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ABSTRACT
Crowdsourcing has emerged as a novel problem-solving paradigm,
which facilitates addressing problems that are hard for comput-
ers, e.g., entity resolution and sentiment analysis. However, due to
the openness of crowdsourcing, workers may yield low-quality an-
swers, and a redundancy-based method is widely employed, which
first assigns each task to multiple workers and then infers the cor-
rect answer (called truth) for the task based on the answers of the
assigned workers. A fundamental problem in this method is Truth
Inference, which decides how to effectively infer the truth. Re-
cently, the database community and data mining community in-
dependently study this problem and propose various algorithms.
However, these algorithms are not compared extensively under the
same framework and it is hard for practitioners to select appropriate
algorithms. To alleviate this problem, we provide a detailed survey
on 17 existing algorithms and perform a comprehensive evaluation
using 5 real datasets. We make all codes and datasets public for
future research. Through experiments we find that existing algo-
rithms are not stable across different datasets and there is no algo-
rithm that outperforms others consistently. We believe that the truth
inference problem is not fully solved, and identify the limitations
of existing algorithms and point out promising research directions.

1. INTRODUCTION
Crowdsourcing solutions have been proposed to address tasks

that are hard for machines, e.g., entity resolution [8] and sentiment
analysis [32]. Due to the wide deployment of public crowdsourc-
ing platforms, e.g., Amazon Mechanical Turk (AMT) [2], Crowd-
Flower [12], the access to crowd becomes much easier. As reported
in [1], more than 500K workers from 190 countries have performed
tasks on AMT [2]. The database community has shown great in-
terests in crowdsourcing (see a survey [29]). Several crowdsourced
databases (e.g., CrowdDB [20], Deco [39], Qurk [37]) are built to
incorporate the crowd into query processing, and there are many
studies on implementing crowdsourced operators, e.g., Join [50,
36, 52, 11], Max [47, 22], Top-k [14, 55], Group-by [14], etc.

Due to the openness of crowdsourcing, the crowd (called work-
ers) may yield low-quality or even noisy answers. Thus it is impor-
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tant to control the quality in crowdsourcing. To address this prob-
lem, most of existing crowdsourcing studies employ a redundancy-
based strategy, which assigns each task to multiple workers and
aggregates the answers given by different workers to infer the cor-
rect answer (called truth) of each task. A fundamental problem,
called Truth Inference, is widely studied in existing crowdsourcing
works [34, 16, 15, 53, 51, 41, 26, 33, 61, 19, 35, 30, 27, 10, 46, 5,
31], which decides how to effectively infer the truth for each task.

To address the problem, a straightforward approach is Majority
Voting (MV), which takes the answer given by majority workers
as the truth. However, the biggest limitation of MV is that it re-
gards all workers as equal. In reality, workers may have different
levels of qualities: a high-quality worker carefully answers tasks;
a low-quality (or spammer) may randomly answer tasks in order
to deceive money; a malicious worker may even intentionally give
wrong answers. Thus it is important to capture each worker’s qual-
ity, which can better infer the truth of each task by trusting more on
the answers given by workers with higher qualities.

However, the ground truth of each task is unknown and it is hard
to estimate a worker’s quality. To address this problem, one can
label the ground truth for a small portion of tasks (called golden
tasks) and use them to estimate workers’ quality. There are two
types of methods to utilize golden tasks. The first is qualification
test. Each worker requires to perform a set of golden tasks before
she can really answer tasks, and her quality is computed based on
her answering performance for these golden tasks. The second is
hidden test. The golden tasks are mixed into the tasks and the
workers do not know which are golden tasks. A worker’s quality
is computed based on her answering performance on these golden
tasks. However, the two approaches have some limitations. (1)
For qualification test, workers require to answer these “extra” tasks
without pay, and many workers do not want to answer such tasks.
(2) For hidden test, it is a waste to pay the “extra” tasks. (3) The
two techniques may not improve the quality (see Section 6).

Considering these limitations, the database community [34, 19,
35, 24, 30, 31, 58] and data mining community [16, 53, 15, 61,
27, 46, 41, 51, 26, 33, 5] independently study this problem and
propose various algorithms. However, these algorithms are not
compared under the same experimental framework and it is hard
for practitioners to select appropriate algorithms. To alleviate this
problem, we provide a comprehensive survey on existing truth in-
ference algorithms. We summarize them in terms of task types, task
modeling, worker modeling, and inference techniques. We conduct
a comprehensive comparison of 17 existing representative meth-
ods [16, 53, 15, 61, 27, 46, 41, 30, 5, 31, 51, 26, 33], experimen-
tally compare them on 5 real datasets with varying sizes and task
types in real crowdsourcing platforms, make a deep analysis on the
experimental results, and provide extensive experimental findings.
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Table 1: A Product Dataset.
ID Product Name
r1 iPad Two 16GB WiFi White
r2 iPad 2nd generation 16GB WiFi White
r3 Apple iPhone 4 16GB White
r4 iPhone 4th generation White 16GB

Table 2: Collected Workers’ Answers for All Tasks.
t1: t2: t3: t4: t5: t6:

(r1=r2) (r1=r3) (r1=r4) (r2=r3) (r2=r4) (r3=r4)
w1 F T T F F F
w2 F F T T F
w3 T F F F F T

To summarize, we make the following contributions:
•We survey 17 existing algorithms, summarize a framework (Sec-
tion 3), and provide an in-depth analysis and summary on the 17
algorithms in different perspectives (Sections 4-5), which can help
practitioners to easily grasp existing truth inference algorithms.
•We experimentally conduct a thorough comparison of these meth-
ods on 5 datasets with varying sizes, publicize our codes and datasets
[40], and provide experimental findings, which give guidance for
selecting appropriate methods under various scenarios (Section 6).
•We find that the truth inference problem is not fully solved, iden-
tify the limitations of existing algorithms, and point out several
promising research directions (Section 7).

2. PROBLEM DEFINITION
DEFINITION 1 (TASK). A task set T contains n tasks, i.e.,

T = {t1, t2, . . . , tn}. Each task asks workers to answer the task.

Existing studies mainly focus on three types of tasks.
Decision-Making Tasks. A decision-making task has a claim and
asks workers to make a decision on whether the claim is true (de-
noted as ‘T’) or false (denoted as ‘F’). Decision-making tasks are
widely used and studied in existing crowdsourcing works [34, 16,
15, 53, 51, 41, 26, 33, 61, 19, 35, 30, 27, 46, 5] because of its
conceptual simplicity.

Next we take entity resolution as an example, which tries to find
pairs of products in Table 1 that refer to the same real-world en-
tity. A straightforward way is to generate a task set T = {(r1=r2),
(r1=r3), (r1=r4), (r2=r3), (r2=r4), (r3=r4)}with n = 6 decision-
making tasks, where each task has two choices: (true, false), and
asks workers to select a choice for the task. For example, t2 (or
r1=r3) asks whether the claim ‘iPad Two 16GB WiFi White = Ap-
ple iPhone 4 16GB White’ is true (‘T’) or false (‘F’). Tasks are then
published to crowdsourcing platforms (e.g., AMT [2]) and work-
ers’ answers are collected.
Single-Choice (and Multiple-Choice) Tasks. A single-choice task
contains a question and a set of candidate choices, and asks work-
ers to select a single choice out of the candidate choices. For ex-
ample, in sentiment analysis, a task asks workers to select the sen-
timent (‘positive’, ‘neutral’, ‘negative’) of a given tweet. Decision-
making task is a special case of single-choice task, with two special
choices (‘T’ and ‘F’). The single-choice tasks are especially studied
in [34, 16, 15, 53, 41, 61, 35, 30, 27, 46, 5]. A direct extension of
single-choice task is multiple-choice task, where workers can select
multiple choices (not only a single choice) out of a set of candidate
choices. For example, in image tagging, given a set of candidate
tags for an image, it asks workers to select the tags that the im-
age contains. However, as addressed in [60, 38], a multiple-choice
task can be easily transformed to a set of decision-making tasks,
e.g., for an image tagging task (multiple-choice), each transformed
decision-making task asks whether or not a tag is contained in an
image. Thus the methods in decision-making tasks can be directly
extended to handle multiple-choice tasks.

Table 3: Notations.
Notation Description
ti the i-th task (1 ≤ i ≤ n) and T = {t1, t2, . . . , tn}
w the worker w andW = {w} is the set of workers
Wi the set of workers that have answered task ti
T w the set of tasks that have been answered by worker w
vwi the answer given by worker w for task ti
V the set of workers’ answers for all tasks, i.e., V = {vwi }
v∗i the (ground) truth for task ti (1 ≤ i ≤ n)

Numeric Tasks. The numeric task asks workers to provide a value.
For example, a task asks about the height of Mount Everest. Dif-
ferent from the tasks above, workers’ inputs are numeric values,
which have inherent orderings (e.g., compared with 8800m, 8845m
is closer to 8848m). Existing works [41, 30] especially study such
tasks by considering the inherent orderings between values.
Others. Besides the above tasks, there are other types of tasks,
e.g., translate a language to another [10], or ask workers to collect
data (e.g., the name of a celebrity) [20, 48]. However, it is hard
to control the quality for such “open” tasks. Thus they are rarely
studied in existing works [10, 20, 48]. In this paper, we focus only
on the above three tasks and leave other tasks for future work.

DEFINITION 2 (WORKER). A worker setW contains a set of
workers, i.e., W = {w}. Let Wi denote the set of workers that
have answered task ti and T w denote the set of tasks that have
been answered by worker w.

DEFINITION 3 (ANSWER). Each task ti can be answered with
a subset of workers in W . Let vwi denote the worker w’s answer
for task ti, and the set of answers V = {vwi } contains the collected
workers’ answers for all tasks.

Table 2 shows an example, with answers to T given by three
workers W = {w1, w2, w3}. (The empty cell means that the
worker does not answer the task.) For example, vw1

4 = F means
worker w1 answers t4 (i.e., r2 = r3) with ‘F’, i.e., w1 thinks that
r2 6= r3. The set of workers that answer t1 isW1 = {w1, w3}, and
the set of tasks answered by workerw2 is T w2 = {t2, t3, t4, t5, t6}.

DEFINITION 4 (TRUTH). Each task ti has a true answer, called
the ground truth (or truth), denoted as v∗i .

For the example task set T in Table 1, only pairs (r1= r2) and
(r3= r4) are true, and thus v∗1 = v∗6 = T, and others’ truth are F.

Based on the above notations, the truth inference problem is to
infer the (unknown) truth v∗i for each task ti based on V .

DEFINITION 5 (TRUTH INFERENCE IN CROWDSOURCING).
Given workers’ answers V , infer the truth v∗i of each task ti ∈ T .

Table 3 summarizes the notations used in the paper.

3. SOLUTION FRAMEWORK
A naive solution is Majority Voting (MV) [20, 39, 37], which re-

gards the choice answered by majority workers as the truth. Based
on Table 2, the truth derived by MV is v∗i = F for 2 ≤ i ≤ 6 and
it randomly infers v∗1 to break the tie. The MV incorrectly infers
v∗6 , and has 50% chance to infer v∗1 wrongly. The reason is that MV
assumes that each worker has the same quality, and in reality, work-
ers have different qualities: some are experts or ordinary workers,
while others are spammers (who randomly answer tasks in order to
deceive money) or even malicious workers (who intentionally give
wrong answers). Take a closer look at Table 2, we can observe that
w3 has a higher quality, and the reason is that if we do not consider
t1 (which receives 1 ‘T’ and 1 ‘F’), then w3 gives 4 out of 5 an-
swers that are reported by majority workers, while w1 and w2 give
both 3 out of 5, thus we should give higher trust tow3’s answer and
in this way can infer all tasks’ truth correctly.
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Based on the above discussions, existing works [16, 15, 53, 51,
41, 33, 26, 61, 62, 19, 35, 30, 46, 27, 5, 34] propose various ways
to model a worker’s quality. Although qualification test and hidden
test can help to estimate a worker’s quality, they require to label
tasks with truth beforehand, and a worker also requires to answer
these “extra” tasks. To address this problem, existing works [16,
15, 53, 51, 41, 33, 26, 61, 62, 19, 35, 30, 46, 27, 5, 34] estimate
each worker’s quality purely based on workers’ answers V . Intu-
itively, they capture the inherent relations between workers’ quali-
ties and tasks’ truth: for a task, the answer given by a high-quality
worker is highly likely to be the truth; conversely, for a worker,
if the worker often correctly answers tasks, then the worker will
be assigned with a high quality. By capturing such relations, they
adopt an iterative approach, which jointly infers both the workers’
qualities and tasks’ truth.

By capturing the above relations, the general approach adopted
by most of existing works [16, 15, 53, 51, 41, 33, 26, 61, 62, 19,
35, 30, 46, 27, 5, 34] is shown in Algorithm 1. The quality of each
worker w ∈ W is denoted as qw. In Algorithm 1, it first initializes
workers’ qualities randomly or using qualification test (line 1), and
then adopts an iterative approach with two steps (lines 3-11):
Step 1: Inferring the Truth (lines 3-5): it infers each task’s truth
based on workers’ answers and qualities. In this step, different task
types are handled differently. Furthermore, some existing works [53,
51] explicitly model each task, e.g., [53] regards that different tasks
may have different difficulties. We discuss how existing works
model a task in Section 4.1.
Step 2: Estimating Worker Quality (lines 6-8): based on work-
ers’ answers and each task’s truth (derived from step 1), it esti-
mates each worker’s quality. In this step, existing works model
each worker w’s quality qw differently. For example, [16, 26, 33,
5] model qw as a single value, while [15, 41, 33, 27, 46] model qw

as a matrix. We discuss worker’s models in Section 4.2.
Convergence (lines 9-11): the two iterations will run until conver-
gence. Typically to identify convergence, existing works will check
whether the change of two sets of parameters (i.e., workers’ quali-
ties and tasks’ truth) is below some defined threshold (e.g., 10−3).
Finally the inferred truth and workers’ qualities are returned.
Running Example. Let us show how the method PM [31, 5] works
for Table 2. PM models each worker w as a single value qw ∈
[0,+∞) and a higher value implies a higher quality. Initially, each
worker w ∈ W is assigned with the same quality qw = 1. Then
the two steps devised in PM are as follows:
Step 1 (line 5): v∗i = argmaxv

∑
w∈Wi q

w · 1{v=vw
i };

Step 2 (line 8): qw = − log
( ∑

ti∈Tw 1{v∗
i
6=vw

i
}

maxw∈W{
∑

ti∈Tw 1{v∗
i
6=vw

i
} }

)
.

The indicator function 1{·} returns 1 if the statement is true; 0,
otherwise. For example, 1{5=3} = 0 and 1{5=5} = 1. For the 1st
iteration, in step 1, it computes each task’s truth from workers’ an-
swers by considering which choice receives the highest aggregated
workers’ qualities. Intuitively, the answer given by many high qual-
ity workers are likely to be the truth. For example, for task t2, as
it receives one T and two F’s from workers and each worker is of
the same quality, then v∗2 = F. Similarly we get v∗1 = T and v∗i = F
for 2 ≤ i ≤ 6. In step 2, based on the computed truth in step
1, it gives a high (low) quality to a worker if the worker makes
few (a lot of) mistakes. For example, as the number of mistakes
(i.e.,

∑
ti∈T w 1{v∗i 6=vw

i }) for workers w1, w2, w3 are 3, 2, 1, re-
spectively, thus the computed qualities are qw1 = − log(3/3) = 0,
qw2 = − log(2/3) = 0.41 and qw3 = − log(1/3) = 1.10. Follow-
ing these two steps, the process will then iterate until convergence.
In the converged results, the truth are v∗1 = v∗6 = T, and v∗i = F

Algorithm 1: Solution Framework
Input: workers’ answers V
Output: inferred truth v∗i (1 ≤ i ≤ n), worker quality qw (w ∈ W)

1 Initialize all workers’ qualities (qw for w ∈ W);
2 while true do
3 // Step 1: Inferring the Truth
4 for 1 ≤ i ≤ n do
5 Inferring the truth v∗i based on V and {qw | w ∈ W};
6 // Step 2: Estimating Worker Quality
7 for w ∈ W do
8 Estimating the quality qw based on V and {v∗i | 1 ≤ i ≤ n};
9 // Check for Convergence

10 if Converged then
11 break;

12 return v∗i for 1 ≤ i ≤ n and qw for w ∈ W;

(2 ≤ i ≤ 5); the qualities are qw1 = 4.9 × 10−15, qw2 = 0.29 and
qw3 = 16.09. We can observe that PM can derive the truth correctly,
and w3 has a higher quality compared with w1 and w2.

4. IMPORTANT FACTORS
In this section, we categorize existing works [16, 15, 53, 51, 41,

33, 26, 61, 62, 19, 35, 30, 46, 27, 5, 34] following two factors:
Task Modeling (Section 4.1): how existing works model a task
(e.g., task’s difficulty, latent topics).
Worker Modeling (Section 4.2): how existing works model a worker’s
quality (e.g., worker probability, diverse skills).

We summarize how existing works [16, 15, 53, 51, 41, 33, 26,
61, 62, 19, 35, 30, 46, 27, 5, 34] can be categorized based on the
above factors in Table 4. Next we analyze each factor, respectively.

4.1 Task Modeling
4.1.1 Task Difficulty

Different from most existing works which assume that a worker
has the same quality for answering different tasks, some recent
works [53, 35] model the difficulty in each task. They assume that
each task has its difficulty level, and the more difficult a task is,
the harder a worker can correctly answer the task. For example,
in [53], it models the probability that worker w correctly answers
task ti as follows: Pr(vwi = v∗i | di, qw) = 1/(1 + e−di·qw ),
where di ∈ (0,+∞) represents the difficulty for task ti, and the
higher di is, the easier task ti is. Intuitively, for a fixed worker
quality qw > 0, an easier task (high value of di) leads to a higher
probability that the worker correctly answers the task.

4.1.2 Latent Topics
Different from modeling each task as a value (e.g., difficulty),

some recent works [19, 35, 57, 51] model each task as a vector
with K values. The basic idea is to exploit the diverse topics in a
task, where the topic number (i.e., K) is pre-defined. For example,
existing studies [19, 35] make use of the text description in each
task and adopt topic model techniques [6, 56] to generate a vector
of sizeK for the task; while Multi [51] learns aK-size vector with-
out referring to external information (e.g., text descriptions). Based
on the task models, a worker is probable to answer a task correctly
if the worker has high qualities on the task’s related topics.

4.2 Worker Modeling
4.2.1 Worker Probability

Worker probability uses a single real number (between 0 and 1)
to model a worker w’s quality qw ∈ [0, 1], which represents the
ability that workerw correctly answers a task. The higher qw is, the
worker w has higher ability to correctly answer tasks. The model
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Table 4: Comparisons of Different Methods that Address Truth Inference Problem in Crowdsourcing.
Method Task Types Task Modeling Worker Modeling Techniques

MV Decision-Making, Single-Choice No Model No Model Direct Computation
ZC [16] Decision-Making, Single-Choice No Model Worker Probability Probabilistic Graphical Model

GLAD [53] Decision-Making, Single-Choice Task Difficulty Worker Probability Probabilistic Graphical Model
D&S [15] Decision-Making, Single-Choice No Model Confusion Matrix Probabilistic Graphical Model

Minimax [61] Decision-Making, Single-Choice No Model Diverse Skills Optimization
BCC [27] Decision-Making, Single-Choice No Model Confusion Matrix Probabilistic Graphical Model

CBCC [46] Decision-Making, Single-Choice No Model Confusion Matrix Probabilistic Graphical Model
LFC [41] Decision-Making, Single-Choice No Model Confusion Matrix Probabilistic Graphical Model

CATD [30] Decision-Making, Single-Choice, Numeric No Model Worker Probability, Confidence Optimization
PM [5, 31] Decision-Making, Single-Choice, Numeric No Model Worker Probability Optimization
Multi [51] Decision-Making Latent Topics Diverse Skills, Worker Bias, Worker Variance Probabilistic Graphical Model
KOS [26] Decision-Making No Model Worker Probability Probabilistic Graphical Model
VI-BP [33] Decision-Making No Model Confusion Matrix Probabilistic Graphical Model
VI-MF [33] Decision-Making No Model Confusion Matrix Probabilistic Graphical Model
LFC N [41] Numeric No Model Worker Variance Probabilistic Graphical Model

Mean Numeric No Model No Model Direct Computation
Median Numeric No Model No Model Direct Computation

has been widely used in existing works [16, 26, 33, 5]. Some recent
works [53, 31] extend the worker probability to model a worker’s
quality in a wider range, e.g., qw ∈ (−∞,+∞), and a higher qw

means the worker w’s higher quality in answering tasks.

4.2.2 Confusion Matrix
Confusion matrix [15, 41, 33, 27, 46] is used to model a worker’s

quality for answering single-choice tasks. Suppose each task in T
has ` fixed choices, then the confusion matrix qw is an `×`matrix,
where the j-th (1 ≤ j ≤ `) row, i.e., qwj,· = [ qwj,1, q

w
j,2, . . . , q

w
j,` ],

represents the probability distribution of worker w’s possible an-
swers for a task if the truth of the task is the j-th choice. Each
element qwj,k (1 ≤ j ≤ `, 1 ≤ k ≤ `) means that “given the truth of
a task is the j-th choice, the probability that worker w selects the
k-th choice”, i.e., qwj,k = Pr(vwi = k | v∗i = j) for any ti ∈ T .
For example, decision-making tasks ask workers to select ‘T’ (1st
choice) or ‘F’ (2nd choice) for each claim (` = 2), then an exam-
ple confusion matrix for w is qw =

[
0.8 0.2
0.3 0.7

]
, where qw1,2 = 0.2

means that if the truth of a task is ‘T’, the probability that the worker
answers the task as ‘F’ is 0.2.

4.2.3 Worker Bias and Worker Variance
Worker bias and variance [51, 41] are proposed to handle nu-

meric tasks, where worker bias captures the effect that a worker
may underestimate (or overestimate) the truth of a task, and worker
variance captures the variation of errors around the bias. For ex-
ample, given a set of photos with humans, each numeric task asks
workers to estimate the height of the human on it. Suppose a worker
w is modeled with bias τw and variance σw, then the answer vwi
given by worker w is modeled to draw from the Gaussian distri-
bution: vwi ∼ N (v∗i + τw, σw), that is, (1) a worker with bias
τw � 0 (τw � 0) will overestimate (underestimate) the height,
while τw → 0 leads to more accurate estimation; (2) a worker with
variance σw � 0 means a large variation of error, while σw → 0
leads to a small variation of error.

4.2.4 Confidence
Existing works [30, 25] observe that if a worker answers plenty

of tasks, then the estimated quality for the worker is confident; oth-
erwise, if a worker answers only a few tasks, then the estimated
quality is not confident. Inspired by this observation, [35] assigns
higher qualities to the workers who answer plenty of tasks, than
the workers who answer a few tasks. To be specific, for a worker
w, it uses the Chi-Square distribution [3] with 95% confidence in-
terval, i.e., X 2

(0.975,|T w|) as a coefficient to scale up the worker’s
quality, where |T w| is the number of tasks that worker w has an-

swered. X 2
(0.975,|T w|) increases with |T w|, i.e., the more tasks w

has answered, the higher worker w’s quality is scaled to.
4.2.5 Diverse Skills

A worker may have various levels of expertise for different top-
ics. For example, a sports fan that rarely pays attention to enter-
tainment may answer tasks related to sports more correctly than
tasks related to entertainment. Different from most of the above
models which have an assumption that a worker has the same qual-
ity to answer different tasks, existing works [19, 35, 61, 51, 57,
59] model the diverse skills in a worker and capture a worker’s di-
verse qualities for different tasks. The basic ideas of [19, 61] are
that they model a worker w’s quality as a vector of size n, i.e.,
qw = [ qw1 , q

w
2 , . . . , q

w
n ], where qwi indicates worker w’s quality

for task ti. Different from [19, 61], some recent works [35, 51,
57, 59] model a worker’s quality for different latent topics, i.e.,
qw = [ qw1 , q

w
2 , . . . , q

w
K ], where the number K is pre-defined, in-

dicating the number of latent topics. They [35, 51, 57, 59] assume
that each task is related to one or more topics in these K latent top-
ics, and a worker is highly probable to correctly answer a task if the
worker has a high quality in the task’s related topics.

5. TRUTH INFERENCE ALGORITHMS
Existing works [61, 19, 30, 5, 34, 16, 15, 53, 51, 41, 26, 33, 35,

27, 46] usually adopt the framework in Algorithm 1. Based on the
used techniques, they can be classified into the following three cat-
egories: direct computation [20, 39], optimization methods [61, 19,
30, 5] and probabilistic graphical model methods [34, 16, 15, 53,
51, 41, 26, 33, 35, 27, 46]. Next we talk about them, respectively.
5.1 Direct Computation

Some baseline methods directly estimate v∗i (1 ≤ i ≤ n) based
on V , without modeling each worker or task. For decision-making
and single-label tasks, Majority Voting (MV) regards the truth of
each task as the answer given by most workers; while for numeric
tasks, Mean and Median are two baseline methods that regard the
mean and median of workers’ answers as the truth for each task.
5.2 Optimization

The basic idea of optimization methods is to set a self-defined
optimization function that captures the relations between workers’
qualities and tasks’ truth, and then derive an iterative method to
compute these two sets of parameters collectively. The differences
among existing works [5, 31, 30, 61] are that they model workers’
qualities differently and apply different optimization functions to
capture the relations between the two sets of parameters.
(1) Worker Probability. PM [5, 31] models each worker’s quality
as a single value, and the optimization function is defined as:
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min
{qw},{v∗i }

f({qw}, {v∗i }) =
∑

w∈W
qw ·

∑
ti∈T w

d(vwi , v
∗
i ),

where {qw} represents the set of all workers’ qualities, and simi-
larly {v∗i } represents the set of all truth. It models a worker w’s
quality as qw ≥ 0, and d(vwi , v

∗
i ) ≥ 0 defines the distance be-

tween worker’s answer vwi and the truth v∗i : the similar vwi is to
v∗i , the lower the value of d(vwi , v

∗
i ) is. Intuitively, to minimize

f({qw}, {v∗i }), a worker w’s high quality qw corresponds to a low
value in d(v∗i , v

w
i ), i.e., worker w’s answer should be close to the

truth. By capturing the intuitions, similar to Algorithm 1, PM [5,
31] develops an iterative approach, and in each iteration, it adopts
the two steps as illustrated in Section 3.
(2) Worker Probability and Confidence. Different from above,
CATD [30] considers both worker probability and confidence in
modeling a worker’s quality. As discussed in Section 4.2.4, each
worker w’s quality is scaled up to a coefficient of X 2

(0.975,|T w|),
i.e., the more tasks w has answered, the higher worker w’s quality
is scaled to. It develops an objective function, with the intuitions
that a worker w who gives answers close to the truth and answers
a plenty of tasks should have a high quality qw. Similarly it adopts
an iterative approach, and iterates the two steps until convergence.
(3) Diverse Skills. Minimax [61] leverages the idea of minimax en-
tropy [63]. To be specific, it models the diverse skills of a worker
w across different tasks and focuses on single-label tasks (with `
choices). It assumes that for a task ti, the answers given by w are
generated by a probability distribution πw

i,· = [ πw
i,1, π

w
i,2, . . . , π

w
i,` ],

where each πw
i,j is the probability that worker w answers task ti

with the j-th choice. Following this, an objective function is de-
fined by considering two constraints for tasks and workers: for a
task ti, the number of answers collected for a choice equals the sum
of corresponding generated probabilities; for a workerw, among all
tasks answered by w, given the truth is the j-th choice, the number
of answers collected for the k-th choice equals the sum of corre-
sponding generated probabilities. Finally [61] devises an iterative
approach to infer the two sets of parameters {v∗i } and {πw}.

5.3 Probabilistic Graphical Model (PGM)
A probabilistic graphical model (PGM) [28] is a graph which ex-

presses the conditional dependency structure (represented by edges)
between random variables (represented by nodes). Figure 1 shows
the general PGM adopted in existing works. Each node represents
a variable. There are two plates, respectively for workers and tasks,
where each one represents the repeating variables. For example, the
plate for workers represents |W| repeating variables, where each
variable corresponds to a worker w ∈ W . For the variables, α, β,
and vwi are known (α and β are priors for qw and v∗i , which can be
set based on the prior knowledge); qw and v∗i are latent or unknown
variables, which are two desired variables to compute. The directed
edges model the conditional dependence between a child node and
its associated parent node(s) in the sense that the child node fol-
lows a probabilistic distribution conditioned on the values taken by
the parent node(s). For example, three conditional distributions in
Figure 1 are Pr(qw | α), Pr(v∗i | β) and Pr(vwi | qw, v∗i ).

Next we illustrate the details (optimization goal and the two steps)
of each method using PGM. In general the methods differ in the
used worker model. It can be classified into three categories: worker
probability [16, 53, 26, 33], confusion matrix [15, 41, 27, 46] and
diverse skills [19, 35, 51]. For each category, we first introduce its
basic method, e.g., ZC [16], and then summarize how other meth-
ods [53, 26, 33] extend the basic method ZC [16].
(1) Worker Probability: ZC [16] and its extensions [53, 26, 33].

workers

tasks

v
i

w

α βq
w

v
i

*

|W |

n

Figure 1: A General PGM (Probabilistic Graphical Model).
ZC [16] adopts a PGM similar to Figure 1, with the simplifica-

tion that it does not consider the priors (i.e., α, β). Suppose all
tasks are decision-making tasks (v∗i ∈ {T, F}) and each worker’s
quality is modeled as worker probability qw ∈ [0, 1]. Then

Pr(vwi | qw, v∗i ) = (qw)
1{vw

i
=v∗

i
} · (1− qw)

1{vw
i
6=v∗

i
} ,

which means that the probability worker w correctly (incorrectly)
answers a task is qw (1− qw). For decision-making tasks, ZC [16]
tries to maximize the probability of the occurrence of workers’ an-
swers, called likelihood, i.e., max{qw} Pr(V | {qw}), which re-
gards {v∗i } as latent variables:

Pr(V | {qw}) =
1

2
·
∏n

i=1

∑
z∈{T, F}

∏
w∈Wi

Pr(v
w
i | q

w
, v
∗
i = z). (1)

However, it is hard to optimize due to the non-convexity. Thus
ZC [16] applies the EM (Expectation-Maximization) framework [17]
and iteratively updates qw and v∗i to approximate its optimal value.
Note ZC [16] develops a system to address entity linking for online
pages. In this paper we focus on the part of leveraging the crowd’s
answers to infer the truth (i.e., Section 4.3 in [16]), and we omit
other parts (e.g., constraints on its probabilistic model).

There are several extensions of ZC, e.g., GLAD [53], KOS [26],
VI-BP [33], VI-MF [33], and they focus on different perspectives:
Task Model. GLAD [53] extends ZC [16] in task model. Rather
than assuming that each task is the same, it [53] models each task
ti’s difficulty di ∈ (0,+∞) (the higher, the easier). Then it models
the worker’s answer as Pr(vwi = v∗i | di, qw) = 1/(1 + e−di·qw ),
and integrates it into Equation 1 to approximate the optimal value
using Gradient Descent [28] (an iterative method).
Optimization Function. KOS [26], VI-BP [33], and VI-MF [33]
extend ZC [16] in an optimization goal. Recall that ZC tries to
compute the optimal {qw} that maximizes Pr(V | {qw}), which is
the Point Estimate. Instead, [26, 33] leverage the Bayesian Estima-
tors to calculate the integral of all possible qw, and the target is to
estimate the truth v∗i = argmaxz∈{T, F} Pr(v∗i = z | V ), where

Pr(v∗i = z | V ) =

∫
{qw}

Pr(v∗i = z, {qw} | V ) d{qw}. (2)

It is hard to directly compute Equation 2, and existing works [26,
33] seek for Variational Inference (VI) techniques [49] to approx-
imate the value: KOS [26] first leverages Belief Propagation (one
typical VI technique) to iteratively approximate the value in Equa-
tion 2, then [33] proposes a more general model based on KOS,
called VI-BP. Moreover, it [33] also applies Mean Field (anther VI
technique) in VI-MF to iteratively approach Equation 2.
(2) Confusion Matrix: D&S [15] and its extensions [41, 27, 46].

D&S [15] focuses on single-label tasks (with fixed ` choices)
and models each worker as a confusion matrix qw with size ` × `
(Section 4.2.2). The worker w’s answer follows the probability
Pr(vwi | qw, v∗i ) = qwv∗i ,vw

i
. Similar to Equation 1, D&S [15] tries

to optimize the function argmax{qw} Pr(V | {qw}), where

Pr(V | {qw}) =
∏n

i=1

∑
1≤z≤`

Pr(v∗i = z) ·
∏

w∈Wi
qwz,vw

i
,

and it applies the EM framework [17] to devise two iterative steps.
The above method D&S [15], which models a worker as a con-

fusion matrix, is also a widely used model. There are some exten-
sions, e.g., LFC [41], LFC N [41], BCC [27] and CBCC [46].
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Table 5: The Statistics of Each Dataset.
Dataset #tasks (n) #truth |V | |V |/n |W|

Datasets for Decision-Making Tasks
D Product [50] 8,315 8,315 24,945 3 176
D PosSent 1,000 1,000 20,000 20 85

Datasets for Single-Label Tasks
S Rel [9] 20,232 4,460 98,453 4.9 766

S Adult [4] 11,040 1,517 92,721 8.4 825
Datasets for Numeric Tasks

N Emotion [44] 700 700 7,000 10 38

Priors. LFC [41] extends D&S [15] to incorporate the priors into
worker’s model, by assuming that the priors, denoted as αw

j,k for
1 ≤ j, k ≤ ` are known in advance, and the worker’s quality qwj,k
is generated following Beta(αw

j,k,
∑`

k=1 α
w
j,k) distribution.

Task Type. LFC N [41] also handles numeric tasks. Different
from decision-making and single-choice tasks, it assumes that worker
w’s answer follows vwi ∼ N (v∗i , σ

2
w), where σw is the variance,

and a small σw implies that vwi is close to truth v∗i .
Optimization Function. BCC [27] has a different optimization
goal compared with D&S [15] and it aims at maximizing the pos-
terior joint probability. For example, in Figure 1, it optimizes the
posterior joint probability of all unknown variables, i.e.,∏n

i=1
Pr(v∗i | β)

∏
w∈W

Pr(qw | α)
∏n

i=1

∏
w∈Wi

Pr(vwi | qw, v∗i ).

To optimize the above formula, the technique of Gibbs Sampling [28]
is used to iteratively infer the two sets of parameters {qw}, {v∗i }
until convergence, where qw is modeled as a confusion matrix.
Then CBCC [46] extends BCC [27] to support community. The
basic idea is that each worker belongs to one community, where
each community has a representative confusion matrix, and work-
ers in the same community share very similar confusion matrices.
(3) Diverse Skills: Multi [51] and others [19, 35, 59].

Recently, there are some works (e.g., [51, 19, 35, 59]) that model
a worker’s diverse skills. Basically, they model a worker w’s qual-
ity qw as a vector of size K (Section 4.2.5), which captures a
worker’s diverse skills over K latent topics. For example, [35]
combines the process of topic model (i.e., TwitterLDA [56]) and
truth inference together, and [59] leverages entity linking and knowl-
edge base to exploit a worker’s diverse skills.

6. EXPERIMENTS
In this section, we evaluate 17 existing methods (Table 4) on real

datasets. We first introduce the experimental setup (Section 6.1),
and then analyze the quality of collected crowdsourced data (Sec-
tion 6.2). Finally we compare with existing methods (Section 6.3).
We have made all our used datasets and codes available [40] for
reproducibility and future research. We implement the experiments
in Python on a server with CPU 2.40GHz and 60GB memory.
6.1 Experimental Setup
6.1.1 Datasets

There are many public crowdsourcing datasets [13]. Among
them, we select 5 representative datasets based on three criteria:
(1) the dataset is large in task size; (2) each task received mul-
tiple answers; (3) all datasets cover different task types. In Ta-
ble 5, for each selected dataset, we list four statistics: the number
of tasks, or #tasks (n), #collected answers (|V |), the average num-
ber of answers for each task (|V |/n), #truth (some large datasets
only provide a subset as ground truth) and #workers (|W|). For ex-
ample, for dataset D Product, it contains 8,315 tasks, with 24,945
answers collected from 176 workers, and each task is answered
with 3 times on average. Next, we introduce the details of each
dataset (with different task types). We manually collect answers
for D PosSent [45] from AMT [2]; while for other datasets, we
use the public datasets collected by other researchers [50, 9, 4, 44].

Decision-Making Tasks (start with prefix ‘D ’):
• D Product [50]. Each task in the dataset contains two products
(with descriptions) and two choices (T, F), and it asks workers to
identify whether the claim “the two products are the same” is true
(‘T’) or false (‘F’). An example task is “Sony Camera Carrying-
LCSMX100 and Sony LCS-MX100 Camcorder are the same?”. There
are 8135 tasks, and 1101 (7034) tasks’ truth are T (F).
• D PosSent. Each task in the dataset contains a tweet related to
a company (e.g., “The recent products of Apple is amazing!”), and
asks workers to identify whether the tweet has positive sentiment
to that company. The workers give ‘yes’ or ‘no’ to each task. Based
on the dataset [45], we create 1000 tasks. Among them, 528 (472)
tasks’ truth are yes (no). In AMT [2], we batch 20 tasks in a Human
Intelligence Task (HIT) and assign each HIT to 20 workers. We
pay each worker $0.03 upon answering a HIT. We manually cre-
ate qualification test by selecting 20 tasks, and each worker should
answer the qualification test before she can answer our tasks.
Single-Choice Tasks (start with prefix ‘S ’):
• S Rel [9]. Each task contains a topic and a document, and it asks
workers to choose the relevance of the topic w.r.t. the document
by selecting one out of four choices: ‘highly relevant’, ‘relevant’,
‘non-relevant’, and ‘broken link’.
• S Adult [4]. Each task contains a website, and it asks workers to
identify the adult level of the website by selecting one out of four
choices: ‘G’ (General Audience), ‘PG’ (Parental Guidance), ‘R’
(Restricted), and ‘X’ (Porn).
Numeric Tasks (start with prefix ‘N ’):
• N Emotion [44]. Each task in the dataset contains a text and a
range [−100, 100], and it asks each worker to select a score in the
range, indicating the degree of emotion (e.g., anger) of the text. A
higher score means a higher degree for the emotion.

6.1.2 Metrics
We use different metrics for different task types.

Decision-Making Tasks. We use Accuracy as the metric, which is
defined as the fraction of tasks whose truth are inferred correctly.
Given a method, let v̂∗i denote the inferred truth of task ti, then

Accuracy =
∑n

i=1
1{v̂∗i =v∗i }/n. (3)

However, for applications such as entity resolution (e.g., dataset
D Product), where the number of F is much larger than the num-
ber of T as truth (the proportion of tasks with T and F as truth is
0.12:0.88 in D Product). In this case, even a naive method that
returns all tasks as F achieves very high Accuracy (88%), which is
not expected, as we care more for the same entities (i.e., choice T)
in entity resolution. Thus a typical metric F1-score is often used,
which is defined as the harmonic mean of Precision and Recall:

F1-score =
2

1
Precision + 1

Recall

=
2 ·

∑n
i=1 1{v∗i =T} · 1{v̂∗i =T}∑n

i=1(1{v∗i =T} + 1{v̂∗i =T})
. (4)

Single-Choice Tasks. We use the metric Accuracy (Equation 3).
Numeric Tasks. We use two metrics, MAE (Mean Absolute Error)
and RMSE (Root Mean Square Error), defined as below:

MAE =

∑n
i=1 |v∗i − v̂∗i |

n
, RMSE =

√∑n
i=1(v

∗
i − v̂∗i )2

n
, (5)

where RMSE gives a higher penalty for large errors.
Note that for the metrics Accuracy and F1-score, they are in

[0, 1] and the higher, the better; however, for MAE and RMSE (de-
fined on errors), they are in [0,+∞] and the lower, the better.

6.2 Crowdsourced Data Quality
In this section we first ask the following three questions related

to the quality of crowdsourced data, and then answer them.
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Figure 2: The Statistics of Worker Redundancy for Each Dataset (Section 6.2.2).
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Figure 3: The Statistics of Worker Quality for Each Dataset (Section 6.2.3).

1. Are the crowdsourced data consistent? In other words, are the
answers from different workers the same for a task? (Section 6.2.1)
2. Are there a lot of redundant workers? In other words, does
each worker answer plenty of tasks? (Section 6.2.2)
3. Do workers provide high-quality data? In other words, are
each worker’s answers consistent with the truth? (Section 6.2.3)
6.2.1 Data Consistency

Decision-Making & Single-Label Tasks. Note that each task con-
tains a fixed number (denoted as `) of choices. For a task ti, let
ni,j denote the number of answers given to the j-th choice, e.g.,
in Table 2, for t2, n2,1 = 1 and n2,2 = 2. In order to capture
how concentrated the workers’ answers are, we first compute the
entropy [42] over the distribution of each task’s collected answers,
and then define data consistency (C) as the average entropy, i.e.,
C = − 1

n
·
∑n

i=1

∑`
j=1

ni,j∑`
j=1 ni,j

· log`
ni,j∑`

j=1 ni,j
. Note that we

use “log`” other than “ln” to ensure that the value C ∈ [0, 1], and
the lower C is, the more consistent workers’ answers are.

Based on V , we compute C for each dataset. The computed C of
the four datasets are 0.38, 0.85, 0.82, and 0.39, respectively. It can
be seen that the crowdsourced data is not consistent. To be specific,
for decision-making and single-label datasets, C ≥ 0.38, and there
exists highly inconsistent dataset D PosSent with C = 0.85.
Numeric Tasks. As the answers obtained for each task has inherent
orderings, in order to capture the consistency of workers’ answers,
for a task ti, we first compute the median vi (a robust metric in
statistics and it is not sensitive to outliers) over all its collected an-
swers; then the consistency (C) is defined as the average deviation

compared with the median, i.e., C = 1
n
·

n∑
i=1

√∑
w∈Wi (vw

i −vi)2

|Wi| ,

where Wi is the set of workers that have answered ti. We have
C ∈ [0,+∞], and a lower C leads to more consistent answers.

For numeric dataset N Emotion, the computed C is 20.44.
Summary. The crowdsourced data is inconsistent, which motivates
to develop methods that can solve truth inference in crowdsourcing.
6.2.2 Worker Redundancy

For each worker, we define her redundancy as the number of
tasks answered by the worker. We record the redundancy of each
worker in each dataset, and then draw the histograms of worker
redundancies in Figure 2. Specifically, in each dataset, we vary the
number of tasks (k), and record how many workers that answer k
tasks. We can see in Figure 2 that the worker redundancy conforms
to the long-tail phenomenon, i.e., most workers answer a few tasks
and only a few workers answer plenty of tasks.
Summary. The worker redundancy of crowdsourced data in real
crowdsourcing platforms conforms to long-tail phenomenon.

6.2.3 Worker Quality
In Figure 3, for each dataset, we show each worker’s quality,

computed based on comparing worker’s answers with tasks’ truth.
Decision-Making & Single-Label Tasks. We compute each worker
w’s Accuracy, i.e., the proportion of tasks that are correctly an-

swered by w, i.e.,
∑

ti∈Tw 1{vw
i

=v∗
i
}

|T w| ∈ [0, 1] and a higher value
means a higher quality. For each dataset, we compute the corre-
sponding Accuracy for each worker and draw the histograms of
each worker. It can be seen from Figures 3(a)-(d) that histograms
of workers’ Accuracy are in different shapes for different datasets.
To be specific, workers for D Product and D PosSent are of high
Accuracy, while workers have mediate Accuracy for S Adult, and
low Accuracy for S Rel. The average Accuracy for all workers in
each dataset are 0.79, 0.79, 0.53 and 0.65, respectively.
Numeric Tasks. It can be seen from Figure 3(e) that workers’
RMSE vary in [20, 45], and the average RMSE is 28.9.
Summary. The workers’ qualities vary in the same dataset, which
makes it necessary to identify the trustworthy workers.
6.3 Crowdsourced Truth Inference

In this section we compare the performance of existing meth-
ods [34, 16, 15, 53, 51, 41, 26, 33, 61, 30, 27, 46, 31, 5]. Our
comparisons are performed based on the following perspectives:
1. What is the performance of different methods? In other
words, if we only know the workers’ answers (i.e., V ), which method
performs the best? Furthermore, for a method, how does the truth
inference quality change with more workers’ answers? (Section 6.3.1)
2. What is the effect of qualification test? In other words, if we
assume a worker has performed some golden tasks before answer-
ing real tasks, and initialize the worker’s quality (line 1 in Algo-
rithm 1) based on the worker’s answering performance for golden
tasks, will this increase the quality of each method? (Section 6.3.2)
3. What is the effect of hidden test? In other words, if we mix
a set of golden tasks in real tasks, then how much gain in truth
inference can be benefited for each method? (Section 6.3.3)
4. What are the effects of different task types, task models,
worker models, and inference techniques? In other words, what
factors are beneficial to inferring the truth? (Section 6.3.4)

6.3.1 Varying Data Redundancy
For data redundancy, we define it as the number of answers col-

lected for each task. In our 5 used datasets (Table 5), the data re-
dundancy for each dataset is |V |/n. In Figures 4, 5, and 6, we ob-
serve the quality of each method in each dataset with varying data
redundancy. For example, in Figure 4(a), on dataset D PosSent

(with |V |/n = 3), we compare with 14 methods that can be used
in decision-making tasks (Table 4), i.e., MV, ZC, GLAD, D&S,
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Figure 4: Quality Comparisons on Decision-Making Tasks (Section 6.3.1).
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Figure 5: Quality Comparisons on Single-Label Tasks (Section 6.3.1).
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Figure 6: Quality Comparisons on Numeric Tasks (Section 6.3.1).

Table 6: The Quality and Running Time of Different Methods with Complete Data (Section 6.3.1).
Method D Product D PosSent S Rel S Adult N Emotion

Accuracy F1-score Time Accuracy F1-score Time Accuracy Time Accuracy Time MAE RMSE Time
MV 89.66% 59.05% 0.13s 93.31% 92.85% 0.08s 54.19% 0.49s 36.04% 0.40s × × ×

ZC [16] 92.80% 63.59% 1.04s 95.10% 94.60% 0.55s 48.21% 7.39s 35.34% 6.42s × × ×
GLAD [53] 92.20% 60.17% 907.11s 95.20% 94.71% 407.66s 53.59% 5850.39s 36.47% 4194.50s × × ×
D&S [15] 93.66% 71.59% 1.46s 96.00% 95.66% 0.80s 61.30% 10.67s 36.05% 9.18s × × ×

Minimax [61] 84.09% 55.26% 272.05s 95.80% 95.43% 35.71s 57.59% 1728.09s 36.03% 1223.75s × × ×
BCC [27] 93.78% 70.10% 9.82s 96.00% 95.66% 6.06s 60.72% 153.50s 36.34% 137.92s × × ×

CBCC [46] 93.72% 70.87% 5.53s 96.00% 95.66% 4.12s 56.05% 44.69s 36.28% 42.52s × × ×
LFC [41] 93.73% 71.48% 1.42s 96.00% 95.66% 0.83s 61.64% 10.75s 36.29% 9.26s × × ×

CATD [30] 92.66% 65.92% 2.97s 95.50% 95.07% 1.32s 45.32% 16.13s 36.23% 12.96s 16.36 25.94 2.15s
PM [5, 31] 89.81% 59.34% 0.56s 95.04% 94.53% 0.33s 59.02% 2.60s 36.50% 2.09s 13.91 21.96 0.36s
Multi [51] 88.67% 58.32% 15.48s 95.70% 95.44% 4.98s × × × × × × ×
KOS [26] 89.55% 50.31% 24.06s 93.80% 93.06% 10.14s × × × × × × ×
VI-BP [33] 64.64% 37.43% 306.23s 96.00% 95.66% 58.52s × × × × × × ×
VI-MF [33] 83.91% 55.31% 38.96s 96.00% 95.66% 6.71s × × × × × × ×
LFC N [41] × × × × × × × × × × 12.20 18.97 0.23s

Mean × × × × × × × × × × 12.02 17.84 0.09s
Median × × × × × × × × × × 13.53 21.26 0.11s

Minimax, BCC, CBCC, LFC, CATD, PM, Multi, KOS, VI-BP
and VI-MF. We vary the data redundancy r ∈ [1, 3], where for
each specific r, we randomly select r out of 3 answers collected for
each task, and construct a dataset with the selected answers (i.e.,
a dataset with the number of answers r · n for all n tasks). Then
we run each method on the constructed dataset and record the Ac-
curacy based on comparing each method’s inferred truth with the
ground truth. We repeat each experiment for 30 times and the av-
erage quality is reported. As discussed in Section 6.1.2, we use
metrics Accuracy, F1-score on decision-making tasks (D Product,
D PosSent), metric Accuracy on single-label tasks (S Rel, S Adult)
and metrics MAE, RMSE on numeric tasks (N Emotion). To have a
clear comparison, we record the quality and efficiency in the com-
plete dataset (i.e., with redundancy |V |/n) for all methods in Ta-
ble 6. Based on the results in Figures 4-6, and Table 6, we analyze
the quality and efficiency of different methods.
(1) The Quality of Different Methods in Different Datasets.
Decision-Making Tasks. For dataset D Product, i.e., Figures 4(a),
(b), we can observe that (1) as the data redundancy r is varied
in [1, 3], the quality increases with r for different methods. (2)
In Table 6, it can be observed that for Accuracy, the quality does
not make significant differences between methods (most methods’
quality are around 90%); while for F1-score, it makes differences,

and only 4 methods’ quality (D&S, BCC, CBCC, LFC) are above
70%, leading more than 4% compared with other methods. We
have analyzed in Section 6.1.2 that F1-score is more meaningful to
D Product compared with Accuracy, as we are more interested in
finding out the “same” products. (3) In terms of task models, incor-
porating task difficulty (GLAD) or latent topics (Minimax) do not
bring significant benefits in quality. (4) In terms of worker models,
we can observe that the four methods with confusion matrices (i.e.,
D&S, BCC, CBCC, LFC) perform significantly better than other
methods with worker probability. The reason is that confusion ma-
trix models each worker as a 2 × 2 matrix qw in decision-making
tasks, which captures both qw1,1 = Pr(vwi = T | v∗i = T), i.e.,
the probability that a worker w answers correctly if the truth is T
and qw2,2 = Pr(vwi = F | v∗i = F), i.e., the probability that w
answers correctly if the truth is F. However, the worker probabil-
ity models a worker as a single value, which substantially assumes
that qw1,1 = qw2,2 in confusion matrix. This cannot fully capture
a worker’s answering performance. Note that in D Product, typ-
ically workers have high values for qw2,2 and low values for qw1,1.
Since for a pair of different products, if one difference is spotted be-
tween them, then it will be answered correctly, which is easy (qw2,2
is high); while for a pair of same products, it will be answered cor-
rectly only if all the features in the products are spotted the same,
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which is hard (qw1,1 is low). Although VI-BP and VI-MF also use
confusion matrix, they perform bad, probably because they lever-
age Variational Inference to infer the parameters, which may de-
rive workers’ qualities wrongly. For other worker models such as
worker bias (Multi), worker variance (Multi, LFC N), diverse skills
(Multi, Minimax) and confidence (CATD), they do not outperform
the confusion matrix methods in quality, probably due to the fact
that the methods cannot infer those parameters correctly. (5) For
BCC, the F1-score is 0 as r = 1, since BCC returns all tasks as F.
which gives no information to T. However, in Table 6 (with com-
pleted data), the method BCC performs the best in Accuracy, while
the method D&S performs the best in F1-score.

For dataset D PosSent, i.e., Figures 4(c),(d), it can be observed
that (1) as r is varied in [1, 10], the quality increases significantly
with r for different methods (improving around 20%), and then
have a minor increase ever since (r ∈ [11, 20]). (2) Similar to
D Product, the six methods with confusion matrix as worker mod-
els (i.e., D&S, BCC, CBCC, LFC, VI-BP and VI-MF) perform
equally the best, since confusion matrix captures more information
than worker probability. However, other methods with more com-
plicated task models and worker models do not express their bene-
fits in quality. (3) Accuracy and F1-score in D PosSent do not have
significant differences, since unlike D Product, the #tasks with T
and F as truth in D PosSent (i.e., 528 and 472) is balanced.
Single-Label Tasks. In Figure 5, on datasets S Rel and S Adult,
we compare with 10 methods that specifically address single-label
tasks (Table 4), i.e., MV, ZC, GLAD, D&S, Minimax, BCC, CBCC,
LFC, CATD, and PM. We have the following observations: (1) on
S Rel, in general, the quality of methods increase with r; while on
S Adult, the quality of methods increase with r ∈ [1, 5], and keep
stable for r ≥ 5. (2) In terms of quality, on S Rel, the three meth-
ods D&S, BCC and LFC with quality≥ 60% outperform the other
methods; while on S Adult, the performance of different methods
are similar. (3) On S Rel, the quality of methods CATD and ZC de-
crease as r ≥ 4, probably because they are sensitive to low quality
workers’ answers. (4) The quality of methods for single-label tasks
are lower than that for decision-making tasks, since workers are not
good at answering tasks with multiple choices, and the methods for
single-label tasks are sensitive to low quality workers.
Numeric Tasks. In Figure 6, we compare with 5 methods that
specifically address numeric tasks (Table 4): CATD, PM, LFC N,
Mean and Median. Note that MAE and RMSE are defined as er-
rors, and the lower, the better. We have the following observations:
(1) generally the errors of almost all methods decrease with the
increasing r. (2) Among all methods, the baseline method Mean
performs best, which regards each worker as equal. This means
that workers’ qualities may not be accurately inferred in CATD,
PM and LFC N. (3) It can be seen that the methods for numeric
tasks are not well-addressed, as only 3 methods (i.e., CATD, PM,
LFC N) are specifically devised for numeric tasks.
(2) The Efficiency of Different Methods.

In terms of efficiency, some methods (MV, Mean and Median)
can infer the truth directly, while other existing works (ZC, GLAD,
D&S, Minimax, BCC, CBCC, LFC, CATD, PM, Multi, KOS, VI-
BP, VI-MF, LFC N) follow the iterative framework (Algorithm 1)
until convergence is attained. For the iterative methods, the time
complexity can be expressed as O(c · t), where c is the #iterations
to converge, and t is the time in each iteration. Thus a method is in-
efficient if it takes many iterations to converge, or the time is slow
in each iteration. We record each method’s efficiency in Table 6.
We can observe that non-iterative methods (MV, Mean and Me-
dian) are finished within 1s. For iterative methods, (1) ZC, D&S,
LFC,CATD, PM, LFC N can finish within 15s, which is efficient.

The reason is that they have a small c and t. (2) The methods BCC,
CBCC, Multi, KOS and VI-MF take more than 15s, but less than
3min to finish the process. The reason is that for BCC, CBCC
and VI-MF, they take many iterations c to converge; while Multi
and KOS take a long time t in each iteration. (3) There are meth-
ods GLAD, Minimax and VI-BP that take up to 100min to finish,
which is slow. The reason is that they solve an optimization func-
tion in each iteration, e.g., GLAD uses gradient descent [28] to
update parameters in each iteration, which takes much time t.
Summary. We summarize based on the above results. (1) The
quality increases significantly with small data redundancy r, and
keeps stable after a certain redundancy r̂ > r. Note that r̂ varies
in different methods on different datasets. (2) There is no method
that performs consistently the best on all tested datasets. (3) In
decision-making and single-label tasks, in general the three meth-
ods (D&S, BCC, LFC) perform better than others with complete
data (Table 6). Note D&S [15] is the most classical approach pro-
posed in 1979, and all other methods (BCC and LFC) extend D&S
in different perspectives. (4) In numeric tasks, they are not well-
addressed in existing works, where the baseline method Mean per-
forms best in N Emotion. (5) In terms of task models, the methods
that model task difficulty (GLAD) or latent topics (Multi) in tasks
do not perform significantly better in quality; moreover, they often
take more time to converge. (6) In terms of worker models, gen-
erally speaking, confusion matrix performs better in quality com-
pared with worker probability; while other worker models (e.g.,
diverse skills, worker bias, variance and confidence) do not bring
significant benefits. Not surprisingly, methods with complicated
worker models often lead to inefficiency. (7) In terms of inference
techniques, for effectiveness, the methods with Optimization and
PGM are more effective than Direct Computation. For efficiency,
Direct Computation is more efficient than Optimization and PGM.

6.3.2 The Effect of Qualification Test
We next study how each method can be affected by qualifica-

tion test. In real crowdsourcing platforms (e.g., AMT [2]), a fixed
set of golden tasks can be set for each worker to answer when the
worker first comes to answer tasks. We collect dataset D PosSent

from AMT [2], where each worker is required to answer 20 tasks
with known ground truth (qualification test) when she first comes.
However, in the other four public datasets, the data for qualifica-
tion test are not made public (or not used in most cases). Thus, (1)
we first simulate each worker’s answers for qualification test; (2)
then use each worker’s answering performance for them to initial-
ize the worker’s quality (line 1 in Algorithm 1); (3) finally we run
each method with the initialized worker’s quality. For example, in
D Product, for each worker w, in her answers for all tasks (T w),
we use bootstrap sampling [18], i.e., sample with replacement to
sample 20 times, where each time we randomly sample her answer
for one task (as there may be limited answers for a worker, thus
bootstrap sampling is used, which can uncover the real distribu-
tion, i.e., worker’s quality). Then we assume the 20 tasks’ truth are
known, and use her answering performance to initialize her quality.

To leverage a worker’s answers for qualification test, for exam-
ple, in ZC [16], as each worker is modeled as worker probability,
then her quality is initialized as the fraction of correctly answered
tasks in these 20 sampled ones. Finally the two steps in ZC are iter-
atively run until convergence, and the quality w.r.t. ground truth is
computed. We find that there are only 8 methods (i.e., ZC, GLAD,
D&S, LFC, CATD, PM, VI-MF and LFC N) that can initialize
workers’ qualities using qualification test. For these methods, we
repeat each experiment for 100 times. We denote c̃ as the average
quality with qualification test; c as the quality without qualification
test (i.e., in Table 6); and ∆ = c̃ − c as the improvement of qual-
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Table 7: The Quality with Qualification Test ( c̃ ) and Benefit ( ∆ = c̃− c ) of Different Methods in Each Dataset (Section 6.3.2).
Method D Product (Simulation) D PosSent (Real) S Rel (Simulation) S Adult (Simulation) N Emotion (Simulation)

Accuracy (∆) F1-score (∆) Accuracy (∆) F1-score (∆) Accuracy (∆) Accuracy (∆) MAE (∆) RMSE (∆)
ZC 92.95% (+0.15%) 64.4% (+0.81%) 95.10% (0.00%) 94.60% (0.00%) 55.24% (+7.03%) 35.54% (+0.20%) × ×

GLAD 92.18% (–0.02%) 60.04% (–0.03%) 95.20% (0.00%) 94.71% (0.00%) 53.48% (–0.19%) 36.30% (+0.43%) × ×
D&S 93.98% (+0.32%) 72.43% (+0.84%) 95.90% (–0.10%) 95.55% (–0.11%) 61.42% (+0.12%) 36.93% (+1.16%) × ×
LFC 93.98% (+0.25%) 72.43% (+0.95%) 95.90% (–0.10%) 95.55% (–0.11%) 61.42% (+0.12%) 36.93% (+1.16%) × ×

CATD 93.11% (+0.45%) 67.48% (+1.56%) 95.50% (+0.01%) 95.07% (+0.01%) 44.09% (–1.26%) 35.68% (–0.50%) 17.97 (+1.61) 28.56 (+2.62)
PM 90.55% (+0.74%) 61.26% (+1.92%) 95.10% (+0.05%) 94.60% (+0.06%) 59.41% (+0.39%) 36.70% (+0.41%) 17.27 (+3.36) 27.42 (+5.46)

VI-MF 85.26% (+1.35%) 57.31% (+2.00%) 95.90% (–0.10%) 95.54% (–0.12%) × × × ×
LFC N × × × × × × 12.20 (0.00) 18.97 (0.00)
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Figure 7: Varying Hidden Test on Decision-Making Tasks (Section 6.3.3).
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Figure 8: Varying Hidden Test on Single-Label Tasks (Section 6.3.3).
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Figure 9: Varying Hidden Test on Numeric Tasks (Section 6.3.3).

ity. Table 7 shows c̃ and ∆ of each method in each dataset. Note
that the only difference between c and c̃ is that they use different
initializations of workers’ qualities (line 1 in Algorithm 1).
Decision-Making & Single-Label Tasks. It can be observed that
no matter in real qualification test (D PosSent), or simulations
(D Product, S Rel, S Adult), not all methods can benefit from
qualification test and the benefits vary in different datasets. For ex-
ample, in D Product and S Adult, almost all methods can benefit;
while in D PosSent, only PM and CATD can benefit. The reason is
that in D Product, each task is only answered by 3 workers, while
in D PosSent, each task is answered by 20 workers. The dataset
with small data redundancy (e.g., D Product) requires qualifica-
tion test for a good initialization of workers’ qualities, while other
datasets can correctly detect each worker’s quality in an unsuper-
vised manner. We can also observe that the benefit (∆) is often
small and sometimes ∆ < 0, since almost all methods adopt an
iterative approach and approximate the objective value, thus an in-
adequate initialization may lead to a bad local optimum.
Numeric Tasks. For dataset N Emotion, even no methods in CATD,
PM and LFC N can benefit, where both the errors MAE and RMSE
increase for all methods. As mentioned before, this is probably be-
cause the methods are not studied properly in the numeric data, and
the qualities modeled for workers are not accurate enough.
Summary. (1) Some methods can benefit from the qualification
test with marginal benefit. (2) In numeric tasks, most of methods
cannot benefit, and there is still room for improvement. (3) There
are some methods that are hard to incorporate qualification test.
6.3.3 The Effect of Hidden Test

We evaluate how hidden test affects each method’s quality. Given
V , suppose we also know the set of golden tasks T ′ ⊆ T , then

how much quality can be improved using existing methods? To
implement this idea, we take a look at existing methods (Table 4)
and observe that there are 9 methods (ZC, GLAD, D&S, Minimax,
LFC, CATD, PM, VI-MF, and LFC N) that can be easily extended
to incorporate the golden tasks into its iterative algorithm.

To incorporate the golden tasks, consider Algorithm 1, in step
1, we only update the truth of tasks with unknown truth; in step
2, we update each worker’s quality by considering both the truth
of golden tasks and other tasks’ inferred truth in step 1. We show
the quality of different methods by varying the size of golden tasks
(T ′) in Figures 7, 8 and 9. For example, in Figure 7(a), on dataset
D Product, we randomly select p% in the task set T as the golden
tasks (T ′). Then we take T ′ and workers’ answers V as the input
to different methods, and further test different methods’ quality by
comparing the inferred truth of T −T ′ with their ground truth. We
vary p ∈ [0, 50], where for each p, we repeat each experiment 100
times and record the average quality. Next, we analyze the results.
Decision-Making & Single-Label Tasks. In Figures 7 and 8, it
can be seen that (1) generally starting from p = 0 (Table 6), the
quality of methods increase with p, since knowing more truth is
beneficial to more accurate estimation. (2) The methods on dataset
D PosSent do not have significant gains with varying p, since each
task is answered by multiple workers, and the inferred parameters
are hard to be affected by the known truth. (3) Only a few methods
(e.g., ZC, CATD) are sensitive to golden tasks, since most iterative
methods are easy to fall into local optimum.
Numeric Tasks. In Figure 9, we compare with three methods
(LFC N, CATD, PM) in N Emotion and we find that the errors
(MAE and RMSE) decrease slightly with the increasing p.
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Summary. (1) Generally the quality of different methods increase
with more proportion (p%) of golden tasks. (2) Different meth-
ods have different improvements on different datasets. (3) Only 9
methods are easy to incorporate golden tasks.

6.3.4 Analyzing Different Factors in Truth Inference
Task Types. In terms of task types, we observe that the methods
for decision-making tasks have been studied a lot and already have
very good performance. Compared with decision-making tasks,
the methods for single-label tasks do not perform well, e.g., the
qualities for S Rel and S Adult are much lower than those for
D Product and D PosSent in Table 6, since the methods for single-
label tasks are more sensitive to workers with low qualities. For
numeric tasks, the methods are not studied very well, and even the
baseline method Mean outperforms others in dataset N Emotion.
This is because that on one hand, few methods specifically study
numeric tasks; on the other hand, most methods cannot estimate
workers’ qualities for numeric tasks accurately.
Task Models. In terms of task models, GLAD and Minimax are
the only two methods (Table 4) that consider specific task models
(task difficulty and latent topics, respectively). However, they do
not show improvements in quality compared with other methods
with no task models. Moreover, they often take a long time to con-
verge (e.g., > 1000s in S Rel and S Adult). This is probably due
to that their inference methods are not robust, and in some cases
they cannot estimate the parameters in task models accurately. The
incorporation of task models also leads to inefficiency.
Worker Models. In terms of worker models, in general, meth-
ods with confusion matrix (D&S, BCC, CBCC, LFC, VI-BP, VI-
MF) perform better than methods with worker probability (ZC,
GLAD, CATD, PM, KOS), since confusion matrix is more ex-
pressive than worker probability. Note that the quality of meth-
ods also vary a lot even if they apply the same worker model, e.g.,
for confusion matrix, the methods D&S, BCC, LFC are more ro-
bust than others (CBCC, VI-BP, VI-MF), since their techniques can
infer workers’ qualities more accurately. For other worker mod-
els, e.g., worker bias (Multi), worker variance (Multi, LFC N), di-
verse skills (Multi, Minimax) and confidence (CATD), they do not
achieve higher gains in quality. We also observe that not necessar-
ily “the more complex the model is, the higher quality the method
will achieve”. For example, although Multi considers diverse skills,
worker bias and variance in its worker models, the quality does not
bring significant benefits. Ideally more complicated worker models
lead to much higher quality; however, this introduces more compu-
tational complexity, and on one hand, it is challenging to estimate
a large set of parameters accurately; on the other hand, it is hard
to converge. Thus most methods with complicated worker models
fail to achieve very good performance in quality and efficiency.
Inference Techniques. We analyze the techniques from quality,
efficiency and interpretability, respectively. (1) In terms of qual-
ity, the methods with Optimization and PGM are more effective
than the methods with Direct Computation, as they consider more
parameters and study how to infer them iteratively. (2) In terms
of efficiency, methods with Optimization and PGM are less effi-
cient than methods with Direct Computation. Different optimiza-
tion functions often vary significantly in efficiency, e.g., Bayesian
Estimator is less efficient than Point Estimation, and some tech-
niques (e.g., Gibbs Sampling, Variational Inference) often take a
long time to converge. (3) In terms of interpretability, Optimiza-
tion is easier to understand. The reason is that people can interpret
the relations between worker’s quality and task’s truth in the self-
defined optimization function. For PGM, it should conform to the
model (Figure 1), which gives less freedom to express the opti-
mization function. Moreover, it is hard to devise an easily solvable

optimization function, and the developed iterative algorithms often
lead to local optimum (e.g., Expectation Maximization [15, 17]).

7. CONCLUSION & FUTURE DIRECTIONS
We provide a detailed survey on truth inference in crowdsourcing

and perform an in-depth analysis of 17 existing methods. We sum-
marize a framework (Algorithm 1) and analyze the task types, task
models, worker models and inference techniques in these methods.
We also conduct sufficient experiments to compare these methods
on 5 datasets with varying task types and sizes. Based on the anal-
ysis and experimental results, we have the following suggestions.
Decision-Making & Single-Label Tasks. If one has sufficient
workers’ answers (e.g., with redundancy over 20), and wants a
very simple implementation that attains reasonable results, then we
recommend the baseline method, i.e., MV; if one wants an imple-
mentation with little overhead but attains very good results, then
we recommend the classical method D&S [15], which is robust in
practice; if one would like to try some extensions of D&S, then
BCC [27] and LFC [41] are good choices; if one wants to learn
more inference techniques and incorporate various task/worker mod-
els, we recommend the PGM method Multi [51] and the Optimiza-
tion method Minimax [61].
Numeric Tasks. If one has sufficient workers’ answers, we recom-
mend the baseline method (i.e., Mean); if one wants to learn more
advanced techniques and worker models, we recommend the PGM
method LFC N [41], and the Optimization method CATD [30].

We also point out the following future research directions.
(1) Task Types. In decision-making and single-label tasks, there is
no “best” method that beats others, and we recommend D&S [15]
and LFC [41], which are relatively more effective and efficient. In
numeric tasks, we recommend Mean and LFC N [41], and there
is still room to improve numeric tasks. Moreover, there are other
more complicated task types that are merely studied, e.g., transla-
tion tasks [63], or tasks that require workers to collect data [48].
(2) Task Design. In order to collect high quality crowdsourced
data in an efficient way, it is important to design tasks with friendly
User Interface (UI) with a feasible price. Although there are some
works that study how to set the prices [21] and acquire answers
from crowd more efficiently [23], the design of friendly UI is not
studied extensively. It is also interesting to study the relations be-
tween the design of UI, price, worker’s latency and quality.
(3) Data Redundancy. The quality significantly increases with
small redundancy, and keeps stable for a large redundancy. Then
how to estimate the data redundancy with stable quality? Is it pos-
sible to estimate the improvement with more data redundancy?
(4) Qualification Test. Not all methods can benefit from qualifica-
tion test, and the quality of some methods even decrease. So is it
possible to estimate the benefit of qualification test for a method?
(5) Hidden Test. Although most methods can benefit from them,
the improvements vary in different datasets and methods. Thus
is it possible to estimate the improvement with hidden test (i.e., a
number of golden tasks) for a method on a dataset?
(6) Task Assignment. In this paper, we focus on a static problem
which takes workers’ answers as input. Recently, there are some
works [60, 19, 34, 7] that study how to assign tasks to appropriate
workers in an online manner, called Online Task Assignment. It
is interesting to see how the answers collected by different task
assignment strategies can affect the truth inference quality.
(7) Incorporation of More Rich Features. In this paper, we only
consider the collected answers for tasks; however, we do not in-
corporate more rich information, for example, the contexts in tasks
(each task’s textual descriptions or the pixels in image tasks). These
have been mentioned in existing works [19, 35, 54, 43]. We do not
include those into comparisons since most of the datasets do not
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make the original tasks public. It might be interesting to see how
much improvement when such information is considered.
(8) Benchmark. In database research, there has been various bench-
marks (e.g., TPC-C for OLTP performance), which provide a stan-
dardized measure to evaluate the performance of different methods.
However, in crowdsourcing area, although there has been some
public datasets [13], few benchmarks are available. It is important
to develop benchmarks and evaluation measures in crowdsourcing.
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