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ABSTRACT
With the growing volumes of vehicle trajectory data, it becomes
increasingly possible to capture time-varying and uncertain travel
costs in a road network, including travel time and fuel consump-
tion. The current paradigm represents a road network as a weighted
graph; it blasts trajectories into small fragments that fit the under-
lying edges to assign weights to edges; and it then applies a routing
algorithm to the resulting graph. We propose a new paradigm, the
hybrid graph, that targets more accurate and more efficient path
cost distribution estimation. The new paradigm avoids blasting tra-
jectories into small fragments and instead assigns weights to paths
rather than simply to the edges.

We show how to compute path weights using trajectory data
while taking into account the travel cost dependencies among the
edges in the paths. Given a departure time and a query path, we
show how to select an optimal set of weights with associated paths
that cover the query path and such that the weights enable the
most accurate joint cost distribution estimation for the query path.
The cost distribution of the query path is then computed accurately
using the joint distribution. Finally, we show how the resulting
method for computing cost distributions of paths can be integrated
into existing routing algorithms. Empirical studies with substantial
trajectory data from two different cities offer insight into the design
properties of the proposed method and confirm that the method is
effective in real-world settings.

1. INTRODUCTION
Increasing volumes of vehicle trajectories are becoming avail-

able that contain detailed traffic information. It is of interest to ex-
ploit this data source as well as possible to understand the state of a
road network [1,4]. For instance, it is of interest to know the distri-
butions of travel costs (e.g., travel times or greenhouse gas (GHG)
emissions [2, 3]) of paths at a given departure time in order to plan
travel or to calculate payments for transportation, e.g., in settings
where such services are outsourced.

Consider a scenario where a person wants to reach the airport
within 60 min to catch a flight. Figure 1(a) shows the travel time
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distributions for two alternative paths for a given departure time. If
only considering averages, P2 (with mean 51.5 min) is better than
P1 (with mean 52 min). However, P1 is preferable because the
probability of arriving at the airport within 60 min is 1, while with
P2, the probability is 0.9. The example illustrates why being able
to compute a distribution rather than a mean is important.

(a) P1 vs. P2 (b) Complex Distribution

Figure 1: Motivating Examples

A natural question is then how to best utilize trajectories to ac-
curately and efficiently derive cost distribution for any path at a
given departure time. This is the fundamental problem addressed
in this paper. Solving this problem is important in its own right,
and it also represents a significant step towards more accurate and
efficient stochastic routing. To solve the problem, three challenges
must be addressed.

Complex travel cost distributions: Travel time and GHG emis-
sions vary over time and even vary across vehicles traversing the
same path at the same time. To exemplify the latter, the bars in Fig-
ure 1(b) represent the travel time, derived from GPS trajectories,
of a path during the time interval [8:00, 8:30). Next, distributions
do not follow standard distributions. Figure 1(b) shows the Gaus-
sian [17], gamma [20], and exponential [20] distributions obtained
using maximum likelihood estimation, illustrating that the cost dis-
tribution does not follow any of these standard distributions.

Sparseness: With enough trajectories that contain a path during
a particular time interval, we could derive a distribution during the
interval for the path using those trajectories. However, we report on
analyses showing that even with large volumes of trajectory data, it
is practically impossible to cover all paths in a road network with
sufficient numbers of trajectories during all time intervals—a road
network has a very large number of meaningful paths. We must
thus contend with data sparseness.

Dependency: The cost distribution of a path can be estimated by
summing up, or convoluting, the cost distributions of its edges [6,
13, 22]. However, the results are only accurate if the edge distri-
butions are independent. We offer evidence that this is generally
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not so in our setting. To derive accurate distributions for paths, the
dependencies must be considered.

The conventional paradigm for path cost estimation fragments
trajectories into pieces that fit the individual edges to assign uncer-
tain weights to the edges. Convolution is applied to the uncertain
edge weights to compute the cost distribution of the path [6, 11,
13,22,26,28,29]. This approach falls short in addressing the above
challenges and suffers in terms of both accuracy and efficiency. The
accuracy suffers because dependencies among different edges are
not accounted for. The efficiency suffers because many expensive
convolutions must be performed.

We propose part of the foundation for a new paradigm, the hy-
brid graph, that aims to achieve better accuracy and efficiency by
addressing the three challenges. In the hybrid graph, weights are
assigned to paths; and path weights are joint distributions that fully
capture the cost dependencies among the edges in the paths. Fur-
ther, multi-dimensional histograms are used to approximate com-
plex distributions accurately and compactly. Given a departure time
and a query path, we are then able to select an optimal set of path
weights such that the selected paths together cover the query path
at the departure time and such that the path weights produce the
most accurate joint distribution of the edges in the query path. The
joint distribution can then be transferred into the cost distribution
of the query path. The capability of deriving the distributions of
long paths with insufficient trajectories from the distributions of
carefully selected sub-paths with sufficient trajectories addresses
the sparseness problem.

The paper’s proposal is compatible with existing stochastic rout-
ing algorithms and we show how the proposal can be seamlessly
integrated into existing stochastic routing algorithms while boost-
ing the efficiency and accuracy of these algorithms.

To the best of our knowledge, this is the first study to enable
accurate and efficient path travel cost distribution estimation using
trajectories while contending with sparseness, dependency, and dis-
tribution complexity. In particular, we make four contributions. (i)
We propose the hybrid graph and a multi-dimensional histogram
based method to instantiate path weights using trajectories. (ii) We
propose an algorithm that identifies an optimal set of path weights,
enabling accurate estimation of the joint distribution of a query
path. (iii) We propose a method that derives the cost distribution of
the query path, represented as a one-dimensional histogram, from
a joint distribution, represented as a multi-dimensional histogram.
(iv) We report on empirical studies that demonstrate that the pa-
per’s proposal significantly outperforms existing proposals in terms
of both accuracy and efficiency.

Paper outline: Section 2 covers basic concepts and baselines.
Section 3 introduces the hybrid graph and the method for instanti-
ating path weights. Section 4 gives the algorithms for estimating
the travel cost of a path. Section 5 reports on the empirical study.
Related work is covered in Section 6, and Section 7 concludes.

2. PRELIMINARIES

2.1 Basic Concepts
A road network is modeled as a directed graph G = (V,E),

where V is a vertex set and E ⊆ V × V is an edge set. A vertex
vi ∈ V represents a road intersection or an end of a road. An edge
ek = (vi, vj) ∈ E models a directed road segment, indicating that
travel is possible from its start vertex vi to its end vertex vj . We use
ek.s and ek.d to denote the start and end vertices of edge ek. Two
edges are adjacent if one edge’s end vertex is the same as the other
edge’s start vertex. Figure 2(a) shows an example road network.

A path P = ⟨e1, e2, . . . , eA⟩, A > 1, is a sequence of adjacent
edges that connect distinct vertices in the graph, where ei ∈ E,
ei.d = ei+1.s for 1 6 i < A, and the vertices e1.s, e2.s, . . .,
eA.s, and eA.d are distinct. The cardinality of path P , denoted as
|P|, is the number of edges in the path. Path P ′ = ⟨g1, g2, . . . , gx⟩
is a sub-path of P = ⟨e1, e2, . . . , ea⟩ if |P ′| 6 |P| and there
exists an edge sequence in P such that g1 = ei, g2 = ei+1, . . .,
and gx = ei+x−1.

Given two paths Pi and Pj , we use Pi ∩ Pj to denote the path
that is shared by both paths, and we use Pi \ Pj to denote the
sub-path of Pi that exclude edges in Pj . For instance, we have
⟨e1, e2, e3⟩ ∩ ⟨e2, e3, e4⟩ = ⟨e2, e3⟩ and ⟨e1, e2, e3⟩ \ ⟨e2, e3, e4⟩
= ⟨e1⟩.

A trajectory T = ⟨p1, p2, . . . , pC⟩ is a sequence of GPS records
pertaining to a trip, where each pi is a (location, time) pair of a
vehicle, where pi.time < pj .time if 1 6 i < j 6 C. Map match-
ing [16] is able to map GPS records in a trajectory T to specific
locations on different edge and thus it aligns trajectory T with a
path. We call this path as the path of trajectory T , denoted as PT .
A trajectory T occurred on path P at time t if and only if path P is
a sub-path of the path of trajectory PT and the first GPS record in
the first edge in pathP is obtained at t. Figure 2(b) shows 10 trajec-
tories. For example, trajectory T1 occurred on path ⟨e1, e2, e3, e4⟩
at 8:01.
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(a) Road Network

Trajectory Path of Trajectory Time

T1 〈e1, e2, e3, e4〉 8:01

T2 〈e1, e2, e3, e4〉 8:02

T3 〈e1, e2, e3〉 8:10

T4 〈e1, e2, e3〉 8:07

T5 〈e2, e3, e4〉 8:01

T6 〈e2, e3, e4〉 8:10

T7 〈e2, e3, e4〉 15:21

T8 〈e4, e5〉 8:07

T9 〈e4, e5〉 8:07

T10 〈e6, e5〉 8:08

(b) Trajectories

Figure 2: A Road Network and Trajectories

The travel cost (e.g., travel time or GHG emissions) of using a
path P can be obtained from the trajectories that occurred on P .
Given a trajectory T that occurred on path P at t, the travel time
of using P at t is the difference between the time of the last GPS
record and the time of the first GPS record on path P; and the GHG
emissions of using P at t can be computed from the speeds and ac-
celerations when traversing P , which can be derived from the GPS
records on path P , and road grades that are available in 3D road
networks [24], using vehicular environmental impact models [8,9].

Problem Definition: Given a large collection of trajectories
T that occurred in a road network G, travel cost distribution esti-
mation takes as input a path P in G and a departure time t, and
accurately and efficiently estimates the travel cost distribution of
traversing path P at t. The output is a univariate random variable
that describes the distribution of the cost of traversing path P at t.

2.2 Accuracy­Optimal Cost Estimation
The most accurate way of estimating the travel cost distribution

of path P at time t is to employ a sizable set of qualified trajecto-
ries. A trajectory T is qualified if T occurred on P at t′ and the
difference between t′ and t is less than a threshold, e.g., 30 min-
utes. For instance, if we want to estimate the travel cost distribution
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of path ⟨e2, e3, e4⟩ at 8:05, T1, T2, T5, and T6 are qualified trajec-
tories, but not T7 (cf. Figure 2).

A qualified trajectory captures traffic conditions (e.g., the time
it takes to pass intersections, wait at traffic lights, and make turns
at intersections) of the entire path P during the interval of interest.
Thus, no explicitly modeling of complex traffic conditions at inter-
sections is needed. To ensure an accurate estimation for a path P
at t and to not overfit to the cost values of a few trajectories, we
require the use of more than β qualified trajectories. The effect of
parameter β is studied empirically in Section 5.

We regard this method as an accuracy-optimal baseline, and we
let the resulting distribution DGT (P, t) serve the role of a ground
truth distribution in our proposal since DGT (P, t) is the most ac-
curate cost distribution computed from available trajectories.

However, this baseline is not always a practical approach, as it
is very often inapplicable due to data sparseness. Figure 3 shows
that the maximum number of trajectories that occurred on a path
decreases rapidly as the cardinality of the path increases, based on
two large trajectory collections from Aalborg and Beijing, with no
time constraint applied.
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Figure 3: Data Sparseness Problem

2.3 Legacy Graph Model
To contend with the aforementioned data sparseness, existing

stochastic route planning use a graph model that operates at edge
granularity [6, 13, 17, 22]. The model is a weighted graph G =
(V,E,WE) with an edge weight function WE : E × T → RV ,
where T is the time domain of a day and RV denotes a set of ran-
dom variables. The weight function takes as input an edge e ∈ E
and a time t ∈ T and returns a random variable that represents the
travel cost distribution of traversing e at t.

A recent study [22] instantiates the edge weight function WE us-
ing the accuracy-optimal baseline on each individual edge, where
sparseness is not likely to be a significant problem. Next, indepen-
dence is assumed so that a path’s travel cost distribution is the con-
volution of the travel costs distributions of the edges in the path. We
denote the resulting distribution by DLB (P, t) = ⊙ei∈PWE(ei, tei),
where⊙ denotes the convolution of two distributions and WE(ei, tei)
denotes the travel cost distribution of edge ei at tei . tei is the arrival
time on edge ei, which may be different from the departure time t
and needs to be progressively updated according to the travel times
of ei’s predecessor edges [22].

To examine the effect of dependence on the accuracy of the re-
sult of convolution, we consider 500 paths that each consists of two
adjacent edges (i.e., with path cardinality being 2) and on which at
least 100 trajectories occurred during [7:30, 8:00). For each path
P , we compute the distribution DGT using the accuracy-optimal
baseline and distribution DLB using the legacy baseline. If the dis-
tributions of the two edges in a path are independent, DGT and
DLB should be identical. To see if this holds, we compute the

KL-divergence of DLB from DGT , denoted as KL(DGT , DLB ).
The larger the KL-divergence, the more different the two distribu-
tions are, meaning that the convoluted distribution is less accurate.
Figure 4(a) suggests that most of the adjacent edges are not inde-
pendent.
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Figure 4: Examining the Independence Assumption

Next, we conduct an experiment on 100 paths with different car-
dinalities and where each path has at least 30 qualifying trajectories
during an interval. We compute DGT and DLB for each path and
then compute the average KL-divergence values between the two
distributions for paths with varying cardinality. Figure 4(b) sug-
gests that the more edges a path has, the more different the convo-
luted distribution DLB is from the ground truth distribution DGT .
Hence, the legacy graph model is likely to yield inaccurate travel
cost distributions, especially for long paths.

3. HYBRID GRAPH
The analyses of the legacy graph model suggest that the indepen-

dency assumption does not always hold and that explicitly model-
ing of the dependency among the travel costs of different edges in
a path is needed to achieve accurate results. This motivates us that
when computing the cost distribution for a path, we should try to
use trajectories that occurred on long sub-paths of the path because
they capture the cost dependencies among different edges.

To this end, we propose a novel model—the hybrid graph model
G = (V,E,WP ). Instead of having an edge weight function WE

in the legacy graph model, the hybrid graph maintains a path weight
function WP : Paths × T → RV , where Paths is a set of paths.
Specifically, the path weight function WP takes as input a path P
and a time t and returns a multi-variate random variable that rep-
resents the joint distribution of path P’s edges’ travel costs. The
joint distribution fully captures the dependency among the travel
costs of different edges in path P . We proceed to describe how to
instantiate WP using trajectories.

3.1 Instantiating WP for Unit Paths
A unit path consists of a single edge. We partition a day into

a few intervals, where parameter α specifies the finest-granularity
interval of interest in minutes, e.g., 30 minutes. We let V Ij

⟨ei⟩
=

p(cei) denote a random variable that describes the travel cost dis-
tribution on unit path ⟨ei⟩ during interval Ij .

To derive the distribution of V Ij
⟨ei⟩

, a set of qualified trajectories
that occurred on ⟨ei⟩ at t where t ∈ Ij is obtained. If the trajec-
tory set cardinality exceeds threshold β, the same parameter used
in accuracy-optimal baseline in Section 2.2, the travel cost values
obtained from the qualified trajectories are employed to instantiate
the distribution of V Ij

⟨ei⟩
, which is the ground truth distribution.
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If the set cardinality does not exceed β, the distribution of V Ij
⟨ei⟩

is derived from the speed limit of edge ei to avoid overfitting to the
limited number of travel costs. We also regard this as the ground
truth distribution, since based on the available trajectories, we can-
not get a more accurate distribution for the unit path during the
interval. Thus, in both cases, V Ij

⟨ei⟩
represents the ground-truth dis-

tribution of unit path ⟨ei⟩ during interval Ij .
Representing Univariate Distributions We proceed to discuss

how to represent a distribution when having more than β trajecto-
ries. We represent distributions by histograms because they enable
compact approximation of arbitrary, complex distributions. Gaus-
sian mixture models are also able to represent non-standard travel
cost distributions [21, 22], but are less compact. In particular, a
one-dimensional histogram is employed to represent a univariate
distribution.

From the qualified trajectories, we are able to obtain a multiset
of cost values of the form ⟨cost , perc⟩, representing that perc per-
centage of the qualified trajectories took cost cost . We call this a
raw cost distribution. A histogram then approximates the raw cost
distribution as a set of pairs: {⟨bui, pr i⟩}. A bucket bui = [l, u)
is a range of travel costs, and pr i is the probability that the travel
cost is in the range, and it holds that

∑
i pr i = 1.

Given the number of buckets b, existing techniques, e.g., V-Opti-
mal [12], are able to optimally derive a histogram based on a raw
cost distribution such that the sum of errors between the derived
histogram and the raw cost distribution is minimized. However,
selecting a global value for b is non-trivial because the traffic on
different edges, and even the traffic on the same edge during dif-
ferent intervals, may differ significantly. A self-tuning method is
desired so that more buckets are used for edges or intervals with
more complex traffic conditions.

To this end, we propose a simple yet effective approach to auto-
matically identify the number of buckets. The procedure starts with
b = 1, i.e., using only one bucket, and computes an error value Eb.
Next, it incrementally increases b by 1 and computes a new error
value Eb. Obviously, as the number of buckets increases, the error
value keeps decreasing. However, the error values often initially
drop quickly, but then subsequently drop only slowly. Based on
this, the process stops when the error value of using b does not lead
to a significant decrease compared to the error value of using b−1.
Then, b− 1 is chosen as the bucket number. This yields a compact
and accurate representation of the raw data distribution.

The error value Eb of using b buckets is computed using f -fold
cross validation [18]. First, the multi-set of cost values is ran-
domly split into f equal-sized partitions. Each time, we reserve
the cost values in one partition, say the k-th partition, and use
the cost values in the remaining f -1 partitions to generate a his-
togram with b buckets using V-Optimal, denoted as Hk

b = {⟨bui,
pr i⟩}. Next, we compute the raw data distribution of the cost val-
ues in the reserved partition, denoted as Dk = {⟨cost i, perci⟩}.
After that, we compute the squared error between Hk

b and Dk:
SE(Hk

b , D
k) =

∑
c∈costs(H

k
b [c], D

k[c])2. We repeat the pro-
cedure f times—once for each partition. The error value of using
b buckets, i.e., Eb, is the average of the f squared errors.

Take the data in Figure 1(b) as an example. Figure 5(a) shows
how the error Eb decreases as the number of buckets b increases.
First, Eb decreases sharply and then slowly (i.e., when b > 4). Fig-
ure 5(b) shows the histogram using b = 4 buckets and the original
raw data distribution.

3.2 Instantiating WP for Non­Unit Paths
Based on the distributions of unit paths, we employ a bottom-up

procedure to derive joint distributions of non-unit paths, i.e., paths
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Figure 5: Identifying the Number of Buckets

with cardinalities more than one. In particular, the joint distribu-
tions of paths with cardinalities k, k > 2, are computed based on
the joint distributions of paths with cardinalities k − 1.

Given two paths Pi and Pj with cardinalities k − 1, if they
share k − 2 edges and can be combined into a valid path P =
⟨e1, e2, . . . , ek⟩ with cardinality k, we check if a time interval Ij
exists during which more than β qualified trajectories occurred on
path P . If so, a random variable V

Ij
P = p(ce1 , . . . , cek) is in-

stantiated based on the qualified trajectories. The travel cost distri-
bution p(ce1 , . . . , cek ) is a ground-truth joint distribution on the k
variables ce1 , . . . , cek . This procedure continues until longer paths
cannot be obtained.

For example, consider two unit paths Pa = ⟨ea⟩ and Pb = ⟨eb⟩,
which can be combined into a valid path P = ⟨ea, eb⟩. Figure 6(a)
shows a raw joint distribution. Point A indicates that 110 trajecto-
ries passed ea with cost 50 s and then eb with cost 80 s.
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Figure 6: An Example of Multiple Dimensional Histogram

We use multi-dimensional histograms to describe joint distribu-
tions, where a dimension corresponds to the cost of an edge. A
multi-dimensional histogram is a set of hyper-bucket and probabil-
ity pairs: {⟨hbi, pr i⟩}. A hyper-bucket hbi = ⟨bu1

i , . . . , bun
i ⟩ con-

sists of n buckets that each corresponds to one dimension. Value
pr i equals the probability that the travel costs on multiple edges
are in hyper-bucket hbi, and it holds that

∑
i pr i = 1.

To derive a multi-dimensional histogram, we automatically iden-
tify the optimal number of buckets for each dimension using the
method from Section 3.1. Next, we employ V-optimal to identify
the optimal bucket boundaries on each dimension and thus obtain a
set of hyper-buckets. Finally, we compute the probability for each
hyper-bucket. For example, Figure 6(b) shows a 2-dimensional
histogram that corresponds to the joint distribution shown in Fig-
ure 6(a). The dimension for cea is partitioned into 3 buckets and
the dimension for ceb is partitioned into 2 buckets, yielding 6 hyper-
buckets in the 2-dimensional histogram.
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3.3 Path Weight Function WP

We let CP be a vector of variables ⟨ce1 , ce2 , . . . , cek ⟩ that corre-
sponds to path P = ⟨e1, e2, . . ., ek⟩. We use p(CP) = p(ce1 , ce2 ,
. . . , cek) to denote the ground-truth joint distribution of using path
P at time t. Following the same idea in Section 2.2, we regard the
joint distribution obtained from at least β qualified trajectories as
the ground-truth joint distribution.

Given a set of trajectories, we let Pathsβ be a set of non-unit
paths where each path has at least β qualified trajectories. Note
that given different sets of trajectories that occurred on a same road
network, Pathsβ may contain different non-unit paths.

So far, we are able to instantiate path weight function WP for
non-unit paths in Pathsβ and all unit paths. Specifically, given
a path P and a time t ∈ Ij , the path weight function WP (P, t)
returns random variable V

Ij
P that represents the travel cost distri-

bution of traversing path P at t. Since each random variable V
Ij
P

is obtained by at least β qualified trajectories (or speed limits for
some unit paths), they also correspond to ground-truth distribu-
tions. Thus, we have

WP (P, t) = V
Ij
P = p(CP) ={

p(cei ), P = ⟨ei⟩ is a unit path;
p(ce1 , ce2 , . . . , cek ), P = ⟨e1, e2, . . . , ek⟩ ∈ Pathsβ ;

(1)

where (i) if P is a unit path, the path weight function returns the
ground truth distribution p(CP) = p(cei), represented as a one-
dimensional histogram; (ii) if P is a non-unit path, the path weight
function returns the ground truth joint distribution p(CP) = p(ce1 ,
ce2 , . . . , cek ), represented as a multi-dimensional histogram.

The random variables {V Ij
P } that are maintained in the path

weight function WP are called instantiated random variables. The
rank of a variable V Ij

P is the cardinality of its path |P|. In the legacy
graph model, only random variables with rank one are considered,
and they cannot capture distribution dependencies among edges,
which are found in trajectories. In contrast, in the proposed hybrid
graph model, the random variables with rank larger than one fully
capture the distribution dependencies among the edges in a path.

4. GETTING PATH COST DISTRIBUTION
Given any path P and a departure time t, we perform travel cost

distribution estimation using the instantiated hybrid graph, in two
steps. First, the joint distribution of path P , which models the
travel cost dependency among edges in P , is computed. Second,
the cost distribution of path P , which captures the cost distribution
of traversing the whole path P , is derived based on the path’s joint
distribution.

4.1 The Joint Distribution of a Path
The ground truth joint distribution of path P = ⟨e1, e2, . . . , en⟩

at t is denoted as p(CP) = p(ce1 , ce2 , . . . , cen), where cei (1 6
i 6 n) is a random variable representing the travel cost distribution
of path ⟨ei⟩.

Given a path P and a departure time t, we aim at estimating
its most accurate joint distribution. If we are lucky, the path weight
function WP (P, t) returns V I

P , where t ∈ I . Since V I
P corresponds

to the ground truth join distribution p(CP), we are done.
In contrast, if WP (P, t) returns an empty result, this means

that there does not exist at least β qualified trajectories on path
P around t, so it is impossible to obtain its ground truth distribu-
tion. This case occurs often due to the data sparseness problem, as
shown in Figure 3, especially for long paths.

To handle this unlucky but common case, we proceed to propose
a method that is able to derive an accurate, estimated joint distri-
bution p̂(ce1 , ce2 , · · · , cen) based on the ground-truth distributions
of path P’s sub-paths, which can be obtained from the instantiated
path weight function WP . While we may be able to obtain multi-
ple estimations of joint distributions using different combinations
of sub-paths’ distributions, we aim at identifying and deriving the
most accurate one. In the following, we first prove that the combi-
nation with the coarsest sub-paths gives the most accurate estima-
tion, and then we propose an efficient way to identify the coarsest
combination.

4.1.1 Path Decompositions
To facilitate the following discussions, we first introduce the con-

cept of path decomposition. The decomposition of a path P is a
sequence of paths DE = (P1,P2, . . . ,Pk), k > 1, that satisfies
the following spatial conditions:
(1) Each path Pi ∈ DE is a sub-path of P;
(2) All paths in DE together coverP , i.e., P1∪P2∪ . . .∪Pk = P;
(3) A pathPi is not a sub-path of another pathPj , where 1 6 i, j 6
k and i ̸= j;
(4) A pathPi appears before another pathPj where 1 6 i < j 6 k
if and only if the first edge of Pi appears earlier than the first edge
of Pj in path P .

A path P may have more than one decomposition. For instance,
consider path P = ⟨e1, e2, e3, e4, e5⟩. The following path se-
quences are possible decompositions for the path.
DE1 = (⟨e1⟩, ⟨e2⟩, ⟨e3⟩, ⟨e4⟩, ⟨e5⟩),
DE2 = (⟨e1, e2, e3⟩, ⟨e2, e3, e4⟩, ⟨e5⟩),
DE3 = (⟨e1, e2, e3⟩, ⟨e3, e4⟩, ⟨e5⟩).

Next, we introduce a coarser relationship between two path de-
compositions DE i and DE j . We define DE i to be coarser than
DE j if for each path Pb ∈ DE j , there is a path Pa ∈ DE i such
that Pb is a sub-path of Pa and at least one Pb ̸= Pa.

To illustrate, DE2 is coarser than DE3 because ⟨e1, e2, e3⟩,
⟨e3, e4⟩, ⟨e5⟩ are sub-paths of paths ⟨e1, e2, e3⟩, ⟨e2, e3, e4⟩, ⟨e5⟩,
respectively; and ⟨e2, e3, e4⟩ from DE2 is different from ⟨e3, e4⟩
from DE3. Similarly, DE2 is coarser than DE1 as well.

4.1.2 Distribution Estimation using Decompositions
Following the principles of decomposable models [5, 7, 15], a

decomposition of path P corresponds to a set of independence as-
sumptions among the cost variables in CP . Specifically, given a
decomposition DE = (P1,P2, . . . ,Pk), for any two paths Pi and
Pj in the decomposition, where 1 6 i, j 6 k, we have the follow-
ing cases.
(i) If Pi ∩ Pj = ∅, this indicates that the cost variables in CPi are
independent of the cost variables in CPj ;
(ii) If Pi ∩Pj ̸= ∅, this indicates that the cost variables in CPi\Pj

are conditionally independent of the cost variables in CPj\Pi
given

the cost variables in CPi∩Pj .
Based on the above, given a decomposition DE , we have a cor-

responding independence assumption. Based on the independence
assumption, we are able to estimate path P ’s joint distributions us-
ing the distributions of the paths in DE based on Bayes’ theorem.

Formally, given a decomposition DE = (P1,P2, . . . ,Pk), the
joint distribution of path P is estimated according to Equation 2.

p̂DE (CP) =

∏
Pi∈PX

p(CPi)∏
Pj∈PY

p(CPj )
, (2)

where path set PX =
∪

16i6k Pi consists of all paths in DE and
PY =

∪
26i6k Pi ∩ Pi−1 consists of the shared paths between all

adjacent paths in DE .
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In the running example, DE1 assumes all cost variables ce1 , ce2 ,
ce3 , ce4 , and ce5 are independent because no paths in DE1 inter-
sect. According to Equation 2, we have p̂DE1(CP) = p(ce1) ·
p(ce2) · p(ce3) · p(ce4) · p(ce5). This corresponds to the legacy
graph model where all cost variables are independent. Next, DE2

assumes that ce1 is conditionally independent of ce4 given ce2 and
ce3 because ⟨e1, e2, e3⟩ ∩ ⟨e2, e3, e4⟩= ⟨e2, e3⟩; and ce5 is inde-
pendent of all the other cost variables because ⟨e5⟩ does not inter-
sect with other paths in DE . Thus, Equation 2 gives us p̂DE2(CP) =
p(ce1 ,ce2 ,ce3 )·p(ce2 ,ce3 ,ce4 )·p(ce5 )

p(ce2 ,ce3 )
.

Given a path P , we have more than one path decomposition.
For each decomposition, we are able to derive an estimated joint
distribution according to Equation 2. The challenge is to identify
the decomposition that gives the most accurate estimation.

To measure the accuracy of an estimated distribution with respect
to the true distribution, we employ Kullback-Leibler divergence of
the estimated joint distribution p̂DE (CP) and the true joint distri-
bution p(CP), denoted as KL(p(CP), p̂DE (CP)). The smaller
the divergence, the better. We proceed to prove that the coarser a
decomposition is, the more accurate the estimated joint distribution
is, i.e., the more smaller the divergence is.

THEOREM 1. If pathP ′ is a sub-path of pathP , we have
∑

CP
p(CP) log p(CP′) = −H(CP′), where H(·) is entropy function.

Proof: Since path P ′ is a sub-path of path P , path P can be rep-
resented as P = Ps ◦ P ′ ◦ Pe, where Ps and Pe are the possibly
empty paths before and after path P ′, and ◦ denotes concatenation.
Thus, the cost variables in CPs , CP′ , or CPe must be a subset
of the cost variables in CP . In addition, we have CPs∪ CP′∪
CPe = CP . Based on the above, we get∑

CP

p(CP ) log p(CP′ )

=
∑

CPs ,CP′ ,CPe

p(CPs ,CP′ ,CPe ) log p(CP′ )

=
∑
CP′

(
log p(CP′ )

∑
CPs ,CPe

p(CPs ,CP′ ,CPe)
)

=
∑
CP′

p(CP′ ) log p(CP′ ) = −H(CP′ ) �

THEOREM 2. Given an estimated joint distribution p̂DE (CP),
we have KL(p(CP), p̂DE (CP)) = HDE (CP) −H(CP), where
H(CP) and HDE (CP) are the entropies of random variables CP
under distributions p(CP) and p̂DE (CP), respectively.

Proof: KL(p(CP ), p̂DE (CP ))

=
∑
CP

p(CP ) log
( p(CP )

p̂DE (CP )

)
=−H(CP )−

∑
CP

p(CP ) log p̂DE (CP )

=−H(CP )−
∑
CP

p(CP )
( ∑
Pi∈PX

log p(CPi
)

−
∑

Pj∈PY

log p(CPj
)
)

(due to Eq. 2)

=−H(CP )−
∑

Pi∈PX

(∑
CP

p(CP ) log p(CPi
)
)

+
∑

Pj∈PY

(∑
CP

p(CP ) log p(CPj
)
)

=−H(CP ) +
∑

Pi∈PX

H(CPi
)−

∑
Pj∈PY

H(CPj
) (due to Th. 1)

=HDE (CP)−H(CP) �

THEOREM 3. Given two decompositions DE and DE ′, where
DE is coarser than DE ′, DE is able to provide a more accurate
joint distribution estimation than is DE ′.

Proof: Due to the space limitation, the detailed proof is included
in the supplementary document [31]. �

4.1.3 Identifying the Coarsest Decomposition
According to Theorem 3, the estimated joint distribution from

the coarsest decomposition is the most accurate. Given a path P
and a departure time t, we proceed to identify the coarsest decom-
position for P based on the instantiated random variables that are
maintained in the path weight function WP . Specifically, we first
identify the random variables that are spatially relevant to the path
P and temporally relevant to the departure time t; we then identify
the coarsest decomposition from the relevant variables.

Recall that a random variable maintained in the path weight func-
tion WP is in the form of V Ij

Pi
, which represents the joint distri-

bution of path Pi during interval Ij . A random variable V
Ij
Pi

is
spatially relevant to the query path P if the variable’s path Pi is a
sub-path of P . Next, we test if a spatially relevant random variable
V

Ij
Pi

is also temporally relevant to t.
We distinguish two cases. We first consider the case where the

first edge in the variable’s path Pi is the same as the first edge in
the query path P . This case is simple because the departure time
on P is also the departure time on Pi, as both paths start from the
same edge. Thus, we just need to test if the departure time t is
during Ij , i.e., t ∈ Ij . The second case is complicated because the
departure time on path Pi is no longer the original departure time t.
We propose a shift-and-enlarge procedure to progressively update
the departure time to test the variable’s temporal relevance.

We use an example path ⟨e1, e2⟩ and a departure time t to il-
lustrate the procedure. Since the travel time on e1 is uncertain,
the departure time on e2 belongs to the interval [t+V

Ij
⟨e1⟩.min, t+

V
Ij
⟨e1⟩.max ], where V Ij

⟨e1⟩.min and V Ii
⟨e1⟩.max denote the minimum

and maximum travel times of traversing e1, which are recorded in
the random variable V

Ij
⟨e1⟩.

Formally, given a time interval [ts, te] and a random variable
V

Ij
⟨ek⟩, we define the shifted-and-enlarged interval as

SAE([ts, te], V
Ij
⟨ek⟩) = [ts + V

Ij
⟨ek⟩.min, te + V

Ij
⟨ek⟩.max ].

Given a sub-path Pi of path P , assume that the first edge in Pi

is the k-th edge in P , where 2 6 k 6 |P|. The updated departure
time onPi based on the original departure time t is UI k, as defined
in Equation 3.

UI k =

 SAE([t, t], V
Ij
⟨e1⟩

), if k=2;

SAE(UI k−1, V
Ij
⟨ek−1⟩

), otherwise;
(3)

Given a spatially relevant random variable V
Ij
Pi

, if Ij intersects
Pi’s updated departure time interval UI k according to Equation 3
then it is temporally relevant; otherwise, it is not temporally rel-
evant. For a given sub-path Pi, if multiple variables V

Ij
Pi

, (j =

1, 2, · · · ,m) are temporally relevant, the one with the largest over-
lap is selected, i.e., the one where Ij = argmaxj∈[1,m]

|Ij∩UIk|
|UIk|

.
Having identified all spatially and temporally relevant variables,

we organize them into a two-dimensional candidate array. Each
row corresponds to an edge ek in query path P and contains the
instantiated random variables whose corresponding paths start with
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edge ek. If more than one variable exist, the variables are ordered
by their rank. An example candidate array is shown in Table 1.

rank = 1 rank = 2 rank = 3 rank = 4

e1 V⟨e1⟩ V⟨e1,e2⟩ V⟨e1,e2,e3⟩ V⟨e1,e2,e3,e4⟩
e2 V⟨e2⟩ V⟨e2,e3⟩ V⟨e2,e3,e4⟩
e3 V⟨e3⟩ V⟨e3,e4⟩
e4 V⟨e4⟩ V⟨e4,e5⟩
e5 V⟨e5⟩

Table 1: Example Candidate Array

To identify the coarsest decomposition, we consider the path of
the random variable with the highest rank for each edge (i.e., the
rightmost variable for each row in Table 1). If one random vari-
able’s path is a sub-path of another random variable’s path, the for-
mer random variable’s path should be omitted because it otherwise
violates spatial condition (3) (cf. Section 4.1.2). The remaining
paths constitute the coarsest decomposition. The procedure is sum-
marized in Algorithm 1.

To illustrate the procedure, consider the example shown in Ta-
ble 1. In the beginning, we consider path ⟨e1, e2, e3, e4⟩ and add
it to DEcoa. Next, since ⟨e2, e3, e4⟩ and ⟨e3, e4⟩ are sub-paths
of ⟨e1, e2, e3, e4⟩, both are omitted. Then, ⟨e4, e5⟩ is added to
DEcoa. Since ⟨e5⟩ is a sub-path of ⟨e4, e5⟩, it is omitted. Finally,
the coarsest decomposition is DEcoa = (⟨e1, e2, e3, e4⟩, ⟨e4, e5⟩),
which is highlighted in Table 1.

Algorithm 1: Identify the Coarsest Decomposition
Input : Query Path P , Departure Time t
Output: The Coarsest Decomposition DE coa

1 Identify a set of random variables STRV that are spatially
relevant to path P from all the instantiated random variables;

2 Eliminate the random variables that are not temporally
relevant to departure time t from STRV ;

3 Organize the spatio-temporally relevant random variables in
STRV in an two dimensional array;

4 DE coa ← null;
5 for k = 1; k 6 |P|; k ++ do
6 Identify the random variable V

Ij
Pk

with the highest rank
from the k-th row;

7 if Pk is not a sub-path of any path in DE coa then
8 Append Pk to DE coa;

9 return DE coa;

THEOREM 4. The unique decomposition DE coa returned by
Algorithm 1 is the coarsest.

Proof: We prove the theorem by contradiction. Suppose that we
cannot identify the coarsest decomposition by Algorithm 1. This
happens only if the coarsest decomposition, say DE′

coa, contains
a sub-path P ′

k that starts with edge ek but is not the longest sub-
path that starts with edge ek. Otherwise, it must be identified by
Algorithm 1 since it considers the longest sub-path for each edge
in path P .

Following the above assumption, we assume that the longest sub-
path starting from ek is Pk. By replacing P ′

k by Pk, we are able to
get a new decomposition DEcoa that is coarser than DE′

coa. This
contradicts the assumption that DE′

coa is the coarsest. �

4.2 The Cost Distribution of a Path
The coarsest decomposition DE coa enables accurate estimation

of the joint distribution of a path which fully captures the depen-
dencies among edges in the path. Recall that we are interested in
knowing the cost distribution of a path p(VP), where VP is a uni-
variate random variable indicating the travel cost of path P . We
proceed to derive p(VP) based on the joint distribution of a path
p̂DEcoa(CP) using

p(VP = x) =
∑

c1+...+cn=x

p̂DEcoa(ce1 = c1, . . . , cen = cn).

Since the estimated joint distribution of a path p̂DEcoa(CP) is rep-
resented as a multi-dimensional histogram, we need to transform it
to a one-dimensional histogram that represents the cost distribution
of P .

Recall that a multi-dimensional histogram is of the form {⟨hbi,
pr i⟩}, where hyper-bucket hbi = ⟨bu1

i , . . . bu
n
i ⟩ consists of n

buckets, each corresponding to one dimension. For each hyper-
bucket hbi = ⟨bu1

i , . . . bu
n
i ⟩, we derive a bucket bui whose upper

(lower) bound is the sum of the upper (lower) bounds of the buckets
in the hyper-bucket, i.e., bui = [

∑n
j=1 bu

j
i .l,

∑n
j=1 bu

j
i .u). Thus,

we get a one-dimensional histogram {⟨bui, pr i⟩}.
The buckets in the obtained one-dimensional histogram may over-

lap. We need to rearrange the buckets such that they are disjoint
and update their corresponding probabilities. We check each pair
of buckets as follows. If two buckets bui and buj are disjoint, keep
both buckets. If buckets bui and buj overlap, range [min(bui.l, buj .l),
max(bui.u, buj .u)) is split into three buckets according to the in-
creasing order of bui.l, buj .l, bui.u, and buj .u, and each bucket is
assigned an adjusted probability. The one-dimensional histogram
with the rearranged buckets and the adjusted probabilities repre-
sents the final cost distribution.

Figure 7 shows a running example on the aforementioned pro-
cedure on path P1 = ⟨e1, e2⟩. The first table in Figure 7 shows
the joint distribution of the path. The upper, left hyper-bucket
⟨[20, 30), [20, 40)⟩ has value 0.3, which means that when going
through path P1, the probability that the travel time on e1 is be-
tween 20 s and 30 s and the travel time on e2 is between 20 s and
40 s is 0.3. Next, the second table in Figure 7 shows the corre-
sponding cost distribution after transferring each hyper-bucket to
a bucket. For example, hyper-bucket ⟨[20, 30), [20, 40)⟩ becomes
bucket [40, 70).

ce1 ∈ [20, 30) ce1 ∈ [30, 50)
ce2 ∈ [20, 40) 0.30 0.25
ce2 ∈ [40, 60) 0.20 0.25

[40, 70) [50, 90) [60, 90) [70, 110)
0.30 0.25 0.20 0.25

[40, 50) [50, 60) [60, 70) [70, 90) [90, 110)
0.1000 0.1625 0.2292 0.3833 0.1250

Figure 7: A Joint Distribution and Its Marginal Distribution

Consider the first two (bucket, probability) pairs shown in the
second table, i.e., ⟨[40, 70), 0.30⟩ and ⟨[50, 90), 0.25⟩. Since the
two buckets overlap, range [40, 90) is split into [40, 50), [50, 70),
and [70, 90). In a histogram, the probability in each bucket is uni-
formly distributed, so each bucket is assigned an adjusted probabil-
ity as follows. Bucket [40, 50) is given probability |[40,50)|

|[40,70)| · 0.3 =

0.1, bucket [50, 70) is given probability |[50,70)|
|[40,70)| · 0.3+

|[50,70)|
|[50,90)| ·
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0.25 = 0.325, and bucket [70, 90) is associated with probability
|[70,90)|
|[50,90)| ·0.25 = 0.125. Bucket [40, 50) does not overlap with other
buckets, its adjusted probability is the final probability. Since buck-
ets [50, 70) and [70, 90) still overlap with the next bucket [60, 70),
their buckets should be further rearranged and their probabilities
should be adjusted. The final cost distribution is shown in the third
table in Figure 7.

4.3 Using the Proposed Method
Recall the example in Figure 1(a) with the question “Which path

has a higher probability of arriving the airport within 60 mins?” To
illustrate how the proposed method is used for accurate estimation
of the cost distributions of paths in path planning in order to answer
such questions, we consider two typical scenarios.

In the first scenario, multiple candidate paths, e.g., using or not
using highways or toll roads, are given. Here, the proposed method
can be applied to compute the cost distributions for the given paths,
identifying the most appropriate path based on the requirements,
e.g., the one with highest probability of arriving within 60 mins.

The second scenario concerns stochastic routing algorithms, e.g.,
stochastic fastest routing [13], probabilistic top-k routing [10], sto-
chastic skyline routing [22], that aim to identify a path or set of
paths that satisfy some conditions, e.g., the path with highest prob-
ability of arriving within 60 mins. Such algorithms need to ex-
plore many candidate paths, and pruning of uncompetitive candi-
date paths early is attractive. When making pruning decisions, the
algorithms compare the cost distributions of candidate paths. The
proposed method can be easily incorporated into existing stochastic
routing algorithms by simply using it when the algorithms compute
cost distributions of paths.

Existing stochastic routing algorithms apply a “path + another
edge” pattern to explore candidate paths. Therefore, a path cost dis-
tribution estimation method must satisfy the so-called “incremental
property” that enables reuse of the cost distribution of the existing
path when computing the cost distribution for a new path extended
from this existing path. Our proposal satisfied this property and can
be applied to “path + another edge” path finding algorithms. The
details are covered elsewhere [31].

The run-time of a stochastic routing algorithm is dominated by∑
P∈CP RT (P,method), where CP contains the candidate paths

whose cost distributions need to be evaluated. Thus, CP differs
among stochastic routing algorithms with different strategies for
selecting candidate paths. Function RT (P,method) refers to the
run-time of computing the cost distribution of path P using a spe-
cific method, e.g., our method or a legacy method. In Section 5,
we empirically demonstrate that computing the cost distribution
of a path using our method is more efficient than using the state-
of-the-art legacy baselines, i.e., RT (P, hybrid graph) < RT (P ,
legacy baseline). We also show that the accuracy of the cost dis-
tributions estimated by our method is higher than that of the legacy
baseline. Thus, integration of our method is able to improves both
the efficiency and accuracy of existing stochastic routing algorithms.

5. EMPIRICAL STUDY

5.1 Experimental Setup
Road networks: Two road networks are used. The Aalborg road

network N1 has 20,195 vertices and 41,276 edges, and the Beijing
road network N2 has 28,342 vertices and 38,577 edges. Road net-
work N1 is obtained from OpenStreetMap and contain all roads,
while road network N2 is obtained from the Beijing traffic man-
agement bureau and contains only highways and main roads.

Trajectories: Two GPS data sets are used. The first, D1, con-
tains 37 million GPS records that occurred in Aalborg from January
2007 to December 2008. The sampling rate is 1 Hz (i.e., one record
per second). The second, D2, contains more than 50 billion GPS
records that occurred in Beijing from September 2012 to November
2012. The sampling rate is at least 0.2 Hz. We apply a well-known
method [16] to map match the GPS records.

Travel Costs: We consider two time-varying, uncertain travel
costs—travel time and GHG emissions. Due to the space limitation,
the results on GHG emissions are included elsewhere [30].

Parameters: We vary the finest time interval α, the qualified tra-
jectory count threshold β, the cardinality of a query path |Pquery |;
see Table 2, where default values are shown in bold.

Parameters Values
α (min) 15, 30, 45, 60, 120

β 15, 30, 45, 60
|Pquery | 5, 10, 15, 20, 40, 60, 80, 100

Table 2: Parameter Settings

Implementation Details: All algorithms are implemented in
Python 2.7 under Linux Ubuntu 14.04. All experiments are con-
ducted on a modern server with 512 GB main memory and 64 2.3
GHz 8-core AMD Opteron(tm) 6376 CPUs.

5.2 Experimental Results

5.2.1 Instantiated Random Variables
We conduct experiments to obtain insight into different aspects

of the instantiated random variables that are maintained in the hy-
brid graph’s weight function WP and also describe how to tune
parameters α and β. To highlight the random variables that are in-
stantiated from trajectories, random variables derived from speed
limits are excluded unless stated otherwise.

Tuning α: We vary α from 15 to 120 minutes. A large α
suggests that more trajectories may become qualified trajectories,
which instantiates more random variables. We use E′ to denote
the set of edges that are covered by the instantiated random vari-
ables and E′′ to denote the set of edges that has at least one GPS
record. Coverage is defined as the ratio between |E′| and |E′′|.
Figure 8(a) shows that as α increases, the coverage increases as
well on both data sets. However, the coverage ratio remains below
85% for α = 120. This is because the GPS data is skewed—some
edges have only few GPS records.

Although a large α enables more instantiated random variables,
they may be inaccurate since traffic may change significantly dur-
ing a long interval, e.g., two hours. We report the average en-
tropies of the instantiated random variables when varying α; see
Figure 8(b). We only show the results on D2 as the results on
D1 exhibit similar trends. According to Theorem 2, variables with
smaller entropy lead to more accurate joint distribution estimates.
Figure 8(b) shows that using α = 30 does not significantly in-
crease the entropy compared to using α = 15. Figure 8(a) shows
that α = 30 gives a clear increase in the number of instantiated
random variables compared to α = 15. This suggests that α = 30
provides a good trade-off between the accuracy of the random vari-
ables and the numbers of random variables. Thus, we use α = 30
as the default value.

Tuning β: Intuitively, we prefer a large β since having more
qualified trajectories enables instantiated random variables that are
more accurate. However, Figure 9 shows that as β increases, the
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number of instantiated random variables drops. This occurs be-
cause a large β requires more qualified trajectories in order to be
able to instantiate WP . We choose β = 30 as the default because
the number of instantiated random variables is only slightly less
than than for β = 15, while achieving more accurate variables.

Varying Dataset Sizes: We use 25%, 50%, 75%, and 100% of
the trajectories in D1 and D2, respectively. Figure 10 shows that
the number of instantiated random variables increases as the num-
ber of trajectories increases. The number of instantiated random
variables with large rank also increases steadily. This occurs be-
cause the more trajectories, the more likely it is to find long paths
with more than β qualified trajectories, thus resulting in random
variables with large rank. It also shows that the instantiated random
variables are typically insufficient to enable the accuracy-optimal
baseline for arbitrary paths—the sizes of variables with high rank
(e.g.,|V | > 4) are small.

Histogram Approximation: We evaluate the accuracy and space
savings of the histogram representations of the instantiated random
variables. Recall that our method is able to automatically iden-
tify the number of buckets per dimension (cf. Section 3.1). We
call this method Auto. We first compare Auto with methods using
standard distributions including Gaussian, Gamma, and exponen-
tial distributions. Figure 11(a) shows the KL divergences between
the raw data distribution and the distributions represented by differ-
ent methods. The results of using exponential distributions are not
shown since their KL divergences exceed 1.0 and are significantly
worse than the other ones. The results clearly suggest that Auto
provides the most accurate estimation and that travel-time distribu-
tions typically do not follow standard distributions.

Auto adaptively determines the bucket count for each dimension
and then optimally selects the bucket boundaries, thus being able to
represent arbitrary distributions. We compare Auto with a static his-
togram approach that uses a fixed number of buckets per dimension.
The method that uses b buckets per dimension is called Sta-b. Fig-
ure 11(b) shows the KL divergences between the raw distribution
that is obtained from the trajectories’ travel costs and the different
histograms. As the number of buckets increases, Sta-b produces a
smaller KL divergence value because the more buckets a histogram
has, the better accuracy it can achieve. Auto is able to achieve as
good accuracy as Sta-4. This suggests that the Auto method is ef-
fective.

We evaluate the space-savings achieved by the histogram repre-
sentation. Intuitively, the more buckets a histogram has, the more
storage it needs. We report the space saving ratio 1 − SH

SR
, where

SH and SR represent the storage required by the histograms and the
underlying raw data distribution, respectively. The raw data distri-
bution is of the form (cost , frequency). The higher the ratio, the
better space-savings are achieved by the histograms. Figure 11(c)
shows that Auto has a better compression ratio than Sta-4 has. This
suggests that Auto achieves a good trade-off between accuracy and
space-saving.

Total Memory Usage: As the size of the trajectory data set
grows, the memory use of recording the instantiated random vari-
ables also grows, as shown in Figure 12. Since we use histograms
to represent the distributions of instantiated random variables, the
memory use is small such that the hybrid graph’s weight function
WP can be accommodated in main memory. In particular, the
instantiated random variables, including the ones that are derived
from speed limits, for Aalborg and Beijiing occupy around 1.8 GB
and 4.2 GB, respectively.

Run-time: Since deriving the instantiated random variables is
an off-line task, the run-time is not critical. The procedure can be
parallelized in a straightforward manner. Using the default param-

eter setting, it takes less than 2 minutes with 48 threads to learn
the random variables from D1, and takes around 45 minutes with
48 threads to learn random variables from D2. This also suggests
that when receiving new trajectories regularly, the procedure can be
conducted periodically to efficiently instantiate random variables.

5.2.2 Path Cost Distribution Computation
We consider four methods. (a) OD: the proposed method using

the optimal (i.e., coarsest) decomposition. (b) LB [22]: the legacy
baseline as described in Section 2.3. LB is regarded as one of the
state-of-the-art approaches used in the conventional paradigm. In
our setting, LB only considers the random variables with ranks one.
(c) HP [10] assumes that the joint distributions for every pair of
edges in a path are known and then computes the joint probability
distribution of the path taking these into account. In our setting, this
means that HP only considers random variables with ranks two. (d)
RD computes an estimated distribution using a randomly chosen
decomposition rather than the coarsest decomposition.

Accuracy Evaluation with Ground Truth: We select 100
paths where each path has more than β = 30 trajectories during
an interval of α = 30 minutes. We use these trajectories to com-
pute the ground-truth distribution using the accuracy-optimal base-
line. Next, we exclude these trajectories from the trajectory data
set. Thus, we have the data sparseness problem, and the accuracy-
optimal baseline does not work.

First, we consider a concrete example shown in Figure 1(b). The
distributions estimated using OD, LB, HP, and RD are shown in
Figures 13(a)-(d). It is clear that OD captures the main charac-
teristics of the ground-truth distribution. The convolution-based
estimation LB seems to approach a Gaussian distribution (cf. the
Central Limit Theorem). However, it is clear that a Gaussian distri-
bution is unable to capture the ground-truth distribution, and LB is
inaccurate. The distribution computed by HP is inaccurate either,
which suggests that the dependencies among the edges in a path
cannot be fully captured by only considering the dependencies be-
tween adjacent edges. Method RD suggests that a randomly chosen
decomposition provides a less accurate estimation compared to the
estimation based on the optimal decomposition.

Next, we report results when using paths with different cardinal-
ities. Specifically, we vary |Pquery| from 5 to 20. Figure 14 shows
the KL-divergence values KL(p, p̂), where p is the ground-truth
distribution derived by the accuracy-optimal baseline and p̂ is the
estimated distribution using OD, LB, RD, and HP. As the number
of edges in a path increases, the benefits of using the proposed OD
becomes more significant. In particular, the KL-divergence values
of OD grow slowly while the KL-divergence values of LB grow
quickly. This is not surprising because LB assumes independen-
cies, and the longer a path is, the more likely it is that the edges
in the path are not independent. Next, OD is also better than RD,
which suggests that the optimal decomposition produces the most
accurate estimation. Further, HP is better than LB because HP con-
siders the correlation between adjacent edges. However, HP al-
ways has larger KL-divergence values than do RD and OD. This is
because coarser random variable sets have smaller KL-divergence
(cf. Theorem 3).

In summary, Figure 14 suggests that the proposed OD is able to
accurately estimate travel cost distributions and that it outperforms
the other methods, especially for long paths.

Accuracy Evaluation without Ground Truth: We consider
long paths which do not have corresponding ground truth distribu-
tions. We randomly choose 1, 000 paths for each cardinality with
an arbitrary departure time and report average values; and vary the
path cardinality from 20 to 100. Figure 15 shows that OD produces

93



 0

 0.2

 0.4

 0.6

 0.8

 1

D1 D2

C
ov

er
ag

e(
*1

00
%

)
15min
30min

60min
120min

(a) Coverage

 0

 2

 4

 6

 8

 10

15 30 60 120

En
tro

py

|V|=1
|V|=2

|V|=3
|V|≥4

(b) Entropy

Figure 8: Effect of α

 0

 10

 20

 30

 40

 50

15, D
1

30, D
1

45, D
1

60, D
1

15, D
2

30, D
2

45, D
2

60, D
2In

st
an

tia
te

d 
R

an
do

m
 V

ar
ia

bl
es

 (*
10

3 )

β

|V|≥4
|V|=3

|V|=2
|V|=1

Figure 9: Effect of β

 0

 10

 20

 30

 40

 50

25%|D
1 |

50%|D
1 |

75%|D
1 |

100%|D
1 |

25%|D
2 |

50%|D
2 |

75%|D
2 |

100%|D
2 |

In
st

an
tia

te
d 

R
an

do
m

 V
ar

ia
bl

es
 (*

10
3 ) |V|≥4

|V|=3
|V|=2
|V|=1

Figure 10: Varying Dataset Sizes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

D1 D2

KL
 D

iv
er

ge
nc

e

Gamma
Gaussian

Auto

(a) Varying Methods

 0

 0.1

 0.2

 0.3

D1 D2

KL
 D

iv
er

ge
nc

e

Sta-3 Sta-4 Auto

(b) Varying Histograms

 0.75

 0.8

 0.85

 0.9

 0.95

 1

D1 D2

sa
ve

d 
sp

ac
e 

ra
tio

 (*
10

0%
)

Sta-3 Sta-4 Auto

(c) Space Saving Ratio

Figure 11: Performance of Multi-Dimensional Histograms

 0

 1.5

 3

 4.5

 0.25  0.5  0.75  1

M
em

or
y 

U
sa

ge
 (G

B)

Dataset Size (*100%)

D1 D2

Figure 12: Memory Usage

 0

 0.2

 0.4

 0.6

[90,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125)

[125,135)

Pr
ob

ab
ilit

y

Travel Time (s)

(a) OD

 0

 0.05

 0.1

 0.15

 0.2

[90,95)

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125)

[125,130)

[130,135)

[135,140)

Pr
ob

ab
ilit

y

Travel Time (s)

(b) LB

 0

 0.05

 0.1

 0.15

 0.2

[85,90)

[90,95)

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125)

[125,130)

[130,135)

[135,140)

Pr
ob

ab
ilit

y

Travel Time (s)

(c) HP

 0

 0.1

 0.2

 0.3

[90,95)

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125)

[125,130)

[130,135)

Pr
ob

ab
ilit

y

Travel Time (s)

(d) RD
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the least entropy, which is consistent with the design of identifying
the optimal decomposition. This suggests that the proposed method
is able to accurately estimate the distribution of a path.

Efficiency, Estimating the Cost Distribution of a Path: Fig-
ure 16 reports the run-times of the different methods. We also con-
sider the methods that use instantiated random variables with ranks
at most 2, 3, and 4, denoted as OD-2, OD-3, and OD-4, respec-
tively. As the cardinality of a query path increases, the run-time
also grows. HP and LB have to consider at least |Pquery | instan-
tiated random variables to compute the joint distribution, yield-
ing higher running times than for the remaining methods. In con-
trast, OD, OD-x, and RD exploit instantiated random variables with
higher ranks. Thus, they use significantly fewer instantiated ran-
dom variables and are faster than HP and LB. OD uses coarser ran-
dom variables than does RD, and it is able to use fewer instantiated
random variables, making it faster than RD. Following the same
reasoning, OD-x is faster than OD-y if x > y. Figure 16 clearly
shows that OD is the most efficient.

To further investigate the run-time of OD, a detailed analysis of
the three major steps in OD is reported in Figure 17 for paths with
cardinality 20 and using differently sized subsets of trajectories.

Three steps are involved in OD. First, the optimal decomposition
is identified, denoted by OI. Thanks to Theorems 4, this part is very
efficient. Second, the joint distribution is computed, denoted by
JC. This is the most time-consuming part as it goes through many
hyper-buckets of the histograms to compute the joint distributions
according to Equation 2. However, with more trajectories, there
are more instantiated random variables with higher ranks, which
improves the run-time of JC. Thus, as data volumes increase, the
performance improves. Third, deriving the cost distribution (de-
noted by MC) is also very efficient.

Efficiency, Stochastic Routing: We consider the efficiency of
using the hybrid graph in existing stochastic routing algorithms fol-
lowing the discussions offered in Section 4.3. In particular, we use
an existing depth first search (DFS) based stochastic routing algo-
rithm [10] for answering the question posed in Figure 1(a). We
implement the algorithm in versions that use LB, HP, or OD to
compute cost distributions, respectively.

We randomly choose 100 source-destination pairs, and we set the
travel time budgets to S1 = 10 min, S2 = 20 min, and S3 = 30
min, respectively. The average running times are reported in Fig-
ure 18, which shows that OD-DFS always outperforms the other
two. We see that replacing the legacy baselines by the paper’s
proposal is able to accelerating an existing stochastic routing al-
gorithm. Due to the space limitation, experimental results on the
effects on quality of using the paper’s proposal for stochastic rout-
ing are covered elsewhere [31].

5.2.3 Summary
The empirical study shows that: (1) In realistic settings with

sparse data, the proposed OD method is the most accurate and ef-
ficient method and is scalable w.r.t. the path cardinality, meaning
that it is able to support long paths. (2) OD is able to approximate
arbitrary raw cost distributions well using limited space, making it
possible to fit the instantiated random variables into main memory.
(3) OD is scalable w.r.t. the number of trajectories. First, as random
variable instantiation can be parallelized easily, it is possible to pe-
riodically re-instantiate random variables when new trajectories are
received. Second, more trajectories yield more random variables
with higher ranks, which improves the efficiency and accuracy of
the approach. (4) OD can be incorporated into existing stochastic
routing algorithms with the effect of improving their efficiency and
accuracy.

We conclude that the proposed hybrid-graph and OD method
successfully address the challenges caused by data sparseness, com-
plex distributions, and dependencies; and they are able to efficiently
provide accurate travel cost distribution estimation, thus enabling
efficient and accurate stochastic routing.

6. RELATED WORK
We review recent studies on estimating deterministic and uncer-

tain path costs, respectively.
Estimating Deterministic Path Costs: Most such studies focus

on accurate estimation of travel costs of individual edges using tra-
jectory data and loop detector data, based on which the travel cost
of a path is then computed as the sum of the travel costs of its edges.

In many cases, the available trajectory data is unable to cover all
edges in a road network. To address data sparseness, some meth-
ods [11,19,26,29] transfer the travel costs of edges that are covered
by trajectories to edges that are not covered by trajectories. How-
ever, these methods do not support travel cost distributions, and
they do not model dependencies among edges. Therefore, they do
not apply to the problem we consider.

When all edges have travel costs, the travel cost of any path can
be estimated by summing up the travel costs of the edges in the
path [11, 26, 29]. However, using the sum of travel costs of edges
as the travel cost of a path can be inaccurate because it ignores
hard-to-formalize aspects of travel, such as turn costs. Thus, a
method [19] is proposed to identify an optimal set of sub-paths that
can be concatenated into a path. The path’s travel cost is then the
sum of the travel costs of the sub-paths. This method does not sup-
port travel cost distributions, and it assumes independence among
sub-paths.

Another study explicitly models turn costs [23], and the path
cost is the sum of costs of edges and the costs of turns. How-
ever, the study models turn costs based on many assumptions, e.g.,
maximum turning speeds, but not on real-world traffic data, and
the accuracy of the modeling is unknown. In contrast, we do not
explicitly model turn costs but use the joint distributions of paths
to implicitly model such hard-to-formalize factors. Further, the
study [23] does not consider time-dependent and uncertain costs.

Estimating Path Cost Distributions: Studies exist that model
the travel cost uncertainty of a path. However, they make assump-
tions that do not apply in our setting.

First, some studies assume that travel cost distributions follow a
standard distribution, e.g., a Gaussian distribution. However, the
travel cost distribution of a road segment often follows an arbi-
trary distribution, as shown in recent studies [21, 22, 25] and in
Figure 1(b) in Section 1 and Figure 11(a) in Section 5. We use
multi-dimensional histograms to represent arbitrary distributions.

Second, some studies assume that the distributions on different
edges are independent of each other [6, 13] or conditionally inde-
pendent given the arrival times at different edges [22], thus mir-
roring the LB approach covered in Section 5. The independence
assumption often does not hold (cf. Section 2), and our approach
outperforms LB, as shown in Section 5. Further, with the exception
of one study [22], all the above studies use generated distributions
in empirical evaluations; we use large, real trajectory data.

The most advanced method, the HP [10] approach covered in
Section 5, does not make the independence assumption. Rather, it
assumes that the travel costs of pairs of adjacent edges are depen-
dent, but it does not consider dependencies among multiple edges
in a path. We propose a more generic model that employs joint dis-
tributions to fully capture the dependencies among all the edges in
a path. In addition, we identify distributions from real-world tra-
jectory data and support time-varying distributions, while the HP
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approach employs synthetically generated distributions and does
not support time-varying distributions.

Although two recent studies [14,27] employ histograms to repre-
sent travel cost distributions, they consider travel cost distributions
on individual edges and assume that distributions are independent.

7. CONCLUSION AND FUTURE WORK
Accurate estimation of the travel cost distribution of a path is

fundamental functionality in spatial-network related applications.
We propose techniques that are able to model joint distributions
that capture the travel cost dependencies among sub-paths that form
longer paths, which in turn enables accurate travel cost estimation
of any path using sparse historical trajectory data. Empirical studies
in realistic settings offer insight into the design properties of the
proposed solution and suggest that it is effective and efficient.

This study provides part of the foundation for a new and promis-
ing paradigm where travel costs are associated not only with road-
network edges, but with sub-paths. The arguably most pertinent
next step is to develop novel stochastic routing algorithms that fully
consider the distinct characteristics of the novel paradigm.
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