
Minimal On-Road Time Route Scheduling on
Time-Dependent Graphs

Lei Li∗, Wen Hua∗, Xingzhong Du∗, Xiaofang Zhou∗†
*School of Information Technology and Electrical Engineering, The University of Queensland, Australia

†School of Computer Science and Technology, Soochow University, China

{l.li3, w.hua, x.du, uqxzhou}@uq.edu.au

ABSTRACT
On time-dependent graphs, fastest path query is an impor-
tant problem and has been well studied. It focuses on min-
imizing the total travel time (waiting time + on-road time)
but does not allow waiting on any intermediate vertex if the
FIFO property is applied. However, in practice, waiting on
a vertex can reduce the time spent on the road (for exam-
ple, resuming traveling after a traffic jam). In this paper, we
study how to find a path with the minimal on-road time on
time-dependent graphs by allowing waiting on some prede-
fined parking vertices. The existing works are based on the
following fact: the arrival time of a vertex v is determined
by the arrival time of its in-neighbor u, which does not hold
in our scenario since we also consider the waiting time on u
if u allows waiting. Thus, determining the waiting time on
each parking vertex to achieve the minimal on-road time be-
comes a big challenge, which further breaks FIFO property.
To cope with this challenging problem, we propose two effi-
cient algorithms using minimum on-road travel cost function
to answer the query. The evaluations on multiple real-world
time-dependent graphs show that the proposed algorithms
are more accurate and efficient than the extensions of ex-
isting algorithms. In addition, the results further indicate,
if the parking facilities are enabled in the route scheduling
algorithms, the on-road time will reduce significantly com-
pared to the fastest path algorithms.

1. INTRODUCTION
With the prevalence of GPS enabled devices and wireless

network, navigation systems have been widely adopted by
public transportation, logistics, private vehicles and a broad
range of location-based services. Essentially, it is the path
planning algorithm that plays the vital role in those navi-
gation systems, which helps people travel more smartly and
more predictively. In the past decades, different path plan-
ning algorithms are proposed for various application scenar-
ios and requirements. For example, shortest path algorithms
[1, 2, 3, 4] find a path with the minimal distance between

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/07.

origin and destination, while fastest path algorithms return
a path with the least total travel time given a static traffic
condition [5]. If a user is allowed to depart from any time
during a certain period, another set of fastest path algo-
rithms can be used [6, 7, 8, 9, 10, 11] to find the optimal
departure time with the least total travel time. Moreover,
path planning algorithms for earliest arrival and latest de-
parture [12, 13] are also important in transportation.

The common optimization goal of the above path planning
algorithms is the total travel time, which is the difference be-
tween departure time and arrival time, and is made up of
on-road time and waiting time. In a time-dependent road
network where the cost associated with road segment can
change over time, the existing path planning problem makes
use of an important observation known as the FIFO prop-
erty, which means a vehicle enters a road segment first will
also reach the end of road segment first in spite of the time-
dependent nature [5]. So for an FIFO road network, there is
no need to consider waiting during travel since waiting can
only increase the total time. However, for many users such
as logistics companies with heavy trucks, the actual on-road
time (i.e., the time when the engine is running) becomes
critical as it directly relates to fuel consumption which can
be as high as 80% of their operational cost. As long as the
goods can be delivered on time, reducing the actual on-road
time can be more economic than arriving the destination
earlier. On the other hand, tourists would also like to re-
duce their time spent on road so that they can spend more
time on the tourist attractions. On a bigger view, the more
cars that reduce their on-road time, the better traffic con-
dition there would be, which would lead to less exhausted
emission and a better environment. This motivates us to
study a new kind of path planning algorithm that optimizes
the on-road time by waiting strategically in certain places
along the route in order to avoid predictable traffic jam. To
better understand how waiting can shorten the on-road time
when traveling, consider the road network with five vertices
shown in Figure 1. Three of them are ordinary vertices, and
two of them are parking vertices that allow waiting. The
traveling cost functions are shown in Figure 1(b)-(f). Sup-
pose the starting time from v1 is 0 and the latest arrival
time at v5 is 130. The fastest path takes 105 time units
(v1 → v2 : 40; v2 → v3 : 70; v3 → v5 : 105), and its on-road
travel time is also 105. However, if we still start from v1 at 0
and arrive v2 at 40, but travel from v2 to v4 and arrive v4 at
95, the current on-road time is 95. Then we wait on v4 and
depart on 120, the cost from v4 to v5 reduces to 5. So the
on-road travel time of this path is 100. So by taking advan-

1274

Figure 1: A road networking with parking vertices
(a) and the corresponding time-dependent weight
for each edge over time domain (0 - 150) (b) - (f)

tages of these parking vertices, we can obtain a route that
has shorter on-road travel time. More application scenar-
ios are explained in Section 4.4 after the algorithm is fully
described.

In this work, we model a road network as a time-dependent
graph, whereas each edge is associated with a function that
returns the time cost of traveling the edge for a given de-
parture time from the starting vertex. There are two types
of vertices in this graph: ordinary vertices that do not allow
waiting, and parking vertices that do. This model consid-
ers the phenomenon that some vehicles may choose to stop
at some places to avoid traffic jams. The proposed query,
minimal on-road time path query (MORT), aims to find a
path that consists of not only a consecutive of edges in the
road network, but also a waiting plan that determines the
amount of time to stop at a parking vertex in order to mini-
mize on-road time. So it is actually a route scheduling algo-
rithm rather than a path planning problem. This is different
to the previous problems that aim at minimizing the total
travel time which includes both the on-road time and wait-
ing time. Clearly, a MORT query is more complicated than
traditional path planning queries that minimize the total
travel time. First of all, it needs to decide whether wait-
ing at certain parking vertices, or even taking a detour to
a parking vertex, can save on-road time at all. Secondly, if
waiting on this parking vertex has benefit, it needs to further
determine the waiting time on it. Finally, because waiting
on any vertex is allowed, the graph that MORT query runs
on does not need to follow FIFO property, which is the basis
of all the existing algorithms.

In fact, the existing path planning algorithms cannot solve
this problem even under FIFO setup. First of all, the short-
est path algorithms [1, 2, 3, 4, 14] only works with static
edge weights. Thus, it cannot handle the time-dependent
costs. Secondly, the single starting-time fastest path(SSFP)
algorithm [5] does not allow waiting at any vertex. Even
though it has the ability to cope with time-dependent costs,
it cannot solve our problem. Finally, the interval starting-
time fastest path(ISFP) algorithms [6, 7] allow waiting on
the starting vertex, but they do not allow waiting on the in-
termediate vertices since it would simply result in a longer
total travel time. One naive approach to find an approx-
imate MORT path based on ISFP algorithms is to select
the optimal waiting time on each parking vertex along the

path in a greedy fashion. Firstly, it runs ISFP algorithm
on the starting vertex to get the optimal departure time t∗s
on starting vertex vs. Then, it runs ISFP algorithm on the
first parking vertex vp1 along the path with its arrival time
from vs at time t∗s as the starting time, and gets the optimal
departure time t∗p1 from vp1. After that, it runs the ISFP on
the first parking vertex along the new path from vp1 again
to get its optimal departure time. The procedure runs it-
eratively until the destination vertex is reached. However,
this approach has two problems: Obviously, it runs ISFP
multiple times, so its computation time is long. A more
serious problem is that this approach has no guarantee to
find the optimal solution at all as it is a greedy method with
no backtracking (the first parking site on a route is just an
accidental stop point from a path that has not considered
parking as an optimization option).

In this paper, we propose two algorithms to find the mini-
mal on-road travel route. Both of them construct and main-
tain a set of Minimum Cost Functions to record the minimal
on-road time from the starting vertex to the other vertices
at different arrival time. The first algorithm builds the min-
imum cost functions over the whole query time interval it-
eratively in a Dijkstra way, while the second algorithm con-
structs it sub-time-interval by sub-time-interval instead. We
observe a non-increasing property for the parking vertices,
which integrates the waiting time benefit into the minimum
cost function. Both of them support user specifying different
minimum staying times when waiting on parking vertices.
We also provide a route retrieval solution to return routing
schedule satisfying user’s requirement on the arrival time. It
is worth noting that our MORT algorithm is more general
than the existing time-dependent path algorithms. First of
all, if we treat the parking vertices as normal vertices, our
algorithm can solve the ISFP problem. Moreover, if we fur-
ther prohibit waiting on starting vertex, our algorithm can
solve the SSFP problem. In fact, both ISFP and SSFP are
the special cases of MORT.

In summary, our contributions are listed as follows:

• We identify a general form of time-dependent route
scheduling problem, called MORT, to make use of park-
ing facilities in a road network to minimize the on-road
travel time, instead of the total travel time.

• We propose a minimum cost function and two novel
algorithms to solve the MORT route scheduling prob-
lem efficiently. Our algorithms can handle real-life
road network with dynamic and complex speed pro-
files. Both of them are able to address other existing
types of time-dependent path planning problems if no
parking vertices are considered.

• The Basic MORT Algorithm performs the MORT sea-
rch for a vertex after each iteration, until the destina-
tion is reached. We show that its time complexity
is O(T |V | log |V | + T 2|E|). The Incremental MORT
Algorithm runs MORT search for each vertex starting
from a small subinterval to fill the full time interval in-
crementally, and its time complexity is O(L(|V | log |V |
+|E|)). Both algorithms require O(T (|V |+|E|)) space.
T is the average number of turning points in minimum
cost functions, and L > T is the average number of
subintervals during computation.

1275

• We evaluate the effectiveness and efficiency of our MORT
algorithms with extensive experiments on road net-
work and small world graphs, measuring both the re-
duction of the minimal on-road time and the algorithm
running time.

The rest of the paper is organized as follows. Section 2
discusses the related work. We formally define the mini-
mal on-road time problem in Section 3. Section 4 presents
the two MORT algorithms with correctness and complexity
analysis. An empirical study is shown in Section 5. Our
conclusions can be found in Section 6.

2. RELATED WORK
In this section, we review the previous works on model-

ing time-dependent road network and position our work by
discussing the difference from the fastest path problems.

The simplest model of the time-dependent road network is
the discrete time-dependent graph (or “timetable” graph),
of which the existence of each edge is time-dependent. A
few path planning algorithms such as earliest arrival time
path, latest departure time path, shortest path and shortest
duration time path have been proposed on such graphs. [15]
proved that these queries could be solved with a modified
version of the Dijkstra algorithm. However, it does not scale
well with the size of the network. Several techniques are
proposed to improve the efficiency [16, 12, 13], but they
only work on timetable graphs.

A more precise way to describe a time-dependent road
network is to use the continuous time-dependent cost func-
tion. Fastest path query has been well studied that aims
to find a path with the minimum wTOT including waiting
time. Dreyfus [5] first showed the time-dependent fastest
path problem was solvable in polynomial time if the graph
is restricted to have FIFO property. Other early theoreti-
cal works on this problem include [17] and [18]. However,
these algorithms are very difficult to implement, and no em-
pirical evaluation results were reported. Most of the recent
path planning algorithms on road network share a common
assumption that the travel along a road follows FIFO prop-
erty, which means a vehicle starting earlier will not arrive
destination later regardless of the time cost of edges. Due
to this property, waiting on a vertex always results in a
longer total travel time. So these algorithms do not con-
sider waiting on vertices actually. We briefly discuss some
representative fastest path algorithms below.

Single Starting-Time Fastest Path(SSFP) algorithm does
not allow waiting on the starting vertex. This problem can
be solved in O(|V | log |V |+ |E|) time by minor modification
on Dijkstra’s Algorithm if FIFO property holds [5]. The
algorithm can answer both Earliest Arrival Path and Latest
Departure Path, with the same computational complexity.

Interval Starting-Time Fastest Path(ISFP) algorithm al-
lows waiting on the starting vertex in a given starting time
interval. But once departing, no waiting is allowed along
the path. The difference between ISFP and MORT is il-
lustrated in Figure 2. Moreover, ISFP only returns the op-
timal departure time from starting vertex vs, while MORT
needs to determine the optimal departure time from each
parking vertex along the path. It is proved in [19] that the
theoretical lower-bound of ISFP is Ω(T (|V | log |V | + |E|))
[19], where T is the average number turning points in the

… … …

…

Total Travel Time 𝑤𝑤𝑇𝑇𝑇𝑇𝑇𝑇(𝑝𝑝) = 𝛼𝛼(𝑣𝑣𝑑𝑑) − 𝛽𝛽(𝑣𝑣𝑠𝑠)

On-Road Travel Time 𝑤𝑤𝑂𝑂𝑂𝑂𝑂𝑂(𝑝𝑝) = ∑ 𝑤𝑤(𝑣𝑣𝑖𝑖−1, 𝑣𝑣𝑖𝑖 ,𝛽𝛽(𝑣𝑣𝑖𝑖−1𝑘𝑘
𝑖𝑖=1))

Time

Figure 2: Comparison between total travel time and
on-road travel time. Thick bar: Waiting time on a
parking vertex; Circle: No waiting on the vertex;
Arrow: Travel time from one vertex to another

result functions if the weight functions are piecewise lin-
ear. Currently no existing algorithm can achieve this bound
because T could be large and it is hard to find the depar-
ture time points that would result in the T turning points.
Some early works like DOI [8] and [20, 11] select k � T
starting time points in the starting time interval and run
SSFP k times. Obviously, this approach has no guaran-
tee to find the optimal departure time, and both the run-
ning time and accuracy highly depend on the choice of k.
[6] proposed a path selection and time refinement approach
using the heuristic of A* -algorithm. They computed an
arrival time function for each vertex iteratively and used
A* -algorithm to reduce the searching space. However, it is
hard to find an appropriate heuristic condition on a time-
dependent graph. [7] applied a more precise refinement ap-
proach that expanded the time interval step by step rather
than computing the entire time interval iteratively. It could
avoid unnecessary computations and achieve better perfor-
mance, although time complexity remained the same. It has
a complexity of O(α(T̂)(|V | log |V | + |E|)), where T̂ is the

size of the whole time domain, and α(T̂) is the complexity to
maintain the time-dependent functions. Although it is not
pointed out in their paper, α(T̂) actually has a much larger
value than the turning point number in the final functions.
Other works further build different kinds of indexes to speed
up fastest path query, such as time-dependent CH [21] and
time-dependent SHARC [22].

Although ISFP is different from MORT, we can adopt it
as our baseline algorithm by invoking the algorithms in [6, 7]
recursively to get an approximate result. [23, 24] take wait-
ing on intermediate vertices into consideration in their prob-
lems. But they allow waiting on any vertex, which does not
make sense in real life. In fact, [23] cannot solve our problem
directly and has a time complexity of O(|V | log |V |+T |V |+
T 2|E|), which means it cannot guarantee the optimal result
actually since each vertex is visited once. As for [24], they
define a time-dependent weight function w(vi, vj , t) and a
cost function c(vi, vj , t) for each edge (vi, vj), and aim to
find the path with minimum cost, not the minimum weight.
But they set the cost functions to linear constants. So rather
than confronting with the complex linear piecewise weight
functions, they only have to deal with a small set of constant
values, which actually simplifies the problem by converting
the complex functions to constant values, even though the
problem description looks more complicated. Thus, their
algorithm cannot find the minimum on-road time (or the
minimum weight under their scenario).

1276

3. PROBLEM DEFINITION
A time-dependent road network can be represented as a

directed graph G(V,E), where V is a set of vertices and
E ⊆ V ×V is a set of ordered pairs of vertices, with a weight
function w : (E, t) → R mapping edges to time-dependent
real-valued weights. The weight of an edge e(u, v) ∈ E at
time t in a time domain T is w(u, v, t), which represents
the amount of time required to reach v starting from u at
time t. In this paper, we only consider the case where the
weight of an edge can change over time, but not the case
where the structure of a graph can change over time (i.e., V
and/or E remain to be static over time). This is a reasonable
assumption, as the structure of a road network changes much
less frequently compared with the traffic situations. We also
define w(u, v, t) =∞ if there is no edge from u to v.

A path from u to v in G can be represented as p =<
v0, v1, . . . , vk >, where v0 = u, vk = v, and (vi−1, vi) ∈ E
for any 1 ≤ i ≤ k. Let α(vi) and β(vi) be the arrival and
departure time at vi ∈ p, the time-dependent cost of p is
the sum of the time-dependent weights of its edges w(p) =∑k

i=1 w(vi−1, vi, β(vi−1)). This cost is ∞ by definition if
there is no path from u to v in G.

Now let us differentiate two different types of cost for a
path: the total travel time wTOT (p) = α(vk)−β(v0) and the

on-road travel time wORT (p) =
∑k

i=1 w(vi−1, vi, β(vi−1)).
Although wORT (p) looks identical to w(p) above, the differ-
ence here is that for a vertex vi ∈ p, it is no longer necessary
to have α(vi) = β(vi). In other words, the traveler can stop
at a vertex if that can help to reduce the on-road travel time.
It is trivial to see that α(vi) = β(vi−1)+w(vi−1, vi, β(vi−1))
for i > 0, and β(v0) is the selected depart time by a path
planning algorithm.

The problem to find shortest/fastest path from u to v is
to find such a path p(u, v) with minimum cost w(p). Most
existing works on this topic have an implicit assumption
that for any vertex v ∈ p, α(v) = β(v) (e.g., a traveler can-
not stop at any vertices along the path). These algorithms
focus on wTOT cost. In that case, a traveler departs ear-
lier will aways get to the destination earlier (known as the
FIFO property [5]). With this setting, travelers always keep
β(v) = α(v) for any vertex v on a path to achieve optimal
wTOT . Some recent works have noticed that, in order to op-
timize wORT instead of wTOT , it can be beneficial to delay
the departure time at the starting vertex [6, 7]. However,
there are more vertices than just the source vertex in a road
network where a vehicle can stop for a period of time. Let
V ′ ⊆ V be a set of parking vertices in G where a vehicle can
wait voluntarily for a minimum amount of time tmin before
traveling again. In other words, β(v) − α(v) ≥ v.tmin if
v ∈ V ′, and β(v) = α(v) if v ∈ V − V ′. This should not be
confused with the case that a vehicle stops in a traffic jam
or in front of a traffic light; these forced stops are captured
by the weight function of w(u, v, t) already.

We are ready to define the problem we address in this
paper as follows.

Definition 1. (Minimal On-Road Time Route Sche-
duling Problem). Given a directed graph G = (V,E) with a
set of parking vertices V ′ ⊆ V , each of which has a minimum
staying time vi.tmin and a time-dependent edge weight func-
tion w, a query QMORT (vs, vd, ts1, ts2, td) is to find a path
from vs to vd, represented as p =< v0, v1, . . . vk >, such that:
(1) vs = v0 and vd = vk; (2) β(vi) = α(vi) if vi ∈ V − V ′

and β(vi)−α(vi) ≥ vi.tmin if vi ∈ V ′; (3) ts1 ≤ β(vs) ≤ ts2;

(4) α(vd) ≤ td; and (5) w(p) =
∑k

i=1 w(vi−1, vi, β(vi−1)) is
minimal among all possible paths meeting the conditions (1),
(2), (3) and (4).

Condition (1) means that p is a path from vs to vd and
condition (2) allows the traveler to stop and wait only at
a parking node for a minimum period of time. Conditions
(3) and (4) define that the traveler must depart vs during
the specified time interval and must arrive at vd before the
given latest arrival time td. If there does not exist a path
meeting these four conditions, the cost to travel from vs to
vd is defined as ∞. Condition 5 requires the path to have
the minimal on-road travel time.

If the edge weight is not time-dependent (i.e., the weight
for each edge is static), a MORT query reduces to traditional
shortest path queries in a static road network [1]. Besides,
the time-dependent query studied in [6, 7] is a special case
of the MORT query where parking node set V ′ = {vs}.

4. ALGORITHM
In this section, we describe our MORT algorithms in de-

tail. The key idea is that we define and maintain a varia-
tional piecewise Minimum Cost Function Ci(t) for each ver-
tex vi. Ci(t) returns different minimal on-road travel time
from vs to vi given different arrival time t, so it has the po-
tential to model traffic tendency more accurately. Based on
the new cost function, we design two algorithms to expand
the MORT path step by step in a Dijkstra way: (1) the Ba-
sic MORT Algorithm constructs Cd(t) by updating Ci(t) of
each visited vertex over the whole time interval, and finishes
expanding until Cd(t) is stable; (2) the Incremental MORT
Algorithm decomposes Cd(t) into different parts according
to the query time sub-intervals, and finishes expanding until
each part of Cd(t) is complete. Both of these algorithms do
not require the graph to follow FIFO property. Although
our path expanding algorithms are able to find the MORT
time, its result is not a route schedule, which is the expected
output of MORT problem. To address that, path retrieval
is introduced to generate the final results. Considering scal-
ability is important for route scheduling, we present the cor-
rectness and complexity analysis of the proposed method at
the end of each subsection.

4.1 Algorithm Outline
Given a time-dependent graphG(V,E) and a MORT query

QMORT (vs, vd, ts1, ts2, td), the proposed algorithm generates
the minimal on-road time Rp∗

s,d
and the corresponding route

with traveling schedule p∗s,d. The whole process can be di-
vided into three parts as below:

1. Active Time Interval Profiling (ATI) computes
the active time interval Ti for each vertex vi, which is
bounded by a pair of earliest arrival time vi.tEA and
latest departure time vi.tLD.

2. Path Expansion finds the path with minimum on-
road travel time in a Dijkstra way and produces the
Minimum Cost Functions of the visited vertices.

3. Route Retrieval returns the actual route schedule
with user specified arrival time.

In the following subsections, we will introduce each part
of the proposed algorithm thoroughly except for the path

1277

Table 1: Important Notations
Notation Description

Ti Active Time Interval of vi
Ii [vi.tEA, τi] ⊆ Ti

τi upper bound of Ii
Ci(t) minimum cost function of vi
gf,i(t) Cf (t) + w(vf , vi, t)
g′f,i(t) non-increasing version of gf,i(t)
C′i(t) min(Ci(t)), gf,i(t)

expansion part. The full details of the path expansion which
are the major contributions in this work will be presented
in Section 4.2 and 4.3, respectively. We further explain how
to apply our algorithms to different scenarios in Section 4.4.

4.1.1 Active Time Interval Computation (ATI)
The MORT query specifies a departure interval [ts1, ts2]

on vs and a latest arrival time td on vd. With these con-
straints, the route schedule is roughly outlined but loose
for other vertices. If the graph does not follow FIFO, we
have to use this loose time interval. Otherwise, we could
reduce the computation load by computing an active time
interval (ATI) for each vertex in the proposed algorithms.
An active time interval (ATI) of a vertex vi is denoted as
Ti = [vi.tEA, vi.tLD], which is bounded by a earliest arrival
time vi.tEA (we cannot arrive vi any earlier) and a latest
departure time vi.tLD (we will never arrive vd before td if
it departs from vi any later). It models a vehicle’s possible
occurrence interval on the corresponding vertex under the
query constraints (ts and td). ATI is very important for the
proposed algorithm since it is the basis of the other parts.
In the following, we will introduce how the ATI is computed
for each vertex.

ATI, as well as all the following calculations, are computed
from speed profile. In a speed profile, each edge (vi, vj) is as-
sociated with a function w(vi, vj , t) whose parameter is t and
output is time cost. Compared to [24], function w(vi, vj , t)
is a combination of consecutive linear functions rather than
constant values. It obeys the FIFO and serves in the path
expansion. Notice that when t is given, we use w(vi, vj , t) to
represent the time cost of travelling from vi to vj at time t.
The speed profile is then instantiated as {(t0, w(vi, vj , t0)),
. . . , (tk, w(vi, vj , tk))}, and the intermediate values between
points are computed linearly. Figure 1(b)-(f) illustrate an
example of speed profile.

Given the proposed speed profile, the earliest arrival time
of each vertex is computed by performing SSFP from vs at
ts1. As for the latest departure time, we have to compute
from vd at td reversely, both in time and in vertex order,
respectively. After two rounds of SSFP, each vertex obtains
its active time interval, and all the future computations will
be based on the active time intervals. The ATI has the same
time complexity as Dijkstra, which is O(|V | log |V |+ |E|).

We query the road network in Figure 1 with QMORT

(v1, v5, 0, 30, 130) as an example. ATI(v1, v5, 0, 30, 130) gen-
erates the following active time intervals: T1 = [0, 25], T2 =
[40, 65], T3 = [70, 95], T4 = [95, 125] and T5 = [105, 130].

4.1.2 Minimum Cost Function
In order to model the correlations between time and cost,

we construct a minimum cost function whose value varies

with arrival time for each vertex, instead of defining the
minimum cost which is constant over time in [24]. Accord-
ingly, the output of path expansion in our work is the mini-
mal of vd’s minimum cost function. Since the minimum cost
function is the basis of the two proposed path expansion al-
gorithms, we present the definition and construction of the
minimum cost function in this part.

The minimum cost function, denoted as Ci(t), monitors
the minimum on-road cost of traveling from vs to vi that
arrives on time t. The minimum value of Ci(t) is equivalent
to the minimum on-road time (MORT) from vs to vi . For
example, Ci(300) = 50 means when it starts traveling from
vs at ts and arrives on vi at time 300, the minimum on-road
travel time (MORT) is 50. Accordingly, for the destination
vertex vd, the MORT is min(Cd(t)). In addition, for a park-
ing vertex vpi , the value of dependent variable of Cp

i (t) has
a non-increasing property:

Lemma 1. ∀vi ∈ V ′ and ∀vi.tEA ≤ ta < tb ≤ vi.tLD,
Cp

i (ta) ≥ Cp
i (tb)

The non-increasing property reveals a natural fact: If one
route schedule arriving at tb takes higher cost than another
arriving at ta, we should choose the latter one and wait
from ta to tb, which reduces the on-road time from Cp

i (tb) to
Cp

i (ta). The non-increasing property indicates that waiting
is necessary to decrease the on-road travel time.
Ci(t) is linear piecewise because it is constructed from the

speed profile which is also linear piecewise. Thus, a mini-
mum cost function Ci(t) equals a set of consecutive discrete
linear functions. These functions share the end points and
are maintained in the ascending order of time. Based on
that, the cost function of a vertex is denoted as an ordered
point set Si = {(t0, Ci(t0)), ..., (tk, Ci(tk))}. The update of
Si is achieved by merge. For instance, suppose C′i(t) is the
current minimum cost function of vi, and C′′i (t) is another
minimum cost function provided by another path to vi, the
new Ci(t) is formed by merging the smaller parts of these
two functions: min(C′i(t), C

′′
i (t)).

4.1.3 Route Retrieval
The route retrieval generates the route schedule based

on the user specified arrival time using the minimum cost
functions. For each turning point in the ordinary vertices’
minimum cost functions, we store its predecessors. For the
parking vertices, apart from the predecessors for the turning
points, we also need to store the points that happen to have
the same value as the current cost (no turning point added
because it is not smaller). This predecessor cache has the
same space complexity as the minimum cost functions.

If t is a user-specified arrival time, we can traverse the
vertices back from vd at time t. In this backward traversal,
suppose we are visiting vi at ti. Firstly, if vi is an ordinary
vertex, we find the latest turning point (t′i, Ci(t

′
i)) in Ci(t)

such that t′i ≤ ti, and use its predecessor as the next visiting
vertex. The arrival time is the same as ti. Secondly, if vi
is a parking vertex, we also find the latest turning point
(t′i, Ci(t

′
i)) in Ci(t) with t′i ≤ ti. However, the arrival time

is t′i rather than ti. If the turning point has more than one
predecessor, or the parking vertex has more than one points
with the same cost, we can traverse the graph in a DFS
way to output more than one routes for users to choose.
Obviously, this approach takes O(k) time, where k is the
number of vertices along the route.

1278

Figure 3: Minimum Cost Function Update
(a) gf,i(t) and Ci(t) for ordinary vertex vi. (b) Re-
sult of min(gf,i(t), Ci(t)) for ordinary vertex vi. (c)
gf,i(t) and Ci(t) for parking vertex vi, Ci(t) is non-
increasing. (d) gf,i(t) applies non-increasing. (e) Result
of min(gf,i(t), Ci(t)) for parking vertex vi

4.2 Basic MORT Algorithm
The Path Expansion in Basic MORT algorithm uses a

Dijkstra way to find the MORT from vs to other vertices.
Instead of using the shortest distance as the sorting key, we
use the minimum value of each vertex’s min(Ci(t)). Each
time we visit a vertex, we update its neighbors’ Ci(t) over
their ATI, until Cd(t) is guaranteed stable. We first describe
how to update the minimum cost function in 4.2.1, then
present path expansion in 4.2.2. Correctness and complexity
are proved in 4.2.3 and 4.2.4.

4.2.1 Minimum Cost Function Update (MCFU)
Each time we visit a vertex, we update its out-neighbor’s

Ci(t). From vi’s point of view , its Ci(t) can only be up-
dated by its in-neighbors. Suppose vf is vi’s in-neighbor,
Cf (t) is vf ’s minimum cost function and w(vf , vi, t) is the
weight function on edge (vf , vi). We use gf,i(t

′) = Cf (t) +
w(vf , vi, t), t

′ = t + w(vf , vi, t) to denote the cost to travel
from vs to vi via vf . Depending on whether vi is a parking
vertex or not, we update Ci(t) differently.

The update of ordinary Ci(t) has two steps as shown in
Figure 3(a)-(b). We first calculate gf,i(t)(dot line). Then
we compare gf,i(t) with original Ci(t) (dash line) and use
the smaller parts of the two functions as the new mini-
mum cost function C′i(t) (solid line). We use the line seg-
ment intersection detection technique to compute C′i(t) =
min(Ci(t), gf,i(t)).

However, if vi is a parking vertex, we cannot use gf,i(t)
directly since the result of min(Ci(t), gf,i(t)) may not fol-
low non-increasing property. So we convert gf,i(t) to its
non-increasing version g′f,i(t) first before computing C′i(t).
Figure 3(c) shows the non-increasing Ci(t) and a ordinary
gf,i(t). We convert gf,i(t) into its non-increasing version
g′f,i(t) in Figure 3(d), and then compute C′i(t) in Figure
3(e). The correctness is guaranteed by the following lemma.

Lemma 2. If both Ci(t) and g′f,i(t) are non-increasing,
then C′i(t) = min(Ci(t), g

′
f,i(t)) is also non-increasing.

Proof. ∀ta < tb ⇒ Ci(ta) ≥ Ci(tb), gf,i(ta) ≥ gf,i(tb).
(1) If min(Ci(ta), gf,i(ta)) = Ci(ta) and min(Ci(tb), gf,i(tb)
= Ci(tb), Ci(ta) ≥ Ci(tb), non-increasing holds. (2) If min(
Ci(ta), gf,i(ta)) = gf,i(ta) and min(Ci(tb), gf,i(tb) = Ci(tb),

p
p

p

p

P’

d > 0

d < 0

d < 0

d > 0

p
p

p

p

P’

d > 0

d < 0

d < 0

d > 0

(a) (b)

Figure 4: Line Segment Intersection

gf,i(ta)¬gf,i(tb)¬Ci(tb), non-increasing holds. The remain-
ing two situations are similar.

In order to guarantee the minimum staying time on the
parking vertices, we attach a user specified value vi.tmin

on each vi ∈ V ′. When computing gf,i(t) from a parking
vertex vf to vi, the departure time from vf is changed to
t′ = t+ vf .tmin. Thus, the arrival time on vi further grows
to t′′ = t′ +w(vf , vi, t

′). So gf,i(t
′′)← Cf (t′) +w(vf , vi, t

′).
The details of MCFU is shown in Algorithm 1. Suppose

vf is the current visiting vertex and vi is vf ’s out-neighbor.
MCFU computes the updated C′i(t) using Cf (t) and the
edge weight w(vf , vi, t). It works in a sweeping-line way.
Line 2-6 compute the cost to vi via vf . If vf is a parking
vertex, then minimum staying time is applied. If vi is a
parking vertex, a non-increasing version g′f,i(t) is generated
(Line 7-8). Then it visits the line segments in the Ci(t)
and g′f,i(t) together one by one. Initially, it retrieves the
first line segment in Ci(t) and g′f,i(t) (Line 9-10), and their
corresponding end points (p1, p2) and (p′1, p

′
2) (Line 12-13).

Line 14-17 use the line segment intersection technique, which
tells the position relation of two lines by computing d1, d2, d3
and d4, as illustrated in Figure 4. If d1 > 0, d2 < 0, d3 < 0
and d4 > 0 (Line 18), it is guaranteed that the line segments
has an intersection point p′ and line segment (p1, p

′) should
appear in C′i(t). If d1 < 0, d2 > 0, d3 > 0 and d4 < 0 (Line
22), the line segment (p′1, p

′) should appear in C′i(t). Then
the corresponding points are updated in Line 21 or Line 25.
The loop recurs until it reaches the last end points.Given
the active time interval has T time units. In the worst case,
there are T end points in the cost function. Within the
update of each line segment, it only costs constant time. So
the time complexity of the Algorithm 1 is O(T).

4.2.2 Basic Path Expansion Algorithm
Path expansion algorithm maintains a priority queue Q

that uses min(Ci(t)) as keys to store all the vertices. Each
time we pop out the top vertex and update its out-neighbors’
Ci(t). This procedure runs on until Cd(t) is guaranteed sta-
ble. The details are described in Algorithm 2. Line 2-5 ini-
tialize the minimum cost function of each vertex by adding
the two end points (vi.tEA, vi.tEA − ts1) and (vi.tLD,∞).
Obviously, the source vertex’s cost is alway 0. Then these
minimum cost functions are organized into a priority queue
Q ordered by their min(Ci(t)). Each time we pop up the
vertex vi with the smallest min(Ci(t)) value in Q and use it
to update the minimum cost functions of its out-neighbors
vj using algorithm 1 (Line 12). If Cj(t) has changed and
vj is out of Q, we insert the new function back to Q. If
it is changed but still in Q, we just update its key (Line

1279

Algorithm 1: Minimum Cost Function Update(MCFU)

Input: vi’s minimum cost function Ci(t), vf ’s minimum
cost function Cf (t), the cost function from vf to vi:
w(vf , vi, t) and minimum staying time vf .tmin on vf

Output: vi’s new minimum cost function C′i(t)
1 begin
2 if vf ∈ V ′ then
3 gf,i(t

′′)← Cf (t
′) + w(vf , vi, t

′)
4 t′ ← t+ vf .tmin, t

′′ ← t′ + w(vf , vi, t
′)

5 else
6 gf,i(t

′)← Cf (t) + w(vf , vi, t), t
′ ← t+ w(vf , vi, t)

7 if vi ∈ V ′ then
8 g′f,i(t)← Non− Increase((gf,i(t))
9 t1 ← Si[0], t

′
1 ← Si[1] //Si: time points in Ci(t)

10 t2 ← Sf [0], t
′
2 ← Sj [1] //Sf : time points in g′f,i(t)

11 while t1 6= Si.end and t2 6= Sj .end do
12 p1 ← (t1, Ci(t1)), p2 ← (t2, Ci(t2))
13 p′1 ← (t′1, g

′
f,i(t

′
1)), p

′
2 ← (t′2, g

′
f,i(t

′
2))

14 d1 ← Direction(p′1, p
′
2, p1)

15 d2 ← Direction(p′1, p
′
2, p2)

16 d3 ← Direction(p1, p2, p′1)
17 d4 ← Direction(p1, p2, p′2)
18 if d1 > 0 and d2 < 0 and d3 < 0 and d4 > 0 then
19 (t′, Ci(t

′))← intersection point
20 C′i(t).insert(t

′, Ci(t
′))

21 t1 ← t′, t′1 ← t′2, t
′
2 ← Sj .next

22 else if d1 < 0 and d2 > 0 and d3 > 0 and d4 < 0
then

23 (t′, Ci(t
′))← intersection point

24 C′i(t).insert(t
′, Ci(t

′))
25 t′1 ← t′, t1 ← t2, t2 ← Si.next

26 return C′i(t)
27 Function Direction(pi, pj , pk)
28 return (pk − pi)× (pj − pi)

13-17). The algorithm terminates either when Q becomes
empty (Line 7) or when the top function’s smallest value is
larger than vd’s minimum on road cost (Line 9-10).

4.2.3 Correctness

Theorem 3. Algorithm 2 finds the MORT.

Proof. Initially, the top of Q is min(Cs(t)), which is 0
because vs is the starting vertex. Then, its out-neighbors
can all get their MORT after updated from vs. Suppose vi
is the current top item of Q and vj is vi’s out-neighbor. If
min(Cj(t)) < min(Ci(t)), then ∀∆ > 0,min(Ci(t)) + ∆ >
min(Cj(t)). So vi cannot update Cj(t)’s minimum value. In
fact, vj has already found its MORT that no vertex in Q can
reduce it. But the other parts of Cj(t) could be changed. So
if Cj(t) is changed, it is inserted back to Q. If min(Ci(t)) <
min(Cj(t)), vj might find a better path via vi and gets up-
dated. And since min(Ci(t)) < min(Ck(t)), ∀vk ∈ Q, it is
ensured that min(Ci(t)) < min(Cj(t)) + ∆, ∀∆ > 0. Thus,
vi has found its MORT that no vertex in Q can reduce it.
Finally, after themin(Ci(t)) > min(Cd(t)) pops out fromQ,
it is guaranteed that no vertex in Q can update min(Cd(t)).
Thus, vd has found its MORT.

4.2.4 Complexity Analysis
As mentioned previously, the time complexity of the ATI

algorithm is O(|V | log |V | + |E|). As for the Path Expan-
sion algorithm, we use Fibonacci Heap [25] to implement

Algorithm 2: Path Expansion Algorithm

Input: G(V,E), QMORT (vs, vd, ts1, ts2, td)
Output: Rp∗

s,d

1 begin
2 for vi ∈ V do
3 Ci(vi.tEA)← vi.tEA − ts1
4 Ci(vi.tLD)←∞
5 Let Q be a priority queue initially containing pairs

(min(Cit), vi), ordered by min(Cit) in ascending order
6 Q.insert(min(Cs(t)), vs)
7 while Q is not empty do
8 vi ← Q.pop()
9 if min(Ci(t)) ≥ min(Cd(t)) then

10 break

11 for vj ∈ vi’s out-neighbors do
12 C′j(t) =MCFU(Cj(t), Ci(t), w(vi, vj , t))

13 if C′j(t) 6= Cj(t) then
14 if vj ∈ Q then
15 Q.Update(min(Cj(t)), vj)

16 else
17 Q.insert(min(Cj(t)), vj)

18 return min(Cd(t))

the priority queue. T is used to denote the average num-
ber of turning points in Ci(t), which indicates the average
number of times a vertex’s minimum cost function would
be updated among all the vertices. So on average, Ci(t)
could be updated T times, which means vi is visited T
times. The maximum number of elements in Q is |V |, and
it takes log |V | time to pop out the top element. So it
takes O(T |V | log |V |) time in total to retrieve the top el-
ements in Q. Each edge might be visited T times to update
the corresponding minimum cost function, And MCFU also
takes O(T) time. So the update part of the algorithm takes
O(T 2|E|) time. Thus, the total time complexity of Basic
MORT Algorithm is O(T |V | log |V |+ T 2|E|).

As for the space complexity, the speed profile takesO(T |E|)
space, the minimum cost function takes O(T |V |) space, and
the graph itself takes O(|V | + |E|) space. Hence, the total
space complexity is O(T (|V |+ |E|)).

4.3 Incremental MORT Algorithm
Unlike Basic MORT which updates the minimum cost

function on the whole active time interval repeatedly, Incre-
mental MORT Algorithm uses Incremental Path Expansion
to build the minimum cost function for each vertex vi in its
Ti = [vi.tEA, vi.tLD] sub-interval by sub-interval incremen-
tally, which could reduce unnecessary computations.

4.3.1 Incremental Path Expansion Algorithm
Suppose for a subinterval Ii = [vi.tEA, τi] ⊆ Ti = [vi.tEA,

vi.tLD] , we have already computed its minimum cost func-
tion Ci(Ii). Then we extend Ii to a larger sub-interval
I ′i = [vi.tEA, τ

′
i] ⊆ Ti where τ ′i > τi and make sure Ci(I

′)
is refined. It should be noted that the current Ci(t) is con-
structed by vi’s in-neighbors, and refinement means speci-
fying a larger sub-interval within which the minimum cost
function is stable. After that, we update vi’s out-neighbor
vj ’s Cj(t) in its corresponding time interval [τ1j , τ

2
j]. v′js

Cj(t) will be refined when we visit them. When τi reaches
vi.tLD, Ci(t) is guaranteed to be refined over Ti. When τd
reaches td, the algorithm terminates. The details are shown

1280

in Algorithm 3. It is made up of two main parts: Arrival
Time Interval Extension to determine the next sub-interval
to refine, and Minimum Cost Function Update.

Algorithm 3: Incremental Path Expansion Algorithm

Input: G(V,E), QMORT (vs, vd, ts1, ts2, td)
Output: Rp∗

s,d

1 begin
2 Cs(ts)← 0, Cs(vs.tLD)← 0, τs ← ts
3 for vi ∈ V/{vs} do
4 Ci(vi.tEA) = vi.tEA − ts, τi ← vi.tEA

5 Let Q be a priority queue initially containing pairs
(τi, Ci(t)), ordered by τi in ascending order

6 while |Q| ≥ 2 do
7 (τi, Ci(t))← Q.pop()
8 (τk, Ck(t))← Q.top()
9 τ ′i ← τk +min{w(vf , vi, τk)|vf is vi’s in-neighbor}

10 for vj is vi’s out-neighbor do
11 if vi ∈ v′ then
12 C′j(t

′′)← Ci(t
′) + w(vi, vj , t

′)

13 t′ ← t+ w(vi, vj , t), t
′′ ← t′ + vi.tmin

14 else
15 C′j(t

′)← Ci(t) + w(vi, vj , t)

16 t′ ← t+ w(vi, vj , t)

17 t ∈ [τi, τ
′
i]

18 if vj ∈ V ′ then
19 C′j(t)← Non− Increase(C′j(t))

20 τ1j = τi + w(vi, vj , τi)

21 τ2j = τ ′i + w(vi, vj , τ
′
i)

22 Cj(t)← min(Cj(t), C
′
j(t), t ∈ [τ1j , τ

2
j]

23 Q.update(τj , Cj(t))

24 τi ← τ ′i
25 if vi = vd and τi ≥ td then
26 return min(Ci(t))

27 else if τi < vi.tLD then
28 Q.insert((τi, Ci(t)))

29 Rp∗
s,d

= min(Cd(t))

Initially, we set vs’s cost function to 0 in its active time
interval and set τs to the query’s starting time (Line 2).
Then we set the other vertices’ cost functions to their ear-
liest arrival time minus ts and the corresponding τi to their
earliest arrival time vi.tEA (Line 3-4). At this stage, the
subintervals of the vertices are empty. So all cost functions
are refined. We use a priority queue Q to organize the infor-
mation. The elements we insert into Q are pairs of (τi, Ci(t))
ordered by τi. The while loop (Line 6-28) updates the min-
imum cost functions and refines the subintervals. For each
element in Q, it is ensured that its minimum cost function
is well refined in its subinterval [vi.tEA, τi].

Arrival Time Interval Extension (Line 7-9): Each time we
pop out the top pair (τi, Ci(t)) from Q. As defined, Ci(t)
is well refined within subinterval [vi.tEA, τi]. Then we need
to expand this subinterval to a later arrival time such that
its well refined claim still holds. Recall that the elements in
Q are sorted by τ which is the arrival time of each vertex.
It is obvious that τi is no bigger than any τ in Q, and the
current top pair (τk, Ck(t)) has the smallest τ in Q. Thus,
for any vi’s in-neighbor vf , its refined time interval’s upper
bound τf ≥ τk. If Ci(t) needs to be updated by vf , it
would be later than τf + w(vf , vi, τk). Suppose vf has the
smallest travel cost at τk among all vi’s in-neighbors, then

no vertex can change Ci(t) before τk + w(vf , vi, τk)). That
is to say, Ci(t) is well refined in subinterval [τi, τ

′
i], where

τ ′i = τk + w(vf , vi, τk) (Line 9).
Minimum Cost Function Update (Line 10-23): For each

out-neighbor vj of vi, we compute its Cj(t) that departs from
vi within [τi, τ

′
i]. This part is similar to Basic MORT ’s but

it works on a smaller time interval. If vi is a parking vertex,
we apply minimum staying time on it (Line 11-13). If its
neighbor vj is a parking vertex, we apply the non-increasing
property on it. Then we compute the corresponding new
subinterval: lower bound τ1j is τi + w(vi, vj , τi) and upper

bound τ2j is τ ′i + w(vi, vj , τ
′
i). Finally, we compare the new

C′j(t) with the existing Cj(t) and use the smaller one as the
newly computed Cj(t), and update vj ’s function in Q. It
should be noted that although we have updated Cj(t) in a
new subinterval, it is still not well refined within it. It is
only when we actually visit vj as the top element in Q that
its refined subinterval can be expanded.

After updating, we go back to see vi itself. We first set τi
to its new value τ ′i (Line 24). If τi has already reached its
latest departure time, then Ci(t) is fully refined and we will
not need it anymore. Otherwise, it is still not well refined
and thus we insert it back to Q with the new τi as the
sorting key (Line 28). If vd is fully refined within its active
time interval, the algorithm terminates. As for the minimum
value of Cd(t), it is trivial to maintain.

4.3.2 Running Example
We continue with the example used in Section 4.1.1. After

running ATI(v1, v5, 0, 30, 130), we can get the corresponding
initial τ values (earliest arrival times): τ1 = 0, τ2 = 40, τ3 =
70, τ4 = 95 and τ5 = 105. Thus, the initial elements in Q are
< (τ1 = 0, C1(t)), (τ2 = 40, C2(t)), (τ3 = 70, C3(t)), (τ4 =
95, C4(t)), (τ5 = 105, C5(t)) >. C0(t) has two points (0, 0)
and (25, 0), and the other Ci(t) only has one point (τi, τi).

In the first iteration, v1 has the smallest τ in Q, so we
pop v1 out of Q. The current top element in Q is (τ2 =
40, C2(t)), which has the earliest refined arrival time in Q.
Thus, we use τ2 = 40 as the base time. v1 has no in-
neighbor, so min(w(vf , v1, 40)) = ∞ > v1.tLD. Then v1
is well refined in its active time interval. Now we update
v1’s out-neighbors in the refined time interval [0,25]. Be-
cause v2 is v1’s only out-neighbor and the edge cost func-
tion is w(v1, v2, t), we compute C2(t) on time interval [0 +
w(v1, v2, 0), 25 +w(v1, v2, 25)] = [40, 65]. It should be noted
that although C2(t) is newly computed, τ2 remains 40, which
means the C2(t) from t = 40 is still unrefined and might be
changed by other vertices.

In the second iteration, the currentQ is< (τ2 = 40, C2(t)),
(τ3 = 70, C3(t)), (τ4 = 95, C4(t)), (τ5 = 105, C5(t)) >. We
pop out the top element v2 and visit it. The current top
element is τ3 = 70, so none of the in-queue vertices’ refined
latest arrival time is earlier than 70, which means all the
vertices’s time interval before 70 has been used to update
their out-neighbors. For v2’s in-neighbor v1, if it departs at
t = 70, it will arrive v2 at 70 + w(v1, v2, 70) = 97.5. So it is
guaranteed that no vertices can change C2(t) in time interval
[40, 97.5]. Thus, C2(t) is refined in [40, 97.5], and its new τ2
is extended to 97.5. However, since 97.5 > v2.tLD, v2 is also
well refined in its active time interval. Then we update v2’s
out-neighbors (v3 and v4). First we consider v3. The new
time interval for v3 is [40+w(v2, v3, 40), 65+w(v2, v3, 65)] =
[70, 95]. Since the previous C3(t) has no value in [70,95], we

1281

use the new one directly. Then we update v4 in time in-
terval [40 + w(v2, v4, 40), 65 + w(v2, v4, 65)] = [95, 138.75].
However, since v4 is a parking vertex, it has to follow the
non-increasing property.

In the third iteration, Q becomes < (τ3 = 70, C3(t)), (τ4 =
95, C4(t)), (τ5 = 105, C5(t)) >. We pop out top element and
visit v3. The current top is τ4 = 95 and w(v2, v3, 95) = 30.
So v3’s refined time interval is extended to [70, 95 + 30] =
[70, 125], which is larger than v3’s active time interval. So v3
is also well refined. v3’ out-neighbor v5’s minimum cost func-
tion will be computed in time interval [70+w(v3, v5, 70), 95+
w(v3, v5, 95)] = [105, 130]. τ5 remains 105. The current Q is
< (τ4 = 95, C4(t)), (τ5 = 105, C5(t)) >.

In the fourth iteration, we visit v4 and the top element
is τ5 = 105. w(v2, v4, 105) = 100 and it extends τ4 to 205,
which exceeds v4’s active time interval, so v4 is also well
refined. We update v4’s out-neighbor v5 in time interval
[95 +w(v4, v5, 95), 125 +w(v4, v5, 125)] = [108.75, 130]. The
new C′5(t) has some lower values compared with the previous
one, so we take the lower one as the C5(t). Finally, the Q
has only one element, and we can guarantee that no vertex
can update v5 now. So the minimum on-road travel time
from v1 to v5 is 100.

4.3.3 Correctness
Before we prove the correctness of Incremental MORT

Algorithm in Theorem 6, we first prove the minimum cost
function is correctly computed. Lemma 4 proves Line 7-9 is
correct. Lemma 5 proves Line 10-23 is correct.

Lemma 4. When vi is popped out and visited, it is guar-
anteed that Ci(t) will not change in [τi, τ

′
i].

Proof. Suppose τj is the current top τ in Q. Thus,
∀τk ∈ Q, τk ≥ τj ⇒ Ck(t) is well refined before τk, which
means ∀vk → vo, Co(t) has been updated from vk before τk.
In other words, no update before time τj is possible from
now on. The earliest possible time to update from vk to
vo is τj . Suppose vf → vi, so the earliest possible time to
update from vf to vi is also τj . If we depart from vf at
τj , the earliest arrival time at vi is τj + w(vf , vi, τj). Sup-
pose w(vf , vi, τj) is the smallest among all in-neighbors of
vi, then the earliest change of Ci(t) will not happen before
τ ′i = τj +w(vf , vi, τj). So Ci(t) will not change in [τi, τ

′
i].

Lemma 5. Ci(t), where t ∈ [τi, τ
′
i], has been updated be-

fore it is refined.

Proof. τi = min{τj + w(vf , vi, τj)|∀vi}. If vf is not in
Q, then Cf (t) is already refined. So when we finish refining
Cf (t), we will update Ci(t) from vf . If vf is in Q, then
τf ≥ τj ≥ τi. Otherwise we should have visited vf earlier
than vi. Thus, vf ’s refinement lower bound is no earlier than
τj , so Ci(t) has been updated from vf at τf , which leads to
τf + w(vf , vi, τf) ≥ τ ′i . Hence, Ci(t) has been updated in
subinterval [τi, τ

′
i].

Theorem 6. Algorithm 3 finds the MORT.

Proof. Lemma 5 guarantees each Ci(t) is fully updated,
and Lemma 4 ensures the final Ci(t) is validated incremen-
tally. When vd’s τd reaches the latest arrival time td, vd’s
minimum cost function Cd(t) is fully refined and will not be
changed even if the while loop runs on. All the Ci(t) are
updated by its in-neighbors, so they are the same as Basic
MORT ’s minimum cost functions. Therefore, the minimum
value of Cd(t) is the minimal on-road travel time.

4.3.4 Complexity Analysis
The ATI takes O(|V | log |V |+|E|) time. The initialization

phase (Line 2-5) takes O(V) time. We use Fibonacci Heap
[25] to implement the priority queue. The size of Q is at
most |V |, so the extract-min operation on Q takes O(log |V |)
time. Since each vertex vi’s minimum cost function is con-
structed incrementally, we use Li to denote the number of
its subintervals. Therefore, Li is actually the number of
times vi would be extracted from Q, which takes Li log |V |
time. The update and insert on Fibonacci Heap take O(1)

time, so the maintaining of Q takes O(Σ
|V |
i=0Li|V | log |V |) =

O(L(|V | log |V |)) time, where L is the average number of
subintervals. On the other hand, during the update, we
visit all vi’s in-neighbors, which is the same as in-edges
Ein

i . So if we visit all the in-neighbors of all the vertices,

we actually visit every edge. Thus, Σ
|V |
i=0|E

in
i | = |E|. So

the total time complexity is O(Σ
|V |
i=0Li(log |V | + |Ein

i |)) =
O(L(|V | log |V |+ |E|)).

Now let’s analyze the lower-bound of Li. Firstly, suppose
τ ji is the top value in Q and τk is the head value, τ ji ≤
τk. Then τk + min(w(vf , vi, τk)) = τ j+1

i , so τk < τ j+1
i .

Eventually, we can have a Li such that τLi
i ≥ vi.td. Next,

we define η0i = vi.ts and ηj+1
i = ηji + min(w(vf , vi, η

j
i)).

Eventually, we can get a Ji such that ηJi
i ≥ vi.td. Since

for the same j, τ ji is always smaller than ηji , so we can get
Li > Ji. If we use J to denote the average number of Ji,
then the lower-bound of L is J . Obviously, J > T , so L is
also bigger than T .

For the space complexity, the time-dependent parking graph
takes O(|V | + T |E|) space. Each minimum cost function
Ci(t) takes O(T) space. Q has at most |V | elements, so the
size of Q is O(T |V |). Hence, the overall space complexity is
O(T (|V |+ |E|)).

4.4 Application Scenarios
In this section, we provide three examples to explain how

our algorithm works in different scenarios. It should be
noted that the graph structure and time-dependent infor-
mation are crucial for finding the desired results.

First, suppose a commuter wants to arrive office faster
and depart later. In fact, this is an ISFP problem, so we
can run our algorithm on a road network that only allows
waiting on the departure vertex.

Second, consider a truck driver who needs a forced rest
every period of time at the service stations along the high-
way. In this case, the graph is a network of highway, and
the parking vertices are some service stations, each has a
pre-defined minimum staying time. The traveling time be-
tween these stations roughly equals to the driver’s maximum
driving time. Therefore, the force waiting is included in the
computation and the minimum rest time is guaranteed for
safe driving.

Finally, suppose a traveler is planning a journey from one
city to another in several weeks time and wants to visit na-
tional parks along the route. In this case, the graph should
only contain the national parks as vertices and allows wait-
ing on all of them, which is another extreme case of our
model. The graph structure should express the rough trav-
eling order. In this case, it could be organized into a lay-
ered graph, and we only visit one of the vertices on the
same layer. In an extreme case when the traveler wants to
visit every park, the graph should be organized as a linear

1282

Figure 5: Results of Minimal On-Road Time

line. The edges only exist between the vertices in neighbor-
ing layers. Next, we should not use the traffic condition as
the only parameter to determine the time-dependent weight
functions. In fact, the functions should take both travel cost
and drivers’ willingness into account. For instance, it is a
journey rather than hurrying on the way, so we should avoid
the unsafe night driving. Thus, the weights during night
time should be set much higher even though the traffic con-
dition is good. In fact, all the weights for the time that are
not suitable for driving, either due to bad traffic condition
or due to travelers’ preference, should be set higher. After
that, our algorithm could find a MORT traveling schedule
on this time-dependent graph.

5. EXPERIMENTS
In this section, we present the results of a comprehensive

performance study on one real-world road networks and a
small-world graph with different speed profiles, to demon-
strate the effectiveness and efficiency of our algorithms.

5.1 Experiment Setup
We test our method on two types of graph. The first one

is a real world road network of Beijing, which consists of
302,364 intersections and 387,588 roads (60MB). The sec-
ond one is generated from Watts and Strogatz Small World
Model [26] and consists of 100K vertices and 400K edges
(36MB). Such a graph pattern can be found in many real-
life networks like social network, computer communication
network, phone call network and brain neuron network.

We generate four speed profiles for each graph. Each of
them has 50, 100, 200 and 400 random turning points in a to-
tal number of 86400 time points (second number of one day).
The values are randomly chosen from 5 to 100. The sizes of
them are around 170MB, 360MB, 670MB and 1.3GB.

We test the algorithms under four variations. The first
one is the distance of two vertices for the map and the hop
number for the other two graphs. The second one varies the
starting time interval size from 1 hour, 2 hours, 3 hours to
4 hours. The next one tests the performance under different
speed profiles (50, 100, 200, 400 turning points), and the
last one varies the percentage of parking vertices (5%, 10%,
50%, 100%).

We ran all the experiments on a Dell R720 PowerEdge
Rack Mount Server which has two Xeon E5-2690 2.90GHz
CPUs, 192GB memory and runs Ubuntu Server 14.04 LTS
operating system. All the programs run in single thread.

5.2 Comparison with Existing Algorithms
In this section, we compare the minimal on-road time

routes computed by our algorithm with paths generated by
the other path planning algorithms under different configu-
rations. We compared our methods with the following al-
gorithms: 1)SP (Shortest Path) which computes the short-
est path between two vertices. We set the departure time
randomly within the time interval. 2)EAP (Earliest Ar-
rival Path) and LDP (Latest Departure Path), which are
two bypass results when computing the minimal on-road
time. 3)FP (Fastest Path) [7]. 4)IFP (Iterative Fastest
Path) which uses the FP (Fastest Path) algorithm itera-
tively to get the approximate minimal on-road time path,
as described in Section 1. The results achieved by our algo-
rithms are labeled with MORT. We do not distinguish the
two versions of our algorithms in this experiment since they
produce the same on-road travel time.

In the first test, we change the distance between vs and
vd. We randomly select four sets of vertex pairs with the
approximate distance of around 10km, 20km, 30km, and
50km in Beijing map, and hop number of 20, 30, 40, 50
in the other two graphs. The starting time interval is set
to be 4 hours. 10% of the vertices are selected as parking
vertices. We use 100-point speed profile in this test. The
results on three graphs are shown in Figure 5(a)-(b). It is
obvious that our algorithms always produce the shortest on-
road travel time, followed by IFP and FP. As for the other
three algorithms, they do not have a chance to achieve a
shorter on-road time by changing the departure or waiting
time, so their performance is unstable and worse than the
previous algorithms in average. In addition, the time on
the map is always longer than small-world graph because it
actually has a larger number of hop numbers.

The second test varies the length of starting time interval
from 1 hour to 4 hours. The distance/hop number is set
to be 20, speed profile is 100 and parking vertex is 10%.
Figure 5(c)-(d) show the results. As the length of the time

1283

Figure 6: Algorithm Running Time

interval grows, more possible starting time emerge, so the
on-road time of FP and IFP decrease. As for MORT, it
also decreases because it has a longer time to wait for a
faster path on the parking vertices. And it decreases faster
than FP because it can get more benefits. As for the other
algorithms, they do not change much correspondingly due
to the same reason as the previous test.

The third test evaluates the influence of the speed profile,
whose turning point numbers are 50, 100, 200 and 400. The
distance/hop number is also 20, parking vertex is 10% and
the starting time interval is 4 hours. We can see from Figure
5(e)-(f) that as the total number of turning points grows, the
number of the turning points that have smaller traveling cost
also increases. So there is a higher chance for FP and IFP
to find paths with smaller on-road time. And MORT also
decreases more distinctly for the same reason.

The last test studies the influence of the park vertex per-
centage, which varies from 5%, 10%, 50% to 100%. The
distance is 20, speed profile is 100 and time interval is 4
hours. Figure 5(g)-(h) only show the on-road time of MORT
because the results of all the other methods do not change
along with the percentage of parking vertices. It is easy to
draw the conclusion that as the percentage rises, the on-
road time drops accordingly since it has more vertices able
to wait for a faster speed.

5.3 Algorithm Running Time
In this section, we compare the running time of our al-

gorithms on the three graphs under the same setting of the
previous experiments. Apart from the running time of our
Basic and Incremental algorithms, we also show the per-
formance of IFP in the first test, and Fastest Path in the
second and third tests.

Firstly, Figure 6(a)-(b) show the results under different
distances. As the distance/hop number grows, the numbers
of the visited vertices and edges also grow, so the running
time increases. Not surprisingly, the running time of IFP
soars up, so we demonstrate it in exponential step. Secondly,
the impact of time interval is illustrated in Figure 6(c)-(d).
As the interval grows longer, the active time interval also
grows, which makes the minimum cost function longer. Both
algorithms run slower because more turning points appear
in the minimum cost functions.

Furthermore, we demonstrate the running time on differ-
ent speed profiles in Figure 6(e)-(f). If the density of the
speed profile rises, the number of the turning points in the
minimum cost function also increases. However, different
from the growth of the time interval, which increases the
turning points linearly, the growth of time points in speed
profile raises the point number in minimum cost functions
more dramatically. And the Basic algorithm has higher cost
on maintaining larger cost function, so it becomes slower
than the Incremental algorithm. In addition, as shown in
Figure 6(c)-(f), FP is always slower than MORT. The rea-
son is that FP cannot apply non-increasing, so it always has
more turning points in the minimum cost functions.

Finally, we present the influence of the percentage of park-
ing vertices in Figure 6(g)-(h). Since the minimum cost func-
tion of a parking vertex is non-increasing, the number of its
turning point is smaller than the ordinary vertices. There-
fore, as the percentage of the parking vertices increases, the
total number of the turning points decreases. So the running
time drops correspondingly. We do no present the running
time of FP because its running time is not affected by the
parking vertices.

Even if our algorithms are faster than the state-of-art
fastest path algorithm, it is still slow for the long distance
query. So we will present an index to answer the time-
dependent path queries under a second in the future work.
But algorithms in this paper are the basis for the index.

6. CONCLUSION
In this paper, we have studied a new route scheduling

problem called MORT query that aims to minimize on-
road time in time-dependent graphs with parking vertices.
MORT query further generalizes the path planning problem
studied before in time-dependent graphs from allowing the
traveler to choose the optimal departure time to minimize
on-road travel time that allows multiple stops at parking
vertices. From theoretical point of view, MORT is the most
general type of time-dependent route scheduling problem,
which covers all previous problems both in terms of prob-
lem formulation and also algorithms. From practical point
of view, MORT query is useful in many applications, to
name a few, minimizing fuel consumption for trucks and ad-
vising people to stop and do other things to avoid getting

1284

stuck in heavy traffic. From algorithm design and database
query processing points of view, MORT queries are signif-
icantly more complex than time-dependent shortest/fastest
path queries. We have proposed two algorithms to do MORT
route scheduling. The Basic MORT Algorithm computes a
minimum cost function directly and takes O(T |V | log |V |+
T 2|E|) time. The Incremental MORT Algorithm reduces
the time complexity by computing the minimum cost func-
tion incrementally and takes O(L(|V | log |V | + |E|)) time.
Our extensive studies in road network and small-world graph
have confirmed that our algorithms could find minimal on-
road time paths more efficiently.

7. ACKNOWLEDGMENT
This research is partially supported by Natural Science

Foundation of China (Grant No. 61232006) and the Aus-
tralian Research Council (Grant No. LP130100164).

8. REFERENCES
[1] E. W. Dijkstra, “A note on two problems in connexion

with graphs,” Numerische mathematik, vol. 1, no. 1,
pp. 269–271, 1959.

[2] A. V. Goldberg and C. Harrelson, “Computing the
shortest path: A search meets graph theory,” in
Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics, 2005, pp.
156–165.

[3] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and
S. Zhou, “Shortest path and distance queries on road
networks: An experimental evaluation,” Proceedings of
the VLDB Endowment, vol. 5, no. 5, pp. 406–417,
2012.

[4] S. Wang, X. Xiao, Y. Yang, and W. Lin, “Effective
indexing for approximate constrained shortest path
queries on large road networks,” PVLDB, vol. 10,
no. 2, pp. 61–72, 2016.

[5] S. E. Dreyfus, “An appraisal of some shortest-path
algorithms,” Operations research, vol. 17, no. 3, pp.
395–412, 1969.

[6] E. Kanoulas, Y. Du, T. Xia, and D. Zhang, “Finding
fastest paths on a road network with speed patterns,”
in Data Engineering, 2006. ICDE’06. Proceedings of
the 22nd International Conference on. IEEE, 2006,
pp. 10–10.

[7] B. Ding, J. X. Yu, and L. Qin, “Finding
time-dependent shortest paths over large graphs,” in
Proceedings of the 11th international conference on
Extending database technology: Advances in database
technology. ACM, 2008, pp. 205–216.

[8] I. Chabini, “Discrete dynamic shortest path problems
in transportation applications: Complexity and
algorithms with optimal run time,” Transportation
Research Record: Journal of the Transportation
Research Board, no. 1645, pp. 170–175, 1998.

[9] A. Orda and R. Rom, “Shortest-path and
minimum-delay algorithms in networks with
time-dependent edge-length,” Journal of the ACM
(JACM), vol. 37, no. 3, pp. 607–625, 1990.

[10] U. Demiryurek, F. Banaei-Kashani, C. Shahabi, and
A. Ranganathan, “Online computation of fastest path
in time-dependent spatial networks,” in Advances in

spatial and temporal databases. Springer, 2011, pp.
92–111.

[11] X. Cai, T. Kloks, and C.-K. Wong, “Time-varying
shortest path problems with constraints,” Networks,
vol. 29, no. 3, pp. 141–150, 1997.

[12] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu,
“Path problems in temporal graphs,” Proceedings of
the VLDB Endowment, vol. 7, no. 9, pp. 721–732,
2014.

[13] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou,
“Efficient route planning on public transportation
networks: A labelling approach,” in Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data. ACM, 2015, pp. 967–982.

[14] B. Zheng, H. Su, W. Hua, K. Zheng, X. Zhou, and
G. Li, “Efficient clue-based route search on road
networks,” IEEE Transactions on Knowledge and
Data Engineering, 2017.

[15] K. L. Cooke and E. Halsey, “The shortest route
through a network with time-dependent internodal
transit times,” Journal of mathematical analysis and
applications, vol. 14, no. 3, pp. 493–498, 1966.

[16] R. Geisberger, “Contraction of timetable networks
with realistic transfers,” in Experimental Algorithms.
Springer, 2010, pp. 71–82.

[17] J. Halpern, “Shortest route with time dependent
length of edges and limited delay possibilities in
nodes,” Zeitschrift fuer operations research, vol. 21,
no. 3, pp. 117–124, 1977.

[18] A. Orda and R. Rom, “Minimum weight paths in
time-dependent networks,” Networks, vol. 21, no. 3,
pp. 295–319, 1991.

[19] L. Foschini, J. Hershberger, and S. Suri, “On the
complexity of time-dependent shortest paths,”
Algorithmica, vol. 68, no. 4, pp. 1075–1097, 2014.

[20] X. Cai, T. Kloks, and C. Wong, “Shortest path
problems with time constraints,” in International
Symposium on Mathematical Foundations of
Computer Science. Springer, 1996, pp. 255–266.

[21] G. V. Batz, D. Delling, P. Sanders, and C. Vetter,
“Time-dependent contraction hierarchies,” in
Proceedings of the Meeting on Algorithm Engineering
& Expermiments. Society for Industrial and Applied
Mathematics, 2009, pp. 97–105.

[22] D. Delling, “Time-dependent sharc-routing,”
Algorithmica, vol. 60, no. 1, pp. 60–94, 2011.

[23] L. Li, X. Zhou, and K. Zheng, “Finding least on-road
travel time on road network,” in Australasian
Database Conference. Springer, 2016, pp. 137–149.

[24] Y. Yang, H. Gao, J. X. Yu, and J. Li, “Finding the
cost-optimal path with time constraint over
time-dependent graphs,” Proceedings of the VLDB
Endowment, vol. 7, no. 9, pp. 673–684, 2014.

[25] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps
and their uses in improved network optimization
algorithms,” Journal of the ACM (JACM), vol. 34,
no. 3, pp. 596–615, 1987.

[26] D. J. Watts and S. H. Strogatz, “Collective dynamics
of small-worldnetworks,” nature, vol. 393, no. 6684,
pp. 440–442, 1998.

1285

