The VLDB Journal (1997) 6: 312—-332 The VLDB Journal
© Springer-Verlag 1997

A configurable type hierarchy index for OODB

Thomas A. Mueck, Martin L. Polaschek

Abteilung fur Data Engineering, Universit Wien, Rathausstr. 19/4, A-1010 Wien, Austria; e-méihueck, polaschel@ifs.univie.ac.at

Edited by E. Bertino. Received October 7, 1996 / Accepted March 28, 1997

Abstract. With respect to the specific requirements of ad- at state-of-the-art OODBMS supporting multiple inheritance
vanced OODB applications, index data structures for typethe algorithm is designed to handle this specific feature. Al-
hierarchies in OODBMS have to provide efficient supportthough our proposal does not rely orparticular multiat-
for multiattribute queries and have to allow index optimiza- tribute search structure, we provide an application example
tion for a particular query profile. based on the hB-tree [14]. Other data structures like the
We describe thenultikey type indeand an efficient im- BV-tree [7] or the hB!-tree [6] could be used without any
plementation of this indexing scheme. It meets both requiremodification of the framework. We justify our approach by
ments: in addition to its multiattribute query capabilities it a comparison of the corresponding performance figures to
is designed as a mediator between two standard design atarlier published results ([16, 20]).
ternatives, key-grouping and type-grouping. Previous work on type hierarchy indexing usestiee
A prerequisite for the multikey type index is a lineariza- structures. In [13], the indexing performance of orfetiee
tion algorithm which maps type hierarchies to linearly or- per indexed type (calle®&ingle Class Indéxis compared
dered attribute domains in such a way that each subhierarchp the Class Hierarchy Indexusing one B-tree as a stor-
is represented by an interval of this domain. The algorithmage structure for all types (further enhanced by leaf node
extends previous results with respect to multiple inheritancedirectories). TheClass Divisionapproach presented in [21]
The subsequent evaluation of our proposal focuses owgan be viewed as a mediator between these two alterna-
storage space overhead as well as on the number of disk I/@ves. Using a replication scheme for OIDs, the class divi-
operations needed for query execution. The analytical resultsion approach trades storage space and update performance
for the multikey type index are compared to previously pub-for query performance. So calldd-treesare introduced in
lished figures for well-known single-key search structures. [16], the central idea is to represent the type hierarchy in the
The comparison clearly shows the superiority of the mul-index structure by nested single-typé&-Bees.CG-treeg12]
tikey type index for a large class of query profiles. andhcC-treeq24] focus on a more general problem, namely
set membership. Technically speaking, both approaches aug-
Key words: OODB - Access methods — Indexing — Type ment B'-trees by multiple lists to group OIDs with respect
hierarchies — Multiple inheritance to set membership. Theested Inherited Indef?] and the
Generalized Nested Inherited IndgX3] are B'-tree-based
hybrid approaches supporting type membership as well as
path expressions. Multi-attribute index structures as an al-
) ternative to B-tree structures in the context of type hierar-
1 Introduction chy indexing are discussed in [21], [11], [12], [19] and [17].
A summary of various indexing approaches in the realm of
The specific performance requirements of advanced OODBYODB can be found in [3] and [18].
applications (e.g., CIM systems, geographical information The paper is structured as follows: the rest of this intro-
systems) yield additional challenges for type hierarchy in-ductory section contains a detailed problem statement and
dices. In this context, multiattribute search structures are an outline of the solution described later on. Section 2 deals
recently discussed alternative (see [21], [11], [12], [19], [17], with a selection of related work considered most relevant
and [5]) to previously used Bree structures. for the following presentation. Section 3 contains the for-
We propose the so calledultikey type indefMT-index) mal definition of the ternoptimal linearization Section 4
which supports multiattribute queries as well as data strucdescribes the hierarchy linearization algorithm as a prerequi-
ture configuration based on query profiles. At the data strucsite for the MT-index. Implementation issues are discussed
ture level, the MT-index uses the concept of multiattributejn Sect. 5, in particular, a multiattribute search structure is

search structures and prOVideS a seamless integration of th_%ed to demonstrate the potentia| of our approach. An an-
type hierarchy by means of a linearization algorithm. Aiming

313

type income weight

wl Student 20000 70

w2 TeachingAssistant 30000 91

g w3 Student 20000 65

g w4 AssistantProfessor 30000 72
f e Q, w5 FullProfessor 30000 85
; TeachingAssistant H AssistantProfessor | LFuIIProfessor—I{' | AssociateProfesstTl w6 Ass!stantProfessor 29000 93
w7 AssistantProfessor 30000 105

Fig. 2. Database instances

select x from x in person where x.income > 10000 and x.ent|
@ P Y — data structures based &ey-groupingmaintain a first-

< "01-01-1990" P
level data structure organization for key values. All ob-
ject identifiers with the same key value (e.g., all the peo-

Q. select 'x from x in facultyMember where x.income >= 20000 ple with an income of 10'000) may or may not be further
and x.income < 30000 organized with respect to their types (second-level orga-
nization);
Qs select x from x in associateProfessor where x.income < 45000 — type-groupingstructures also maintain an asymmetric
and x.entry = "08-07-1992" data organization, however, in this case the first-level
Fig. 1. Type hierarchy and example queries order criterion is the object type (e.g., all objects of

type Person are stored in one search data structure) and

second-level search structures support key value access.
alytical evaluation is presented in Sect. 6. This evaluation) o o .
contains material on the index size as well as query perfor his design decision has a major influence on the resulting

mance in case of exact match and (partial) range queries. AfO performance in case of exact match and range queries,

the end of the paper, there are conclusions and referencesndependent of the actual data structure implementation. In
general, a key-grouping type hierarchy index supports exact

match queries better than range queries, whereas for type-
grouping structures, the reverse is true.

Following from this, an indexing component should in-
gorporate the advantages of both key-grouping and type-
grouping structures, depending on concrete query profiles.

Summing up, the technical problem tackled in this paper

1.1 Problem statement

We address two independent technical issues in the conte
of object set indexing:

1. queries referring to type subhierarchies and is the design of an efficient index data structure support-
2. adaptive index organizations with respect to query pro4ng single-attribute as well as multiattribute queries in type
files. hierarchies. Additionally, the proposed index data structure

has to be configurable with respect to key-grouping ver-

ad 1 Like in SQL, any query in an OODB may refer either . . X . .

. . X . sus type-grouping. The first requirement is straightforward
toa smglg a}ttrlbute or to seyeral attributes at once (in the IatWith respect to advanced OODB applications. The second
ter case, it is callednultiattribute query). Additionally, any

query in an OODB may refer either to one type or, implicitly, requirement aims at an adaptable indexing framework in the

to a subhierarchy and therefore to a set of types. The typsense that the importance of type-grouping increases with

hierarchy and the queries of Fig. 1 illustrate the concepts‘Ehe fraction of range queries in the profile.

of single-attribute and multiattribute queries as well as the

implicit qualification of a subhierarchy by a type identifier.)

The first query is a single-attribute range query implicitly 1.2 Proposed solution

referring to all types of the hierarchpérson represents all

objects of typePerson and all objects of subtypes of type The MT-index incorporates the type hierarchy structure of a

Person). The second query is a multiattribute range query,given database scheme into a standard multiattribute search

the referenced hierarchy is a subhierarchy, thus less objeatructure in such a way that the hierarchy is mapped to one

types than in the previous example qualify for the query. Inof the attribute domains (callegpe domainin the sequel).

the third query, a single type (i.eAssociateProfessor) is The result is an index witlt + 1 keys corresponding to the

addressed. Being a multiattribute query, a range is specified indexed object properties and to one additional key repre-

for attributeincome, whereas an exact match is given for senting type membership. The principle is shown in Fig. 3.

attributeentry. Looking, for example, at query Q it qualifies instances
As the example queries show, the indexing componenbf FacultyMember as well as instances of the subtypes of

of an OODBMS has to deal with multiattribute queries as FacultyMember if these instances fulfill the query predi-

well as with type hierarchy predicates. cate. Consequently, this query contains an implicit predicate

ad 2 Focusing on the data structure implementation of aon the object type, i.ex.type < FacultyMember, where

type hierarchy index, there are two design alternatives: key< denotes the partial order relation of the type hierarchy.

grouping versus type-grouping approaches (see also [12Jsing an MT-index, implicit type predicates are mapped to

where the more general terset groupingvas used for type- ranges of the type domain. An additional benefit of the type

grouping): domain is the full control over the index data structure with

314

type domain usually a type-specific data structure has to be scanned for

Student SRS S w5 matching key values. The relationship between key-grouping
' T and type-grouping performance is as follows:
FullProfessor . . .

— Considering a particular exact match query, the 1/O

. cost for any key-grouping structure will be constant and

T smaller or equal than the 1/O cost for any type-grouping

20000 30000 income approach.
Fig. 3. 3D data space of an MT-index for two indexed propertiesdme — On the contrary, for a particular range query, the I/O
andweigh) cost for any key-grouping structure will still be constant,

however, larger or equal than the 1/O cost for any type-
grouping approach.

In the remainder of this section we present prominent exam-
ples of type-grouping and key-grouping index implementa-
tions. To justify our own proposal, we subsequently relate
the performance of the MT-index (implemented by means
of an hB-tree) to these 'Btree approaches (cf. the figures in

1/0 cost

1/0 cost

1 Number of queried types/sets Il 1 Number of queried types/sets m [16]) .
@ (b)
— grouping by type/set . .
— - grouping by key 2.1 Key grouping — the CH-index

Fig. 4a,b. Efficiency of a exact match queries arimlrange queries [12] A CH-index (class-hierarchy index [13] maintains one

search structure for all types of the indexed hierarchy and

respect to its type-grouping behavior. Basically, the parti-therefore implements a pure key-grouping strategy. The CH-

tioning strategy for the type domain immediately determinesiNdex permits eff|C|ent smgle—scan access to the instances of
the “degree” of type-grouping. Inhibiting any partitioning fa- &/l types of the indexed hierarchy. It outperforms any type-
vors key-grouping, whereas a forced total partitioning (i.e.,9"0UPing index if a query qualifies the indexed type and all

one partition per type domain value) favors type-grouping.itS subtypes or at least a major subset of'the mdexgd hierar-
Any compromise between these two alternatives is possibleSny- However, if only a few types of the indexed hierarchy
An obvious prerequisite for this mapping is a lineariza- &€ qualified by a query, a type-grouping index (see below)

tion of the type hierarchy (see Fig. 3). However, since thereP€rforms better, because only a few (small) indices have
are |T|! linearizations for a particular type s@t, one may to be scanned, in particular one for each type in the query

ask if one linearization should be preferred to another. InSCOP®- ,
what follows we B*-trees are chosen as underlying data structure (see

Fig. 5). An index record of a CH leaf node consists of
— show that some linearizations of a giv€rare better than record length, key length (for variable-length keys), key
others with respect to the resulting query performance, value, overflow page pointer, and the list of object identifiers
— present an algorithm which is able to find all optimal of objects holding the key value in the indexed attribute. The
linearizations for a given type hierarchy, object identifiers in the list are grouped by type. The key di-
— discuss an implementation using the well-known hB-tree rectory contains the offset for each type having objects in the
and list of object identifiers, thus speeding up intra-node lookup.
— justify the MT-index approach by an analytical perfor- If a query refers to a large number of types, a small
mance comparison toBree-based index structures. fraction of the OIDs found during the index traversal have

Summing up, the proposed solution is shown to be an intergo be discarded and vice versa. There are two extreme cases:

esting alternative in the context of type hierarchy indexing,If all types are qualified by the query, no OIDs will be out

. o . . ; f query scope, whereas if a query refers only to one type,
ﬁzﬁ?sc;:%a\;vdh?o%og Salgglrilggtigri indexing requirements 0f;:))robambly a large number of OIDs are fetched in vain.

Using this search structure, the wholé&tBee has to be
scanned imall cases, even if most of the entries in the leaf
nodes have to be discarded in a subsequent processing step.
In case of a query over the full type hierarchy, the CH-

. . . . index is an attractive proposal for both range queries and
Figure 4 shows the relationship between key-grouping an x ! Ve prop ge querl

) h hand and h and xact match queries. If the query refers to a subhierarchy
type-grouping on the one hand and exact match and rangg single types, exact match queries still perform well,

gueries on the other hand (performance measured in num- ;
ber of /0 operations). Using key-grouping, the number O'}R/vhereas range query performance degrades drastically.

qualified types does not influence the I/O cost of a particu-

lar query, since the number of I/O operations is determined 2 Type grouping — the SC-index and the H-tree

only by the range specified for the indexed attribute. On the

contrary, in case of type-grouping, the number of qualifiedAn early technique used in the ORION system is called
types is the main performance factor. For each qualified typesingle clasindex (SC-index) in [13]. Using single-class in-

2 Key grouping versus type grouping

315

child | bound.| child |bound. bound. | child
pointer | value | pointer| value

value | pointer

record | key key | overflow type no. | listof OIDs no. | listof OIDs sibling
length |length |value | pointer | directory [OIDs| of typel OIDs | of typem pointer

no. type type type
types ig-1 | Offset | jq.p | Offset SS idm | Offset

Fig. 5. CH-index structure

link entry
no. link | lower | upper | nested tree
entries | bound | bound pointer
.| child bound. | child link overflow | parent
pointer value | pointer entries pointer | pointer

no. |overflow| key key | no. parent |sibling
entries| pointer | length [vaue [OIDs pointer | pointer

Fig. 6. H-tree structure

dexing, the index creation for an object property requiresaccording to the supertype-subtype relationship. The refer-
the construction obne B*treefor each typen the indexed ences used to establish the nesting are used for traversal
hierarchy, thus implementing pure type-grouping. shortcuts during query execution.

Queries implicitly referring to large subhierarchies scan The motivation behind index nesting is to avfid scans
a large number of Birees. Although several trees are tra- of eachH-tree component when a number of types in the
versed, the positive aspect is that all retrieved OIDs qualifyindexed hierarchy is queried. In particular, when scanning
with regard to the object type. A favorable case is a rangehe trees of a type and its subtypes, one needs to perform a
query over one type. Exact match queries over more tharfiull search in the H-tree component of the supertype (called
one type are not favorable. outer component) and only partial searches in the H-trees of

The H-tree [16, 15, 20] can be viewed as a direct sucthe subtypes (called inner components). This restriction of
cessor of the SC-index. The main difference between thehe traversal process is the major advantage of the H-tree
SC-index and the H-tree is that the former maintains a setompared to the SC-index.
of isolated type-specific Brees, whereas the latter uses a Figure 6 shows the organization of an H-tree component.
nesting structure for these*Bees. The nesting reflects the H-tree leaf nodes closely resemble SC-index leaf nodes. Data
structure of the indexed type hierarchy. item key valueholds one value of the indexed object prop-

In particular, the H-tree component (i.e., thé&tBee) of erty. Inner nodes contain interval boundary values and point-
the indexed type imested(see below) with the H-trees of ers to successor nodes (child pointers) like in standdrd B
the immediate subtypes of the indexed type, the H-trees ofrees. The link entries implement the nesting feature. Each
these types are nested with the H-trees of their respectivink entry contains a pointer to a subtree of the H-tree com-
subtypes and so forth. Thus, an H-tree index for an attributggponent of a subtype. Additional parts of the link entry are
in an inheritance subgraph is a hierarchy of H-trees nestethe boundary values of this nested subtree. As the number of

316

H-tree component for FacultyMember H-tree component for AssistantProfessor
2], [aso0o || 20| | | | | 2], w700 || [ao0o0| Jo]-| |
\ |

\
o] Pl J el 1]~ ol [T[]
A TN e

i

|2|- |29000|1|u)6|30000|2|w7|w4| | *|—>

Fig. 7. H-tree component for AssistantProfessor

type domain 1 type domain 1

FacultyMember - - - - - - - FullProfessor - - - - - - -
Student - - - - - - AssociateProfessor -
FullProfessor - - - - - - - AssistantProfessor
Person - ----- FacultyMember -
TeachingAssistant +- - - - - - - TeachingAssistant

AssociateProfessor - Student - -~~~ '
AssistantProfessor Person

20000 30000 income 20I000 30(;00 income
Fig. 8. Query volume for @ under suboptimal linearization Fig. 9. Query volume for @ under optimal linearization

(2] 5 ,
link entries per node is not restricted, overflow pages (orga-
nized with the help of overflow pointers) may be necessary o]

to store additional pointers. Access to the predecessor of gy 10 Hierarchy without optimal linearization
particular node is supported by parent pointer entries in the
H-tree nodes.

Figure 7 shows parts of an H-tree created for attributelinearization in such a way that exactly one interval contains
income of type Person and its subtypes. The figure shows all types which are part of one subhierarchy.
part of the H-tree component for typeacultyMembemith This yields for each possible type in a query a subspace
one link entry with lower boundary = 1800 and upper which does not contain any object identifiers not belonging
boundary = 30000. The nested tree pointer refers to a nodeto the query result. Consequently, a type domain setup (lin-
of the H-tree component for typassistantProfessor. The earization) resulting in minimal query subspace volumes for
positive aspect of the H-tree approach is the exclusion o&ll possible query requests is callegtimal More specif-
a number of inner tree nodes from the tree traversal duringcally, an orderingC is optimal for ([, <), if C is a total
guery processing. The problems are a decreased node fanaartdering (see (1) in definition below), and for each subhier-
due to the space requirements of the link entries on the onarchy of (', <) (with T, denoting the subhierarchy rooted
hand and complex query and update algorithms on the otheat ¢), there is a closed intervak[v] in (T, C), containing
hand. the same elements (i.e., types)Bs; (see (2) in definition

below).

Definition 1 (Optimal linearization)
Let (T, <) be a type hierarchy and’<; be the subhierarchy

. rooted att (i.e., the intervaloo, t] in (T, <)). An orderingC
As already mentioned in Sect. 1, queries contain |mpI|C|tiS calledoptimal linearizatiorfor (T, <), if

predicates on the object type. In an MT-index such a predi-
cate corresponds to a range of the type domain. The reasot,u € T: tCu V v LTt and (1)
for the following considerations is that the query perfor- vt e 7: 3,0 € T, such
mance of an MT-index is largely determined by the choice that [u, v] :_T @)
of the actual type hierarchy linearization. Figures 8 and 9 Hulre) = f<t-
show the differences in the size of the actual query volumed here are type hierarchies without optimal linearization. Fig-
based on different linearizations. ure 10 shows the smallest hierarchy for which such a lin-
Assuming an arbitrary linearization, the query range inearization does not exist. Although stating a necessary and
the type domain may also contain types not qualifying for thesufficient condition for the existence of an optimal lineariza-
query request (see Fig. 8). Since the resource consumptiation for a type hierarchy is not totally trivial, a closer look
of a range query is positively correlated with the size of theat the above definition yields at least one necessary and one
respective range, we aim at minimal ranges for all extentsufficient condition §uper(t) denoting the set of direct su-
(see Fig. 9 for the extent dfacultyMember). This means a pertypes oft):

3 Type hierarchy mapping

317

1. begin order(s, <)
S: set of type identifiers
<: partial ordering
2. if S contains less than 3 elemerlksen return S
assign the set of all unmarked maximal elementafto
4. assign a set of lists td in such a way that each list contains
Fig. 11a,b. Type hierarchies (a) with and (b) without optimal linearization one set corresponding to a subhierarchy rooted at an elemeit of

w

5. mark all elements oM
6. assign all elements & to S’ which are not member
[[E] [o] [] of any subhierarchy
I@ [o] o] 7. foreach element ofA of L do
— 8. removeA from L
@ (®) 9. if there exists an elemet8 of L such that
Fig. 12a,b.Set diagrams for type hierarchies of Fig. 11 there is aB; of B and anA; of A
with non-empty intersectiothen
)] o o 10. if Ao Bis definedthen
— An optimal linearization exists if each type has at most ;. replaceB by Ao Bin L
one supertype, i.e., in the case of single inheritak¢ec(12. elsethere is no solution
T : |super(t)] < 1 is sufficient). 13. end
— An optimal linearization does not exist if any type has 14. else
more than two supertypes/zﬁ(ceT: |sup67“(t)| < 2is 15. while there exists an unmarked maximal elemerguch that
' - there are at least 2 elements Afhaving
necessary). _ _
a non-empty intersection

In the case of single inheritance, the computation of with the subhierarchy rooted atdo
the optimal linearization is straightforward. For example, al6- if AxS<, is definedthen ,
standard depth-first traversal of the hierarchy will do. Thel’: fef'?eA with S<, i.e., with the subhierarchy rooted
respective traversal has been proposed in [21]. Additionah8 m:rlfx

work dealing with depth-first linearization can be found in ;4 elsethere is no solution

[8]- 20. end

In the multiple inheritance case, Fig. 11 illustrates that21. end
the second existence condition is only necessary. For both2. call order (recursively) for each elementAfand add the list
hierarchies depicted in this figure, the condition holds. How- of all results toS"

ever, a closer look at the two type hierarchies reveals tha i' Z”d
hierarchy (a) has an optimal linearization, whereas hierars,; f;tum g
chy (b) has none. Informally, this result can be obtained bysg end order

the isolation of all non-trivial subhierarchies, in particular

{AE}, {CF}, {DEF}, {BCDEF} for (a) and{AE}, {CF}, Fig. 13. Pseudocode for functioarder

{DEF}, {BDEF} for (b). The goal is a ‘flattening’ of the

hierarchy such that the set of type identifiers forms a string

and each subhierarchy is represented by a substring of thisired setS’ constructed during the traversal &f,(<). Ele-
string. Drawing the corresponding set diagrams for the twoments ofS’ are either atoms (i.e., type identifiers) siruc-
hierarchies (see Fig. 12) we observe that, in the first casdured lists Elements of structured lists are structured sets.
the diagram can be flattened in this way whereas in theThe recursive definition of this data structure allows arbi-
second case this is not possible, since one of the subhieratrary nestings. In the sequel, two special cases are tis¢d:
chies cannot be represented by a substring (in Fig. 12 thisets i.e., structured sets containing merely atoms, fiad

is {BDEF}). lists, i.e., structured lists containing merely flat sets.

In the following section, we present an algorithm which The following notational conventions for variables hold:
produces all optimal linearizations for a given hierarchy variables for flat sets like{ABCD} are denoted by
(T, <). The novel feature of this algorithm is its ability to A, B,C,..., for structured sets like{({AB}{C})D} by
cope with multiple inheritance hierarchies. A B,C,..., for flat lists like {AB}{C}{D}) by

A, B, C,... and for atoms by, b,c,.... There are no vari-

ables used for structured lists.
4 The mapping algorithm

Readers mainly interested in the performance compariso

may skip this entire section. 2'1'2 Operations

Operations and symbols subsequently used are:

4.1 Notation, operators and linearization function .
P — {}, () and® denote the set constructor, the list construc-

4.1.1 Notation tor, and the empty set, respectively.

— Set operators defined on flat sets are union difference
The main part of the proposed algorithm is a recursive func- (\), cardinality (|), intersection (1) and set membership
tion order. Another integral part of this algorithm issdruc- €.

318

i j AoB

Al 1 (A1, Aja—1,Aja) \ B1, Aja) N B1, B1\ Ajaj, Bz, -+, Byg))

|AI 1Bl (A1, -+, Aja—1, Aja) \ Bg)» Aja) N Big), Big) \ Ajas Bigj—1, -+ B1)
1 1 (A‘A‘,~~'7A2,A1\B]_,AlﬁBLBl\Al,Bz,“',B‘B‘)
1 ‘BI (A‘AM"'7A27A1\B‘B‘,AlmB‘BhBIBI \A17B‘B‘717"',B1)

Fig. 14. Concatenation operator (formal definition)

— The operatorsJ, \ and € are also defined for the top
level of structured sets.
— |A| denotes the number of flat sets contained in the flat
list A, which are denoted byls, Az,..., A,
— maxyields a subset of a partially ordered gkin such a Fig. 15. Example type hierarchy
way that all elements in the subset are maximal elements
of A and none of them are minimal elementsAfi.e.,
max(d, <) — {a € A| Bd € Aia<d Ina wrapping procedure, a sétis initialized as empty
" y set. Its purpose is to hold already processed (marked) type
A Ja” € Aia” <a}. identifiers. The same wrapping procedure pagses actual
— o concatenates twoverlappingflat lists, i.e., flat lists parameter to the initial call to functioorder.
with common types in their respective sets. More pre- For a given type hierarchyf{, <), e.g.,T’ = {ABCDEFG}
cisely, two flat listsA and B overlap if and only if with < shown in Fig. 15, after termination afrder the
UA; nUB; # 0. All sets in such a list have to be result contained inS’ can be used to construct all opti-
non-empty and pairwise disjoint. mal orderings. For the above example, the valueSbfis
It should be noted thatis defined if and only if 3(z, j) : {{BH{EF})}{H}{DG}{AC})}. The set of all optimal lin-
A;,NBj#0,1€{1,|Al]},j € {1,|B|}. Informally, each earizations is constructed in the following way. Each set in
of the two sets containing the common types has to behe result can be represented by an arbitrary permutation
at one end of its enclosing list to enable concatenationof its elements, whereas each list yields only two correct
If this holds, there are four cases as depicted in Fig. 14epresentations (i.e., forward or backward sequence). In par-
(empty sets are removed from the concatenation resultlticular, sets{EF}, {DG}, and{AC} can be represented by
Example: (B} {CD} {EF}) o ({FG} {H}) yields (B} 2! permutations each. The same is true for the{B¢{EF})}
{CD} {E} {F} {G} {H}), whereas {B} {CD} {EF}) containing one atomic element B and a li§EF}) as second
o ({DG} {H}) is undefined, sincéCD}N{DG}# 0 and element. It should be noted that this list contains only one
{CD} is not placed at either end of its enclosing list. element, namely s€EF}, so there is only one correct repre-
— x represents refinemenl x B is defined if and only if sentations of this list. The list containing four elements, i.e.,
A denotes a flat list of pairwise disjoint and non-empty {B({EF})}, {H}, {DG} and {AC}, has two correct repre-

sets,B denotes a flat setd{i, j) : i < j and sentations. All in all a simple postprocessing traversal yields
A,NB=0fork <i 21.21.2.21.21 = 32 optimal linearizations fof’, e.g., B-E-
Ay NB#0for k=i F-H-D-G-A-C, B-F-E-H-D-G-A-C, E-F-B-H-D-G-A-C, etc.
Vi, 1<k<|A:{ A,CB fori<k<j Applylng the algorithm to the h|e_rarchy of Fig. 1 re-
- - A,NB#0fork=j sults m{Person,{EacultyMember, AssistantProfessor, Full-
AN B=0fork>j Professor, AssociateProfessof TeachingAssistant {Stu-

_ . o _ dent)} thus giving 2!- 2- 4! = 96 optimal linearizations.
If Ax B is defined, the result is given by (again, empty Like in the case of most other graph algorithms, the run-

sets are removed from the result): time function of the linearization algorithm depends not only

Ax B (Ag,---,Ai_1,4; \ B,A;N B, on [S| but also on the number of edges in the inheritance
Ap, -, Aj_1,A; N B, A; \ B, hierarchy. Additionally, the number of invocations ©and
Ajer, - Ap) * depends heavily on the specific structure of the hierarchy

. (e.g., in case of a single inheritance hierarchy, neither the re-
Example: (B} {CDE} {FG} {H}) « {DEF} yields (B} finement operator nor the concatenation operator are invoked
{C} {DE}_ {F} {G_} {H})_- ({B} {CDE} {FG} {H}) x at all). Although a formal derivation of the runtime func-
{DEGH]} is undefined, sinc CDE}{DEGH}#) and o is beyond the scope of the paper, empirical experiments
{H}N{DEGH}# 0 and {FG} ¢ {DEGH}. show that the resource consumption for practically relevant
hierarchy sizes is almost negligible. For example, a C++ im-
plementation of the algorithm needed 0.013 s CPU time for

a 52-node 3-way tree on an outdated 133-MHz PerfBum
A pseudocode representation of functiorder is given in running Solari8™. The linearization of a 52-node multiple
Fig. 13. The exact definition of this function together with inheritance hierarchy including various invokationsoadnd
an execution trace for an example hierarchy can be found i needed 0.024 s CPU tinte.
the Appendix. After termination of the algorithm, a postpro-
cessing step on the result produces all optimal linearizations 1 The results were obtained by calling the linearization algorithm 10,000
(see below). times and dividing the CPU time figures accordingly.

4.1.3 Functionorder

319

4.2 Informal linearization example such subhierarchy without a possible refinement, no lin-
earization exists.

The example hierarchies of the previous section (see The reason for such arefinement is obvious when looking

Fig. 11) are used for an informal presentation of the lin- at hierarchy (a) after the application of the concatenation

earization task. Let{, <) denote the hierarchy to be pro- operator. It is easy to show that an immediate recursive

cessed: descent with the rightmost list elemefiBCDF} would
produce incorrect results.

1. The (unmarked) maximal elements of, €) together Considering hierarchy (a), there are two candidates (sub-

with the subhierarchies rooted at these elements are deter- hierarchies) for refinemen{CF} and {DEF}. However,
mined and marked. For the running example, the results {CF} has a non-empty intersection with only one list ele-
for the two hierarchies are given as: ment, i.e.,{BCDF}. Consequently, no refinement is done
with {CF}. {DEF} has non-empty intersections with both
{BCDF} and {E}, the result of the refinement is given
below.

[o] [e] o]

Hierarchy (a) Hierarchy (b)

In what follows some notational conventions for the nec-
essary data structures (abstract representations) hold:
— sqguares represent single types

— marked types are shaded

— solid shapes represent sets

— dashed shapes symbolize lists

Hierarchy (a) Hierarchy (b)

In case of hierarchy (b) the only refinement candidate
is {DEF}. This subhierarchy has a non-empty intersec-
tion with consecutive list elements. However, the refine-
ment fails, because the interior list elemd®D} is not

a subset of DEF}. At this point the linearization algo-
rithm terminates for hierarchy (b). There is no optimal
linearization for this hierarchy.

The next iteration for hierarchy (a) yields the subhierar-
chies {E} and {CF} as candidates{CF} is a relevant
candidate having non-empty intersections wibbF} and
{BC}. We arrive at a configuration like:

2. Non-disjoint subhierarchies are concatenated (opesator
see example Fig. 16). If there are non-disjoint subhierar-
chies which cannot be concatenated (i.e., the intersecting
parts are not located on either end of the lists), no lin-
earization exists.

Hierarchy (a) Step 1 Hierarchy (b) Step 1

With respect to hierarchy (a) there is only one concate—ij{
nation step (intersection contains E). The processing of!'
hierarchy (b) involves two concatenation operations, one
for an intersection containing E, the other one for an in-

tersection containing F.

Hierarchy (a)

4. Using theo and x operators, steps 1-3 produce lists of
sets. The same processing scheme is applied to each ele-
ment of these lists recursively. The results of the recursive
descents are collected in the overall result set.

- The final recursive calls for the list elements do not cause

£ any modifications in the context of our running example.

Hierarchy (b) Step 2 The final result is A-E-D-F-C-B and B-C-F-D-E-A.

3. The lists resulting from the previous step are refined (op-
erator x, see example Fig. 5.1), more specifically, for
each subhierarchy rooted at an unmarked maximum, ib Implementation issues
is checked, whether or not the subhierarchy has a non-
empty intersection with more than one list element. Inin this section we apply the linearization algorithm for the
this case, a refinement attempt is made. If there is anyurpose of type hierarchy indexing. In particular, the im-

,,,,,,,,,,, part of the key values component. The optimal linearization

o —, (B)-- algorithm guarantees minimum length query intervals in this

********* - type dimension.
The execution of query requests with the help of an MT-

A index involves two phases:
f:lii:’ — atraversal of the boundary structure (either kept in main
memory or on mass storage) collecting the set of relevant
Fig. 16. Concatenation operation (informally) disk page addresses and
— a processing of the corresponding set of mass storage
i) , ,) transfer operations: checking all tuples stored in the
plementation of an MT-index with the help of optimal lin- tetcheq disk pages and discarding all tuples not quali-
earizations is outlined. fying for the query request.
An important advantage of this kind of indexing framework
5.1 Boundary structure and value structure is that exactly the samaearch structure technology could

be applied to maintaitone index structure forall relevant
In general, an MT-index can be built usingymultiattribute ~ attributes ofPerson, e.g.,income, weight, name, and so
search structure. Consequently, this section is not focuse€@in. Considering, for example,
on any particular data structure like, e.g., the BV-tree [7],Q, select x from x in facultyMembers
hB-tree [14], or the hB-tree [6]. The only data structure where x.income < 50 000 and x.entry < "04-10-1989"

riquirement is a non-degenerating behavior in case of datfhe execution needs associative access to attriboctene as
skew. ! .
_ . well as toentry. In single key approaches, the OODBMS is
Multiattribute search data structures interpreituples forced to maintain two distinct search data structures, prob-

gzllegg?:ést Oflgg‘r']gm;etgs&ngllqgﬁg? detbrlcal sr%i%i‘oi?llg- ably spending considerably more storage space for index
Y up v yradli ! maintenance and considerably more index scan time.

hyperrectangle (calledata spacein the sequel) defined by The splitting strategy for the type domain can be adapted

totally ordered attribute domains. Initially, the data space isto a concrete query profile. The domain split potential is de-
mapped to a single disk page. When the storage space of thig \ineq by the data volume: the minimum data page occu-
.d'Sk page is exhausted, the data space has to be partition ncy (e.g., ®6) and the given raw data volume determine

into two subspaces, mapped to one disk page each. In a he number of data pages, which in turn determines the num-
case of page overflow, this pattern is repeated. Thus, the da of domain splits (see Sect. 6.2). Consequently, the only

space is successively partitioned into an increasing numbeﬁﬁnable parameter is the relative number of splits allocated

of subspaces as the number of stored tuples increases. to each domain. A larger number of splits in one domain

In most cases, an exact match query will qualify one SUb"|mplies a smaller number of splits in one or more of the

space and therefore one disk page, whereas a range que@’her domains.

Wf”qullj(a”fy a seTthqf buddy stubfsgatces correspc:_rtw_din_g to_ atﬁe With respect to the limited total number of domain splits,
ot disk pages. 1his concept of data space partiioning IS t€z, \ir_ingex could increase the number of splits in the type

oretically appealing as it allows to implemesymmetrical : : :] ;
index structures without any distinction between one cluster-domaln (thus increasing the degree of type-grouping)

ing andm — 1 non-clustering data structures fer indexed — if the fraction of queries referring to subhierarchies is

object properties. However, from a technical point of view, large compared to the fraction of queries referring to the

subspace boundary values have to be stored and maintained entire indexed hierarchy and

in order to reconstruct the data space partitioning in case of— if the number of types in the qualified subhierarchies is

query or update operations. typically small compared to the total number of types in
This means that any multiattribute search structure used the indexed hierarchy.

to implement database indices has to contain two parts,

namely one storage structure for boundary values (i.e., the

partitioning information) and a second storage structure fors 2 The hB-Tree as MT-index

tuples containing, in our application context, the object iden-

tifiers, the types, and the actual values of the indexed atThe hB-tree [14] is a multiattribute search structure with

tributes. In what follows, the termisoundary structureand guaranteed index and data node occupancy for arbitrary raw

value structurewill be used to refer to these parts, respec-data distributions. Figure 18 shows an hB-tree. The three

tively. rectangles represent internal hB-tree nodes. The leaf nodes
One possible data structure setup could look like this: in(denoted by capital letters) are not shown in this figure. The

any disk page of the value structure, tkey values compo- boundary values contained in internal hB-tree nodes are or-

nentcontains a particular value combination of the indexedganized as k-d-trees [1]. With respect to leaf node organiza-

object properties. This component is followed by a list of tion (value structure), we present two alternatives which are

object identifiers such that each identifier refers to an objecbrthogonal to possible leaf node data structures like linked

having the attribute values given in the key values compodists or k-d-trees as proposed in [14]: Figure 19a shows a

nent. It should be noted that, in this context, the type idendeaf node organization using a directory. For each occur-

tifier can be handled like any other attribute value, i.e., aging combination of attribute values and type identifier the

321

,, Fig. 17. Refinement operation (informally)

a @ FullProfessor
AssociateProfessor A
b 30000 i B

AssistantProfessor
c b 1
FacultyMember

TeachingAssistant E
- D C

Student

Person F G

000ST
00002
0000€
00007
00005

(@) (b)

Fig. 20. Visualization and data structure representation of the hB-tree

. . Table 1. Model parameters
Fig. 18. The hB-tree used as MT-index

Param. Meaning
E T Set of indexed types
|Student ‘ 20000 ‘ 2 ‘col‘ooS| A ‘30000 ‘ l‘(.o2| T CT Set of types referenced by a quegy
(a) k Number of indexed attributes
d? <d Number of attribute values qualified by quegy
| Student ‘ 20000 ‘wl| Student ‘ 20000 ‘w3| TA ‘ 30000 ‘w2| n Number of objects
(b) n; Number of objects of type; € T'
Fig. 19. Leaf node organizations f fanout: number of successors of an internal node
sizef) Size ofz in bytes
e Number of records in an index leaf node

list of corresponding OIDs is stored. The counter is used td'y* Number of objects per value per type
Number of index leaf nodes far;

calculate the offset to the next va!ues';/type' combir)ation. Fig+ Number of internal index nodes fof
ure 19b shows a leaf node organization without directory. Iny; Total number of index nodes fag
this case, leaf nodes contain one record per indexed object

with OID, type, andk attribute values. Informally, the ad-
vantage of a leaf node directory decreases with incredsing
and increasing attribute domain cardinalities, since particula
combinations become less likely, i.e.,

As in [16] and [13] and most other analytical approaches,
) bur estimations are based dmest caseassumptions, e.g.,
lists of OIDs becomenayimum index page occupancy. The corresponding aver-
shorter. _ _ _ age case figures do not yield significantly different results

Continuing the example of Fig. 18, Fig. 20 depicts the ré-(geq 14] and [20]). A central parameter of the following
sulting data space partitioning with the corresponding high-,4qels (see [13] and [16]) is denoted by and describes
level representation of the hB-tree. Additionally, a closerhqa attribute configuration each value of the indexed at-
!ook at .thi.s figure IgaQS to another technical issue: temporarginute occurs in objects oft types. Letd andd; denote the
ily sacrificing the minimum node occupancy, one could split,,mper of different values stored in the indexed attribute and
the type domain to the full extent, i.e., one region boundaryihe number of different values stored in objects of typee-

per typein advance Clearly, such a pre-splitting scheme al- ghatively. The relationship between these three parameters
lows the omission of the type identifiers from the leaf node s yescribed byl; =d- ™ with 1 < nt < |T|. We interpret

records, thus saving index space. IT|
g P the two extreme values oft: nt = 1= d =} 1 d; and

nt = |T| = d = d;. In the first case, each attribute value
6 Performance analysis and comparison occurs in objects of exactly one type, whereas in the second
case each attribute value occurs in objects of all types. The
Index size and query performance of the MT-index are comformer situation is referred to aso overlap the latter as
pared to the analytical performance results of the CH-indeXull overlap, and anynt value between 1 an{’| aspartial
and the H-tree. As usual, there is no dominating approacloverlap
for all hierarchy structures and query profiles; however, we All other parameters are described in Table 1. Storage
are able to provide a few rules of thumb for index selection.space assumptions made for particular data items are given in

322

Table.2. Size of dat.a items | e = size(Node

Data item Size Meaning : size@Att) + size(Nodeld

Node 4096 Index node (internal or leaf)

Counter 2 Counter used for OIDs, node entries, Maintaining one CH-index for each indexed attriugeelds

A 4 Indexed attribute a total storage space consumption for a CH-index implemen-
OID 12 Object identifier tation of

Offset Offset within a node

2
Typeld 2 Type identifier CH) — L T
N)gpdeld 8 N{)rzje identifier o = k- (b7 +7).
In the case of the H-tree, we have to calculate the size by
means of the overall sum for aJl’| nested type-specific
Table 2.RecandDir refer to leaf node records and internal multiway trees. Consequently, we obtain for this data struc-
directories maintained in leaf nodes, respectively. In whatyyre

follows, the analytical models for the single-key structures .

are based on slightly modified material presented in [16]. S'Zi@“(z)i)zgosiéi@‘tt) + sizeCounte)
Tyt -

6.1 Storage space requirements oH) = size(Node — sizeCounteDJ
sizeReé¢™)

The results of two experiments focusing on the index size -

are presented in Sects. 6.1.2 and 6.1.3. The evaluation re-pL = di W

sults on the analytical model are given in Sect. 6.1.1. In both eH)

experiments the number of indexed types is varied. The dif- - [bE W

ference between the two experimental settings is that, in the ;1 _ b; w n F 1

first case, a constant number of objects per type is assumed, * fEH) fu)

whereas in the second case a constant total number of objects

is distributed over a variable number of types. b; = b +b]

Both experiments are made fér= 1 andk = 2 (i.e.,)

one indexed attribute in contrast to two indexed attributes),"‘”th

as well as fomt = 1 (no overlap)nt = 'Z' (partial overlap),' D = 2 . sizefNode

andnt = [T'| (full overlap). Fork = 1, a leaf node organi- 3 size@tt) + sizefNodeld

zation (grouping by value and type) is used for the hB-tree,

whereas fork > 1 this additional organization is omitted. ~ The reduced fanout is caused by the link entries. These tu-
ples (consuming one third of the internal nodes) are used
to implement the nesting, see above. Again, we assume one

6.1.1 Analytical model H-tree per indexed attribute, and consequently estimate a
storage space consumption of

The CH-index is a balanced multiway tree featuring a SO~y () _ .. Z b,

phisticated leaf node organization: in a leaf node, object IDs ~ v

are grouped by attribute value and object type. In contrast tiet

to this approach, the nesting of an H-tree corresponds ton the case of an hB-tree used to implement an MT-index
the structure of the type hierarchy, therefore, a type-orientedve have to distinguish between the above-mentioned leaf

leaf node organization is obsolete. Due to the structure ofode organizations (see Sect. 5.2, excluding the pre-splitting
the CH-index (in contrast to the H-tree), the parameters alternatives):
bE, andb! are used without subscript

.))) — grouping by attribute value and type:
sizeQir) = sizeCounte) + nt - (size(Typeld
+sizeOffse)) sizeRed™) = [- size(tt) + size(Typeld
sizeRed™)) = sizett) + sizeQir) +sizeCounte) + n,; - sizeQID)
+nt - (sizeCounte) + n,,; - Size©ID))

JUB) = {size(\lode - sizeCountepJ

S(CH) — size(Nodg — sue@ountebJ sizeRed™)
sizeRec™) . { n "
- bt =

bL = (gﬂ)-‘ e(hB) * Nt

e

B 2 |n this model, we assume that the execution df-attribute query re-
I M pL [f(cm—‘ sults in the traversal ok single-key indices. A possible alternative is the

b = (CH) + (CH) +..-+1 traversal ofoneindex structure and the subsequent fetching of the refer-

f f enced objects. However, objects not qualifying for the query (i.e., objects

with non-matching values in the other attributes) have to be discarded after-
] wards. The problem in this context is the significant waste of I/O bandwidth
with caused by the transfer of non-qualifying objects.

323

a constant number of objects the number of types is in-
creased. This corresponds to the creation of new types and
a subsequent migration of existing objects to the newly cre-

— no grouping:
sizeRed™)) = [- sizeAtt) + size{Typeld + size©ID)

- ; ated types. Actual experimental values are= 500 000,
eB) = Pzeq\lod.e —S|zheBCounteDJ d = 10,000 and 1< |T| < 50. Results are presented in
sizeRec™) Fig. 22.
L = [n l In the case of increasing’| with fixed n, the influence
e(hB) of nt is even stronger than in the case of increasingnd

In the following evaluation, the first variant is chosen for |T'|. Again, discussing the single-attribute case first, the OIDs
the case of one indexed attribute and the second variant iil hB-tree nodes are grouped by combinations of attribute
case of more than one indexed attribute. At this point, avalue and type. Consequently, in the non-overlapping case,
closer look at the fanout of hB-tree nodes is needed. Théhe size of the hB-tree is constant, because existing attribute
internal nodes are organized as k-d-trees [1]. Each k-d-tregalues and the corresponding OIDs are assigned to the newly
node contains one attribute value, two node identifiers ofcreated types, i.en,; is constant. The same holds for the
successor nodes, and two additional bytes of maintenanceH-index, but not for the H-tree, where the creation of new
information. The resulting fanout index trees causes a slightly increased storage overhead.
sizeNode In case of partial and full overlap, the ranking between
B = { _ i J CH-index and H-tree changes, the MT-index is somewhere
(size@tt) + 2- sizefNodeld +2) - r in between. In case of partial overlap, the advantage of the
contains a reduction facterquantifying the overhead of the H-tree over the MT-index is upper bound by about 5% (9%
k-d-tree organization. In particular, a number of referencedn case of full overlap). The result for the CH-index is caused
in the k-d-tree again reference k-d-tree nodes belonging tdy the comparatively small number of records per leaf node
the same hB-tree node. These references do not contribuf@ records for|7| < 12, 5 for 12< |T'| < 35 and 4 for
to the fanout of the hB-tree node. In [14], an evaluation|T'| > 35).
yields 1 < r < 1.5, in our case variations of do not The results for two indexed attributes (see Fig. 22) are
yield significantly different results. Based on this fanout, we almost self-explanatory. The overall index size yielded by

obtain the single-key approaches is simpiytimes the index size
bl of the single-attribute case. Due to the robust directory or-
bl = { b " + [ﬂ’ﬁw o+ ganization of the hB-tree, the index size does not increase
fhB) fhB) ’ if the number of stored OIDs does not increase. As there

is no additional hB-tree leaf node organization for> 1,
neither the attribute configuration n@f| has any impact on
the index size.

BB = bl + !

6.1.2 Experiment 1: constant number of objects per type

For fixedn; andd, |T| is increased. In other words, for a -2 Query performance

constant number of objects per type new types are added.

The underlying assumption is that the creation of a new typd-our experimental settings are used to evaluate the query
more or less implies the insertion of new database objectgerformance of the MT-index. Each of these experiments
of this type. Actual experimental values ane = 10,000, focuses on one parameter of possible query profiles, in par-
d =10,000 and 1< |T| < 50. Under these assumptions, the ticular:

database populatiomis increased from 1@00 to 500000.
The resulting total number of index blocks for the CH-index,
the H-tree, and the MT-index are depicted in Fig. 21. In the
one-dimensional case, the storage space consumption of the
three approaches is more or less the same, for overlapping
attribute configurations, the H-tree dominates the MT-index —
by about 5% in the case of partial overlap and by about 8%
in the case of full overlap.

Unsurprisingly, fork > 1, the MT-index outperforms the
single-key approaches with respect to index size. The space
overhead reduction is most appealing for the case of full
overlap and less impressive in the case of a non-overlapping
attribute configuration. -

— In Experiment 1, the size of the query interval in the
type domain is varied. The experiment is done for one
and for two indexed attributes, as well as for exact match
gueries and range queries, respectively.

In Experiment 2, the focus is on the variation of the query
intervals in all other attributes with a fixed query scope
in the type domain. Using a hierarchy with ten types,
evaluation results are given for range queries against the
full hierarchy as well as for range queries against a sub-
hierarchy with five types. Again, the one-attribute case
is compared to the two-attribute case.

In Experiment 3, the impact of the hierarchy lineariza-
tion on the query performance is determined. For the
two-attribute case, the performance of three MT-index
scenarios is compared to the H-tree and the CH-index.

6.1.3 Experiment 2: constant total number of objects . mp 4] ~ -
The first scenario is based on an optimal linearization as

Although the setup for this experiment seems almost the
same as in Experiment 1, the application context is to-
tally different: For fixedn andd, |T| is increased, i.e., for

described in Sect. 3, the second scenario uses multiple
index scans, one index scan per queried type, whereas
the third scenario is based on minimum single scan with

324

2500
2250

2000

-
=
a
S

1500

1250

1000

Number of index nodes, b

~
a
S

500

250

2500

2250

2000

1750

1500

1250

1000

Number of index nodes, b

~
a
S

500

250

2500

2250

2000

1750

1500

1250

1000

Number of index nodes, b

~
a
o

500

250

T

T

H-tree -—
CH-index &—
MT-index (using hB-tree) —-—

5 10 15 20 25 30 35 40 45 50

Number of types, |T|

(@k=1nt=1

T

T

T

T

H-tree o—

E CH-index &— 4
MT-index (using hB-tree) -2—
I I I I I I I
0 5 10 15 20 25 30 35 40 45 50
Number of types, |T|
- = 17|
©@k=1nt=",
T
H-tree o—
. CH-index &— 4
MT-index (using hB-tree) —--—
ks L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Number of types, |T|

€ k=1nt=|T|

Number of index nodes, b

Number of index nodes, b

Number of index nodes, b

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

H-tree -—
CH-index &—
MT-index (using hB-tree) -—

5 10 15 20 25 30 35 40 45 50

Number of types, |T|

b k=2nt=1

H-tree o—
CH-index &—
MT-index (using hB-tree) -2—

5 10 15 20 25 30 35 40 45 50

Number of types, |T|

_ _|T
@k=2nt="7

T

T

T

H-tree o—
CH-index &—
MT-index (using hB-tree) -—

5 10 15 20 25 30 35 40 45 50

Number of types, |T|

() k=2nt=|T|

Fig. 21a-f.Index size: results of Experiment 1

a subsequent elimination of objects belonging to non-For all query performance evaluations, a fully overlapping
matching types. Similar to the previous setting, the sizeattribute configuration is assumedt(= |T'|). Prior to the

of the query intervals in the indexed attributes is varied.evaluation experiments we describe the underlying analytical

— The fourth experimental setting addresses a case which isiodel for the three data structures in question.

less favorable for the MT-index, namely queries referring
only to a subset of the set of indexed attributes. Range
queries referring to a varying number of types as well6.2.1 Analytical model
as range queries against a fixed number of types with a

increasing size of the query interval are investigated.

Assuming a traversal df single-key indices for &-attribute

query, the estimated number of disk-1/O operations for a
query qualifyingd® attribute values is given by

325

2500 — 5000 4
2250 — 4500 4
2000 — 4000 4
<1750 | . 3500 - e
% 1500 — % 3000 —
.féj 1250 |- 1 ? 2500 1
E 1000 — g 2000 b
2 2
750 — 1500 -
500 — 1000 —
H-tree <— H-tree ——
250 + CH-index &— 4 500 + CH-index &— 4
MT-index (using hB-tree) —-— MT-index (using hB-tree) -—
0 0 5‘7 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50 0 0 E‘w 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50
Number of types, |T| Number of types, |T|
(@k=1,nt=1 b k=2nt=1
2500 — 5000 4
2250 — 4500 —
2000 4000
fﬁi 1750 | i 3500 / g g
? 1500 — %3 3000 —
% 1250 — %’ 2500 —
% 1000 — % 2000 b
e 2
750 — 1500 —
500 — 1000 -
H-tree —— H-tree o—
250 CH-index &— 500 | CH-index &—
MT-index (using hB-tree) -2— MT-index (using hB-tree) -2—
0 0 L-"; 1‘0 £5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50 0 0 L-"; 1‘0 £5 2‘0 2‘5 I;O 3‘5 4‘0 4‘5 50
Number of types, [T| Number of types, [T|
©k=1nt="7 @k=2nt="7
2500 5000 ‘ ‘ ‘ ‘ ‘ ‘ ‘ : ‘
2250 4500 <
2000 4000 4
j’, 1750 | ‘; 3500 q
§ 1500 B % 3000 B
% 1250 | g % 2500 | g
% 1000 — % 2000 b
E 2
750 — 1500 -
500 — 1000 -
H-tree <— H-tree —<—
250 + CH-index &— 4 500 + CH-index &— 4
MT-index (using hB-tree) —--— MT-index (using hB-tree) -—
0 0 5; 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50 0 0 E; 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50
Number of types, |T| Number of types, |T|
e k=1,nt=1T| () k=2,nt=|T| Fig. 22a—f.Index size: results of Experiment 2
k- heiaht € + e An estimation of the number of disk-1/O operations in an
I e(CH) m-dimensional multiattribute search structure like the hB-
tree is less straightforward. We use a probabilistic model
for the CH-index and by outlined in [22]. In particular, the number of I/O operations
for a multiattribute range query is calculated with the help of
) Uf;‘ - d9 a random variabld/ (S, @, R). This variable represents the
k- Z height;™" + e(H) fetched data volume in a data space which has been normal-
tE€T ized to [Q 1[™. The random variabl& is expressed in terms

of attribute domain structur&(ss,-- -, s,,), query profile

for the H-tree (see [16]feight ™ (height™) denotes the Q(qr, -+, qm), and data space partiioning(r, -- -, rm).
height of the CH-index (the H-tree for type).

326

16

storage transfer units (see Fig. 23b, one of the transfer units
is shaded). In Fig. 24, the same query template,® }1, 166
causes either two or three 1/0 operations, depending on the
actual placement of the query window in the data space.

More precisely, letW;(s;,q;,r;) denote the random

,,,,,,,,,,,,,,,,,,,,,, variable for the resulting number of 1/O operations in a spe-
1 i cific dimensionj. A closer look at Fig. 25 and a careful
o2 3 4 analysis of the corresponding I/O pattern yields two values
(a) Attribute domains (b) Data space partitioning for W;, in particular

Fig. 23a,b.An example for a 2-dimensional data spate (3, %) and its , qj o[
current partitioningR = (3, 1) w; = rj and wj = rj Ty

Tj Ty

16 Bl] Using b, as an abbreviation fo{fﬂrj and analyzing

,,,,,,,,,,,,,,,,,,,,,, Fig. 25, the probabilistic density function &F; can be de-
SIS EREES SISO I scribed as

oy by —qi+s)A—0bj+71y)
:::::. POV =b) =" sy ®)

1 2z 3 a4 1 2 77777 3 4 POV, =b; +7)) = (1_bj)(Qj_bj+7"j_5j). 4)

ri(l—gq;+s;
(@) 31/0 operations (b) 2 1/O operations 7(4 J)

Fig. 24a,b. Query templateQ = (%, &), query requestsdark shadeyl Recalling the two-point distribution OTWj,_ probability
Qr:A1=2A Ay €[8,13] andQ; : A1 = 4A A € [2,7) and resulting P(W; = b; + ;) equals 1- P(W; = b;). Equations 3 and 4

I/O operations light shaded yield an expectation value fdi;

(1 —b)(g; +rj —s; —bj)
1-gj+s;

E(W;) =0b; +) (%)

The dimension-specific vaIueS%_7 Tl_ andgq; represent for di-
mension the domain cardinality, the number of subintervals

ielded by index split operations and the length of the query_. . .
iynterval (gee Figs.p23 apnd 24). ° 44€Dsion ; as a function of 4.7, ¢;).

Two model assumptions are made: (a) the domain cardi- Under the assumption of uniformly distributed and un-
. . assumptio oo correlated raw data and stating a similar assumption for the
nality equals 2, with j being a positive integer, and (b) all

subintervals are of the same length. The latter assumption iézng]%m Egjglc(inosv(éfrtgﬁvqutehrgtv;/;ndow, we derves, It, Q)
based on the usual data distribution models, basically uni- P 7

which corresponds to the estimated interval length in dimen-

formly distributed and uncorrelated raw data, which yield ay, — H W (6)
regular partitioning grid (see example below) in most search 1<i<m 7
structures. =
An example illustrated in Fig. 23 contains a particufar and the corresponding expectation value as
(left-hand side) and® (right-hand side). The query template, (A-b)(g; +7r; —s; —bj)
two possible positions of the query window and the resultingg(V) = H (bj + O) . 7
number of I/O operations are shown in Fig. 24 for the same 1<5<m 1-gj+*s;
example.

an what follows, simple approximations for Egs. 5 and 7 are

In this model representation, one tuple corresponds to H?:ed'

minimal rectangle in the data space (see shaded area (3, 5)

Fig. 23a). The data space partitioniffy, ;) yields 8 mass = _Jagit+rj—s;ifq<1—r,
EW;) = :
J 1 if q; > 1-— Tj
L 1 and
— I - N
2 , EV)=] EW)).
1 REEEES 2 1<i<n
1 | 2
2 3 In our application contextin = k£ + 1 holds fork in-
1 2 dexed attributes, i.e., one additional dimension representing
; g the type domain. The model parameters for the type do-
Lo 2 2 main are calculated as follows: The domain structure and
Al ! 2 the query range for the type dimension are given by
(a) s=1/16, r=1/4, g=3/16 (b) s=1/16, r=1/4, g=6/16 §1 = and ¢ = ‘TQ|
T |’

Fig. 25a,b. Position of the query window in dimensighand number of
I/O operations as a function 6f;, r;, g; the partitioning of the type domain is given by

327

1 if |74 < pL e.g., H-trees. For multiattribute configurations, the perfor-
= Vb - 8) mance advantage of the MT-index is most appealing for
otherwise small query ranges like in this experiment (about 70% ad-

7| vantage over the H-tree fo”f;2 = 0.2). It can be seen in

In other words, the standard splitting strategy is also applied™d- 27 that this advantage is slightly smaller in the case of
to the type domath Considering a maximum split potential 1arger query intervals. _ _ _
of |T'| subintervals in the type dimension and the overall split With respect to exact match queries (not considered in
potential given by the number of data nodéswe obtain ~ [16, 20]), the results are completely different. In the case of
the two cases described in Eq. 8. the CH-index, a single tree traversal is always sufficient to

The model parameters for all other dimensions are giverrljt‘g\{Ver an ehxact maE)Ch query, v(\j/h?:rea? hgéﬂe k'}"'tﬁ?_ again

bys. =1 ¢ =9 andr = 1 .RecallingthaE()is |1 -l trees have to be traversed. For la the MT-

Y5 = a _qj d "I T K ybr ! 'g)i index performs significantly worse than the CH-index, how-
an approximation for the expected volume in10”, we ob- ever, in comparison to the H-tree, an up to 40% performance

tain [bL . E(V)W /O operations for data nodes. The number gain fork =1 (up to 70% fork = 2) can be observed.

of index node /0 operations ranges framight"?) nodes

in the case of a point query td nodes for a range query, as-

suming the very unlikely case, that all internal nodes have td.2.3 Experiment 2: varying query range
be read during query execution. For the worst case, we there-

fore obtaind! + {bL -E(V)] disk-1/0O operations for range In this context, the focus is solely on range queries with
query execution. varying ranges. The number of queried types is 5 and 10,
respectively, in both cases out of ten indexed types. In par-
ticular, for n = 500,000, d = 10,000, and|T'| = 10, the
6.2.2 Experiment 1: varying number of queried types number of I/O operations is calculated. The query range
is varied bec;[ween 10% and 100% of the attribute domain,
In this setting, a range query with a fixed query range as weli-¢., 1 < ;' < 1. The corresponding results are depicted
as an exact match query are considered. In both cases, thie Fig. 27a and b folT%| = 10 and Fig. 27b and c for
number of qualified types is varied and a fully overlapping |T?| =5.
attribute configuration is used. In the one-dimensional case, the results for all three ap-
In the case of the range query, 20% of the attribute doroaches are almost the same féf| = |T'| = 10. Com-
main is qualified by the query request, in terms of the an-pared to the single-key approaches, the MT-index causes a
alytical model, this mean§5 = 0.2. Forn = 500000, 3% (1%) increase in the number of I/O operations compared
d = 10,000, and|T'| = 10 the number of /O operations © the H-tree (CH-index). In the case bFE 2, the MT-index
is calculated for different sets of qualified typ@& with ~ has a performance advantage of up to 80% for small query

1 < |T?| < 10. Results are given in Fig. 26a and b. ranges. Very large query intervals, e.@f, = 0.5 still yield
Also, in the case of the exact match query evaluation thealmost 50%.
number of qualified types is varied. Far= 500,000, d = For |T?| = 5, the number of 1/O operations yielded by

10,000, d? = 1, and|T'| = 10 the number of I/O operations the CH-index is the same as f{if<| = 10, whereas the H-

is determined. As in the previous case, the cardinality of thgree and the MT-index take advantage of the enhanced index
sets of qualified typeF'? is increased from 1 to 10. Results selectivity in this case.

are visualized in Fig. 26¢c and d.

The range query setup produces significantly different
results for the CH-index on the one hand and for the H-
tree and the MT-index on the other hand. The CH-index is
characterized by a constant number of I/O operations. The o .
reason is that OIDs ddll typesare stored in one data struc- Although a complete description of the influence of the type
ture without sufficient support for type-specific access. Asdomain linearization on the query performance is a complex
a result, all leaf nodes containing qualified attribute valuesSSUe, at least one experiment should provide some insights.
have to be read. Subsequently, OIDs of non-qualified type$” ge_neral, there are two (not mutually exclusive) scenarios
have to be discarded. In this context, the H-tree has a cledp Which the type scope of a query request cannot be mapped
advantage, because for each type a distinct tree is maintaind@ an interval of the type domain containing exactly the types
and only trees of qualified types have to be scanned. An inof the query scope.
teresting point is that the MT-index without type-separated
trees performs similar to the H-tree, losing only about 3%
I/0 performance.

A first non-obvious conclusion can be drawn: the type di-
mension approach in the MT-index framework is a compet-
itive alternative to the maintenance of type-separated trees,

6.2.4 Experiment 3: linearization and query performance

— There is no optimal linearization in the definition of
Sect. 3 for the type hierarchy. In this case, there are
subhierarchies which do not correspond to minimal in-
tervals of the type domain.

— Even if an optimal linearization exists the type scope of
a query may be an arbitrary subset of the type hierarchy
3 We do not include the pre-splitting scheme mentioned in Sect. 5.2 in rather than a subhierarchy. In this case, a corresponding

this analytical model. minimal interval on the type domain may still exist, how-

328

350 T T T T T T T T 700

300 600 [

250

500 |

200

400 |

300 |

100 200 |

Number of accessed index nodes, b
Number of accessed index nodes, b

50 |- H-tree <— 100 H-tree <-— o
CH-index &— CH-index &—
MT-index (using hB-tree) -— MT-index (using hB-tree) -—

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Number of qualified types Number of qualified types
Q Q
(@ k=1, =02 (20% range query) by =2, %7 = 0.2 (20% range query)
20 T T T T T T T T 40
H-tree <— H-tree <—
181) _ CH-index -8—] 36 1) _ CH-index -8—
MT-index (using hB-tree) -— MT-index (using hB-tree) -—
16 | — 32
= 2
8 8 st
g g
3 1wt E o2t
E 10 g 20
& &
8 8f 8 6t
s S
2 et 2 nf
2 2
4+ 4 8l
g 1 a
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of qualified types Number of qualified types
(c) k=1,d° =1 (point query) (d)k =2, d°9 =1 (point query) Fig. 26a—d. Query performance: results of Ex-

periment 1

ever it cannot be guaranteed by the optimal linearizatiorwe usen = 350,000, d = 50,000, two indexed attributes
as defined abové. (k = 2), and a fully overlapping attribute configuration &
=7).

In the first test setting, a query request qualifies the
typesStudent, AssociateProfessor, andAssistantProfes-

— The query request can be processed by a single scan &0 (7| = 3). Using the single scan strategy, the minimal
the smallest interval of the type domain containing all interval including these three types contains five tyjpes.-
types of the query scope (and some types not qua"ﬁe(yltyMember andTez_ic_:hlngAssstant are mgluded in the in-
by the query). In this case, some of the fetched data haterval but not qualified by the query. With respect to the
to be discarded due to their non-matching type. multiscan strategy, the example yields a minimal set of two

— Alternatively, the query request can be processed by mulintervals and therefqre two index scans, one retrieving the
tiple scans referring to the minimal set of intervals suchdata scored foAssociateProfessor and AssistantProfes-
that exactly all qualified types are included. In this case,Sor and the other one referring ®tudent. The results are
no data has to be discarded but there is a certain amour®own in Fig. 28a.
of 1/0 overhead due to multiple tree traversals. In the second example, the typEsllProfessor, Asso-

ciateProfessor, FacultyMember, andStudent are queried
A few example evaluations should give an impression of(|79| = 4). The smallest interval containing all these types
the performance figures yielded by the different processings [FullProfessor, Student]. Consequently, the single-scan
strategies. Using the example linearization from the previousstrategy affects six types. The multiscan strategy results in
sections and two query type sets which do not corresponghree index scans, one fBullProfessor andAssociatePro-

to subhierarchies, the single scan strategy is compared tRssor, one forFacultyMember and one forStudent. The
the multiscan strategy. To put the results in perspective, als@esults are shown in Fig. 28b.

the results for the CH-tree, the H-tree, and the MT-index |n the first evaluation run the multiscan strategy outper-
with optimal linearization are shown. For both experiments,forms the single-scan strategy, irrespective of the size of the
4 Obvious| ori knowledde abot h i b OIquery range. In this case, the overhead incurred by multiple
_ viously, a priori knowledge about the query profile may be used ¢.o ¢ js more than outweighed by the 1/O cost for the two
in these cases, where the result of the linearization algorithm contains an g .
degrees of freedom. For example, if in the linearization result an arbitrarytYP€S not qualified by the query request. For practically rel-
permutation of a type subset is allowed, the final permutation for the type€Vant query range sizes, both strategies perform better than
domain can be chosen according to the query profile. the H-tree. Even the more unfavorable single-scan strategy

. LT
If any of these two cases applies, there are two posmblé |
solutions for the query optimizer.

329

1750 T 3500

1500 3000 -

N
Y
a
=)
T
N
a
=}
3
T

1000 2000

~

a

S
T

1500

@

=}

S}
T

1000

Number of accessed index nodes
Number of accessed index nodes

250 H-tree <— 500 [H-tree <-— o
" CH-index &— CH-index &—
MT-index (using hB-tree) -— MT-index (using hB-tree) -—

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Size of the query range in % Size of the query range in %
@k=1,|T9 =|T|=10 (b)k=2,|T9|=|T| =10
1750 3500

1500 3000

1250 2500
1000

2000

750 1500

500 1000 -

Number of accessed index nodes
Number of accessed index nodes

250 H-tree -— 500
CH-index &—
MT-index (using hB-tree) -—

H-tree +—4
CH-index &—
MT-index (using hB-tree) -—

0 I I I I I I I I 0 I I I I I I I
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Size of the query range in % Size of the query range in %
k=179 =" =5 dkr=2,12="1=5 Fig. 27a—d. Query performance: results of Ex-
periment 2
3500 T T 3500 T T
H-tree <o— H-tree <—
CH-index B— CH-index B—
3000 | MT-index (optimal) +— | 3000 | MT-index (optimal) +— |
MT-index (multi-scan) —*— MT-index (multi-scan) —*—
MT-index (single scan) —— MT-index (single scan) ——
@ @
8 2500 |- R 3 2500 |- B
<1 <1
2 2
x x
o) o)
E-]]
<= 2000 R < 2000 S
5 5
51 2
2 2
8 8
3 1500 3 3 1500 b
k] k]
2 2
£ 1000 f £ 1000 1
z z
500 q 500 q
0 L 1 1 1 1 1 1 0 T 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Size of the query range in % Size of the query range in %
(@) (b) Fig. 28a,b.Query performance: results of Exper-
iment 3

yields better I/O performance up to a query range size 0%6.2.5 Experiment 4: partial range queries
about 60% of each queried attribute.
The results of the second experiment show a turn of
the tide in the case of an increasing number of necessaryhere is an inevitable degradation in the 1/0O performance of
scans for the multiscan strategy. Here, the increasing overan m-attribute search data structure if less tharattributes
head caused by the multiple scans can even dominate thge queried. In what follows, two final evaluations shed some
/O cost of non-qualified types. Again, the H-tree is superiorlight on this matter. In the context of partial range queries,
only for very large query range sizes (70%). In both cases, an MT-index withk = 2 is used to process query requests
the CH-tree is more costly than any other alternative overreferring to only one of the two indexed attributes. Similar
the full range of the experiments. An MT-index based on anto previous evaluation experiments in one setting the size
optimal linearization is less costly than any alternative. of the queried type set is fixedT{| = 10, |T?| = 5) and
the size of the query range is varied, whereas in the second
setting, the size of the query range is fixed at 20% of the

330

800

1750

700 - 1500 |-

600
1250

500
1000

400

~
a
S

300

@
=}
S}

Number of accessed index nodes, b
Number of accessed index nodes

200

N
a
S

H-tree o—+
CH-index &—
MT-index (using hB-tree) -—

100 [H-tree ——
CH-index &—

MT-index (using hB-tree) -—

o
o

L L L L L L L L L L L L L L L
1 2 3 4 5 6 7 8 9 10 10 20 30 40 50 60 70 80 90 100

Number of qualified types

@)

Size of the query range in %

(b)

Fig. 29a,b.Query performance: results of Exper-
iment 4

attribute domain fj =0.2) and the value ofT'%| is varied
between 1 and 10. The results are shown in Fig. 29.

Using the same parameters as in Experiments 1 an 2
above, the H-tree is the dominating structure in the context
of partial range queries, because only the H-tree compo- more than one attribute (i.ek,> 1) has to be supported
nents supporting the queried attribute have to be scanned. by the hierarchy index.

Although the same holds for the CH-tree, the MT-index — In the case of partial range queries the H-tree is superior
yields advantages for small queried subhierarchies. to both the CH-index and the MT-index.

— Although range queries usually favor type-grouping
structures, the H-tree, despite a 3% gain, is unable to
clearly outperform the MT-index even fér= 1. The re-
sults illustrate the clear advantage of the new proposal if

Summing up the performance evaluation, the main result is
that an MT-index based on a stable multiattribute search
structure is a practically viable alternative to specialized

The MT-index is described as an alternative to previoussingle-key tree approaches even for the unfavorable case
single-key approaches, which are in most cases based d¥f & = 1. This result is far less obvious than the fact that
B*-trees. The proposal relies on optimal type hierarchy lin-an MT-index is the best choice fdr> 1. From a practical
earizations in such a way that each subhierarchy correspond®int of view, this result allows a recommendation of the
to an interval in the respective type domain of the index.MT-index if range queries are the dominating pattern in the
We present an algorithm which computes all existing op-query profile.
timal linearizations for a given type hierarchy. Using this Abstracting from the technical details of index imple-
algorithm, the practical design and implementation of anmentations, the MT-index can be seen as a mediator between
MT-index by means of any existing multiattribute search key-grouping and type-grouping approaches. Informally, a
structure is shown to be straightforward. In this context, aSymmetrical structure like the hB-tree does not enforce a par-
few design alternatives are outlined (i.e., leaf node directodicular preference for either key-grouping or type-grouping.
ries and pre-splitting). However, giving such a preference is possible (if necessary
The performance evaluation for the MT-index includes in @ particular application context, see the discussion of split-
index size as well as exact match and range query perforing alternatives in Sect. 5).
mance. The one-attribute setting is compared to the multiat- Work in progress deals with efficient heuristics for type
tribute setting. In the latter case also, partial range queries ardomain splitting. The idea is to control the degree of type-
considered. We compared our approach to a key-groupingrouping with respect to a particular query profile.
structure, i.e., the CH-index, and to a type-grouping struc-

ture. i.e.. the H-tree. Based on the results. we can providé\cknowledgementsWe would like to thank the reviewers for their com-
the %OI.IOI\I’ViHQ rules Olf thumb: ! ments and suggestions which led to a considerable improvement of the

presentation.

7 Conclusions

— The size of an MT-index in case df = 1, i.e., a 2-
dimensional hB-tree, is slightly larger (about 5-8%, de-
pending on the attribute configuration) than the size ofReferences
the single-key tree approaches. kor 1, a sophisticated
k + 1-dimensional multiattribute search structure like the 1. Bentley J (1975) Multidimensional binary search trees used for asso-

hB-tree clearly outperforms any set/okingle-key trees.

Exact match queries always favor key-grouping struc- 2.
tures. Consequently, the CH-index is the clear leader
in this case. With respect to exact match queries, the
new proposal performs better than the H-tree. The dis-
advantage of the MT-index compared to the CH-index
decreases with increasing number of indexed attributes.

ciative searching. Commun ACM 18(9):509-517

Bertino E (1991) An indexing technique for object-oriented databases.
In: Proceedings Seventh International Conference on Data Engineering,
Kobe, Japan. IEEE Computer Society Press, Piscataway, N.J., pp 160—
170

3. Bertino E, Ooi BC, Sacks-Davis R, Tan KL, Zobel J, Shidlovsky B,

Catania B (1997) Indexing Techniques for Advanced Database Sys-
tems. Advances in Database Systems. Kluwer, Dordrecht

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

331

. Carey M, Schneider D (eds) (1995) Proceedings of the 1995 ACMAppendix A

SIGMOD International Conference on Management of Data, volume | jnearization algorithm

24 of SIGMOD Record, San Jose, CA. ACM Press, New York

. Chan CY, Goh CH, Ooi BC (1997) Indexing OODB instances based

on access proximity. In: ICDE’'97 [10], pp 14-21

. Evangelidis G, Lomet D, Salzberg B (1995) The'hiree: A modified

hB-tree supporting concurrency, recovery and node consolidation. In:
Dayal U, Gray PMD, Nishio S (eds) Proceedings of 21th International
Conference on Very Large Data Basegirigh, Switzerland. Morgan
Kaufmann, San Mateo, Calif., pp 551-561

. Freeston M (1995) A general solution of the n-dimensional B-tree

problem. In: Carey, Schneider [4], pp 80-91

databases. In ICDE'96 [9], pp 238-246

1
2
3
4
. Gudes E (1996) A uniform indexing scheme for object-oriented 2
. Proceedings Twelfth International Conference on Data Engineering, 7

8

New Orleans, Louisiana, Mar. 1996. IEEE Computer Society Press,
Piscataway, N.J.

D« 0
T’ — order(’, <)

.b

: . . o9,
Proceedings Thirteenth International Conference on Data Englneerlngl0

Birmingham, UK, Apr. 1997. IEEE Computer Society Press, Piscat-
away, N.J. 11

Kanellakis PC, Ramaswamy S, Vengroff DE, Vitter JS (19) Indexing 12.
for data models with constraints and classes. In: Garcia-Molina H,13.
Jagadish H (eds) Proceedings of the Twelfth ACM SIGACT-SIGMOD- 14,
SIGART Symposium on Principles of Database Systems, Washington,ls_

DC. ACM Press, New York, pp 233-243
Kilger C, Moerkotte G (1994) Indexing multiple sets. In: VLDB'94

[25], pp 180-191 16.
Kim W, Kim KC, Dale A (1989) Indexing techniques for object- 17.
oriented databases. In: Kim W, Lochovsky FH (eds) Object-Oriented 18.
Concepts, Databases, and Applications. Addison-Wesley, Reading] Q.

Mass., pp 371-394
Lomet DB, Salzberg B (1990) The hB-tree: A multiattribute indexing

20
method with good guaranteed performance. ACM Trans Database Sysg;‘

15(4):625-658
Low CC, Lu H, Ooi BC, Han J (1991) Efficient access methods in

deductive and object-oriented databases. In: Delobel C, Kifer M, Ma-23.
sunaga Y (eds) Deductive and Object-Oriented Databases. Proceedings
of the Second International Conference, DOOD, volume 566 of Lec- 25

ture Notes in Computer Science, Munich, Germany. Springer, Berlin
Heidelberg New York, pp 68-84

Low CC, Ooi BC, Lu H (1992) H-trees: A dynamic associative search
index for OODB. In: Stonebraker M (ed) Proceedings of the 1992 ACM

, , .
SIGMOD International Conference on Management of Data, volume 2 @nd T represent the set of marked types and final lin-

egin order(S, <)

if |S| < 3then return S end
M — max@ \ D, <)
L — UmeM{(SSm)}
D+—DUM
" — S\ U, enr S<m
while 3A € L do
L—L\{A}
if 3Be L:|JA;nJB; #0 then
if Ao B is definedthen
L—L\{B}u{AoB}
else fail
end
else
while 3z € max(J A; \ D, <) :
{A;]A;NS<, #0} > 1do
if AxS<, is definedthen
A— Ax SS/J;
D — DuU{z}
else fail
end
end
S —8"u {(Order(’qh §)7 Order(1427 S)) e
-, order(d,, <)}
end
end
return S’

26. end order

21 of SIGMOD Record, San Diego, California. ACM Press, New York, €arization result, respectively.

pp 134-143

Mueck TA, Polaschek ML (1996) Indexing type hierarchies with multi-
key structures. In: Connor RCH, Nettles S (eds) Proceedings of the 7th
International Workshop on Persistent Object Systems (POS 7). Morgan
Kaufmann, San Mateo, Calif., pp 184-193

Mueck TA, Polaschek ML (1997) Index Data Structures in Object-
Oriented Databases. Advances in Database Systems. Kluwer, Dor-
drecht

Mueck TA, Polaschek ML (1997) The multikey type index for persis-
tent object sets. In: ICDE'97 [10], pp 22-31

Qoi BC, Han J, Lu H, Tan KL (1996) Index nesting — an efficient
approach to indexing in object-oriented databases. VLDB J 5(3):215-
228

Ramaswamy S, Kanellakis PC (1996) OODB indexing by class-
division. In: Carey, Schneider [4], pp 139-150

Schauer M (1993) Adaptive Clusterbildung in Mehrattributsuchstruk-
turen. Dissertation, Universit Wien, in german.

Shidlovsky B, Bertino E (1996) A graph-theoretic approach to indexing
in object-oriented databases. In: ICDE'96 [9], pp 230-237

Sreenath B, Seshadri S (1994) The hcC-tree: An efficient index struc-
ture for object-oriented databases. In: VLDB'94 [25], pp 203-213
Proceedings Twentieth International Conference on Very Large
Databases, Santiago, Chile, Sept. 1994. Morgan Kaufmann, San Mateo,
Calif.

332

Appendix B omitted, list elements are separated by white spaces, e.g.,
Execution trace {(ABCD EF) (G)} instead of{({ABCD} {EF})({G})}.

The initial call starts with the hierarchy
The tables below provide snapshot information for selected
variables and expressions. In each table, the first column
refers to the line numbers of the algorithm. In particular,
the values in each table row correspond to the values of
the traced expressioradter the execution of the referenced
line of code. Undefined expressions are denoted by “-".
For notational convenience, the innermost set brackets are

Call: order(ABCDEFGH)
D L S’ M
6 AB {(ACDGH)(BEFH)} 0

After the initialization stepsL contains the subhierarchies of
the maximal elements & in separate lists. In the following
illustrations, all processed types (i.e., typedihare shaded.

D L s A B
7 AB {(ACDGH)(BEFH)} 0 (BEFH) -
8 AB {(ACDGH)} 0 (BEFH) -
9 AB {(ACDGH)} 0 (BEFH) (ACDGH)
11 AB {(BEF H ACDG)} 0 (BEFH) (ACDGH)

After a first concatenation operation, the situation is as de-
picted in the figure (the dashed lines connect buddies in a
list). At this point, there is no further concatenation opera-

tion possible, so a refinement attempt is made for each list
in L.

D L s A
7 AB {(BEF H ACDG)} 0 (BEF H ACDG)
8 AB 0 0 (BEF H ACDG)

Refinement candidates are the maximal elementg 4\ D ({BEF}{H}{ACDG})*{DGH} yields {BEF}{H}
(see right-hand side figure), in this case only D and{BH}{AC}).

for ({BEF}{H}{ACDG}), since C is a leaf. The subhier- B

archy of D is{DGH}. It has a non-empty intersection with h :

both, {H} and {ACDG}. So it is a possible operand fey

D L S’ A max (..) = S<g
14 AB 0 0 (BEF H ACDG) DE - -
15 AB 0 0 (BEF H ACDG) DE D DGH
17 AB 0 0 (BEF H DG AC) DE D DGH
18 ABD 0} 0 (BEF H DG AC) E D DGH

After refinement,A contains the set$BEF}, {H}, {DG}

and {AC} (shown right-hand side, larger figure) which are |~
processed by subsequent invocations of the recursive func-
tion. The only non-trivial invocation is fofBEF}, the result |;
{B({EF})} is depicted in the smaller figure at the right-hand |} —
side. After termination of all four recursive descents, the|.
resulting situation is given in the following table:

D L S’ A

22 ABDE () {({B(EF)} H DG AC)} {({B(EF)} H DG AC)}
Result {({B(EF)} H DG AC)}

[

