santa Barbara, CA, USA, May 21-24, 2001, pages 307–318,
2001.

[44] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: a timely dataflow system. In ACM
SIGOPS 24th Symposium on Operating Systems Principles,
SOSP ’13, Farmington, PA, USA, November 3-6, 2013, pages
439–455, 2013.

[45] F. Nagel, P. A. Boncz, and S. Viglas. Recycling in pipelined
query evaluation. In 29th IEEE International Conference on
Data Engineering, ICDE 2013, Brisbane, Australia, April
8-12, 2013, pages 338–349, 2013.

[46] M. Nikolic, M. Dashti, and C. Koch. How to win a hot dog
eating contest: Distributed incremental view maintenance
with batch updates. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016,
pages 511–526, 2016.

[47] M. Nikolic, M. Elseidy, and C. Koch. LINVIEW:
incremental view maintenance for complex analytical
queries. In International Conference on Management of
Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27,
2014, pages 253–264, 2014.

[48] M. Nikolic and D. Olteanu. Incremental view maintenance
with triple lock factorization benefits. In Proceedings of the
2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018, pages 365–380, 2018.

[49] V. Raman, A. Deshpande, and J. M. Hellerstein. Using state
modules for adaptive query processing. In Proceedings of the
19th International Conference on Data Engineering, March
5-8, 2003, Bangalore, India, pages 353–364, 2003.

[50] V. Raman and J. M. Hellerstein. Partial results for online
query processing. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, Madison,
Wisconsin, USA, June 3-6, 2002, pages 275–286, 2002.

[51] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean:
Holistic data repairs with probabilistic inference. PVLDB,
10(11):1190–1201, 2017.

[52] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized
view maintenance and integrity constraint checking: Trading
space for time. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, Montreal,
Quebec, Canada, June 4-6, 1996., pages 447–458, 1996.

[53] N. Roussopoulos. An incremental access method for
viewcache: Concept, algorithms, and cost analysis. ACM
Trans. Database Syst., 16(3):535–563, 1991.

[54] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In Proceedings of the 1979
ACM SIGMOD International Conference on Management of
Data, Boston, Massachusetts, USA, May 30 - June 1., pages
23–34, 1979.

[55] R. Taft, N. El-Sayed, M. Serafini, Y. Lu, A. Aboulnaga,
M. Stonebraker, R. Mayerhofer, and F. J. Andrade. P-store:
An elastic database system with predictive provisioning. In
Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston,

1440

TX, USA, June 10-15, 2018, pages 205–219, 2018.
[56] N. Tatbul, U. Çetintemel, and S. B. Zdonik. Staying FIT:

efficient load shedding techniques for distributed stream
processing. In Proceedings of the 33rd International
Conference on Very Large Data Bases, University of Vienna,
Austria, September 23-27, 2007, pages 159–170, 2007.

[57] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack, and
M. Stonebraker. Load shedding in a data stream manager. In
VLDB 2003, Proceedings of 29th International Conference
on Very Large Data Bases, September 9-12, 2003, Berlin,
Germany, pages 309–320, 2003.

[58] T. Urhan and M. J. Franklin. Xjoin: A reactively-scheduled
pipelined join operator. Bulletin of the Technical Committee
on Data Engineering, page 27, 2000.

[59] A. Wilschut and P. Apers. Pipelining in query execution. In
Proceedings of the International Conference on Databases,
Parallel Architectures and Their Applications (PARBASE
1990), pages 562–562, United States, 3 1990. IEEE
Computer Society.

[60] M. Yakout, L. Berti-Équille, and A. K. Elmagarmid. Don’t
be scared: use scalable automatic repairing with maximal
likelihood and bounded changes. In Proceedings of the ACM
SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages
553–564, 2013.

[61] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica. Improving mapreduce performance in

heterogeneous environments. In 8th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2008,
December 8-10, 2008, San Diego, California, USA,
Proceedings, pages 29–42, 2008.

[62] K. Zeng, S. Agarwal, and I. Stoica. iolap: Managing
uncertainty for efficient incremental OLAP. In Proceedings
of the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA, USA,
June 26 - July 01, 2016, pages 1347–1361, 2016.

[63] C. Zhang, A. Kumar, and C. Ré. Materialization
optimizations for feature selection workloads. In
International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014, pages 265–276,
2014.

[64] Y. Zhang, B. Hull, H. Balakrishnan, and S. Madden. ICEDB:
intermittently-connected continuous query processing. In
Proceedings of the 23rd International Conference on Data
Engineering, ICDE 2007, The Marmara Hotel, Istanbul,
Turkey, April 15-20, 2007, pages 166–175, 2007.

[65] J. Zhou, P. Larson, and H. G. Elmongui. Lazy maintenance of
materialized views. In Proceedings of the 33rd International
Conference on Very Large Data Bases, University of Vienna,
Austria, September 23-27, 2007, pages 231–242, 2007.

[66] J. Zhou, P. Larson, J. Goldstein, and L. Ding. Dynamic
materialized views. In Proceedings of the 23rd International
Conference on Data Engineering, ICDE 2007, The Marmara
Hotel, Istanbul, Turkey, April 15-20, 2007, pages 526–535,
2007.

1441

