
The VLDB Journal (1997) 6: 224–240 The VLDB Journal
c© Springer-Verlag 1997

Concurrency and recovery for index trees

David Lomet1, Betty Salzberg2

1 Microsoft Corporation, One Microsoft Way, Bldg 9, Redmond, WA 98052-6399, USA; lomet@microsoft.com
2 College of Computer Science, Northeastern University, Boston, MA 02115, USA; salzberg@ccs.neu.edu

Edited by A. Reuter. Received August 1995 / accepted July 1996

Abstract. Although many suggestions have been made for
concurrency in B+-trees, few of these have considered re-
covery as well. We describe an approach which provides
high concurrency while preserving well-formed trees across
system crashes. Our approach works for a class of index
trees that is a generalization of the Blink-tree. This class in-
cludes some multi-attribute indexes and temporal indexes.
Structural changes in an index tree are decomposed into a
sequence of atomic actions, each one leaving the tree well-
formed and each working on a separate level of the tree. All
atomic actions on levels of the tree above the leaf level are
independent of database transactions, and so are of short du-
ration. Incomplete structural changes are detected in normal
operations and trigger completion.

Key words: Concurrency – Recovery – Indexing – Access
methods – B-trees

1 Introduction

In this paper, we describe a concurrency algorithm for a
class of trees which includes a type of B+-tree containing
sibling links (called aBlink-tree) and some spatial and tempo-
ral indexes. Only data-node splitting sometimes takes place
within database transactions. All other parts of index tree
restructuring are independent of such transactions. The ba-
sic principles of this algorithm were exposed in (Lomet and
Salzberg 1992). This paper gives a step-by-step description
of the algorithm details.

In order to use this algorithm, a search structure must
have several structural and behavioral properties.

– It must partition the search space at each level of the
tree. That is, the set of spaces associated with nodes at
a given level covers the search space and no two nodes’
spaces overlap.

– When a node is split, a pointer in the old node must be
inserted, which indicates the address of the new node.

Other properties are similar to those of the standard B+-tree:

– The data is all in the leaves.

– Insertion must first search down the tree, inserting the
new record in a leaf if there is room and, if not, split-
ting the leaf and creating a new leaf and posting the
information to the parent.

– Splitting and posting continues up the tree if needed.
– When nodes get sparse, two “adjacent” nodes may some-

times be consolidated when they share the same parent.

We call such a tree aΠ-tree, and we give a formal definition
of theΠ-tree in Sect. 3.

A Blink-tree (Lehman and Yao 1981), which is a B+-
tree with sibling links, is aΠ-tree. A time-split B-tree (or
TSB-tree) (Lomet and Salzberg 1989) can be made into a
Π-tree by adding sibling links. The TSB-tree is a temporal
index, where the search space is a two-dimensional space
based on time and database key. The hBΠ -tree (Evangelidis
et al. 1995, 1997) is a spatial search structure on any num-
ber of dimensions which is aΠ-tree. The R-tree (Guttman
1984) is not aΠ-tree (and could not easily be made into
one by adding sibling links), because the spaces associated
with nodes which are on the same level of the tree overlap.

The algorithm described here can be used on anyΠ-
tree. It provides a high degree of concurrency because it
breaks down structural changes into a series of short-term
atomic actions – splitting a node, posting split information
to a parent or consolidating a node with one of its siblings.
Consolidation requires three nodes to be locked – the par-
ent and the two siblings being consolidated. Splitting index
nodes requires only the node being split to be locked. Post-
ing requires the node receiving the new split information
(the parent) to be locked and also must have a short-term
lock on the child to verify that posting is still needed. The
details of this algorithm, with explicit directions for locking,
are in Sect. 6.

The subject of concurrency in B+-trees has a long history
(Bayer 1977; Lehman and Yao 1981; Mohan and Levine
1992; Sagiv 1986; Salzberg 1985; Shasha and Goodman
1988). Most work, with the exception of Mohan and Levine
(1992), and Gray and Reuter (1993) has not treated the prob-
lem of system crashes during structural changes. In this pa-
per, we show how to manage bothconcurrency and recov-
ery for a wide class of index tree structures.

225

1.1 Our approach

There are four innovations which make it possible for us to
provide high concurrency for a large class of index trees and
to mesh with several recovery methods. These are:

1. We define a search structure, called aΠ-tree , that is a
generalization of the Blink-tree (Lehman and Yao 1981).
Our concurrency and recovery method is defined to work
with all search structures in this class.

2. Π-tree structural changes consist of asequenceof atomic
actions (Lomet 1977). These actions are guaranteed to
have the all-or-nothing property by the recovery method.
Searchers can see the intermediate states of theΠ-tree
that exist between these atomic actions. No locks are held
between atomic actions. However, incomplete structural
changes do not affect search correctness.

3. We define separate actions for performing updates at
each level of the tree. Three actions are defined: node
consolidation, node splitting and posting node-split in-
formation. Node consolidation holds three locks. Node
splitting and posting hold at most two locks. Atomic ac-
tions on non-leaf nodes can be separate from the transac-
tion whose update triggers a structural change. No node
consolidation, even at the leaf level, need be part of an
updating transaction. Only node splitting at the leaves
of a tree may need to be within an updating transaction
in such a way that locks associated with the atomic ac-
tion are held until the end of the transaction. This occurs
only in systems which do not support non-page-oriented
(logical) UNDO. This feature is especially important in
systems where a time limit is given for database trans-
actions.

4. When a system crash occurs during the sequence of
atomic actions that constitutes a completeΠ-tree struc-
tural change,crash recovery takes no special measures.
A crash may cause an intermediate state to persist for
some time. The structural change is completed when the
intermediate state is detected duringnormal subsequent
processing by scheduling a completing atomic action.
The state is tested again in the completing atomic action
to assure the idempotence of completion.
The log could be used to detect and complete struc-
tural changes or to complete other actions as in (Zou
and Salzberg 1996). We decided explicitly against this
option for the following reasons:
(a) making recovery simple and fast is important: our

lazy approach requires no special logging and no spe-
cial recovery processing;

(b) a system failure does not often occur leaving a struc-
tural change incomplete; and

(c) even when this happens, some incomplete structural
changes will not affect performance, since the rele-
vant nodes may not be visited again.

1.2 Organization of paper

Section 2 gives an overview of the method. Section 3 for-
mally defines theΠ-tree. Our concurrency algorithm can be
used by any search structure which satisfies this definition.

In Sect. 4, issues of deadlock avoidance and of page-oriented
UNDO are discussed. This affects the decisions on the type
of locking done by our atomic actions. Section 5 describes
how atomic actions are scheduled and how information from
previous atomic actions about the search path can sometimes
be used. Most of the material in Sects. 3, 4 and 5 appeared
in (Lomet and Salzberg 1992) and is repeated here to make
this paper self-contained. Section 6 presents the algorithm.
We give examples of adaptations of two search structures
so as to be forms ofΠ-trees in Sect. 7. Section 8 is a short
discussion of results.

2 Overview

We are concerned with structural changes in index trees that
are a generalization of Blink-trees, which are a variation of
B+-trees. In particular, our index tree is multi-level, with
all leaves on the same level. Leaves contain data records
if the tree is used as a primary index. They contain entries
referencing data records if the tree is used as a secondary
index. These entries have the form<secondary key, primary
key> or<secondary key, record address>. All insertions of
new records or of entries which are references to new records
therefore occur only at the leaf, and structural changes are
propagated upwards.

The two basic structural changes occur when a node is
split and when an underutilized node is consolidated with
a sibling. Although information about these changes does
not need to beposted(placed in the parents of the changed
node(s)) for correct search, for efficiency reasons, change
information should eventually be posted. Before outlining
the two basic structural changes, we first explain the terms
lock and latch.

2.1 Locks and latches

We control concurrency by exploiting two forms of “locks”,
which we refer to here as “database locks” (but subsequently
simply refer to as “locks”) and “latches”.

Database locksare handled by a lock manager, which main-
tains a graph of who delays whom. The lock manager
detects cycles in this delay graph, which indicate that
deadlock has occurred, and aborts one of the parties in-
volved.

Latches are short-term low-cost locks for which the holder’s
usage pattern guarantees the absence of deadlock. Thus,
latches do not involve the lock manager, can be associ-
ated directly with the protected data, and can be manip-
ulated with in-line code.

2.2 Splits

Nodes are split when there is no space for an insertion. In
our index tree structure, this can occur when a new record
is added to the database. Here, the leaf must split if there is
no available space. Some of the leaf node content remains
where it is and some is copied to a new leaf. The information
about the split must be posted to the next level of the tree.

226

split this node

install sibling pointer

now install child pointer

Fig. 1. The sequence of state changes to a Blink -tree that are triggered by
an insertion into a leaf node

Since nodes at the next level may also be too full to receive
the new posting information, the process of node-splitting
can occur recursively at higher levels of the tree.

Suppose a database transaction wishes to insert a new
record in the database. A primary index would require that
a new data record be placed directly in its leaf node. Each
secondary index would require a new entry in one of its leaf
nodes when the new data record is inserted. In either case,
suppose a leaf node split is required. For some recovery
methods, the split must be part of the database transaction.
But for no recovery methods does our method require that
the posting of index information to the next (and occasion-
ally higher) level of the tree be part of the database transac-
tion. This is because we use a generalization of the Blink-tree.
If the index information is not posted, search follows side
pointers which are installed at the split. So the search will
be correct, even if the information about the new node is not
immediately posted to its parent.

In this way, we are able to decompose a split operation
on a tree into a sequence of separate atomic actions, one at
each affected level of the tree. First, a split is made at the
leaf level of the tree. A posting operation at the next level is
then scheduled for a later time. The database transaction can
proceed without further action and without ever latching any
nodes above the leaf level. When the posting action occurs, if
a further split and a higher posting is required, only the split
at the level of the posting is made. The higher level operation
is scheduled as a separate atomic action. A split above the
leaf level latches only the node to be split and drops the latch
as soon as the split is complete. A posting action latches
the node where the information is to be posted and also
briefly latches the split child to verify the information and
then drops its latches when the information has been posted.
Fig. 1 illustrates the progression of atomic actions that can
be triggered by an initial leaf insertion.

Thus structural changes caused by insertion are decom-
posed into a sequence of actions, one at each level of the
tree. Each such action is logged and is atomic. If a system
failure occurs before a complete structural change is made,
some of the separate actions in the sequence may have com-
pleted and others may not have, but after recovery at restart,
no action will be part-way done. That is, an index tree will

be operation-consistent, where the operations involved here
are our single tree-level atomic actions.

No attempt is made to stably record the progress of an
entire structural change. Thus, this information is lost across
system crashes. Incomplete structural changes caused by in-
sertions are completed when some transaction or atomic ac-
tion is forced to follow a side pointer. This is an indica-
tion of a missing index-posting. The missing posting is then
rescheduled. If no transaction ever follows the side pointer
where the posting is missing, the posting is never made.
However, in this case, the missing posting does not cause
any performance penalty.

2.3 Node consolidation

Consolidation of underutilized nodes is an optimization.
Many commercial systems do not support this optimization.
In our method, if a system wishes to support this optimiza-
tion, a node consolidation is scheduled when a transaction
visits an underutilized node. Node consolidation is never part
of a database transaction.

Suppose a transaction encounters an underutilized node.
It then schedules a node consolidation. The node consoli-
dation atomic action works at two levels: the level of the
underutilized node and that of its parent.

A number of constraints are enforced. For example, the
dropped node must have only one parent. (This is only an is-
sue in multi-attribute trees; Blink-tree nodes always have only
one parent). The node to be dropped must be matched with
an “adjacent” sibling (below, in the general case, we will
define “adjacency” in terms of “containment”) which has
enough space to absorb the contents of the dropped node.
(Either the dropped node or its sibling may be the origi-
nal underutilized node.) If these conditions are satisfied, we
latch the parent and the two siblings and proceed with the
consolidation.

To perform node consolidation, we erase the index term
for the node to be dropped and move the contents of the
dropped node to its sibling. The index term for the sib-
ling must be changed to reflect its new larger contents. If
this consolidation causes the parent of the dropped node to
be underutilized, we schedule a separate node consolidation
atomic action for the parent.

2.4 Scheduling atomic actions

We have used the termscheduling to describe the initia-
tion of the separate atomic actions that comprise a complete
structural change. This term was chosen to emphasize thein-
dependenceof the atomic actions from each other. That is,
each can succeed or fail independently of the success or fail-
ure of the other atomic actions. (Of course, an atomic action
that is scheduled to post an index term describing a split will
only perform the posting if the node allocated in the split ac-
tion is present when the index-posting operation executes.)
This independence is important for the recoverability of our
structural changes. We exploit it through making recoverable
only the separate atomic actions. Entire structural changes
need not be recoverable as a unit. By having a smaller unit
of recovery, concurrency is enhanced.

227

Independence of atomic actions is essential for the cor-
rect operation of our structural changes. However, it is use-
ful to schedule atomic actions proximate to related atomic
actions for two reasons.

1. Proximate scheduling enhances our ability to exploit
saved state information across atomic actions. This saved
state information has to be validated (checked to assure
that it still describes correctly the current state). But, in
so far as the state has not changed, it permits us to avoid
all or part of index tree searches.

2. Proximate scheduling frequently avoids the process or
thread switch that might be required were scheduling de-
ferred and done via an asynchronous control path. Since
process- (and thread-) switching costs can be more than
a thousand instructions, proximate scheduling is impor-
tant.

Thus, while we consistently describe, e.g., a node split, as
resulting in the scheduling of a subsequent index term post-
ing atomic action, we expect that the execution of this action
will normally occur promptly and in the same control path.

We need to be careful here in that scheduling is sub-
ject to one important constraint. The scheduled action will
normally be required to be performed after the currently ex-
ecuting atomic action drops its latches and locks. This pre-
vents deadlocks between searchers which descend the tree
and structural changes which ascend the tree. Deadlock pre-
vention is described in detail in Sect. 4.

If node splitting is part of a database transaction (i.e.
if the node is a leaf node), the index posting can occur
before the database transaction commits if non-page-oriented
UNDO is supported. Here, the only consideration is that the
split completes and drops its latches before the index-posting
action begins. In contrast, in page-oriented UNDO systems
(explained in Sect. 4.3), when a leaf split occurs as part
of a database transaction, the index-posting action must be
deferred until after the database transaction commits.

When the need for an index-posting is discovered during
a search that requires a sibling link traversal, scheduling of
the posting can always be done promptly, i.e., immediately
following the release of the latches acquired on the parent
during the search by the current control path. Here, a separate
control path is used for the index-posting. If the same control
path were to be used, the latches on the level of the sibling
traversal would have to be released as well before the index-
posting could begin.

Node consolidation is handled analogously to index-
posting. Consolidation can be promptly executed when deal-
ing with index nodes, i.e., as soon as the search latches are
released. For leaf nodes in page-oriented UNDO systems,
consolidation will not be executed until after any transac-
tion with locks on the nodes completes. In particular, the
control path that detects the need for consolidation must not
hold any locks on the nodes subject to consolidation at the
time consolidation is executed. This may require that leaf
consolidation actions be scheduled after the completion of
the current database transaction.

3 TheΠ-tree

In this section, we define the properties a search structure
must have to be able to use our concurrency and recovery
method. First, we formally describe the structural properties,
and then we describe the behavioral properties. A structure
which satisfies this definition is called aΠ-tree.

3.1 Structural description

Informally, a Π-tree is a balanced tree, (all leaves are at
the samelevel) and we measure the level of a node by the
number of child edges on any path between the node and
a leaf node. More precisely, however, aΠ-tree is a rooted
DAG, because, like the Blink-tree, nodes have edges to sib-
ling nodes as well as child nodes. Edges between sibling
nodes go in only one direction. Some commercial imple-
mentations of the B+-tree have doubly linked lists at the leaf
level. OurΠ-tree does not have doubly linked lists. All these
terms are defined more formally below.

3.1.1 Within one level

Each node isresponsible fora specific part of the key space,
and it retains that responsibility for as long as it is allocated.
A node can meet its space responsibility in two ways. It can
directly contain entries (data or index terms) for the space.
Alternatively, it candelegateresponsibility for part of the
space to asibling node.

A node delegates space to a new sibling node during a
node split. Asibling term describes a key space for which
a sibling node is responsible and includes aside pointer to
the sibling. A node containing a sibling term is called the
containing node and the sibling node to which it refers is
called thecontained node. Note that this relationship can
change over time. IfA is a containing node andB is its
contained node andA splits again, allocating a new nodeC,
the side pointer fromA to B may be copied into the new
nodeC. ThenC containsB andA containsC.

For example, an index or data nodeA in a Blink-tree
is said to be responsible for a key range from some lower
value to the maximum key value, say [500, MAX]. When it
splits, all keys with value equal to or greater than 700, say,
go to the new sibling,B. B is then responsible for [700,
MAX]. The original nodeA is still responsible for [500,
MAX], but now contains a sibling term indicating that the
keys greater than or equal to 700 are at another address,B.
This is indicated in Fig. 2a and b.

If the nodeA responsible for [500, MAX] splits again,
moving all the keys greater or equal to 600 to another new
sibling,C, C will obtain the address ofB as its side pointer,
andA will have a sibling term indicating that keys greater
than or equal to 600 are inC. This is illustrated in Fig. 2c.

Any node except the root can contain sibling terms to
contained nodes. Further, aΠ-tree node is not constrained
to have only a single sibling, but may have several. (This
does not happen in the Blink-tree.) Formally, alevel of the
Π-tree is a maximal connected subgraph of nodes and side
pointer edges. The first node at each level is responsible for

228

500 parent of A

A: 500 530 570 600 650 700 867

500 parent of A

A:
700 867700

B:

500 parent of A

A:
500 530 570 600 650 700 867700

B:

500 530 570 600 600 650

C:

a

b

c

Fig. 2a–c.Contained and containing nodes; space responsibility.a At this
point,A is responsible for [500, MAX] and directly contains all entries in
its level in [500,MAX]. ThenA splits and delegates some of its space to
a contained siblingB. b Now A is a container node andB is a contained
node. This is becauseA now contains a sibling term (700) which descibes
the space [700,MAX] for whichB is responsible.A is still responsible for
[500,MAX], but now its directly contained space is [500,700).c Now A is
the container node forC andC is the container node forB. A contains
a sibling term forC andC has a sibling term forB. A is responsible for
[500,MAX], but its directly contained space is [500,600). C is responsible
for [600,MAX], but its directly contained space is only [600,700)

the whole space, i.e., it is the containing node for the whole
key space. New siblings are always on the same level as the
nodes from which they split.

3.1.2 Multiple levels

TheΠ-tree is split from the bottom, like the B-tree.Leaf
nodesare at level 0. Leaf nodes contain only data records (in
the case of primary trees) or entries consisting of secondary
keys and primary keys or references to data pages (in the
case of secondary trees) and/or sibling terms. As theΠ-tree
grows in height via splitting of a root, new levels are formed.

A split is normally described by an index term. Each
index term, when posted, includes achild pointer to achild
node and a description of a key space for which the child
node is responsible. A node containing the index term for a
child node is called aparent node. A parent node indicates
the containment ordering of its children based on the spaces
for which the children indexed are responsible.

A parent node directly contains the space for which it is
responsible and which it has not delegated, exactly as with
a leaf node. InΠ-trees, as in Blink-trees, parent nodes are
index nodeswhich contain only index terms and/or sibling
terms. Leaf nodes are not index nodes.

Parent nodes are at a level one higher than their children.
Unlike Blink-trees, in the more generalΠ-trees such as TSB-
trees and hBΠ -trees, the same child can be referred to by

two (or more) parents. This happens when the boundary of
a parent split cuts across a child boundary.

3.1.3 Well-formedΠ-trees

Going down from the root, each level describes a partition
of the space into subspaces directly contained by nodes of
that level. This gives theΠ-tree its name.

Side pointers and child pointers must refer to nodes
which are responsible for spaces that contain the indicated
subspaces. A pointer can never refer to a deallocated node.
Further, an index node must contain index terms that refer
to child nodes that are responsible for spaces, the union of
which contains the subspace directly contained by the index
node. However, each node at a level need not have a parent
node at the next higher level. This is an abstraction and gen-
eralization of the idea introduced in the Blink-tree (Lehman
and Yao 1981). That is, having a new node connected in
the Blink-tree only via a side pointer is acceptable. We never
know whether a node directly contains the space of interest
or whether it is merely responsible for the space until we
examine the sibling terms.

Like (Shasha and Goodman 1988), we define the re-
quirements of a well-formed general search structure. Thus,
aΠ-tree iswell-formed if

1. each node is responsible for a subspace of the search
space;

2. each sibling term correctly describes a subspace of the
(responsible) space of its containing node for which its
referenced node is responsible.

3. each index term correctly describes a subspace of the
(responsible) space of the index node for which its ref-
erenced child node is responsible;

4. the union of the spaces described by the index terms
and the sibling terms equals the space an index node is
responsible for.

5. the lowest level nodes are leaf nodes.
6. a root exists that is responsible for the entire search

space.

The well-formedness description above defines a cor-
rect search structure. All structural changing atomic actions
must preserve this well-formedness. We will need additional
constraints on structure changing actions to facilitate node
consolidation (deletion).

3.2Π-tree behavioral description

Here we describe the operations onΠ-trees in a very gen-
eral way. The steps do not describe how to deal with either
concurrent operations or with failures. In particular, we do
not show how to decompose structural changes into atomic
actions. This section shows howΠ-tree searches, splits and
node consolidations must behave if the recovery and con-
currency algorithm of this paper is to be applicable.

3.2.1 Searching

Searches start at the root of theΠ-tree. The root is an index
node that directly contains the entire search space. In an

229

index node whose directly contained space includes a search
point, an index term must exist that references a child node
that is responsible for the space that contains the search
point. There may be several such child nodes. Proceeding
to any such child node is correct in that the search will
eventually succeed. However, it is desirable to follow the
child pointer to the node that directly contains the search
point. This avoids subsequent sibling traversals at the next
lower level.

Index terms describe the space for which a child is re-
sponsible, not its directly contained space. Because the post-
ing of index terms can be delayed, we can only calculate the
spaceapproximately contained by a child with respect to
a given parent. This isthe difference between that part of
the space of the parent node the child is responsible for and
the subspaces that it has delegated to other child nodes ref-
erenced by index terms that are present in the index node.
Before we visit a node, we have only approximate or partial
information about its contents.

In Fig. 2b, the approximately contained space of node
A with respect to its parent includes all values greater than
or equal to 500. Its directly contained space includes only
the values greater than or equal to 500 and smaller than
700. This is because the index term for B has not yet been
posted. Thus, as far as a visitor to the parent can tell, A has
(approximately) all values greater than or equal to 500.

When all index terms for child nodes that have been
delegated space from a child C have been posted to an index
node I, the approximately contained space for C relative to I
equals the intersection of its directly contained space and the
directly contained space of I. With this precise information,
a side pointer from C would not have to be followed after
the search proceeds from I to C.

Thus, we minimize our search cost by proceeding to the
child that approximately contains the search point. Because
we attempt to make structural changes complete, this node
will usually, but not always, contain the search point. If
the directly contained space of a node does not include the
search point, a side pointer is followed to the sibling node
that has been delegated the subspace containing the search
point. Eventually, a sibling is found whose directly contained
space includes the search point.

The search continues until the leaf node level of the tree
is reached. In primary trees, the record for the search point
will be present in the leaf node whose directly contained
space includes the search point, if it exists at all. In secondary
trees, the key (which is the search point) will be in the leaf
if the corresponding record is in the database.

3.2.2 Node-splitting

We wish to build ourΠ-tree so as to permit our search pro-
cedure to minimize side pointer traversals. Thus, we want
the children of an index node to be exactly the nodes at the
next lower level with directly contained spaces that intersect
the directly contained space of the index node. However,
when we split index nodes, our information is incomplete.
The best that we can do is to partition index terms based
on the spaces that their child nodes approximately contain.
Index terms are thus placed in the resulting index node(s)

whose directly contained space(s) intersect(s) the approxi-
mately contained space of the index term. This is acceptable
in that searches will still be effective. Over time, the missing
index terms will be correctly posted (see Sect. 4.1).

LetO stand for the original node to be split. LetS stand
for the new sibling node. A node split has the following
steps:

1. Allocate space forS.
2. Partition the subspace directly contained byO into two

parts.O continues to directly contain one part. The other
part is delegated toS.

3. If O is a leaf node and the data is point data, place in
S all of O’s data that are contained in the delegated
space. (In a secondary tree, “data” consists of secondary
keys and primary keys or pointers to database pages.)
Include any sibling terms to subspaces for whichS is
now responsible. Remove fromO all the data that it no
longer directly contains.

4. If O is a leaf node and the data has some extent (for ex-
ample, in the TSB-tree, data has a time interval as well
as a database key), place inS all of O’s data whichin-
tersectsthe delegated space. (In a secondary tree, “data”
consists of secondary keys and primary keys or pointers
to database pages.) Include any sibling terms to sub-
spaces for whichS is now responsible. Remove fromO
all the data that its directly contained space does not in-
tersect. This implies that data items which intersect both
spaces will have copies in both nodes.

5. If O is an index node, we retain inO the index termsi
that refer to child nodesC(i) whose approximately con-
tained spaces intersect the now smaller space directly
contained byO. Similarly, if the approximately con-
tained space ofC(i) intersectsS’s space,i is placed
in S. Because an index node split can divide the approx-
imately contained space of a child node, the index term
for that node can end up in both of the resulting index
nodes. (This does not happen in the Blink-tree, but can
happen in the hBΠ -tree or the TSB-tree.)

6. Put a sibling term inO that refers toS.
7. Schedule the posting of an index term describing the split

to the next higher level of the tree. The index term con-
tains a reference toS and describes the space for which
S is responsible. Posting occurs in a separate atomic ac-
tion from the action that performs the split.

Example: In a Blink-tree, an index or sibling term is rep-
resented by a key value and node pointer. It denotes that
the child node referenced is responsible for the entire space
greater than or equal to the key. To perform a node split,
first allocate a new node. Find the key value that evenly di-
vides the records of the node. Copy all records (“records”
may be index entries in index nodes or data records in leaf
nodes) from the original node to the new node whose keys
are ordered after the middle record’s key. The new node
has been delegated the high-order key subspace. Copy the
link (sibling term) from the old node to the new node. Then
remove the copied records from the old node. Replace the
link in the old node with a new sibling term (address of the
new node and the split key value). Finally, post the address
of the new node and the split key value to the parent. This
is the index term.

230

3.2.3 Clipping

The entries of index nodes denote subspaces, not merely
points. (In Blink-trees, subspaces are key intervals.) When an
index node is split, it is simplest, if possible, to delegate to
the new sibling a space which is the union of the approxi-
mately contained spaces of a subset of child nodes. This is
what happens in the Blink-tree. Then, there will not be an
index term that needs to appear in both nodes resulting from
the split. It can be difficult to split a multi-attribute index
node in this way, because either the space partitioning is too
complex, resulting in very large index and sibling terms, or
because the division between original and new sibling nodes
is too unbalanced, reducing storage utilization. In the TSB-
tree, splitting by any given time value will usually result
in cutting across the timespan of several of its children, for
example.

This approach to splitting nodes whose entries describe
spatial information by storing the entry in both nodes is
called “clipping”. When a child node is referenced from two
index nodes (or more) because its index term was clipped,
then posting index terms describing the splitting of this child
may involve the updating of several of these parent index
nodes. We must be prepared to deal with this complication.

Because of the redundant paths to data that are provided
by Π-trees, we need not post index terms to all parents of
a splitting node atomically. Instead, we post an index term
only to the parent that is on the current search path to the
splitting node. This is the lowest cost way of updating this
parent, since it has already been read, and merely needs to
be updated and written to complete the index-posting.

Other parents can be updated when they are on a search
path that results in a sibling traversal to the new node. This
exploits a mechanism that is already present to cope with
system failures in the midst ofΠ-tree structural changes.
Using this mechanism does not usually increase the cost of
the structural change. Instead of reading a second parent and
writing it, we perform the write of the second parent later and
incur an extra read to do the sibling traversal. Subsequently,
when we refer to “the parent”, we intend this to denote the
parent that is on the current search path.

3.2.4 Node consolidation

Node consolidation is scheduled when a node’s storage uti-
lization drops below some threshold. When a nodeN be-
comes underutilized, it may be possible to consolidated it
with either its containing node (the sibling ofN which con-
tains a sibling term referring toN) or one of its contained
nodes (nodes referred to by sibling terms insideN). We
always move the node contents from contained node to con-
taining node, regardless of which is the underutilized node.
Then the index term for the contained node is deleted and
the contained node is deallocated. For this to be simple,

– both containing and contained node must be referenced
by index terms in the same parent node, and

– the contained node must only be referenced by this par-
ent.

These conditions mean that only the single parent of the
contained node need be updated during a consolidation. This

node will also be a parent of the containing node. These
conditions are used to simplify the consolidation. Refusing to
consolidate other nodes means that we will consolidate fewer
nodes. But the search structure will remain well-formed.

There is a difficulty with the above constraints. Whether
a node is referenced by more than one parent is not derivable
from the index term information we have described thus far.
However, multi-parent nodes are only formed when (1) an
index node (the parent) splits, clipping one or more of its
index terms, or (2) when a child with more than one parent is
split, possibly requiring posting in more than one place. We
mark these clipped index terms as referring to multi-parent
nodes. All other nodes are what we callsingle parent nodes
and are subject to consolidation.

4 Atomic actions for updating

We need to assure that atomic actions are correctly serial-
ized and have the all-or-nothing property required of them.
Interactions between atomic actions must not cause unde-
tected deadlocks or incorrect searches. How this is done is
described in this section.

4.1 Latching for atomic actions

4.1.1 Resource ordering and deadlock avoidance

The only “locks” required for atomic actions that change
an index tree at the index levels, i.e., above the leaf level,
are latches. For deadlock avoidance, resources are ordered.
Latches will be held onΠ-tree nodes and will be acquired
in the same order by each atomic action, thus preventing
deadlock. Parents are latched before children and containers
before contained nodes.

Promoting a previously acquired latch violates the or-
dering of resources and compromises deadlock avoidance.
Promotion is the most common cause of deadlock (Gray
and Reuter 1993). For example, when two transactions set
S-latches on the same object to be updated, and then sub-
sequently desire to promote their latches toX, a deadlock
results.

Update(U) latches (Gray et al. 1976) support latch pro-
motion by retaining an exclusive claim on a resource that is
currently shared (Lomet 1980). They allow sharing by read-
ers, but conflict with X or other U-latches. An atomic action
is not allowed to promote from an S- to an X-latch, because
this increases its claim. But it may promote from a U-latch
to an X-latch.

However, a U-latch may only be safely promoted toX
under restricted circumstances. We must prevent another ac-
tion with an S-latch on the resource from having to wait for
higher numbered resources that might be already be latched
by the requester of the latch promotion. The rule that we ob-
serve is that the promotion request on nodeN is not made
while the requester holds latches on nodes lower thanN
in the tree or further along thanN in the partial order of
siblings made by sibling pointers.

231

4.1.2 Latch acquisition

The resource ordering we have chosen for our algorithm,
which will enable us to prevent deadlock, is presented in
this subsection. Latches are acquired in search order, parent
nodes prior to their children and containing nodes prior to the
contained nodes referenced via their side pointers. Whenever
a node might be written, a U-latch is used.

Space management information can be ordered last.
Node-splitting and consolidation access it, but other updates
and accesses do not. Changes in space management informa-
tion follow a prior tree traversal and update attempt. Hence,
latching and accessing this information last is convenient
and shortens its latch hold time.

When the order above might be violated, as it would in
an upward propagation of node-splitting, the activity is de-
composed into separate atomic actions, each one of which
follows the resource ordering we have chosen. The first ac-
tion is terminated, all its latches and locks are dropped, and
a second atomic action is initiated to complete the structural
change.

4.1.3 Release of latches by atomic actions

When dealing with index trees, the types of possible atomic
actions are known. Because of this, there are circumstances
in which release of latches before termination of the atomic
action does not compromise correctness.

We do not claim that database transactions are serializ-
able with respect to atomic actions. If a database transaction
makes two searches of a tree, one before and one after a
node split, for example, it may see two versions of the tree.
Both searches will be correct.

Suppose, for example, an atomic action holds a latch
on the node whose subspace contains the entry of interest.
The higher level nodes are not revisited in the atomic action.
Hence, latches on the higher level nodes can be released. An
atomic action commutes with other atomic actions that are
accessing or manipulating nodes outside the subtree rooted
by the latched node.

Other cases where early release is acceptable include (i)
releasing a latch when the resource guarded has not been
changed and the state observed will not be relied upon for
subsequent execution, and (ii) demoting a latch from X- to
U-mode when a lower level latch is sufficient to provide
correctness even when a node has been changed.

4.2 Interaction with database transactions

4.2.1 Avoiding latch-lock deadlocks

There are two situations where an index tree atomic ac-
tion may interact with database transactions and also require
locks. Sometimes, but not always, these actions are within
a database transaction.

1. Normal accessing of a database record (fetch, insert,
delete, or update of a data record) requires a lock on
the record.

2. Moving data records, whether to split or consolidate
nodes, may require database locks on the records to be
moved. This is explained in the section on page-oriented
UNDO.

Note that, in secondary index trees, the “records” in
question may be the secondary keys and primary keys or
pointers in the leaves, rather than the actual data records.
In this case, database transactions may hold locks on the
leaf records (keys and pointers) during insertion or deletion,
or when range queries are made (Mohan and Levine 1992;
Mohan 1990). For the same reasons, these leaf records in
secondary indexes may require database locks when moved
due to splits and consolidations.

Should holders of database locks be required to wait for
latches on leaf nodes, this wait is not known to the lock man-
ager and can result in an undetected deadlock even though
no deadlock involving only latches is possible. For example,
transactionT1 inserts recordR in nodeN and releases its
latch onN while holding its database lock onR. Transac-
tion T2 latchesN in X mode and tries to deleteR. It must
wait. TransactionT1 now tries to insert a second record in
N and is forced to waitfor the N-latch.

To avoid latch-lock deadlocks, we observe the

– No-Wait rule: actions do not wait for database locks
while holding a latch that can conflict with a holder of
a database lock.

A universal strategy for dealing with an action that waits
for a database lock while holding a latch is to abort it, releas-
ing all its latches and undoing its effects. When the requested
locks are acquired, the atomic action is re-executed in its en-
tirety, making use of saved information where appropriate.
However, for the specific operations of our method, this is
not necessary. Only certain latches need be released, i.e.,
those that can conflict with the holder of a database lock.
We then wait for the needed locks to be granted, and resume
the atomic action.

For our index tree operations, we must release latches on
leaf nodes whenever we wait for database locks. However,
latches on index nodes (i.e., nodes above the leaf level) may
be retained. Except for leaf node consolidation, no atomic
action or database transactionboth:(i) holds database locks;
and (ii) uses other than S-latches above the leaf node level.
S-latches on index nodes never conflict with database trans-
actions, only with index change atomic actions. Except for
consolidate, these actions never hold database locks. And
consolidate never requests a U-latch on the index node to
be updated while it holds database locks. Hence, its holding
of this U-latch cannot conflict with another consolidate (or
any other action) that holds database locks.

4.3 Logical UNDOs

4.3.1 Multi-level system view

Logical UNDO allows updates on records to be UNDONE
on a different page from the one the record was on when
the update was made. However, this creates a delicate situ-
ation when very high concurrency B+-tree implementations,

232

including ours, release B+-tree node locks early. This early
release of node locks permits multiple transactions to be
concurrently updating different parts of the tree, including
within a subtree whose root is being split. These updates
may be uncommitted at the time of a system crash. If we
allow logical UNDO and if these updates have been moved
because of a completed structure change lower in the tree,
they will need UNDO that requires a tree search involving
a path that includes the node whose split is incomplete.

The multi-level transaction (Weikum 1986) way of
looking at this is that there are twolevels of abstraction,
an ordered record abstraction, and the B+-tree implementa-
tion that supports it. Record update is considered to be a
higher level abstraction than B+-tree structure changing. (In
this subsection of this paper, we use the wordlevel to mean
a level of abstraction, not a level of the B+-tree.)

The logical operations (UNDOs in this case) are ex-
pressed in terms of the ordered record abstraction. For these
operations to execute correctly, the path that they need from
root to leaf must be well-formed. But the B+-tree imple-
mentation layer is being changed as well, via a page split
in this case. We must guarantee that the changes leave the
path well-formed when we need to perform the record up-
date UNDOs. This means that incomplete structure changes
on such paths need to be recovered before the record update
is UNDONE.

4.3.2 Careful recovery needed

We assume here that our recovery method performs REDO
recovery first, repeating history, during a forward pass over
the log. Then it performs UNDO. UNDO recovery is usually
accomplished by starting at the tail of the log and scanning
backwards, undoing operations of uncommitted transactions
and of uncommitted B+-tree restructurings, until all required
UNDO operations have been executed. Without modifica-
tion, or additional care, this recovery paradigm will occa-
sionally fail.

Recall that a B+-tree split will touch multiple pages, and
hence there will be multiple log records, spread out among
other operations on the log. Further, some of the changes
produced by the split may have been flushed to the disk.
Despite this, if all log records describing a B+-tree restruc-
turing on a path are naturally guaranteed to occur later on
the log than the log records for the logical record update
operations that require the path to be well-formed, then no
extra care is required. But this is not guaranteed.

One way of dealing with this problem is to ensure that
log records for B+-tree operations always appear later in the
log than the log records for the logical UNDOs that need a
well-formed path to their update. That way, the tree will be
recovered before the logical UNDO that needs it. One can
use concurrency control to restrict the sequence in which op-
erations are performed. For example, the ARIES/IM (Mohan
and Levine 1992) B+-tree method provides a single structure
modification lock (SMO), which is locked in exclusive (X)
mode when a structure modification is in progress. Only a
single modification can be active at a time.

4.3.3 Multi-level UNDO

Maximum concurrency permits B+-tree structure modifica-
tions to occur simultaneously, whether on the same path or
not. The bottom-up method we describe here permits this.

Recovery to cope with multi-level subtransactions is de-
signed specifically for situations like these. Instead of per-
forming UNDO recovery from the log tail back in a single
sequential pass of the log, multi-level methods (Weikum et
al. 1990; Lomet 1992) perform UNDO recovery level by
level, begining at the lowest level of abstraction. In the case
of B+-trees, this ensures that the B+-tree is fully recovered
prior to undoing logical record operations that need well-
formed paths.

The MLR method (Lomet 1992) extends to an arbitrary
number of levels. Using MLR, B+-tree structure modifica-
tions can be incorporated into any scheme involving multiple
levels of abstraction, regardless of the number of other lev-
els. It uses a single log, exploits physiological operations for
REDO, and repeats historỳa la ARIES.

4.4 Page-oriented UNDO

4.4.1 Non-commutative updates

Leaf node splitting and consolidation require database locks
for some (but not all) recovery protocols. For example, if
UNDOs of updates on database records must take place on
the same page (leaf node) as the original update, (page-
oriented UNDO) the records cannot be moved until their up-
dating transaction commits or aborts. No updates can be per-
mitted on records moved by uncommitted structural changes,
since undoing the move would cause those records to move.
Finally, no update can be permitted that makes the undoing
of the move impossible. Such updates are those that consume
space in the node that is needed in order to consolidate nodes
split by a transaction. Only operations (together with their
inverses) that commute with the structural change can be
permitted.

When a structural change is part of an independent
atomic action, the latches needed for the structural change
are two-phased but only persist for the duration of this ac-
tion. All node consolidation is like this. Some leaf-node-
splitting can also be done in an independent atomic action.
If a transaction,T , whose update triggers the need for a
node split, has not yet updated any record to be moved by
the split, the split can be performed in an action independent
of and beforeT . Then, updates that do not commute with the
structural change are only blocked during this independent
action. Further, of course, the structural change will not be
undone ifT aborts.

Other leaf node splits in page-oriented UNDO systems
must be done within an updating database transaction. In this
case, the database locks are held to the end of transaction
and the structural change must be undone if the transaction
aborts.

4.4.2 Move locks

In this section, we describe the requirements of move locks.
They may be implemented in several ways, depending on

233

the lock granularities and modes available in the underlying
system.

For page-oriented UNDO, amove lock is required that
conflicts with non-commutative updates. The move lock
causes the structure change operation to wait until all trans-
actions that are updating records to be moved have com-
pleted. Further, it blocks updating transactions from chang-
ing records moved until the moving transaction completes.
Finally, the move lock keeps updates from consuming space
that would prevent the undoing of the move. Since reads do
not require UNDO, concurrent reads can be tolerated. Hence,
move locks may be compatible with share-mode locks. (This
assumes that all access to records is through theΠ-tree, fol-
lowing links when sibling terms indicate that it is necessary.
Otherwise, say with a table scan using page locks, readers
can miss a moved record or see it twice.)

When leaf-node-splitting occurs in a system with page-
oriented UNDO, the move lock must be held to the end
of the transactionT that does the splitting. The posting of
the index term for splits cannot occur until and unlessT
commits, so that UNDO of the split is possible ifT aborts.
For the same reason, any other transaction which traverses
the sibling pointer created byT ’s split may not post the
index term untilT commits. Therefore, a move lock must be
distinguished from a share lock. A transaction encountering
a move lock on a sibling traversal does not schedule an
index-posting. This implies that, in a database with page-
oriented UNDO, transactions must set database locks at leaf
level when traversing links, in order to detect possible move
locks.

A move lock can be realized with a set of individual
record locks, a page-level lock, a key-range lock, or even
a lock on the whole relation. This depends on the imple-
mentation specifics. If the move lock is implemented using
a lock whose granule is a node size or larger, once granted,
no update activity can alter the locking required. This one
lock is sufficient.

Should the move lock be realized as a set of record locks,
the need to wait for one of these locks means that the latch
on the splitting node must be released. This permits changes
to the node that can result in the need for additional records
to be locked. Since the space involved (one node) is lim-
ited, the frequency of this problem should be low. The node
is relatched and examined for changes (records inserted or
deleted). The following outcomes are possible.

1. No change is required to the locks needed to implement
the move lock. Proceed with the structural change.

2. The structural change becomes unnecessary. Abort the
structural change action.

3. The structural change remains necessary, but different
locks are needed to implement the move lock. Request
the new locks. If a wait is required, release the node
latch and repeat this sequence until all needed locks are
held.

4.5 Providing all-or-nothing atomicity

We want our approach to index tree concurrency and re-
covery to work with a large number of recovery methods.

Thus, we indicate what our approach requires from a recov-
ery method, without specifying exactly how these require-
ments are satisfied.

4.5.1 Logging

We assume that write-ahead logging (the WAL protocol) is
used to ensure that actions are atomic, i.e., all or nothing.
The WAL protocol assures that actions are logged so as to
permit their UNDO, prior to making changes in the stable
database.

Our atomic actions are not user-visible and do not in-
volve user-commitment promises. Atomic actions need only
be “relatively” durable. That is, they must be durable prior to
the commitment of transactions that use their results. Thus,
it is not necessary toforce to diska “commit” log record
when an atomic action completes. This “commit” record can
be written when the next transaction commits, forcing the
log. This transaction is the first one that might depend on the
results of the atomic action. When the log record of the com-
mit of the transaction and the last log record of the atomic
action (its “commit” log record) are on disk, both the trans-
action and the atomic action are durable. This optimization
assumes that any transaction which might depend on these
results uses the same log.

4.5.2 Identifying an atomic action

Atomic actions must complete or partial executions must
be rolled back. Hence, the recovery manager needs to know
about atomic actions, as it is the database system component
responsible for the atomicity property, i.e., the all-or-nothing
execution of the action.

Three possible ways of identifying an atomic action to
the recovery manager are as (i) a separate database transac-
tion, (ii) a special system transaction, or (iii) as a “nested
top-level action” (Mohan et al. 1992). Our approach works
with any of these techniques, or any other that guarantees
atomicity. One strength of the method is that it realizes high
concurrency while providing independence from the details
of the surrounding database system.

5 Multi-action structural changes

The database activity that triggers a structural change is
largely isolated from the change itself. It is this isolation
that enables the high concurrency of our approach.

Only if the multiple atomic actions involved in a struc-
tural change are truly independent can they be scheduled
independently. Only then can an intervening system crash
interrupt the structural change, delaying its completion for
a potentially long period while leaving theΠ-tree well-
formed.

5.1 Completing structural changes

There is a window between the time a node splits in one
atomic action and the index term describing it is posted in

234

another. Between these atomic actions, aΠ-tree is said to
be in an intermediate state. These states are, of course, well-
formed and can be successfully searched. However, search-
ing a tree in an intermediate state may result in more nodes
on the search path or in the existence of underutilized nodes
which should be deleted. Hence, we try to complete all struc-
tural changes. And, it is not always the case that we have
already scheduled atomic actions to do this.

There are at least two reasons why we “lose track” of
which structural changes need completion, and hence need
an independent way of rescheduling them.

1. A system crash may interrupt a structural change after
some of its atomic actions have been executed, but not
all. The key to this is to detect the intermediate states dur-
ing normal processing, and then schedule atomic actions
that remove them. Hence, database crash recovery does
not need to know about interrupted structural changes.

2. We only schedule the posting of an index term to a sin-
gle parent. We rely on subsequent detection of interme-
diate states to complete multi-parent structural changes.
This avoids the considerable complexity of trying to post
index terms to all parents, either atomically or via the
scheduling of multiple atomic actions.

Structural changes are detected as being incomplete by a
tree traversal that includes following a side pointer. At this
time, we schedule an atomic action to post the index term. In
the case of leaf-level tree traversal in a system where move
locks may be in place, a transaction following a side pointer
must test for such a lock by, for example, attempting to place
an instant duration lock incompatible with move locks. If a
move lock is detected, no index-posting is scheduled.

Several tree traversals may follow the same side pointer,
and hence try to post the index term multiple times. A sub-
sequent node consolidation may have removed the need to
post the index term. These are acceptable, because the state
of the tree istestable. Before posting the index term, we test
that the posting has not already been done and still needs to
be done.

The need to perform node consolidation is indicated by
encountering an underutilized node. At this point, a node
consolidation is scheduled. As with node-splitting, theΠ-
tree state is tested to make sure that the consolidation is
only performed once, and only when appropriate.

5.2 Exploiting saved state

Exploiting saved information is an important aspect of effi-
cient index tree structural changes. The bad news of indepen-
dence is that information about theΠ-tree acquired by early
atomic actions of the structural change may have changed,
and so cannot be trusted by later atomic actions. TheΠ-tree
may have been altered in the interim. Thus, saved informa-
tion may need to be verified before it is used, and in general,
later atomic actions must verify that their execution remains
appropriate.

The information that we save consists of search key,
nodes traversed on the path from root to data node containing
the search key, and the location of the relevant index terms
within those nodes. This information can permit us to locate

nodes to be restructured without a second search of the nodes
on the path, and to find a location within an index node
where a new index term is to be inserted or an old one
deleted.

To verify saved information, we use state identifiers
(Lomet 1990) within nodes to indicate the states of each
node. We record these identifiers as part of our saved path.
The basic idea is that if a node and its state id (stored in the
node) equal a remembered node and state id, then there have
not been any updates to the remembered node since the pre-
vious traversal. Hence, the remembered descendent can be
used, avoiding a second search of the node. (Log sequence
numbers are used as state identifiers in many commercial
systems.)

Whether node consolidation is possible has a major im-
pact on how we handle saved information. The extent to
which we can trust this saved information changes when
node consolidation is allowed. We outline the effects of sup-
porting or not supporting node consolidation here.

5.2.1 No-consolidate case

Consolidation Not Supported [CNS] Invariant: A node,
once responsible for a key subspace, is always responsible
for the subspace.

CNS has three effects on our tree operations.

1. During a tree traversal, an index node is searched for an
index or sibling term for the pointer to the next node to
be searched. We need not hold latches so as to assure
the pointer’s continued validity. The latch on an index
node can be released after a search and prior to latching
a child or sibling node. Only one latch at a time is held
during a traversal.

2. When posting an index term in a parent node, it is not
necessary to verify the existence of the nodes resulting
from the split. These nodes are immortal and remain
responsible for the key space assigned to them during
the split.

3. During a node split, the parent index node to be updated
is either the one remembered from the original traver-
sal (the usual case) or a node that can be reached by
following sibling pointers. Thus “retraversals” to find a
parent always start with the remembered parent. If the
state identifier in the parent is the same as the remem-
bered state identifier, the index term is posted to the
remembered parent. Should state identifiers be unequal,
the parent may have delegated responsibility for part of
its subspace to a sibling. But there is a side pointer from
the parent to its sibling which can be followed to find the
entry of interest. We choose to update only the first par-
ent node encountered that contains an index term for the
split node that needs now to include an index term for
the new node. Subsequent sibling traversals will com-
plete the updating required for multiple parent nodes.

5.2.2 Consolidate case

Consolidation Possible [CP] Invariant: A node, once re-
sponsible for a key subspace, remains responsible for the
subspace only until it is deallocated.

235

Deallocated pages are not responsible for any key sub-
space. When re-allocated, they may be used in any way,
including being assigned responsibility for different key sub-
spaces, or being used in other indexes. This affects the “va-
lidity” of remembered state. While saved path information
can make retraversals of an index tree in later atomic actions
very efficient, it needs to be verified before being trusted.

The effect CP has on the tree operations is as follows:

1. During a tree traversal, latch-coupling is used to ensure
that a node referenced via a pointer is not freed before
the pointer de-referencing is completed. The latch on the
referenced node is acquired prior to the release of the
latch on the referencing node. Thus, two latches need to
be held simultaneously during a traversal.

2. When posting an index term in a parent node, we must
verify that the node produced by the split continues to
exist. Thus, in the atomic operation that posts the index
term, we also verify that the node that it describes exists
by continuing our traversal down to this node. When
deleting an index term, we consolidate the node into its
containing node in the same atomic action as the index
deletion.

3. During a node split, the remembered parent node to be
updated may have been deallocated. How to deal with
this contingency depends upon how node deallocation
is treated. There are two strategies for handling node
deallocation.
a) Deallocation is NOT a node update:A page’s state

identifier is unchanged by deallocation. It is impos-
sible to determine by state identifier examination if
a page has been deallocated. However, we ensure
that the root does not move and is never deallocated.
Then, any page reachable from the root via a tree
traversal is guaranteed to be allocated. Thus, tree re-
traversals start at the root. A node on the path is
accessed and latched using latch-coupling, just as in
the original traversal. Typically, a path retraversal is
limited to relatching path nodes and comparing new
state ids with remembered state ids, which will usu-
ally be equal.

b) Deallocation is a node update:Node deallocation
changes not only space management information, but
also the page’s state identifier to indicate that de-
allocation has taken place. This requires the posting
of a log record and possibly an additional disk ac-
cess to write the modified page should the page not
be reused before it needs to be flushed. However, the
remembered parent node in the path will always be
allocated if its state identifier has not changed and
retraversals can begin from there. If it has changed,
however, one must go up the path, setting and releas-
ing latches until a node with an unchanged state id is
found or the root is encountered. A path retraversal
begins at this node. Since node deallocation is rare,
full retraversals of the tree are usually avoided.

5.3 Scheduling atomic actions

Atomic actions that are spawned as a result of a database
transaction need to be scheduled to run. Their performance

is improved if they can exploit saved state. Thus, in the
scheduling of atomic actions, provision is made to associate
saved state with these actions.

1. Required database locks:locks that were identified as
needed ahead of time are indicated. When the action is
executed, it will request these locks prior to requesting
any latches. This will frequently avoid the need to release
and then reacquire leaf node latches.

2. Saved path: It is always potentially useful to save the
path traversed by earlier atomic actions. Usually, this
path information will remain valid, and hence traver-
sals during subsequent actions can be dramatically faster.
The saved information in the Blink-tree case consists of
<node, state id, record location> for each node of the
path and a search key. An equal comparison of the saved
state id for a node and its present state id replaces the
search within the node and permits us to proceed to the
next node on the saved path without any check of the
node contents. Saved location is useful to avoid search-
ing for the place in an index node where a new index
term should be posted because of a split of one of its
children.

6 Structural changes

In this section, we present the step-by-step details of our
concurrency and recovery algorithm. Tree updates are de-
composed into a sequence of atomic actions, one for each
level of theΠ-tree that is being updated. The details of
latching and locking for each atomic action are presented
here.

A node split is triggered by an update of the original
node. Node consolidation, which makes changes at two lev-
els of theΠ-tree and moves information from one node to
another is considered to be an update at the level of the
parent of the consolidated nodes (where an index term is
deleted). Each atomic action is an instance of a single uni-
versal action, regardless of the specifics of the update. This
program treats both the CP and CNS cases.

6.1 Service subroutines

We identify a number of subroutines that will be invoked as
part of the universal action at appropriate places.

6.1.1 FindNode

Our Find Node returns the address of a node at LEVEL
whose approximately contained space includes a KEY. The
parent node to this node is left S-latched. Latch-coupling is
used with CP, but a parent node latch can be released before
acquiring a child or contained sibling node latch with CNS.

This routine handles both new traversals and retraversals.
To do this, each traversal updates the saved path associated
with the structural change. With CP, retraversals start either
at the root (when deallocation is not an update) or else at
the lowest unchanged node of the path (when deallocation

236

is an update). With CNS, the saved parent of a node can be
simply latched and used.

When a side pointer is traversed duringFind Node, an
index-posting action is scheduled for the parent level of the
tree. (The root is not allowed to have side pointers.) An
exception is made if a move lock is detected in a system
using page-oriented UNDO. In this case, no index-posting
is scheduled, as the transaction splitting the leaf could still
abort and have to UNDO the split. (In systems supporting
non-page-oriented UNDO, once the page is split and the
latches are released, the split is not undone and no move
locks are necessary.)

Similarly (with CP), when an underutilized node is en-
countered, except at the root level, an index delete action,
which also consolidates nodes, is scheduled for the parent
level of the underutilized node.

6.1.2 Verify Split

Verify Split (needed only with CP) confirms that the node
referenced by a new index term still exists. The index NODE
to which the term is to be posted has been found and up-
date latched beforehand. If the index term has already been
posted, false is returned, indicating that the posting is inap-
propriate.

Otherwise, the child node which is the original split-
ting node is S-latched. It is accessed to determine whether
a side pointer refers to a sibling node that is responsible for
the space that contains the space denoted in the new index
term. If not, then the node whose index term is being posted
has already been deleted and false is returned. If so, true is
returned, indicating that index-posting remains appropriate.

If a sibling exists that is responsible for space containing,
but not equal to the space denoted in the index term being
posted, this sibling becomes the one whose index term is
posted. (This happens if the original containing node is split
again before the posting of the index term of the first split.)
The S-latches are dropped here so that the U latch on the
parent node can be safely promoted to an X-latch. The new
node whose index term is being posted cannot be consoli-
dated while a latch is held on a parent.

6.1.3 SplitNode

Split Node divides the contents of a current node between
the current node and a new node. It is invoked whenever the
current node has insufficient space to absorb an update. The
current node has been U-latched beforehand. If the current
node is a leaf node, and non-page-oriented UNDO is not
supported, a move lock is requested. If a wait is required,
the U-latch on the current node is released. It is reacquired
after the move lock has been granted.

The U-latch on the current node is promoted to X. The
space management information is X-latched and a new node
is allocated. The key space and contents directly contained
by the current node are divided, such that the new node
becomes responsible for a subspace of the key space. A
sibling term is placed in the current node that references the
new node and its key subspace. The change to the current

node and the creation of the new node are logged. These
changes are ascribed to the surrounding atomic action or
database transaction.

If the split node is not the root, an index term is generated
containing the new node’s address as a child pointer, and an
index-posting operation is scheduled for the parent of the
current node. In the case of a split leaf node in a page-
oriented UNDO system, the index-posting is not scheduled
until after the transaction commits.

If the split node is the root, a second node is allocated.
The current node’s contents are removed from the root and
put into this new node. A pair of index terms is generated
that describe the two new nodes, and they are posted to the
root. These changes are logged.

6.1.4 Verify Consolidate

Verify Consolidate checks whether a sparse node can be
consolidated with another node. The parent of the sparse
node is already U-latched. If the consolidation has already
taken place,Verify Consolidatereturns, indicating that con-
solidation is inappropriate.

We prefer to treat the sparse node as the contained node,
and move its contents to its containing node as there is less
data to move. This is possible, space permitting, when the
sparse node is a single parent node and its containing node
is a child of its parent. In this case, containing and con-
tained nodes are uniquely identified andVerify Consolidate
returns, indicating which nodes are to be consolidated.

When the above condition does not exist, we make the
sparse node the containing node in the consolidation and
try to find an appropriate contained node. There may not
be a unique contained node, and one may not even exist.
Either return, indicating that consolidation is inappropriate,
or select one contained node, and attempt consolidation with
it. No latches are left on any nodes checked.

6.1.5 ConsolidateNodes

Consolidate Nodesabsorbs a contained node into its con-
taining node. It is invoked as part of the atomic action that
deletes the contained node index term. The single parent
of the contained node has been U-latched previously. First
the containing node is X-latched, then the contained node.
The containing node is checked to determine if it has a side
pointer to the contained node and has sufficient space to
absorb the contained node contents. If not, consolidation
is canceled, the X-latches are dropped, and the parent U-
latch is promoted to X so as to enable the reinsertion of
the previously deleted index term. Otherwise, consolidation
continues.

If the nodes to be consolidated are leaf nodes, a move
lock is requested. If a wait is required for the move lock,
the X-latches on the leaf nodes are released, but the U-latch
on the parent is retained. When the move lock is obtained,
Consolidate Nodesis re-executed from the start.

The contents of the contained node are then moved to the
containing node. The appropriate space management infor-
mation is X-latched, and the contained node is deallocated.

237

The changes to containing and contained nodes are logged
and ascribed to the node consolidate atomic action. Then
X-latches are dropped.

6.2 The universal action

One should regard our universal action (calledUniversal) as
encompassing the operations necessary to perform an update
at exactly one level of theΠ-tree. The form of the update
will vary. During its execution, however, it may be necessary
to make a structural change to theΠ-tree.

Universal takes the following arguments.

– LEVEL of the tree to be updated;
– KEY value for the search; The KEY value can be more

complex than a simple byte string value. Such complex-
ity is ignored here. For example, see Evangelidis et al.
(1995) and Evangelidis et al. (1997) for the specifics of
how this works with hB-trees.

– PATH that was saved for index-posting and for consoli-
dation.

– LOCKS that need to be acquired in order for the opera-
tion to complete;

– OPERATION which is one of (i) posting an index term,
(ii) dropping an index term and consolidating two nodes,
or (iii) accessing or updating a leaf node. (The descrip-
tion below is written in terms of updates to simplify the
discussion. The access case is simpler and uses S-latches
instead of U-latches.) Again, we ignore the complexities
of dealing with specific data structures, both those rep-
resenting the node and those representing the update.

When dealing with a leaf node (case iii),Universal ex-
ecutes as part of a database transaction. (Consolidating leaf
nodes and dropping the resulting index term is not consid-
ered a leaf node operation and does not execute as part of
a database transaction.) However, posting or deleting index
terms for index nodes are all in short duration independent
atomic actions.

Universal performs the following steps.

Request Initial Locks. If database locks are known to be
needed, get them now, prior to holding any latches. This
avoids having to release latches subsequently in order to
get them.

Search. Execute Find Node to find a node(NODE) at
LEVEL whose approximately contained space includes
KEY. For CP, the parent of NODE is left S-latched, en-
suring that re-searching the tree is avoided and that node
consolidations involving children of this node will not
occur during this action. (When the update is to the root,
do not invokeFind Node and do not latch any nodes.)
Using a KEY, from a search argument, instead of at-
tempting to locate a subspace means that only one par-
ent of a split child node will be found. Most of the time,
i.e., for single parent nodes, updating this node will com-
plete the index-term-posting for a split. When multiple
parent nodes exist for a split node, several executions
of Universal may be needed before all parents are up-
dated. And these are scheduled as a result of searches
with other keys that required side pointer traversals.

Get Target Node.U latch NODE. Traverse sibling point-
ers, U-latching each node, and for CP, latch coupling,
until the node is found whose directly contained space
includes KEY. Set NODE to be this node. NODE is left
U-latched. U-latches are used because we do not know
which node on this level will be updated until we read
it. For CP, the parent of NODE can be unlatched now if
NODE is above the leaf level. If NODE is at leaf level,
NODE may be unlatched later to wait for database locks,
and its parent latch will be needed to make sure NODE
is not deallocated.

Verify Operation Need. Verify that the operation intended
is still appropriate.
– Leaf node UPDATE: the action is always appropriate.
– Index POSTING: invokeVerify Split to verify that

posting the index term remains appropriate.
– Index DROPPING: invokeVerify Consolidate to

verify that deleting an index term and consolidating
nodes remains appropriate.

If the action is now inappropriate, terminate the atomic
action.

Space Test.Test NODE for sufficient space to accommo-
date the update. If sufficient, then X-latch NODE and
proceed toRequest Remaining Locks. Otherwise, split
NODE by invokingSplit Node. (This will not occur for
index-dropping.) Then check which resulting node has
a directly contained space that includes KEY, and make
that NODE. This can require descending one more level
in theΠ-tree should NODE have been the root where
the split causes the tree to increase in height. Release
the X-latch on the other node, but retain the X-latch on
NODE. Repeat thisSpace Teststep.

Request Remaining Locks.If NODE is a leaf node and
database locks have not been acquired because it was not
known which were needed a priori, they are requested
here. If a wait is necessary, the U-latch on NODE is
released. After the database lock(s) are acquired, return
to Get Target Node.

Update Node.Update NODE by performing the requested
operation. Post a log record describing the update to the
log. If NODE is a leaf node, this log record is associated
with the database transaction. Otherwise, it is associated
with an independent atomic action. If the update is not an
index-dropping, proceed toSparse Node Check. Other-
wise, demote the X-latch on NODE to U and proceed to
Consolidate.

Consolidate.InvokeConsolidate Nodesto consolidate the
lower level nodes. If it fails, cancel the index-dropping
atomic action, which undoes the prior NODE update.
Note that the U-latch retained on the index node permits
us to perform the UNDO by promoting the U-latch to X
and reinserting the dropped index term.

Sparse Node Check.If NODE is now underutilized and
NODE is not the root, schedule an index dropping atomic
action to delete an index term in the parent of NODE by
consolidating NODE with a sibling. If NODE is the root
and it is underutilized, but has more than one child, we
let this condition persist.
If NODE is the root, and it has only a single child, we can
schedule a special atomic action that consolidates this
child with the root, thus reducing the height of the tree by

238

one. This action is similar to other node consolidates in
that it must: (i) test that it is still appropriate, (ii) acquire
appropriate latches and the necessary move lock, and
(iii) move the contents of the child node into the root,
(iv) deallocate the child node, and (v) log the effects of
the action. It differs from ordinary consolidations only
in that the parent serves as the containing node, and that
no index-term-dropping is involved.

Complete. Release all latches still held byUniversal. If
Universal was an independent atomic action, release its
database locks and commit the action by writing an ap-
propriate commit record. If this is a leaf node update,
however, the database locks are held by the surrounding
database transaction, and remain held. Note that move
locks are never acquired in non-page-oriented UNDO
systems, so the releasing of the page latches for a split
at leaf level commits the split (makes it a nested top-level
action) as in (Mohan and Levine 1992).

Leaf-level splits in page-oriented UNDO systems are part
of database transactions. Other structural changes take place
within independent atomic actions. These actions only exe-
cute for a short duration.

7 Applicability to various search structures

We have used Blink-trees as a running example of how our
concurrency method works. This is the simplest case, since
only a single attribute is being indexed. In this section, we
describe briefly how the TSB-tree and the hBΠ -tree can be
described asΠ-trees, and hence exploit our concurrency
control and recovery method.

7.1 The TSB-tree

A TSB-tree (Lomet and Salzberg 1989) provides indexed
access to multiple versions of key-sequenced records. As a
result, it indexes these records both by key and by time. We
take advantage of the property that historical nodes (nodes
created by a split in the time dimension) never split again.
This implies that the historical nodes have constant bound-
aries and that key space is refined over time.

Splits in the TSB-tree can be made in two dimensions,
either by time or by key. In Fig. 3, the region covered by a
current node after a number of splits is in the lower right-
hand corner of the key space it started with. A time split
produces a new (historical) node, with the original node di-
rectly containing the more recent time. A key split produces
a new (current) node, with the original node directly con-
taining the lower part of the key space.

With time splits, a history sibling pointer in the current
node refers to the history node. The new history node con-
tains a copy of prior history sibling pointers. These pointers
can be used to find all versions of a given record.

With key splits, a key sibling pointer in the current node
refers to the new current node containing the higher part of
the key space. The new node will contain not only records
with the appropriate keys, but also a copy of the history sib-
ling pointer. This pointer preserves the ability of the current

Time−Key Space

now0

100

400

now0

100

400

A

now0

100

400

now0

100

400

now0

100

400

now0

100

400

88 88

AB

88

A

AB

now0

100

400

now0

100

400

88 88

A

B

C

250

250

A

C

B

88

copied pointer to B for search
for previous versions of records

a

b

c

Fig. 3. The time-split B-tree.a First, A covers time from 0 to now and
keys from 100 to 400 (400 is the maximum key value.)b A splits by time
= 88 and delegates the previous time interval toB. A is still responsible
for all of time, but only directly contains time after or equal to 88.c Now
A splits by key.A now contains two sibling pointers.A is the container
for C andA is the container forB. A is still responsible for all time and
for keys between 100 and 400, but directly contains only records which
intersect the time after 88 and the keys between 100 and 250

node directly containing a key space to access history nodes
that contain the previous versions of records in that space.
This split duplicates the history sibling pointer. It makes the
new current node responsible for not merely its current key
space, but for the entire history of this key space.

In the TSB-tree, many nodes may be multi-parent nodes,
but these are all historical nodes. No historical nodes ever
split and nodes are never consolidated. Thus, in the TSB-
tree, the existence of multi-parent nodes and the fact that
more than one history sibling pointer may point to the same
historical node causes no extra difficulties.

7.2 The hB-tree

In the hB-tree (Lomet and Salzberg 1990), the idea of con-
taining and contained nodes is explicit and is described with
k-d-tree fragments. The “External” markers can be replaced
with the addresses of the nodes which were extracted, and
a linking network established with the desired properties. In
addition, when the split is by a hyperplane, instead of elim-
inating the root of the local tree in the splitting node, as in
Lomet and Salzberg (1990), one child of the root (say, the
right child) points to the new sibling containing the contents
of the right subtree. This makes the treatment of hyperplane
splits consistent with that of other splits. This is illustrated
in Fig. 4.

An hB-tree with these modifications is called an hBΠ -
tree. A complete description and explanation of hBΠ -tree
concurrency, node splitting, and node consolidation is given
in Evangelidis et al. (1997).

Any time a node containing entries representing spaces
is split, it is possible for the split to also split the space de-

239

1000

0

10000 20000

A

1000

0

10000 2000017000

750

1000

0

10000 2000017000

750

x=17000

y=750

B

A

B

A
C

B

x=17000

y=750

C

B

sibling term in A

sibling term in C

sibling term in A

a

b

c

Fig. 4. An hB-tree index showing the use of k-d trees for sibling terms.
External markers (showing what spaces have been removed in creating
“holes”) have been replaced with sibling pointers.a To begin,A contains
the entire key space withx ranging from 10000 to 20000 andy ranging
from 0 to 1000.b Then a corner split is made inA. A k-d tree is the sibling
term which indicates the space for whichB is responsible.cA splits again,
using the k-d tree to make the split. The split is at the root of the k-d tree.
A is now only directly containing points withx-coordinate less than 17000.
A is still responsible for the whole space

scribed by one of the entries. This is an intrinsic problem for
multi-attribute methods, where it is almost always the case
that no simple partitioning of entries into simply described
spaces exists that does not split an entry. One variant of
the hBΠ -tree splitting algorithm disallows such splits. But
the most general variant (“split anywhere”) of the hBΠ -tree
splitting algorithm solves this problem by “clipping” the in-
dex terms whose spaces are split, producing nodes with mul-
tiple parents. However, with hBΠ -trees, at most one index
term needs to be clipped per index node split, which mini-
mizes the occurrence of the problem.

8 Conclusion

Our approach to index tree structural changes provides
high concurrency, while being usable with many recovery
schemes and with many varieties of index trees. We have
described it in an abstract way, which emphasizes its gener-
ality and hopefully makes the approach understandable.

Recently, there has been a surge of interest in multi-
attribute search structures. Such structures are now being
used for data mining and data warehousing. Many different
attributes may be needed for determining patterns over time
and for decision support. Thus, algorithms which work with
spatial and temporal indexes as well as the usual B+-tree
may be of greater importance.

Our techniques permit multiple concurrent structural
changes. In addition, all update activity and structural change
activity above the data level executes in short independent

atomic actions which do not impede normal database activ-
ity. Only leaf-node-splitting might execute in the context of
a database transaction. Should the recovery method support
“logical” UNDO, in which updated records can move while
still being subject to UNDO recovery, structural changes
even at the leaf level can occur outside of the database
transaction. If an insertion triggers a major structural mod-
ification, it is useful to be able to postpone the greater part
of the modification until after the transaction completes. In
most cases, the postponed actions will be performed in a
timely manner, soon after the triggering transaction, so that
other transactions will not have to follow sibling pointers.

Acknowledgements.This work was partially supported by NSF grants IRI-
88-15707 and IRI-91-02821 and IRI-93-03403.

References

Bayer R, Schkolnick M (1977) Concurrency of operations on B-trees.Acta
Inf 9:1–21

Evangelidis G, Lomet D, Salzberg B (1995) The hBΠ -tree: a modified
hB-tree supporting concurrency, recovery and node consolidation. In:
Dayal U, Gray P, Nishio S (eds)Proc. Very Large Databases Conf.,
Zurich. Morgan-Kaufman, San Francisco, pp 551–561

Evangelidis G, Lomet D, Salzberg B (1997) The hBΠ -tree: a multiattribute
index supporting concurrency, recovery and node consolidation.VLDB
J 6(1): 1–31

Gray JN, Lorie RA, Putzolu GR, Traiger IL (1976) Granularity of locks and
degrees of consistency in a shared data base. In:IFIP Working Conf on
Modeling of Data Base Management Systems, pp 1–29. Reprinted in:
Stonebraker M (ed)Readings in Database Systems. Morgan Kaufman,
San Francisco, 2nd edn 1994, pp 181–208

Gray J, Reuter A (1993)Transaction Processing: Techniques and Concepts.
Morgan Kaufman, San Mateo, Calif.

Guttman A (1984) R-trees: A dynamic index structure for spatial searching.
In: Proc. ACM SIGMOD Conf.. pp 47–54. Reprinted in: Stonebraker M
(ed) Readings in Database Systems. Morgan Kaufman, San Francisco,
2nd edn 1994, pp 125–135

Lehman P, Yao SB (1981) Efficient locking for concurrent operations on
B-trees.ACM Trans Database Sys6:650–670

Lomet DB (1977) Process structuring, synchronization, and recovery using
atomic actions. In:Proc ACM Conf on Language Design for Reliable
Software, SIGPLAN Notices 12,3 pp 128–137

Lomet DB (1980) Subsystems of processes with deadlock avoidance.IEEE
Trans Software EngSE-6:297–304

Lomet D, Salzberg B (1989) Access methods for multiversion data. In: Clif-
ford J, Lindsay B, Maier D (eds)Proc ACM SIGMOD Conf, Portland.
ACM, New York pp 315–324

Lomet DB (1990) Recovery for shared disk systems using multiple redo
logs. Digital Equipment Corp Technical ReportCRL90/4 Cambridge
Research Lab, Cambridge, Mass.

Lomet D, Salzberg B (1990) The hB-tree: a multiattribute indexing method
with good guaranteed performance.ACM Trans Database Sys15:625–
658

Lomet D, Salzberg B (1992) Access method concurrency with recovery.
In: Stonebraker M (ed)Proc. ACM SIGMOD Conf., San Diego. ACM,
New York, pp 351–360

Lomet DB (1992) MLR: A recovery method for multi-level systems. In:
Stonebraker M (ed)Proc. ACM SIGMOD Conf., San Diego. ACM,
New York, pp 185–194

Mohan C (1990) ARIES/KVL: A key-value locking method for concurrency
control of multiaction transactions operating on B-tree indexes. In:
McLeod D, Sacks-Davis R, Schek H (eds)Proc. Very Large Databases
Conf. Brisbane. Morgan Kaufman, Palo Alto, pp 392–405

Mohan C, Haderle D, Lindsay B, Pirahesh P, Schwarz P (1992) ARIES:
a transaction recovery method supporting fine-granularity locking and

240

partial rollbacks using write-ahead logging.ACM Trans Database Sys
19(1): 94–162

Mohan C, Levine F (1992) ARIES/IM: an efficient and high concurrency
index management method using write-ahead logging. In: Stonebraker
M (ed) Proc. ACM SIGMOD Conf.San Diego. ACM, New York, pp
371–380

Sagiv Y (1986) Concurrent operations on B* trees with overtaking.J Com-
put Sys Sci33:275–296

Salzberg B (1985) Restructuring the Lehman-Yao tree.Northeastern Uni-
versity Technical ReportTR BS-85-21, Boston, Mass.

Shasha D, Goodman N (1988) Concurrent search structure algorithms.ACM
Trans Database Sys13:53–90

Weikum G (1986) A theoretical foundation of multi-level concurrency
control. Proc ACM PODS Conference, Cambridge, Mass. ACM, New
York, pp 31–42

Weikum G, Hasse C, Broessler P, Muth P (1990) Multi-level recovery.Proc
ACM PODS Conf, Nashville. ACM, New York, pp 109–123

Zou C, Salzberg B (1996) On-line Reorganization of Sparsely-Populated
B+-trees. In: Jagadish HV, Inderpal Singh Mumick (eds). ACM, New
York, pp 115–124

