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ABSTRACT
Entity resolution (ER) presents unique challenges for evalu-
ation methodology. While crowdsourcing platforms acquire
ground truth, sound approaches to sampling must drive la-
belling efforts. In ER, extreme class imbalance between
matching and non-matching records can lead to enormous
labelling requirements when seeking statistically consistent
estimates for rigorous evaluation. This paper addresses this
important challenge with the OASIS algorithm: a sampler
and F-measure estimator for ER evaluation. OASIS draws
samples from a (biased) instrumental distribution, chosen
to ensure estimators with optimal asymptotic variance. As
new labels are collected OASIS updates this instrumental
distribution via a Bayesian latent variable model of the an-
notator oracle, to quickly focus on unlabelled items provid-
ing more information. We prove that resulting estimates
of F-measure, precision, recall converge to the true popu-
lation values. Thorough comparisons of sampling methods
on a variety of ER datasets demonstrate significant labelling
reductions of up to 83% without loss to estimate accuracy.

1. INTRODUCTION
The very circumstances that give rise to entity resolution

(ER) systems—lack of shared keys between data sources,
noisy/missing features, heterogeneous distributions—explain
the critical role of evaluation in the ER pipeline [9]. Produc-
tion systems rarely achieve near-perfect precision and recall
due to these many inherent ambiguities, and when they do,
even minute increases to error rates can lead to poor user ex-
perience [22], lost business [26], or erroneous diagnoses and
public health planning [16]. It is thus vital that ER systems
are evaluated in a statistically sound manner so as to capture
the true accuracy of entity resolution. This paper addresses
this challenge with the development of an algorithm based
on adaptive importance sampling, which we call ‘OASIS’.

While crowdsourcing platforms provide inexpensive pro-
visioning of annotations, sampling items for labelling must
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proceed carefully. A key challenge in ER is the inherent im-
balance between matching and non-matching records which
can be as high as 1 : n when matching two sources of n
records (e.g., reaching the millions). Researchers leverage
several existing practices to evaluate such an ER system:
(i) Label samples drawn from all candidate matches uni-
formly at random (e.g., record pairs in two-source integra-
tion): while yielding unbiased estimates, this can take thou-
sands of samples before finding one match-labelled sample,
and many tens of thousands of labels before estimates con-
verge. (ii) Balance inefficient passive sampling with cheap
crowdsourcing resources: while crowdsourcing facilitates ER
evaluation, large nonstationary datasets require constant re-
fresh and can quickly drive costs back up. (iii) Exploit
blocking schemes or search facilities to reduce non-match
numbers: such filtering injects hidden bias into estimates.

By contrast, OASIS offers a principled alternative to eval-
uating F-measure, precision, recall—robust measures un-
der imbalance—given an ER system’s set of output similar-
ity scores. OASIS forms an instrumental distribution from
which it samples record pairs non-uniformly, minimising the
estimator’s asymptotic variance. This instrumental distri-
bution is based on estimates of latent truth due to a simple
Bayesian model, and is updated iteratively. By stratifying
the pool of record pairs by similarity score, OASIS transfers
performance estimates and samples fewer points. By en-
suring our sampler may (with non-zero probability) sample
any stratum, we manage the explore-exploit trade-off, ad-
mitting guarantees of statistical consistency: our estimates
of F-measure, precision, recall converge to the true popula-
tion parameters with high probability.

The unique characteristics of OASIS together yield a rig-
orous approach to ER evaluation that can use orders-of-
magnitude fewer labels. This is borne out in thorough com-
parisons of baselines across six datasets of varying sizes and
class imbalance (up to over 1:3000).

Contributions. 1) The novel OASIS algorithm for efficient
evaluation of ER based on adaptive importance sampling.
This algorithm has been released as an open-source Python
package at https://git.io/OASIS ;

2) Theoretical guarantee that OASIS yields statistically con-
sistent estimates, made challenging by the non-independence
of the samples and the non-linearity of the F-measure; and

3) A comprehensive experimental comparison of OASIS with
existing state-of-the-art algorithms demonstrating superior
performance e.g., 83% reduction in labelling requirements
under a class imbalance of 1:3000.
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2. BACKGROUND
Motivated by the challenges of accurate but efficient eval-

uation of ER, we begin by reviewing the key features of ER.

2.1 Entity resolution

Definition 1 (ER problem). Let D1 and D2 denote
two databases, each containing a finite number of records
n1, n2 representing underlying entities; and let fixed, un-
known relation R ⊆ D1 × D2 describe the matching records
across the databases, i.e., pairs of records representing the
same entity. The entity resolution problem is to approxi-
mate R with a predicted relation R̂ ⊆ D1 ×D2.

Remark 1. For simplicity we focus on two-source ER,
however our algorithms and theoretical results apply equally
well to multi-source ER on relations over larger product
spaces, and deduplicating a single source.

An abundant literature describes the typical ER pipeline:
preparation amortising record canonicalisation; blocking for
reducing pair comparisons through a linear database scan;
scoring, the most expensive stage, in which pair attributes
are compared and summarised in similarity scores; and
matching where sufficiently high-scoring pairs are used to
construct R̂. Further normalisation pre- or post-linkage
such as schema matching or record merging, while non-core,
are important also. We refer the interested reader to review
articles [28, 8, 15] and the references therein.

2.1.1 Similarity scores
ER is often cast as a binary classification problem on the

set of record pairs Z = D1 × D2. A pair z ∈ Z has true
Boolean label 1 if a “match”, that is z ∈ R, and label 0 if a
“non-match”, that is z /∈ R. In this work, we leverage the
similarity scores produced in typical ER pipelines:

Definition 2. A similarity score s(z) ∈ R quantifies the
level of similarity that a given pair z ∈ Z exhibits, i.e., the
predicted confidence of a match.

Similarity scores originate from a variety of sources. The
scoring phase of typical ER pipelines combine attribute-
level dis/similarity measures e.g., edit distance, Jaccard dis-
tance, absolute deviation, etc., into similarity scores. The
combination itself is often produced by hand-coded rules
or supervised classification, fit to a training set of known
non/matches. Unlike in evaluation, data used for training
need not be representative: heuristically-compiled training
sets may be used when learning discriminative models. Any
confidence-based classifier, e.g., the support vector machine,
or probabilistic classifier, e.g., logistic regression or probabil-
ity trees, produces legitimate similarity scores. Scores from
probabilistic classifiers may or may not be calibrated :

Definition 3. A scoring function s(·) is calibrated if,
of all the record pairs mapping to s(z) = ρ ∈ [0, 1], approx-
imately 100 × ρ percent are truly matching. For example,
60% of pairs with a score of 0.6 should be matches.

2.2 Evaluation measures for ER
All ER evaluation methods produce statistics that sum-

marise the types of errors made in approximating R with
R̂. Arguably the most popular among these statistics is the

pairwise F-measure which we focus on in this work. The
F-measure is particularly well suited to ER, unlike accuracy
for example, as its invariance to true negatives makes it more
robust to class imbalance. The F-measure is a weighted har-
monic mean of precision and recall; and in terms of Type I
and Type II errors, the statistic on T labels is

Fα,T =
TP

α(TP + FP) + (1− α)(TP + FN)
, (1)

where α ∈ [0, 1] is a weight parameter; TP, FP, FN are true
positive, false positive, false negative counts respectively.

TP =

T∑
t=1

`t ˆ̀t , FP =

T∑
t=1

(1− `t)ˆ̀
t , FN =

T∑
t=1

`t(1− ˆ̀
t) ,

where z1, . . . , zT ∼ p are query pairs sampled i.i.d from some
underlying distribution p of interest on Z such as the uni-
form distribution; the `t denote ground truth labels record-
ing (possibly noisy) membership of zt within R; and ˆ̀

t indi-

cates zt ∈ R̂. When α = 1, Fα,T reduces to precision, α = 0
produces recall, and α = 1/2 yields the balanced F-measure,
with equal importance on precision and recall.1

Our goal will be to estimate the asymptotic limit of Fα,T
as label budget T →∞. For finite pools Z this corresponds
to labelling of all record pairs with sufficient repetition to
account for (any) noise in the ground truth labels `t.

Remark 2. The pairwise F-measure is termed “pairwise”
to highlight the application of the measure to record pairs.
Pairwise measures work well when there are only a few records
across the databases which correspond to a particular entity.
In such cases one should not use accuracy, due to significant
class imbalance ( cf. Section 3). For cases where most enti-
ties have many matching records, one may leverage transi-
tivity constraints while looking to cluster-based measures for
evaluation [20]. See [2] for a summary on evaluation.

3. PROBLEM FORMULATION
Suppose we are faced with the task of evaluating an ER

system as described in the previous section. Given that we
do not know R, how can we efficiently leverage labelling
resources to estimate the pairwise F-measure?

Definition 4 (Efficient evaluation problem).

Consider evaluating a predicted ER R̂ ⊆ Z = D1 × D2,
equivalently represented by predicted labels ˆ̀(z) = 1

[
z ∈ R̂

]
for z ∈ Z. We are given access to:

• a pool2 P ⊆ Z of record pairs, e.g., P = Z;

• a similarity scoring function s : Z → R; and

• a randomised labelling Oracle : Z → {0, 1}, which re-
turns labels `(z) ∼ Oracle(z) indicating membership in
R. The oracle’s response distribution is parametrised
by oracle probabilities p(1|z) = Pr[Oracle(z) = 1].

With this setup, the efficient evaluation problem is to de-
vise an estimation procedure for Fα, which samples record
pairs z1, . . . , zT ∈ P and makes use of the corresponding la-
bels provided by the oracle. We adopt integer index notation
on ˆ̀, ` and s to denote their values at the t-th query; e.g.,
ˆ̀
t = ˆ̀(zt) for query zt.

1The relationship to the β-parametrisation is α = 1/(1+β2).
2We introduce the pool P for flexibility. It can be taken to
be the entire Z, or a proper subset for efficiency.
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Solutions should produce estimates F̂α,T exhibiting:

(i) consistency: convergence in probability to the true
value Fα on pool P with respect to underlying distri-
bution p

Fα = lim
T→∞

Fα,T ; and (2)

(ii) minimal variance: vary minimally about Fα.

In other words, solutions should produce precise estimates
whilst minimising queries to the oracle, since it is assumed
that queries come at a high cost. Computational efficiency
of the estimation procedure is not a direct concern, so long
as the response time of the oracle dominates (typically of
order seconds in a crowdsourced setting).

ER poses unique challenges for efficient evaluation.

Challenge: Extreme class imbalance. The inherent
class imbalance in ER presents a challenge for estimation
of F-measure. For deduped databases D1,D2, the minimum
possible class imbalance occurs when both DBs contain n
records and there is a matching record in D1 for every record
in D2. In this case, the class imbalance ratio (ratio of non-
matches to matches) is n−1. This is problematic for passive
(uniform i.i.d.) sampling even for modest-sized databases,
since O(n) expected pairs would be sampled for every match
found. As Fα depends only on matches (both predicted
and true), many queries to the oracle would be wasted on
labels that don’t contribute. The problem becomes one of
searching for an oasis within a desert when n ∼ 106 or more.

Approach: Biased sampling. One response to class im-
balance is biased sampling, that is, sampling from a pop-
ulation (or space more generally) in a way that systemati-
cally differs from the underlying distribution [24, Chapter 5].
Biased sampling methods have found broad application in
areas as diverse as survey methodology, Monte Carlo sim-
ulations, and active learning, to name a few. They work
by leveraging known information about the system—here
the similarity scores and the pool of record pairs—to ob-
tain more precise estimates using fewer samples. One of
the most effective biased sampling methods is importance
sampling (IS), which we illustrate below:

Example. Consider a random variable X with probabil-
ity density p(x) and consider the estimation of parameter
θ = E[f(X)]. The standard (passive) approach draws an
i.i.d. sample from p and uses the Monte Carlo estima-
tor θ̂ = 1

T

∑T
i=1 f(xi). Importance sampling, by contrast,

draws from an instrumental distribution denoted by q. Even
though the sample from q is biased (i.e. not drawn from p),
an unbiased estimate of θ can be obtained by using the bias-

corrected estimator θ̂IS = 1
T

∑T
i=1

p(xi)
q(xi)

f(xi).

An important consideration when conducting IS is the
choice of instrumental distribution, q. If q is poorly selected,
the resulting estimator may perform worse than passive sam-
pling. If on the other hand, q is selected judiciously, so that
it concentrates on the “important” values of X, significant
efficiency dividends will follow.

4. A NEW ALGORITHM: OASIS
This section develops our new algorithm for evaluating

ER—Optimal Asymptotic Sequential Importance Sampling
(OASIS). In designing an adaptive/sequential importance

sampler (AIS), we proceed in two stages: (i) choosing an ap-
propriate instrumental distribution to optimise asymptotic
variance of the estimator, see Section 4.1; and (ii) deriv-
ing an appropriate update rule and initialisation process for
the instrumental distribution, now restricted to score strata,
see Sections 4.2 and 4.3. Section 4.4 brings all of the com-
ponents of OASIS together, presenting the algorithm in its
entirety. Section 5 presents a thorough theoretical analysis
of OASIS.

4.1 Selecting the instrumental distribution
We begin by defining an estimator for the F-measure which

corrects for the bias of AIS. It is based on the standard esti-
mator of Eqn. (1), with the addition of importance weights.

Definition 5. Let {xt = (zt, `t)}Tt=1 be a sequence of
record pairs and labels, where the t-th record pair in the se-
quence is drawn from pool P according to an instrumental
distribution qt, which may depend on the previously sampled
items x1:t−1 = {x1, . . . , xt−1} and labels `t ∼ Oracle(zt).
Then the AIS estimator for the F-measure is given by

F̂AIS
α =

∑T
t=1 wt`t

ˆ̀
t

α
∑T
t=1 wt

ˆ̀
t + (1− α)

∑T
t=1 wt`t

, (3)

where wt = p(zt)/qt(zt) is the importance weight associated
with the t-th item, and p denotes any underlying distribution
on the record pairs from which the target Fα is defined.

This definition assumes that the record pairs are drawn
from an, as yet, unspecified sequence of instrumental dis-
tributions {qt}Tt=1. It is important that these instrumental
distributions are selected carefully, so as to maximise the
sampling efficiency. Later, we justify the choice of F̂AIS

α by
proving that it is consistent for Fα (cf. Theorem 2).

Remark 3. In ER we take: P ⊆ Z typically a DB prod-
uct space D1×D2 which is finite (but possibly massive); and
the p through which Fα,T is most naturally defined is the
uniform distribution on P i.e., placing uniform mass 1/N
where N = |P |. However OASIS and its analysis actually
hold more generally: pools P of instances that could be un-
countably infinite in size; and arbitrary marginal distribu-
tions p on P .

4.1.1 Variance minimisation
A common approach for instrumental distribution design

is based on the principle of variance minimisation [24]. In
the ideal case, a single instrumental distribution (for all t)
is selected that minimises the variance of the estimator:

q? ∈ arg min
q

Var(F̂AIS
α [q]) . (4)

This optimisation problem is difficult to solve analytically,
in part due to the intractability of the variance term. How-
ever, by replacing variance with the asymptotic variance
(taking T →∞), a solution is obtained as

q?(z) ∝ p(z)
[
(1− α)(1− ˆ̀(z))Fα

√
p(1|z)

+ˆ̀(z)
√
α2F 2

α(1− p(1|z)) + (1− Fα)2p(1|z)
]
,

(5)

where p(z) is the underlying distribution on P (see Re-
mark 3) and p(1|z) is the oracle probability (see Defini-
tion 4). The proof of this result is given in [25]. We call
q?(z) the asymptotically optimal instrumental distribution,
owing to its relationship with asymptotic minimal variance.
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4.1.2 Motivation for adaptive sampling
Close examination of (5) reveals that the asymptotically

optimal instrumental distribution depends on the true F-
measure Fα and true oracle probabilities p(1|z), both of
which are unknown a priori. This implies that an adaptive
procedure is well-suited to this problem: we estimate q? at
iteration t using estimates of Fα and p(1|z), which them-
selves are based on the previously sampled record pairs and
labels x1:t−1. As the sampling progresses and labels are col-
lected, the estimates of Fα and p(1|z) should approach their
true values, and q?t should in turn approach q?.

In order to implement this adaptive procedure, we must
devise a way of iteratively estimating Fα and p(1|z). There

is a natural approach for Fα: we simply use F̂AIS
α at the

current iteration. However, the oracle probabilities present
more of a difficulty. We outline one approach in Section 4.2.

4.1.3 Exploration vs. exploitation
In the subsequent analysis of OASIS (cf. Section 5), we

show that the asymptotically optimal instrumental distribu-
tion given in Eqn. (5) does not guarantee consistency (con-
vergence in probability). This is because it permits zero
weight to be placed on some items, meaning that parts of
the pool may never be explored. Consequently, we propose
to replace q? by an ε-greedy distribution

q(z) = ε · p(z) + (1− ε) · q?(z) , (6)

where 0 < ε ≤ 1. For ε close to 0, the sampling approaches
optimality (it exploits), whereas for ε close to 1, the sam-
pling approaches passivity (it explores). This bears resem-
blance to explore-exploit trade-offs commonly encountered
in online decision making (e.g., multi-armed bandits) [6].

4.2 Estimating the oracle probabilities
In this section, we propose an iterative method for esti-

mating the oracle probabilities, which are required for the
estimation of q?. Our proposed method brings together two
key concepts: stratification and a Bayesian generative model
of the label distribution.

4.2.1 Stratification
Stratification is a commonly used technique in statistics

that involves dividing a population into homogeneous sub-
groups (called strata) [10]. Often the process of creating
the strata is achieved by binning according to a variable, or
partitioning according to a set of rules. Our use of stratifi-
cation is somewhat atypical, in that we are not using it to
estimate a population parameter, but rather as a parameter
reduction technique. Specifically, we aim to map the set of
oracle probabilities {p(1|z) : z ∈ P} (of size N = |P | in ER)
to a smaller set of parameters of size K, essentially one per
stratum.

Parameter reduction. Consider a partitioning of record
pair pool P into K disjoint strata {P1, . . . , PK}, such that
the pairs in a stratum share approximately the same values
of p(1|z).3 If this ideal condition is satisfied, then our work
in estimating the set of probabilities {p(1|z) : z ∈ P} is
significantly reduced, because information gained about a
particular pair z ∈ Pk is immediately transferable to the
other pairs in Pk. As a result, we can effectively replace the

3This is the meaning of “homogeneity” which we adopt.

Algorithm 1 Cumulative
√
F (CSF) stratification [12]

Input: P pool of record pairs
s similarity score function : P → R
K̃ desired number of strata
M number of bins (for estimating score dist.)

Output: strata P1, . . . , PK (not guaranteed K = K̃)

1: Pool scores: S ← {s(z)|z ∈ P}
2: Distribution of scores (F ) using M bins:

counts, score bins← histogram(S,bins = M)

3: Cum. dist. of
√
F : csf←

[∑m
i=1

√
counts[i]

]
m=1:M

4: Bin width on cum.
√
F scale: w ← csf[M ]/K̃

5: for k ∈ {1, . . . , K̃ + 1} do

6: Bins on cum.
√
F scale: csf bins[k]← (k − 1)w

7: end for
8: K ← 1
9: for j ∈ {1, . . . ,M} do

10: if K = K̃ or j = M then
11: Append score bins[K̃] to new bins

12: break
13: end if
14: if csf[j] ≥ csf bin[K] then
15: Append score bins[j] to new bins

16: K ← K + 1
17: end if
18: end for
19: Allocate record pairs P to strata P1, . . . , PK based on

new bins (remove any empty strata, updating K)
20: return P1, . . . , PK

set of probabilities {p(1|z) : z ∈ Pk} for the record pairs in
Pk, by a single probability p(1|Pk).

Relaxing the homogeneity condition. In reality, we
don’t know which record pairs in P (if any) have roughly
the same values of p(1|z). Fortunately, it turns out that this
condition does not need to be satisfied too strictly in order
to be useful. Previous work [3, 14] has demonstrated that
the homogeneity condition can be satisfied in an approxi-
mate sense by using similarity scores as a proxy for true
oracle probabilities. In other words, we regard a stratum to
be approximately homogeneous if the pairs it contains have
roughly the same similarity scores. The more this proxy
holds true, the more efficient OASIS becomes in practice;
however critically, our guarantees hold true regardless.

Stratification method. In order to stratify the record
pairs in P according to their similarity scores, we shall use
the cumulative

√
F (CSF) method, originally proposed in [12]

and previously used in the present context in [14]. The CSF
method has a strong theoretical grounding, in that it aims
to achieve minimal intra-stratum variance in the scores.

For completeness, we have included an implementation of
the method in Algorithm 1. It proceeds by constructing
an empirical estimate of the cumulative square root of the
distribution of scores (lines 2–3). Then the strata are defined
as equal-width bins on the CSF scale (lines 4–7). Finally,
the bins are mapped from the CSF scale to the score scale
(lines 8–18), so that the scores (record pairs) may be binned
in the usual way (line 19). We note that any stratification
method could be used in place of the CSF method (cf. e.g.,
the equal size method described in [14]).
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Figure 1: Size and mean score of the CSF strata for
the Abt-Buy pool, using calibrated (probabilistic)
scores.

Selecting the number of strata. The number of strata
K represents a trade-off: For large K, estimates of the oracle
probabilities enjoy finer granularity and can better approach
their true values; however large K leads to more parameters
and hence more labels required for convergence of estimates.

In practice for ER evaluation, we find that the there is
often a “natural” range of K for the CSF method. The ex-
ample in Figure 1 shows that we typically construct very
large strata with low similarity scores, and very small strata
with high similarity scores: a form of heavy-tailed distribu-
tion due to the extreme class imbalance. If K is set too
large, then we immediately discover the strata correspond-
ing to the higher similarity scores become too small (they
may contain only 1 or 2 record pairs). We find a range of
K from roughly 30–60 to work well for most datasets con-
sidered in Section 6.

4.2.2 A Bayesian generative model
Having partitioned the record pairs in P into K strata
{P1, . . . , PK}, our goal is to estimate p(1|Pk) (for all k) us-
ing the collected Oracle labels. For notational convenience,
we denote the true value of p(1|Pk) by πk and a correspond-
ing estimate by π̂k. We shall adopt a generative model for
observed labels which regards πk as a latent variable.

Model of a stratum. Consider a label ` received from the
oracle for a record pair in Pk. We assume that the label is
generated from a Bernoulli distribution with probability πk
of being a match (binary label ‘1’), i.e.,

` ∼ Bernoulli(πk) . (7)

Since the Bernoulli distribution is conjugate to the beta dis-
tribution, we adopt a beta prior for πk:

πk ∼ Beta(γ
(0)
0,k, γ

(0)
1,k) , (8)

where γ
(0)
0,k and γ

(0)
1,k are the prior hyperparameters. We

describe how to choose the prior hyperparameters in Sec-
tions 4.3 and 4.4.

Joint model of strata. To model each stratum indepen-
dently but not identically—we do not transfer information
across strata but grant each a prior—we factor the joint
prior distribution as a product of the marginal K priors.
We collect the πk’s into a vector π = [π1, π2, . . . , πK ] and
the prior hyperparameters into a 2×K matrix:

Γ(0) =

[
γ
(0)
0,1 γ

(0)
0,2 · · · γ

(0)
0,K

γ
(0)
1,1 γ

(0)
1,2 · · · γ

(0)
1,K

]
. (9)

The posterior distribution of π, given the labels received
from the oracle up to iteration t, is a product of the K cor-
responding independent beta posterior distributions. Con-
tinuing with the previous notation, we store the posterior
hyperparameters at iteration t in a matrix Γ(t).

Iterative posterior updates. To obtain a new estimate
of π per iteration, we iteratively update the posterior hy-
perparameters upon arrival of Oracle label observations `t.
Suppose label `t is observed as a result of querying with a
record pair from stratum Pk? . Then the update involves:

copy old values : Γ(t) ← Γ(t−1)

if `t = 1 : γ
(t)
0,k? += 1

if `t = 0 : γ
(t)
1,k? += 1

(10)

A point estimate of π can be obtained at iteration t via
the posterior mean

π̂(t) = E[π|`1, . . . , `t] =
Γ

(t)
0,:

Γ
(t)
0,: + Γ

(t)
1,:

. (11)

Here the notation Γ
(t)
i,: represents the i-th row of matrix Γ(t),

and the division is carried out element-wise.

Remark 4. As a practical modification to speed up con-
vergence of π̂, we can decrease our reliance on the prior as

labels are received. For each column Γ
(0)
:,k we can retroac-

tively multiply by a factor 1/nk where nk is the number of
labels sampled from Pk thus far. Anecdotally we also observe
that this improves robustness to misspecified priors.

4.2.3 Stratified instrumental distribution
Since the estimation method for the oracle probabilities

produces estimates over the strata, rather than for individ-
ual pairs in the pool, it is appropriate to estimate the instru-
mental distribution in the same way. Akin to the mapping
from p(1|z) to π, we therefore propose to map q(z) to a vec-
tor v = [v1, . . . , vK ] based on our Bayesian stratified model
estimates instead of (unknowable) population parameters.
Adapting Eqn. (5), the stratified asymptotically optimal in-
strumental distribution v? is defined at iteration t as

v
?(t)
k ∝ ωk

[
(1− α)(1− λk)F̂ (t−1)

α

√
π̂
(t−1)
k

+ λk

√
(αF̂

(t−1)
α )2(1− π̂(t−1)

k ) + (1− F̂ (t−1)
α )2π̂

(t−1)
k

]
,

where ωk = |Pk|/N is the weight associated with Pk and

λk = 1
|Pk|

∑
i∈Pk

ˆ̀
i is the mean prediction in Pk. It follows

that the ε-greedy distribution at iteration t is given by

v
(t)
k = ε · ωk + (1− ε) · v?(t)k . (12)

Having adopted a stratified representation for the instru-
mental distribution, sampling a record pair is now a two-step
process. First a stratum index is drawn from {1, . . . ,K} ac-
cording to v. Then a record pair is drawn uniformly at
random from the resulting stratum.

4.3 Initialisation
OASIS requires a set of prior hyperparameters Γ(0) and a

guess for the F-measure F̂
(0)
α for initialisation purposes. We

elect to set these quantities based on the information con-
tained within the similarity scores. Our approach depends
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Algorithm 2 Initialisation of Bayesian model

Input: 0 ≤ α ≤ 1 F-measure weight
P pool of record pairs

R̂ predicted ER
s similarity score function : P → R
τ R-valued score threshold (optional)

{Pk}Kk=1 stratum allocations

Output: F̂
(0)
α initial F-measure

π̂(0) prior hyperparameters

1: for k ∈ {1, . . . ,K} do

2: Mean score per stratum: π̂
(0)
k ← 1

|Pk|
∑
z∈Pk

s(z)

3: if scores are not probabilities in [0, 1] then

4: Transform: π̂
(0)
k ← logit(π̂

(0)
k − τ)

5: end if
6: Mean pred. per stratum: λk ← 1

|Pk|
∑
z∈Pk

ˆ̀
z

7: end for

8: F̂
(0)
α ←

∑K
k=1|Pk|π0,kλk

α
∑K
k=1
|Pk|λk+(1−α)

∑K
k=1
|Pk|π0,k

9: return F̂
(0)
α , π̂(0)

centrally on a guess for the oracle probabilities π̂(0), in that

once π̂(0) is available, the values of Γ(0) and F̂
(0)
α immedi-

ately follow. The details of the initialisation are contained
in Algorithm 2, with further explanation given below.

Oracle probabilities (lines 2–5). A reasonable guess
for π can be obtained by taking the mean of the similarity
scores in each stratum. If the scores are not probabilities,
they should be mapped to the [0, 1] interval. This can be
achieved by applying the logistic function.

F-measure (lines 6 & 8). The calculation of F̂
(0)
α depends

on the guess for π described above and the mean predic-
tion per stratum λ. Breaking down the calculation term-
by-term, one begins by estimating the probability of finding

a true positive in Pk as π̂
(0)
k λk, so that the total number

of true positives may be approximated by
∑K
k=1 |Pk|π̂

(0)
k λk.

Similarly, the total number of actual positives (TP + FN)

may be approximated by
∑K
k=1 |Pk|π̂

(0)
k . The total num-

ber of predicted positives (TP + FP) is known exactly and

can be written in terms of λ as
∑K
k=1 |Pk|λk. Using these

estimates in Eqn. (2) yields the guess for F̂
(0)
α in line 8.

Prior hyperparameters. We also set Γ(0) based on π̂(0)

Γ(0) = η

[
π̂(0)

1− π̂(0)

]
.

Here η > 0 is an adjustable parameter that controls the
strength of the prior. For ease of presentation, this step is
included in Algorithm 3 (line 1) rather than Algorithm 2.

4.4 Bringing everything together
Having introduced all of the components of OASIS, we

are now ready to explain how they fit together. Recall that
the evaluation process begins with three main inputs: the
pool of record pairs P , similarity scores s(·), and predicted

ER R̂. A summary of the main steps involved is as follows:

(i) Generate a set of strata P1, . . . , PK partitioning P us-
ing the CSF method (Algorithm 1).

Algorithm 3 OASIS for estimation of the F-measure

Input: T > 0 number of iterations
0 ≤ α ≤ 1 F-measure weight
0 < ε ≤ 1 greediness parameter
η > 0 prior strength parameter

F̂
(0)
α initial guess for F-measure

π̂(0) initial guess for pos. probabilities

R̂ predicted ER
{Pk}Kk=1 stratum allocations
Oracle randomised (noisy) true labels

Output: F̂
(T )
α F-measure estimate

1: Γ← η

[
π̂(0)

1− π̂(0)

]
. initialise Bayesian model

2: for t ∈ {1, . . . , T} do

3: Calculate v(t) using Eqn. (12)

4: Draw k? from {1, . . . ,K} according to v(t)

5: Draw z? from Pk? uniformly

6: wt ← ωk/v
(t)
k . importance weight

7: `t ← Oracle(z?) . query label from oracle

8: ˆ̀
t ← ˆ̀(z?) . record prediction

9: Γ:,k? ← Γ:,k? +

[
`t

1− `t

]
. update posterior

10: π̂(t) ← Γ0,: ./ (Γ0,: + Γ1,:) . update π estimate

11: F̂
(t)
α ←

∑t
τ=0 wτ `τ

ˆ̀
τ

α
∑t
τ=0 wτ

ˆ̀
τ+(1−α)

∑t
τ=0 wτ `τ

12: end for
13: return F̂

(T )
α

(ii) Generate initial estimates using the strata, R̂ and s(·)
(Algorithm 2).

(iii) Conduct AIS to estimate Fα (Algorithm 3).

Summary of Algorithm 3. At each iteration t: sample
a stratum according to v(t), then a record pair within that
stratum uniformly at random. Query Oracle for a label of
the record pair. Use the observed label (and the predicted
label) to update the oracle probabilities (using Eqn. 10) and
the F-measure estimate (using Eqn. 3). Stop after T itera-

tions and return the final estimate F̂
(T )
α .

5. CONSISTENCY OF OASIS
A fundamental requirement of any well-behaved estima-

tion procedure is consistency, that is, given enough samples
we want the estimate to be close to the true value with high
probability. Nominated as one of our objectives in design-
ing the OASIS algorithm in Section 3, we now prove that
OASIS is statistically consistent.

Before we begin, we acknowledge previous theoretical work
on the consistency of other AIS algorithms, notably Popu-
lation Monte Carlo (PMC) [5, 13, 4] and Adaptive Multiple
Importance Sampling (AMIS) [11, 19]. Unfortunately, we
cannot directly apply these results here owing to the follow-
ing differences in our setup:

(i) we do not discard and re-draw the entire sample at
each iteration since it would waste our label budget;

(ii) we permit the instrumental distribution to be updated
based on samples from all previous iterations (unlike
[13, 4] which are restricted to the previous iterate);
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(iii) we examine consistency as T →∞ (others assume that
the sample size increases at each iteration and examine
consistency in this limit).

Due to the dependent nature of the sample and the non-
linear form of the F-measure, the proof is relatively involved
and requires some build-up. In Section 5.1, we first consider
simple AIS estimators based on sample averages, and show
that strong consistency follows so long as some reasonable
conditions are met. Then in Section 5.2 we extend these
results to the non-linear F-measure estimator. Until this
point, we assume a general instrumental distribution and
updating mechanism, before finally specialising to the OA-
SIS method in Section 5.3.

5.1 Simple AIS estimators
Consider a random variable X with probability density

p(x) and consider the estimation of parameter θ = E[f(X)]
using AIS. This involves constructing sample {x1, x2, . . . , xT }
by drawing each item sequentially from a separate instru-
mental distribution. Specifically, we assume that the t-th
sample xt is drawn from an instrumental distribution with
density qt(xt|x1:t−1) which depends on the t− 1 previously
sampled items x1:t−1 = {x1, . . . , xt−1}.4 The AIS estimator
of θ is then defined as:

θ̂AIS =
1

T

T∑
t=1

wtf(xt), (13)

which may be interpreted as an importance-weighted sam-
ple average. Here the importance weights are given by wt =
p(xt)/qt(xt) (we omit the conditioning on x1:t−1 for nota-
tional simplicity).

In order to prove that θ̂AIS is consistent for θ, we rely
on the following lemma, which generalises the law of large
numbers (LLN) to history-dependent random sequences.

Lemma 1. Let {Ut}∞t=1 be a sequence of random variables
and let U1:T = {U1, U2, . . . , UT } denote the sequence up to
index t = T . Suppose that the following conditions hold:

(i) E[U1] = θ;

(ii) E[Ut|U1:t−1] = θ for all t > 1; and

(iii) E[U2
t ] ≤ C <∞ for all t ≥ 1.

Then 1
T

∑T
t=1 Ut → θ almost surely.

The proof of this lemma is given in the full report [18], and
relies on a more general theorem due to Petrov [23].

By observing that the summands in Eqn. (13) obey condi-
tions (i) and (ii) of Lemma 1, we can establish the following

theorem on the strong consistency of θ̂AIS.

Theorem 1. The estimator in Eqn. (13) is strongly con-

sistent, that is, θ̂AIS → θ almost surely, provided the follow-
ing conditions are met for all t ≥ 1:

(i) qt(x) > 0 whenever f(x)p(x) 6= 0, and

(ii) E
Xt∼p

X1:t−1∼g

[
p(Xt)
qt(Xt)

f(Xt)
2
]
≤ C <∞.

4Beginning with an initial sampling distribution q1(x1).

Proof. Let Ut = p(Xt)
qt(Xt|X1:t−1)

f(Xt) and θ = E[f(X)].

The almost sure convergence follows by checking the con-
ditions of Lemma 1. For condition (ii) of the lemma, we
find

E[Ut|U1:t−1] = E

[
p(Xt)

qt(Xt|X1:t−1)
f(Xt)

∣∣∣∣X1:t−1

]
=

∫
X

p(xt)

qt(xt|x1:t−1)
f(xt)qt(xt|x1:t−1) dxt

=

∫
X
f(x)p(x) dx (by condition (i))

= E[f(X)] = θ.

Condition (i) of the lemma follows by a similar argument.
Finally we check condition (iii): that the second moment

is bounded. Denoting the joint density of X1:t−1 by g and
considering t > 1, we have

E
[
U2
t

]
= E

[
E
[
U2
t |U1:t−1

]]
= E

[
E

[(
p(Xt)

qt(Xt|X1:t−1)
f(Xt)

)2
∣∣∣∣∣X1:t−1

]]

=

∫∫
X

(
p(xt)f(xt)

qt(xt|x1:t−1)

)2

qt(xt|x1:t−1)dxtg(x1:t−1)dx1:t−1

=

∫∫
X

p(xt)f(xt)
2

qt(xt|x1:t−1)
p(xt) dxt g(x1:t−1)dx1:t−1 (by (i))

= E
Xt∼p

X1:t−1∼g

[
p(Xt)

qt(Xt|X1:t−1)
f(Xt)

2

]
which is bounded above by assumption. This also holds for
t = 1 (by the above argument without the sampling history).
Thus all of the conditions of Lemma 1 are satisfied, and the
proof is complete.

5.2 The AIS F-measure estimator
The AIS estimator for the F-measure, F̂AIS

α , is less straight-
forward to analyse because it cannot be expressed as a sam-
ple average like the estimators studied in Section 5.1. In-
stead, we regard F̂AIS

α as a ratio of sample averages:

F̂AIS
α =

1
T

∑T
t=1 wtfnum(xt)

1
T

∑T
t=1 wtfden(xt)

,

(cf. Eqn. 3) where xt = (zt, `t) denotes a record pair and
its observed label, and the functions are

fnum(xt) = `t ˆ̀t ; and

fden(xt) = αˆ̀
t + (1− α)`t .

(14)

We leverage Theorem 1 to show that the numerator and
denominator both converge to their respective true values,
which is sufficient to establish convergence of F̂AIS

α .

Theorem 2. Let X = (Z,L) denote a random record pair
Z and its corresponding label L, and let the density of X be
p(x) = p(`|z)p(z). Suppose AIS is carried out to estimate
the F-measure and assume that the conditions of Theorem 1
are satisfied by p(x) and qt(x) for both functions defined in
Eqn. (14). Assume furthermore that the instrumental den-
sity can be factorised as qt(xt|x1:t−1) = p(`t|zt)qt(zt|x1:t−1)

for all t ≥ 1. Then F̂AIS
α is weakly consistent for Fα.
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Table 1: Datasets in decreasing order of class imbal-
ance. The size of the dataset is the number of record
pairs it contains and the imbalance ratio is the ratio
of non-matches to matches. The ? indicates that the
dataset is not from the ER domain.

Dataset Name Size
Imb. No.
Ratio Matches

Amazon-GoogleProducts 4,397,038 3381 1300
restaurant 745,632 3328 224
DBLP-ACM 5,998,880 2697 2224
Abt-Buy 1,180,452 1075 1097
cora 1,675,730 47.76 34,368
? tweets100k 100,000 1 50,000

Proof. Observe that for the numerator of F̂AIS
α ,

1

T

T∑
t=1

p(Zt)

qt(Zt)
fnum(Xt) =

1

T

T∑
t=1

p(Xt)

qt(Xt)
fnum(Xt)

using the factorised form of qt(x). This converges in prob-
ability to E[fnum(X)] by Theorem 1. The same is true for
the denominator (replace fnum by fden). Invoking Slutsky’s
theorem, we have

F̂AIS
α =

1
T

∑T
t=1

p(Zt)
qt(Zt)

fnum(Xt)

1
T

∑T
t=1

p(Zt)
qt(Zt)

fden(Xt)

P−→ E[fnum(X)]

E[fden(X)]

It is straightforward to show that the expression on the
right-hand side reduces to Fα by evaluating the expectations
with respect to p for finite pool P . For the more general case,
it can be shown that the F-measure statistics Fα,T converge
to the right-hand side population-based F-measure [25].

5.3 Application to OASIS
Theorem 2 tells us about the convergence of F̂AIS

α for any
choice of instrumental distribution and update mechanism
meeting the conditions. Our final remaining task is to show
that these conditions are met by Algorithm 3.

Theorem 3. Algorithm 3 (OASIS) produces a consistent

estimate of Fα, that is F̂
(T )
α

P→ Fα.

The proof is straightforward, while lengthy, and so is rel-
egated to the full report [18]. It proceeds by checking that
the conditions of Theorem 2 are satisfied by the OASIS in-
strumental distribution.

Remark 5. It is now apparent why we adopt the ε-greedy
instrumental distribution: while q?t (z) can go to zero when
p(z) 6= 0, violating condition (i) of Theorem 1, ε-greedy can-
not. For example, if π̂k = 0 and λk = 0 then q?t (z) = 0 for
all z ∈ Pk, whilst p(z) = 1/N 6= 0. The ε-greedy instrumen-
tal distribution does not vanish since qt(z) = ε/N > 0.

6. EXPERIMENTS
In this section, we examine whether OASIS addresses our

main objective of reducing labelling requirements for eval-
uating ER. We run comprehensive experiments comparing
OASIS with established methods, which conclusively estab-
lish that OASIS is generally superior, requiring significantly
fewer labels to achieve a given precision of estimate.

6.1 Experimental setup

6.1.1 Datasets
We use five publicly available ER datasets as listed in Ta-

ble 1. All datasets come with true resolutionR. Abt-Buy [17]
and Amazon-GoogleProducts [17] are from the e-commerce
domain; cora [1] and DBLP-ACM [17] relate to computer sci-
ence citations; and restaurant contains listings from two
restaurant guidebooks [1]. We note that cora is unique
among these datasets, in that it does not arise from two sep-
arate DBs. Technically, it is an example of de-duplication,
which may be cast as ER on the DB matched with itself.

In addition to these five datasets, we have also included
tweets100k [21] from outside the ER domain. It is included
to test whether the sampling methods are competitive in the
absence of class imbalance.

Pooling. Although evaluation is ideally conducted with
respect to the entire pool, P = Z, a key baseline sampling
method (IS, introduced in Section 6.2) is prohibitively slow
for such large pools (cf. Section 6.3.5) since its instrumental
distribution is defined on each record pair. OASIS does
not suffer from this drawback and runs efficiently on entire
pools. However to complete a fair comparison, we opt to
conduct the evaluation with respect to smaller pools drawn
randomly from Z, which are listed in Table 2. This does not
affect the validity of the theory/algorithm; indeed relative to
(significant) randomised pools, Fα is with high probability
exceedingly close to that defined relative to Z.

Oracle. We implement an oracle based on the ground truth
resolution R provided per dataset. Since only one label is
provided per record pair, we are in the regime of a deter-
ministic Oracle i.e., with probabilities p(1|z) ∈ {0, 1}.

6.1.2 ER pipeline
We build a simple ER pipeline with the following features:

Pre-processing. Strings are normalised by removing sym-
bols, accents & capitalisation. Numeric fields are converted
to floats and missing values are imputed using the mean.

Similarity features. For each pair of fields (e.g., the
‘Name’ fields of D1 and D2) we calculate a scalar feature
based on some measure of their similarity. For short textual
fields we the Jaccard distance based on trigrams and for
long textual fields we use cosine similarity with a tf-idf vec-
tor representation. For numeric fields we use the normalised
absolute difference.

Record pair classifier. At the core of the ER pipeline is
a binary classifier, which operates on the space of similarity
features. We generally use a linear SVM (L-SVM), trained
on a random subset of the entire dataset (including ground
truth labels). Since we would like to test the evaluation
in a range of circumstances, we don’t always aim for the
best classifier—we instead aim for a range of classifiers with
excellent performance through to poor.

6.2 Baseline methods
We compare OASIS with three baseline methods.

Passive. This simple method samples record pairs uni-
formly at random from the pool with replacement. At each
iteration, the F-measure is estimated using Eqn. (1), based
only on the record pairs/labels sampled so far.
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Stratified. This method has been used previously in [14]
for estimating balanced F-measures. It involves partitioning
the pool of record pairs into strata (we set K = 30) using
Algorithm 1. Record pairs are then sampled by drawing
a stratum according to the stratum weights (ωk = |Pk|/N),
then sampling within the stratum uniformly. The F-measure
is estimated using a stratified version of Eqn. (2) (see [14]).

IS. Non-adaptive importance sampling has been used for
evaluating F-measures in [25]: record pairs are sampled ac-
cording to a static instrumental distribution which aims to
approximate Eqn. (5). IS may be far from optimal depend-
ing on score reliability, since the approximation replaces
p(1|z) with the similarity scores (mapped to the unit in-
terval). The estimate of the F-measure is obtained at each
iteration using a static version of Eqn. (3).

6.3 Results
Since each estimation method is randomised, we study

their behaviour statistically. For each pool in Table 2, we
run each estimation method 1000 times, recording the his-

tory of estimates for each run in a vector: [F̂
(t)
α ]t=1:T . In all

of the experiments, we set α = 1/2, η = 2K and ε = 10−3.

6.3.1 Label budget savings
To compare the labelling requirements of the different

estimation methods, we plot the expected absolute error
E[|F̂α − Fα|] (abbreviated as abs. err.) as a function of the
label budget.5 To compute abs. err. we average over 1000
repeats for fixed P . The true F-measure, Fα, is calculated
on P using Eqn. (1), assuming all labels are known imme-
diately. The results are presented in Figure 2 for each pool
in Table 2. Below the abs. err. plot, we have also plotted
the standard deviation of the estimate, which is useful for
checking whether the variance reduction methods (IS and
OASIS) are operating as designed.

Winning method. OASIS beats the other methods, sig-
nificantly improving on the state-of-the-art, both in terms
of the abs. err. and the variance, on all of the ER datasets
except cora where it is competitive. The reason for the
anomalous behaviour on cora is likely due to the fact that
the class imbalance is far less pronounced.

Inadequacy of passive sampling. The experiments con-
firm our claim that passive sampling is a poor choice for
evaluating ER. Compared to IS and OASIS, passive sam-
pling demonstrates significantly slower convergence, and is
less reliable due to the high variance. In fact, passive sam-
pling often cannot produce any estimate at all until a signif-
icant label budget has been consumed (cf. e.g., DBLP-ACM).
This is because the F-measure remains undefined until a
match (or predicted match) is sampled for the first time.
We only begin plotting the curve when the estimate has a
probability exceeding 95% of being well-defined.

Stratified method. This method does not fare much bet-
ter than passive sampling, casting doubt on its effectiveness
for efficient evaluation as proposed in [14]. We expect that

5Note that the label budget is not equivalent to the number
of iterations. Since we are sampling with replacement, the
same record pair may be drawn at multiple iterations, how-
ever it only counts towards the label budget the first (and
only) time its label is queried from the oracle.

the reason for the poor performance is due to the fact that
the sampling is not biased (merely proportional to ωk).

Balanced classes. For the case of more balanced classes,
as in tweets100k, and to a lesser extent cora, there is effec-
tively no difference between the methods. This implies that
the advantage of IS and OASIS over the other methods di-
minishes as the imbalance ratio decreases. It is important to
note however, that the balanced regime is of little relevance
to ER—we merely include it for completeness.

6.3.2 Calibrated vs. uncalibrated scores
In the experiments thus far (in Figure 2), we have been

evaluating ER pipelines based on linear SVMs. The similar-
ity scores from such systems are distances from the decision
hyperplane, which are not intended to approximate the or-
acle probabilities p(1|z) accurately (they are “uncalibrated”
cf. Definition 3). As such, we expect the performance of IS
to be less favourable, because the instrumental distribution
will be further from optimality if si ≈ p(1|zi) is not satisfied.
Much less degradation is expected under OASIS.

In order to assess whether this has an appreciable effect,
we compared running IS and OASIS with calibrated versus
uncalibrated similarity scores. The calibrated (probabilis-
tic) scores are obtained using a built-in costly feature of
LIBSVM, which runs five-fold cross-validation at training
time [7]. The uncalibrated scores are distances from the de-
cision hyperplane used previously. The results in Figure 3
show that the calibrated scores yield significantly better per-
formance, particularly for IS. However, the difference is less
pronounced for OASIS, which does a good job of learning
the true oracle probabilities from the incoming labels.

6.3.3 Convergence of the model parameters
We have observed excellent convergence properties for OA-

SIS in terms of the F-measure estimate. An interesting sup-
plementary question is whether the estimates of the oracle
probabilities (and in turn the instrumental distribution) also
converge rapidly to their true (optimal) values. Although
we have not studied this question theoretically, we have ob-
served convergence in a limited number of experiments with
Abt-Buy. An example is depicted in Figure 4. Heatmap
plot (b) demonstrates that the estimates of the oracle prob-
abilities for this run converge quite rapidly: after ∼ 4000
labels are consumed. However, the instrumental distribu-
tion takes longer to converge, because it is very sensitive to
slight errors in the estimates. It does not reach optimal-
ity until after ∼ 8500 labels are consumed. This is easiest
to see in the KL divergence plot (d), where a value of zero
indicates convergence.

6.3.4 Effectiveness for different classifiers
Although we have focussed on evaluating ER based on

linear SVMs so far, there is essentially no limitation on the
types of classifiers that can be evaluated, so long as they pro-
duce some kind of similarity scores. To this end, we re-run
our experiments on the Abt-Buy pool using four additional
types of classifiers: a neural network (multi-layer percep-
tron) with one hidden layer (NN), a boosted decision tree
AdaBoost (AB), logistic regression (LR), and SVM with a
RBF kernel (R-SVM). We implement the classifiers using
scikit-learn with the default parameter options.

The expected estimation error for each method (Passive,
Stratified, IS and OASIS) is evaluated after 5000 labels are
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Table 2: Pools sampled from the datasets in Table 1, along with the true performance measures.

Associated Dataset Size Imb. ratio No. matches Classifier Precision Recall F1/2

Amazon-GoogleProducts 676,267 3381 200 L-SVM 0.597 0.185 0.282
restaurant 149,747 3328 45 L-SVM 0.909 0.888 0.899
DBLP-ACM 53,946 2697 20 L-SVM 1.0 0.9 0.947
Abt-Buy 53,753 1075 50 L-SVM 0.916 0.44 0.595
cora 328,291 47.76 6874 L-SVM 0.841 0.837 0.839
? tweets100k 20,000 0.9903 10049 L-SVM 0.762 0.778 0.770
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Figure 2: Plots showing the expected absolute error (abs. err.) and the standard deviation (std. dev.) of

F̂1/2 for the different estimation methods (Passive, Stratified, IS, OASIS) as a function of label budget. The
OASIS method is run with K = 30, 60 and 120 (except on tweets100k where K = 10, 20 and 40). This figure is
best viewed in colour.
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Figure 3: Comparison of calibrated vs. uncalibrated
scores for IS & OASIS (run with K = 60).

Table 3: CPU times for the cora experiment.

Sampling method Avg. CPU time
per run (s)

Avg. CPU time
per iteration (s)

Passive 0.512 2.483× 10−5

IS 69.854 3.149× 10−3

OASIS 30 3.612 1.228× 10−4

OASIS 60 3.281 1.123× 10−4

OASIS 120 2.978 1.093× 10−4

Stratified 1.967 9.502× 10−5

consumed and the results are plotted in Figure 5. We see
that OASIS generally outperforms the other methods, yield-
ing an estimate of F1/2 which is one order of magnitude more
precise than IS.

6.3.5 Runtime
We present evidence that the IS method scales poorly to

large pools in Table 3, which lists the average CPU times
for experiments on the cora dataset (pool size N ∼ 105).
The experiments were run on an HP EliteBook 840 G2
with 2.6GHz Core i7 and 16GB RAM. Note that the times
listed for the OASIS and Stratified methods exclude pre-
computation of the strata, which takes less than 0.1 s. Look-
ing at the results, we see that IS is an order of magnitude
slower than OASIS—in fact, the timing for IS appears to
scale linearly in N based on other timing data (not shown
due to space constraints). The reason for this, is that IS
samples from a non-uniform distribution over the entire pool
(a computation linear in size N), whilst OASIS samples from
a smaller non-uniform distribution over the strata (of size
K). It appears that the extra operations OASIS requires to
update the model are negligible in comparison.

7. RELATED WORK
Efficient evaluation. Previous work has considered effi-
cient evaluation for general classifiers, through approaches
such as importance sampling [25], stratified sampling [3, 14]
and semi-supervised inference of Bayesian generative mod-
els [27]. However, none of this work accounts for the specific
features of ER evaluation, namely extreme class imbalance,
and the availability of auxiliary information in the form of
similarity scores.

(a)

(b)

(c)

(d)

Figure 4: Convergence of the F-measure, oracle
probabilities and instrumental distribution for a run
of OASIS on the Abt-Buy SVM dataset (with cali-
brated scores and K = 30): (a) absolute error in F1/2;
(b) absolute error in π; (c) absolute error in v?; (d)

KL divergence from v? to the estimate v?(t).

Bennett & Carvalho [3] outline an adaptive method for
estimating precision that stratifies on classifier scores, sam-
pling points with probability proportional to the stratum
population and a dynamic estimate of the variance in the la-
bels. However, their method does not incorporate recall and
is not proven to be optimal. Druck & McCallum [14] extend
the work of [3] to facilitate estimation of vector-valued and
non-linear functions (including token-based accuracy and F-
measure). Both of these approaches are adaptive and biased,
although they rely purely on stratified sampling, which is
known to be less effective at variance minimisation than im-
portance sampling [24]. We also note an exception in [14]:
the method proposed specifically for estimating F-measure
is based on proportional stratified sampling, which is neither
adaptive nor biased.

Welinder et al. [27] propose an estimation procedure for
precision-recall curves, based on a Bayesian generative model.
Their method is semi-supervised and makes use of the clas-
sifier scores, but it doesn’t incorporate biased sampling or
adaptivity, making it unsuited to problems with class im-
balance. It also imposes a restrictive assumption on the
joint distribution of scores and labels, requiring the user to
guess an appropriate parametric distribution. Another non-
adaptive approach is the IS method of Sawade et al. [25].
It facilitates the estimation of F-measures, relying on the
asymptotically optimal distribution of equation (5). The
authors address the instrumental distribution’s dependence
on unknown quantities by estimating them using classifier
scores. However if the scores are inaccurate or merely un-
calibrated, the method will be sub-optimal as it does not
actively adapt using incoming labels.

Adaptive importance sampling (AIS). A broad litera-
ture covers AIS, however to our knowledge, no prior work

1332



Figure 5: Expected absolute error in F̂1/2 for five
classifiers trained on the Abt-Buy dataset. The er-
ror is measured after 5000 labels are consumed by
each method (Passive, Stratified, IS, OASIS). The
error bars are approx. 95% confidence intervals.

specialises these techniques to evaluation. A significant draw-
back of previous AIS algorithms, is that they discard and
resample at each iteration, which is prohibitively wasteful
when performing efficient evaluation. One of the earliest
AIS algorithms is Population Monte Carlo (PMC), which
maintains an entire population of instrumental distributions,
updating them using propagation and resampling steps [5].
Standard formulations of PMC use only the previous sample
when updating distributions, reducing statistical efficiency.
Previous proofs of consistency also assume that the popula-
tion grows to an infinite size [13, 4]. A more recent AIS al-
gorithm is Adaptive Multiple Importance Sampling (AMIS)
which is “aimed at an optimal recycling of past simulations
in an iterated importance sampling (IS) scheme” [11]. Un-
like PMC, AMIS makes use of the entire history of samples
and instrumental distributions, to update the importance
weights and instrumental distribution. However, it is not
applicable in the efficient evaluation context because it re-
quires an increasing sample to be drawn at each iteration,
which would consume realistic label budgets too quickly.

8. CONCLUSIONS
We have proposed a novel adaptive importance sampler

OASIS for estimating the F-measure of ER pipelines. We
leverage ER similarity scores through a stratified Bayesian
generative model, to update an instrumental sampling dis-
tribution that optimises asymptotic variance. Statistical
consistency establishes correctness of OASIS, while exten-
sive experimentation demonstrates significant reduction to
label budget relative to existing approaches.
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