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Abstract. Although many suggestions have been made for — Insertion must first search down the tree, inserting the
concurrency in B-trees, few of these have considered re-  new record in a leaf if there is room and, if not, split-
covery as well. We describe an approach which provides ting the leaf and creating a new leaf and posting the
high concurrency while preserving well-formed trees across information to the parent.

system crashes. Our approach works for a class of index— Splitting and posting continues up the tree if needed.
trees that is a generalization of thé"Btree. This class in- — When nodes get sparse, two “adjacent” nodes may some-
cludes some multi-attribute indexes and temporal indexes. times be consolidated when they share the same parent.
Structural changes in an index tree are decomposed into a

sequence of atomic actions, each one leaving the tree well-

formed and each working on a separate level of the tree. AIWVe call such a tree &-tree, and we give a formal definition
atomic actions on levels of the tree above the leaf level ar®f the II-tree in Sect. 3.

independent of database transactions, and so are of short du- A B'™*-tree (Lehman and Yao 1981), which is &-B

ration. Incomplete structural changes are detected in normdfee with sibling links, is alI-tree. A time-split B-tree (or
Operations and trigger Comp|etion_ TSB-tre& (Lomet and Saleerg 1989) can be made into a

II-tree by adding sibling links. The TSB-tree is a temporal
Key words: Concurrency — Recovery — |ndexing — Access index, where the search space is a two-dimensional space
methods — B-trees based on time and database key. Thé’HBee (Evangelidis
et al. 1995, 1997) is a spatial search structure on any num-
ber of dimensions which is &/-tree. The R-tree (Guttman
1984) is not all-tree (and could not easily be made into
one by adding sibling links), because the spaces associated
with nodes which are on the same level of the tree overlap.
The algorithm described here can be used on &Ahny
e. It provides a high degree of concurrency because it

sibling links (called 8™ -tree) and some spatial and tempo- breaks down structural changes into a series of short-term
9 P PO atomic actions — splitting a node, posting split information

ral indexes. Only data-node splitting sometimes takes placg, o parent or consolidating a node with one of its siblings.
within database transactions. All other parts of index tre€- onsolidation requires three nodes to be locked — the par-

re_zstru_ctu_rllng a:ce r:_ndelpen_dﬁnt of such tran?japths. The léae'nt and the two siblings being consolidated. Splitting index
gglglggrclplgzg) tTII‘?iSa g;”érmi\\;‘éirzes):goss sl?e( gzsegria?ionodes requires only the node being split to be locked. Post-
of the afqgorithm. detailg Perg p-by-step P mg requires the node receiving the new split information
In order to use this. algorithm, a search structure musﬁ(the parent) to be lOCk-ed and also. must hgve a short-term
have several structural and beha\}ioral properties ock on the child to verify that posting is still needed. The
: details of this algorithm, with explicit directions for locking,
— It must partition the search space at each level of theare in Sect. 6.
tree. That is, the set of spaces associated with nodes at The subject of concurrency in"Brees has a long history
a given level covers the search space and no two nodegBayer 1977; Lehman and Yao 1981; Mohan and Levine
spaces overlap. 1992; Sagiv 1986; Salzberg 1985; Shasha and Goodman
— When a node is split, a pointer in the old node must be1988). Most work, with the exception of Mohan and Levine
inserted, which indicates the address of the new node. (1992), and Gray and Reuter (1993) has not treated the prob-
lem of system crashes during structural changes. In this pa-
per, we show how to manage batbncurrency and recov-
— The data is all in the leaves. ery for a wide class of index tree structures.

1 Introduction

In this paper, we describe a concurrency algorithm for e
class of trees which includes a type of-Bee containing

Other properties are similar to those of the standafrdr8e:
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1.1 Our approach In Sect. 4, issues of deadlock avoidance and of page-oriented
UNDO are discussed. This affects the decisions on the type
There are four innovations which make it possible for us toof locking done by our atomic actions. Section 5 describes
provide high concurrency for a large class of index trees andiow atomic actions are scheduled and how information from
to mesh with several recovery methods. These are: previous atomic actions about the search path can sometimes
be used. Most of the material in Sects. 3, 4 and 5 appeared
1. We define a search structure, called/aree , thatis @  in (Lomet and Salzberg 1992) and is repeated here to make
generalization of the B-tree (Lehman and Yao 1981). this paper self-contained. Section 6 presents the algorithm.
Our concurrency and recovery method is defined to workwe give examples of adaptations of two search structures
with all search structures in this class. so as to be forms ofl-trees in Sect. 7. Section 8 is a short
2. II-tree structural changes consist dfejuenceof atomic  discussion of results.
actions (Lomet 1977). These actions are guaranteed to
have the all-or-nothing property by the recovery method.
Searchers can see the intermediate states offtieee 2 Overview
that exist between these atomic actions. No locks are held
between atomic actions. However, incomplete structuraM/e are concerned with structural changes in index trees that
changes do not affect search correctness. are a generalization of "B-trees, which are a variation of
3. We define separate actions for performing updates aB*-trees. In particular, our index tree is multi-level, with
each level of the tree. Three actions are defined: nodell leaves on the same level. Leaves contain data records
consolidation, node splitting and posting node-split in- if the tree is used as a primary index. They contain entries
formation. Node consolidation holds three locks. Nodereferencing data records if the tree is used as a secondary
splitting and posting hold at most two locks. Atomic ac- index. These entries have the fornsecondary key, primary
tions on non-leaf nodes can be separate from the transa&ey> or <secondary key, record addressAll insertions of
tion whose update triggers a structural change. No nod@ew records or of entries which are references to new records
consolidation, even at the leaf level, need be part of artherefore occur only at the leaf, and structural changes are
updating transaction. Only node splitting at the leavespropagated upwards.
of a tree may need to be within an updating transaction  The two basic structural changes occur when a node is
in such a way that locks associated with the atomic acsplit and when an underutilized node is consolidated with
tion are held until the end of the transaction. This occursa sibling. Although information about these changes does
only in systems which do not support non-page-orientednot need to bgosted (placed in the parents of the changed
(logical) UNDO. This feature is especially important in node(s)) for correct search, for efficiency reasons, change
systems where a time limit is given for database transinformation should eventually be posted. Before outlining
actions. the two basic structural changes, we first explain the terms
4. When a system crash occurs during the sequence déck andlatch.
atomic actions that constitutes a compléfetree struc-
tural changegcrash recovery takes no special measures
A crash may cause an intermediate state to persist foR.1 Locks and latches
some time. The structural change is completed when the
intermediate state is detected durimgrmal subsequent e control concurrency by exploiting two forms of “locks”,
processing by scheduling a completing atomic action.Which we refer to here as “database locks” (but subsequently

The state is tested again in the completing atomic actiorsimply refer to as “locks”) and “latches”.

to assure the idempotence of completion. Database locksare handled by a lock manager, which main-

The log could be used to detect and complete struc- 5ing 5 graph of who delays whom. The lock manager

tural changes or to complete other actions as in (Zou  getects cycles in this delay graph, which indicate that

and Salzberg 1996). We decided explicitly against this  geadlock has occurred, and aborts one of the parties in-

option for the following reasons: volved.

(&) making recovery simple and fast is important: our| aiches are short-term low-cost locks for which the holder’s
lazy approach requires no special logging and no spe- ;sage pattern guarantees the absence of deadlock. Thus,

cial recovery processing; _ latches do not involve the lock manager, can be associ-
(b) a system failure does not often occur leaving a struc-  ateq directly with the protected data, and can be manip-
tural change incomplete; and ulated with in-line code.

(c) even when this happens, some incomplete structural
changes will not affect performance, since the rele-
vant nodes may not be visited again. 2.2 Splits

Nodes are split when there is no space for an insertion. In
1.2 Organization of paper our index tree structure, this can occur when a new record

is added to the database. Here, the leaf must split if there is
Section 2 gives an overview of the method. Section 3 for-no available space. Some of the leaf node content remains
mally defines thdl-tree. Our concurrency algorithm can be where itis and some is copied to a new leaf. The information
used by any search structure which satisfies this definitionabout the split must be posted to the next level of the tree.
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L] be operation-consistent, where the operations involved here

Ij/ \D are our single tree-level atomic actions.
No attempt is made to stably record the progress of an
split this node entire structural change. Thus, this information is lost across

system crashes. Incomplete structural changes caused by in-
/D sertions are completed when some transaction or atomic ac-
D_,D% tion is forced to follow a side pointer. This is an indica-
tion of a missing index-posting. The missing posting is then
rescheduled. If no transaction ever follows the side pointer
where the posting is missing, the posting is never made.

However, in this case, the missing posting does not cause
any performance penalty.

now install child pointer

install sibling pointer

) ) ] 2.3 Node consolidation
Fig. 1. The sequence of state changes to8<Bree that are triggered by

an insertion into a leaf node Consolidation of underutilized nodes is an optimization.
Many commercial systems do not support this optimization.
In our method, if a system wishes to support this optimiza-
tion, a node consolidation is scheduled when a transaction
Sisits an underutilized node. Node consolidation is never part
Yof a database transaction.

Since nodes at the next level may also be too full to receiv
the new posting information, the process of node-splittin

can occur recursively at higher levels of the tree. : .
Y 9 Suppose a transaction encounters an underutilized node.

rec(frléipirr)]O'[Shee %;Z?absa;se;rar?;a;“ﬂg dve\:lfr\:ve;ultg r'gsﬁirrteathr;?[l\fvthen schedules a node consolidation. The node consoli-
‘AP y q dation atomic action works at two levels: the level of the

a new data_ record be placeq directly in its _Ieaf nodg. Eadhnderutilized node and that of its parent.
secondary index would require a new entry in one of its leaf A number of constraints are enforced. For example, the

nodes when the new data record is inserted. In either CaSe opped node must have only one parent. (This is only an is-

suppose a leaf node split is required. For some recover A o gk
methods, the split must be part of the database transactioéue in multi-attribute trees; B'-tree nodes always have only

But for no recovery methods does our method require thal ne parent). The node to be dropped must be matched with

. ; . . . n “adjacent” sibling (below, in the general case, we will
the posting of index information to the next (and occasion-y o “adjacency” in terms of “containment’) which has
ally higher) level of the tree be part of the database transac:

tion. This is because we use a generalization of tHé-Bee. enough space to absorb the contents of the dropped node.

If the index information is not posted, search follows side(Elther the dropped node or its sibling may be the origi-

pointers which are installed at the spiit, So the search Wi||£a| underutilized node.) If these conditions are satisfied, we

be correct, even if the information about the new node is no aich the parent and the two siblings and proceed with the

immediately posted to its parent onsolidation.
. ' . . To perform node consolidation, we erase the index term
In this way, we are able to decompose a split operatlonf r the node to be dropped and move the contents of the
on a tree into a sequence of separate atomic actions, one opped node to its sibling. The index term for the sib-
each affected level of the tree. First, a split is made at theii ‘

leaf level of the tree. A posting operation at the next level is, 9 must be changed to reflect its new larger contents. If
AP g op this consolidation causes the parent of the dropped node to

then scheduled for a later time. The (_jatabase transaction cqiL underutilized, we schedule a separate node consolidation
proceed without further action and without ever latching any tomic action for the parent

nodes above the leaf level. When the posting action occurs, 7
a further split and a higher posting is required, only the split
atthe level of the posting is made. The higher level operatiorp 4 Scheduling atomic actions
is scheduled as a separate atomic action. A split above the
leaf level latches only the node to be split and drops the latchWe have used the terrecheduling to describe the initia-
as soon as the split is complete. A posting action latchesion of the separate atomic actions that comprise a complete
the node where the information is to be posted and alsatructural change. This term was chosen to emphasize-the
briefly latches the split child to verify the information and dependenceof the atomic actions from each other. That is,
then drops its latches when the information has been poste@ach can succeed or fail independently of the success or fail-
Fig. 1 illustrates the progression of atomic actions that carure of the other atomic actiongOf course, an atomic action
be triggered by an initial leaf insertion. that is scheduled to post an index term describing a split will
Thus structural changes caused by insertion are decornenly perform the posting if the node allocated in the split ac-
posed into a sequence of actions, one at each level of théon is present when the index-posting operation executes.)
tree. Each such action is logged and is atomic. If a systenThis independence is important for the recoverability of our
failure occurs before a complete structural change is madestructural changes. We exploit it through making recoverable
some of the separate actions in the sequence may have comnly the separate atomic actions. Entire structural changes
pleted and others may not have, but after recovery at restartieed not be recoverable as a unit. By having a smaller unit
no action will be part-way done. That is, an index tree will of recovery, concurrency is enhanced.
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Independence of atomic actions is essential for the cor3 The IT-tree
rect operation of our structural changes. However, it is use-
ful to schedule atomic actions proximate to related atomicln this section, we define the properties a search structure
actions for two reasons. must have to be able to use our concurrency and recovery
method. First, we formally describe the structural properties,
and then we describe the behavioral properties. A structure

1. Proximate scheduling enhances our ability to exploitWhICh satisfies this definition is called@-tree.

saved state information across atomic actions. This saved
state information has to be validated (checked to assur
that it still describes correctly the current state). But, in
so far as the state has not changed, it permits us to avoi

8.1 structural description

all or part of index tree searches, Pnformally, a Il-tree is a balanced tree, (all leaves are at
}he samdevel) and we measure the level of a node by the

2. Proximate scheduling frequently avoids the process o :
thread switch that might be required were scheduling de_number of child edges on any path between the node and

ferred and done via an asynchronous control path. Sinc 'la\eélf Qgg:ushgolri?(ep;ﬁg'ﬁgl}&elov;%\:gﬁg\?: ésd aerso?c':esdib_
process- (and thread-) switching costs can be more tha ' ' ' g

a thousand instructions, proximate scheduling is impor—m?j nodes_ as V\Ile" as gh"d _nodes. Edges betwe_eln'5|bll|ng
tant. nodes go in only one direction. Some commercial imple-

mentations of the Btree have doubly linked lists at the leaf
level. Ourll-tree does not have doubly linked lists. All these
terms are defined more formally below.

Thus, while we consistently describe, e.g., a node split, as

resulting in the scheduling of a subsequent index term post-

ing atomic action, we expect that the execution of this action3.1.1 Within one level

will normally occur promptly and in the same control path.

We need to be careful here in that scheduling is sub-Each node isesponsible fora specific part of the key space,
ject to one important constraint. The scheduled action willand it retains that responsibility for as long as it is allocated.
normally be required to be performed after the currently ex-A node can meet its space responsibility in two ways. It can
ecuting atomic action drops its latches and locks. This predirectly contain entries (data or index terms) for the space.
vents deadlocks between searchers which descend the trédternatively, it candelegateresponsibility for part of the
and structural changes which ascend the tree. Deadlock prepace to aibling node
vention is described in detall in Sect. 4. A node delegates space to a new sibling node during a

If node splitting is part of a database transaction (i.e.node split. Asibling term describes a key space for which
if the node is a leaf node), the index posting can occura sibling node is responsible and includeside pointer to
before the database transaction commits if non-page-orientethe sibling. A node containing a sibling term is called the
UNDO is supported. Here, the only consideration is that thecontaining node and the sibling node to which it refers is
split completes and drops its latches before the index-postingalled thecontained node Note that this relationship can
action begins. In contrast, in page-oriented UNDO systemghange over time. IfA is a containing node and is its
(explained in Sect. 4.3), when a leaf split occurs as partontained node and splits again, allocating a new nodg&
of a database transaction, the index-posting action must bthe side pointer fromA to B may be copied into the new
deferred until after the database transaction commits. nodeC. ThenC containsB and A containsC'.

When the need for an index-posting is discovered during  For example, an index or data nodein a B'™-tree
a search that requires a sibling link traversal, scheduling ofs said to be responsible for a key range from some lower
the posting can always be done promptly, i.e., immediatelyalue to the maximum key value, say [500, MAX]. When it
following the release of the latches acquired on the parensplits, all keys with value equal to or greater than 700, say,
during the search by the current control path. Here, a separatgo to the new sibling,B. B is then responsible for [700,
control path is used for the index-posting. If the same controMAX]. The original node A is still responsible for [500,
path were to be used, the latches on the level of the siblingAX], but now contains a sibling term indicating that the
traversal would have to be released as well before the index<eys greater than or equal to 700 are at another addiess,
posting could begin. This is indicated in Fig. 2a and b.

Node consolidation is handled analogously to index- If the node A responsible for [500, MAX] splits again,
posting. Consolidation can be promptly executed when dealmoving all the keys greater or equal to 600 to another new
ing with index nodes, i.e., as soon as the search latches amgbling, C, C' will obtain the address aoB as its side pointer,
released. For leaf nodes in page-oriented UNDO systemsind A will have a sibling term indicating that keys greater
consolidation will not be executed until after any transac-than or equal to 600 are i@¥. This is illustrated in Fig. 2c.
tion with locks on the nodes completes. In particular, the  Any node except the root can contain sibling terms to
control path that detects the need for consolidation must notontained nodes. Further, [é-tree node is not constrained
hold any locks on the nodes subject to consolidation at théo have only a single sibling, but may have several. (This
time consolidation is executed. This may require that leafdoes not happen in theB-tree.) Formally, devel of the
consolidation actions be scheduled after the completion of/-tree is a maximal connected subgraph of nodes and side
the current database transaction. pointer edges. The first node at each level is responsible for
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Fig. 2a—c.Contained and containing nodes; space responsibdifjt this
point, A is responsible for [500, MAX] and directly contains all entries in
its level in [500,MAX]. Then A splits and delegates some of its space to
a contained sibling3. b Now A is a container node anB is a contained
node. This is becausé now contains a sibling term (700) which descibes
the space [700,MAX] for whichB is responsibleA is still responsible for
[500,MAX], but now its directly contained space is [500,700Now A is

the container node fof” and C is the container node foB. A contains

a sibling term forC and C' has a sibling term foi3. A is responsible for
[500,MAX], but its directly contained space is [500,600). C is responsible
for [600,MAX], but its directly contained space is only [600,700)

B
700

two (or more) parents. This happens when the boundary of
a parent split cuts across a child boundary.

3.1.3 Well-formedII-trees

Going down from the root, each level describes a partition
of the space into subspaces directly contained by nodes of
that level. This gives thdl-tree its name.

Side pointers and child pointers must refer to nodes
which are responsible for spaces that contain the indicated
subspaces. A pointer can never refer to a deallocated node.
Further, an index node must contain index terms that refer
to child nodes that are responsible for spaces, the union of
which contains the subspace directly contained by the index
node. However, each node at a level need not have a parent
node at the next higher level. This is an abstraction and gen-
eralization of the idea introduced in thé"B-tree (Lehman
and Yao 1981). That is, having a new node connected in
the B"k-tree only via a side pointer is acceptable. We never
know whether a node directly contains the space of interest
or whether it is merely responsible for the space until we
examine the sibling terms.

Like (Shasha and Goodman 1988), we define the re-
qguirements of a well-formed general search structure. Thus,
a Il-tree iswell-formed if

1. each node is responsible for a subspace of the search
space;

2. each sibling term correctly describes a subspace of the
(responsible) space of its containing node for which its
referenced node is responsible.

3.

the whole space, i.e., it is the containing node for the whole
key space. New siblings are always on the same level as the

each index term correctly describes a subspace of the
(responsible) space of the index node for which its ref-
erenced child node is responsible;

nodes from which they split. 4. the union_ o_f the spaces described by the. index terms
and the sibling terms equals the space an index node is
responsible for.
5. the lowest level nodes are leaf nodes.
3.1.2 Multiple levels 6. a root exists that is responsible for the entire search

space.

The II-tree is split from the bottom, like the B-trekeaf The well-formedness description above defines a cor-
nodesare at level 0. Leaf nodes contain only data records (inrect search structure. All structural changing atomic actions
the case of primary trees) or entries consisting of secondarnyhust preserve this well-formedness. We will need additional
keys and primary keys or references to data pages (in thgonstraints on structure changing actions to facilitate node
case of secondary trees) and/or sibling terms. As/Thgee  consolidation (deletion).
grows in height via splitting of a root, new levels are formed.

A split is normally described by an index term. Each
index term, when posted, includeschild pointer to achild
node and a description of a key space for which the chil
node is responsible. A node containing the index term for
child node is called @arent node. A parent node indicates
the containment ordering of its children based on the spac
for which the children indexed are responsible.

3.2 I1-tree behavioral description

d . . .

JHere we describe the operations fiktrees in a very gen-
eral way. The steps do not describe how to deal with either
egoncurrent operations or with failures. In particular, we do
not show how to decompose structural changes into atomic
A parent node directly contains the space for which it i actions. This section shows halil-tree searches, splits and

responsible and which it has not delegated, exactly as Witﬁ1Ode consohdgﬂons must behaye if the recovery and con-
a leaf node. InlI-trees, as in [BX-trees, parent nodes are currency algorithm of this paper is to be applicable.

index nodeswhich contain only index terms and/or sibling
terms. Leaf nodes are not index nodes. 3.2.1 Searching
Parent nodes are at a level one higher than their children.
Unlike B"k-trees, in the more general-trees such as TSB- Searches start at the root of thetree. The root is an index
trees and hB-trees, the same child can be referred to bynode that directly contains the entire search space. In an
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index node whose directly contained space includes a searalihose directly contained space(s) intersect(s) the approxi-
point, an index term must exist that references a child nodenately contained space of the index term. This is acceptable

that is responsible for the space that contains the searcim that searches will still be effective. Over time, the missing
point. There may be several such child nodes. Proceedingndex terms will be correctly posted (see Sect. 4.1).

to any such child node is correct in that the search will

Let O stand for the original node to be split. L&tstand

eventually succeed. However, it is desirable to follow thefor the new sibling node. A node split has the following
child pointer to the node that directly contains the searchsteps:

point. This avoids subsequent sibling traversals at the next1
lower level. 2'

Index terms describe the space for which a child is re-
sponsible, not its directly contained space. Because the post-
ing of index terms can be delayed, we can only calculate the
spaceapproximately contained by a child with respect to
a given parent. This ishe difference between that part of
the space of the parent node the child is responsible for and
the subspaces that it has delegated to other child nodes ref-
erenced by index terms that are present in the index node
Before we visit a node, we have only approximate or partial
information about its contents.

In Fig. 2b, the approximately contained space of node
A with respect to its parent includes all values greater than
or equal to 500. Its directly contained space includes only
the values greater than or equal to 500 and smaller than
700. This is because the index term for B has not yet been
posted. Thus, as far as a visitor to the parent can tell, A has
(approximately) all values greater than or equal to 500.

When all index terms for child nodes that have been
delegated space from a child C have been posted to an index
node |, the approximately contained space for C relative to |
equals the intersection of its directly contained space and the'5 .
directly contained space of I. With this precise information,
a side pointer from C would not have to be followed after
the search proceeds from | to C.

Thus, we minimize our search cost by proceeding to the
child that approximately contains the search point. Because
we attempt to make structural changes complete, this node
will usually, but not always, contain the search point. If
the directly contained space of a node does not include the
search point, a side pointer is followed to the sibling node
that has been delegated the subspace containing the sear
point. Eventually, a sibling is found whose directly contained
space includes the search point.

The search continues until the leaf node level of the tree
is reached. In primary trees, the record for the search point
will be present in the leaf node whose directly contained

4,

Allocate space fof.

Partition the subspace directly contained®ynto two
parts.O continues to directly contain one part. The other
part is delegated t&.

3. If O is a leaf node and the data is point data, place in

S all of O's data that are contained in the delegated
space. (In a secondary tree, “data” consists of secondary
keys and primary keys or pointers to database pages.)
Include any sibling terms to subspaces for whighs

now responsible. Remove from all the data that it no
longer directly contains.

If O is a leaf node and the data has some extent (for ex-
ample, in the TSB-tree, data has a time interval as well
as a database key), placeShall of O’s data whichin-
tersectshe delegated space. (In a secondary tree, “data”
consists of secondary keys and primary keys or pointers
to database pages.) Include any sibling terms to sub-
spaces for whiclp' is now responsible. Remove from

all the data that its directly contained space does not in-
tersect. This implies that data items which intersect both
spaces will have copies in both nodes.

If O is an index node, we retain i@ the index termg

that refer to child node€’(:) whose approximately con-
tained spaces intersect the now smaller space directly
contained byO. Similarly, if the approximately con-
tained space of’(i) intersectsS’s space,i is placed

in S. Because an index node split can divide the approx-
imately contained space of a child node, the index term
for that node can end up in both of the resulting index
nodes. (This does not happen in th&*Btree, but can
happen in the hB-tree or the TSB-tree.)

Put a sibling term irO that refers taS.

. Schedule the posting of an index term describing the split

to the next higher level of the tree. The index term con-
tains a reference t§ and describes the space for which
S is responsible. Posting occurs in a separate atomic ac-
tion from the action that performs the split.

space includes the search point, if it exists at all. In secondarExample:In a B"™-tree, an index or sibling term is rep-
trees, the key (which is the search point) will be in the leafresented by a key value and node pointer. It denotes that

if the corresponding record is in the database.

the child node referenced is responsible for the entire space

greater than or equal to the key. To perform a node split,
first allocate a new node. Find the key value that evenly di-

3.2.2 Node-splitting

vides the records of the node. Copy all records (“records”

may be index entries in index nodes or data records in leaf
We wish to build ourlI-tree so as to permit our search pro- nodes) from the original node to the new node whose keys
cedure to minimize side pointer traversals. Thus, we wantre ordered after the middle record’s key. The new node
the children of an index node to be exactly the nodes at thdnas been delegated the high-order key subspace. Copy the
next lower level with directly contained spaces that intersectink (sibling term) from the old node to the new node. Then
the directly contained space of the index node. Howeverremove the copied records from the old node. Replace the
when we split index nodes, our information is incomplete. link in the old node with a new sibling term (address of the
The best that we can do is to partition index terms basedew node and the split key value). Finally, post the address
on the spaces that their child nodes approximately containof the new node and the split key value to the parent. This
Index terms are thus placed in the resulting index node(sjs the index term.
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3.2.3 Clipping node will also be a parent of the containing node. These
. i conditions are used to simplify the consolidation. Refusing to
The entries of index nodes denote subspaces, not merefynsolidate other nodes means that we will consolidate fewer
points. (In B™-trees, subspaces are key intervals.) When amodes. But the search structure will remain well-formed.
index node is split, it is simplest, if possible, to delegate to There is a difficulty with the above constraints. Whether
the new sibling a space which is the union of the approxi-a node is referenced by more than one parent is not derivable
mately contained spaces of a subset of child nodes. This ifom the index term information we have described thus far.
what happens in the 'B‘-tree. Then, there will not be an powever, multi-parent nodes are only formed when (1) an
index term that needs to appear in both nodes resulting fronl,gex node (the parent) splits, clipping one or more of its
the split. It can be difficult to split a multi-attribute index jngex terms, or (2) when a child with more than one parent is
node in this way, because either the space partitioning is t0Qpjit, possibly requiring posting in more than one place. We
complex, resulting in very large index and sibling terms, ormgark these clipped index terms as referring to multi-parent

because the division between original and new sibling nodeggges. All other nodes are what we csifigle parent nodes
is too unbalanced, reducing storage utilization. In the TSB-anq are subject to consolidation.

tree, splitting by any given time value will usually result
in cutting across the timespan of several of its children, for
example. . . .

This approach to splitting nodes whose entries describg Atomic actions for updating
spatial information by storing the entry in both nodes is
called “clipping”. When a child node is referenced from two We need to assure that atomic actions are correctly serial-
index nodes (or more) because its index term was clippedized and have the all-or-nothing property required of them.
then posting index terms describing the splitting of this child Interactions between atomic actions must not cause unde-
may involve the updating of several of these parent indexected deadlocks or incorrect searches. How this is done is
nodes. We must be prepared to deal with this complicationdescribed in this section.

Because of the redundant paths to data that are provided
by II-trees, we need not post index terms to all parents of
a splitting node atomically. Instead, we post an index term
only to the parent that is on the current search path to the
splitting node. This is the lowest cost way of updating this
parent, since it has already been read, and merely needs #1.1 Resource ordering and deadlock avoidance
be updated and written to complete the index-posting.

Other parents can be updated when they are on a seargthe only “locks” required for atomic actions that change
path that results in a sibling traversal to the new node. This, index tree at the index levels, i.e., above the leaf level,
exploits a mechanism that is already present to cope Withye jarches For deadlock avoidance, resources are ordered.
system failures in the midst off-tree structural changes. | aches will be held orfZ-tree nodes and will be acquired
Using this mechanism does not usually increase the cost qf, the same order by each atomic action, thus preventing

the structural change. Instead of reading a second parent angl 5 gjock. Parents are latched before children and containers
writing it, we perform the write of the second parent later andyatore contained nodes.

incur an extra read to do the sibling traversal. Subsequently, Promoting a previously acquired latch violates the or-

when we refer to “the parent”, we intend this to denote thegering of resources and compromises deadlock avoidance.
parent that is on the current search path. Promotion is the most common cause of deadlock (Gray

and Reuter 1993). For example, when two transactions set
S-latches on the same object to be updated, and then sub-
sequently desire to promote their latchesXo a deadlock

Node consolidation is scheduled when a node’s storage uticesults.
lization drops below some threshold. When a nddebe- Update(U) latches (Gray et al. 1976) support latch pro-
comes underutilized, it may be possible to consolidated itnotion by retaining an exclusive claim on a resource that is

with either its containing node (the sibling &f which con-  currently shared (Lomet 1980). They allow sharing by read-
tains a sibling term referring t&) or one of its contained  €rs, but conflict with X or other U-latches. An atomic action

nodes (nodes referred to by sibling terms insitig. We is not allowed to promote from an S- to an X-latch, because

always move the node contents from contained node to corthis increases its claim. But it may promote from a U-latch
taining node, regardless of which is the underutilized nodeto an X-latch.

Then the index term for the contained node is deleted and However, a U-latch may only be safely promoted.Xo
the contained node is deallocated. For this to be simple, under restricted circumstances. We must prevent another ac-

on with an S-latch on the resource from having to wait for
igher numbered resources that might be already be latched
by the requester of the latch promotion. The rule that we ob-
serve is that the promotion request on nddds not made
while the requester holds latches on nodes lower than
These conditions mean that only the single parent of then the tree or further along tha® in the partial order of
contained node need be updated during a consolidation. Thisiblings made by sibling pointers.

.1 Latching for atomic actions

3.2.4 Node consolidation

. . tj
— both containing and contained node must be referenced
by index terms in the same parent node, and
— the contained node must only be referenced by this par
ent.
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4.1.2 Latch acquisition 2. Moving data records, whether to split or consolidate
nodes, may require database locks on the records to be

The resource ordering we have chosen for our algorithm, moved. This is explained in the section on page-oriented

which will enable us to prevent deadlock, is presented in  UNDO.

this subsection. Latches are acquired in search order, parent

nodes prior to their children and containing nodes prior to the Note that, in secondary index trees, the “records” in

contained nodes referenced via their side pointers. Whenevdrestion may be the secondary keys and primary keys or
a node might be written, a U-latch is used. pointers in the leaves, rather than the actual data records.

Space management ormaton can be arered lasl 1S £252 deabese amsecions may 1o 04e of e
Node-splitting and consolidation access it, but other update y P g !

and accesses do not. Changes in space management infor when range queries are made (Mohan and Levine 1992,

tion follow a prior tree traversal and update attempt. Hence ecz:r(l)ir(]je}rggi%eig; t:]g Sizmﬁirr:%Z?;Séégelzeclg?/\thrggor;%s\’/ég
latching and accessing this information last is convenien!rc’ Y Y req

: : due to splits and consolidations.
and shortens its latch hold time. . .
When the order above might be violated, as it would in Should holders of database locks be required to wait for

an upward propagation of node-splitting, the activity is de- latches on leaf nodes, this wait is not known to the lock man-

composed into separate atomic actions, each one of whicRY€" and can result in an undetected deadiock even though

follows the resource ordering we have chosen. The first ac.'? deadlock involving only latches is possible. For example,

tion is terminated, all its latches and locks are dropped, an ;?gﬁ aocr;['%”f;vlhi:gsﬁgﬁzi:]ecﬁrsdz;?aggggJl\é C?(ngﬁre_ll?r giizc':s
a second atomic action is initiated to complete the structura] 9 :

change. ion T'2 latchesN in X mode and tries to delet®. It must

wait. Transactiori’l now tries to insert a second record in
N and is forced to waifor the N-latch.

4.1.3 Release of latches by atomic actions To avoid latch-lock deadlocks, we observe the

— No-Wait rule: actions do not wait for database locks
When dealing with index trees, the types of possible atomic  while holding a latch that can conflict with a holder of
actions are known. Because of this, there are circumstances a database lock.
in which release of latches before termination of the atomic . . . . .
A universal strategy for dealing with an action that waits

action does not compromise correctness. d ; . \

We do not claim that database transactions are serialiZ°" & database lock while holding a latch is to abortit, releas-
able with respect to atomic actions. If a database transactio g allits Iatchgs and undomg Its e_ﬁeqts. When the reqqested
makes two searches of a tree, one before and one after QCkS are a_cquwed, the atomic action Is re-executed in Its en-
node split, for example, it may see two versions of the tree TV making use of saved informaiion where appropriate.
Both sear;:hes will be éorrect However, for the specific operations of our method, this is

’ : : ot necessary. Only certain latches need be released, i.e.,

Suppose, for example, an atomic action holds a Iatcgvvose that can conflict with the holder of a database lock.

on the node whose subspace contains the entry of intere e then wait for the needed locks to be granted, and resume
The higher level nodes are not revisited in the atomic action . ; 9 '
tne atomic action.

Hence, latches on the higher level nodes can be released. A ; .
For our index tree operations, we must release latches on

atomic action commutes with other atomic actions that arq af nodes whenever we wait for database locks. However
acciss:ng r?rdman(;pulating nodes outside the subtree rqugtches on index nodes (i.e., nodes above the Ieaf level) ma),/
g t()?h(frtcca?sesn\?vhz.re early release is acceptable include ( e .retained. Except for Iea_f node_ consolidation, no atomic
releasing a latch when the resource guarded has not be tion or database transactibath:(i) holds database locks;
changed and the state observed will not be relied upon fo nd (ii) uses pther than S-latches abqve t_he leaf node level.
subsequent execution, and (ii) demoting a latch from X- to -latches on index nodes never conflict with database trans-
U-mode when a Iowe'r level latch is sufficient to provide actions, only with mdex change atomic actions. Except for
correctness even when a node has been changed. Consol!date, these actions never hold databa_se locks. And
consolidate never requests a U-latch on the index node to
be updated while it holds database locks. Hence, its holding
of this U-latch cannot conflict with another consolidate (or

4.2 Interaction with database transactions any other action) that holds database locks.

4.2.1 Avoiding latch-lock deadlocks
o . _ 4.3 Logical UNDOs
There are two situations where an index tree atomic ac-
tion may interact with database transactions and also requirg 3.1 Multi-level svstem view
locks. Sometimes, but not always, these actions are within "™ y

a database transaction. .
I Logical UNDO allows updates on records to he UNDONE

1. Normal accessing of a database record (fetch, inserpn a different page from the one the record was on when
delete, or update of a data record) requires a lock orthe update was made. However, this creates a delicate situ-
the record. ation when very high concurrency Bree implementations,
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including ours, release Btree node locks early. This early 4.3.3 Multi-level UNDO

release of node locks permits multiple transactions to be . e
concurrently updating different parts of the tree, including Maximum concurrency permits ‘Bree structure modifica-

within a subtree whose root is being split. These updatedions to occur simultaneously, whether on the same path or

may be uncommitted at the time of a system crash. If we0t: The bottom-up method we describe here permits this.

allow logical UNDO and if these updates have been moved . R€covery to cope with multi-level subtransactions is de-

because of a completed structure change lower in the tre¢igned specifically for situations like these. Instead of per-

they will need UNDO that requires a tree search involving f0rming UNDO recovery from the log tail back in a single

a path that includes the node whose split is incomplete.  Seduential pass of the log, multi-level methods (Weikum et
The multi-level transaction (Weikum 1986) way of &l 1990; Lomet 1992) perform UNDO recovery level by

looking at this is that there are twievels of abstraction level, begining at the lowest level of abstraction. In the case

an ordered record abstraction, and thetie implementa- ©f B'-trees, this ensures that the-Bee is fully recovered

tion that supports it. Record update is considered to be #MOr to undoing logical record operations that need well-

higher level abstraction thanBree structure changing. (In formed paths. _

this subsection of this paper, we use the wiencel to mean The MLR method (Lomet 1992) extends to an arbitrary

a level of abstractionnot a level of the B-tree.) number of levels. Using MLR, Btree structure modifica-
The logical operations (UNDOs in this case) are ex-tions can be incorporated into any scheme involving multiple

pressed in terms of the ordered record abstraction. For thedgVe!S of abstraction, regardless of the number of other lev-

operations to execute correctly, the path that they need fror§!S: It uses a single log, exploits physiological operations for

root to leaf must be well-formed. But the*Bree imple- REDO, and repeats histogyla ARIES.

mentation layer is being changed as well, via a page split

in this case. We must guarantee that the changes leave tQﬁ4 Page-oriented UNDO

path well-formed when we need to perform the record up-

date UNDOs. This means that incomplete structure changes.4.1 Non-commutative updates

on such paths need to be recovered before the record update L S ]
is UNDONE. Leaf node splitting and consolidation require database locks

for some (but not all) recovery protocols. For example, if
UNDOs of updates on database records must take place on
the same page (leaf node) as the original updaiagé-
4.3.2 Careful recovery needed oriented UNDO) the records cannot be moved until their up-
dating transaction commits or aborts. No updates can be per-
mitted on records moved by uncommitted structural changes,

We assume here that our recovery method performs REDéi,nce undoing the move would cause those records to move.
recovery first, repeating history, during a forward pass overinally, no update can be permitted that makes the undoing
the log. Then it performs UNDO. UNDO recovery is usually of the move |mp035|ble_. Such updates are those th_at consume
accomplished by starting at the tail of the log and scanningsP2c€ in the node that is needed in order to consolidate nodes
backwards, undoing operations of uncommitted transactionsPlit by @ transaction. Only operations (together with their
and of uncommitted Biree restructurings, until all required 'NVerses) that commute with the structural change can be
UNDO operations have been executed. Without modificaPermitted. , ,
tion, or additional care, this recovery paradigm will occa- When a structural change is part of an independent
sionally fail. atomic action, the latches negded for the strgctural c_hange
Recall that a B-tree split will touch multiple pages, and &€ Wwo-phased but only persist for the duration of this ac-
hence there will be multiple log records, spread out amongion- All node consolidation s like this. Some leaf-node-
other operations on the log. Further, some of the changeépl'tt'ng can _also be done in an mdependent atomic action.
produced by the split may have been flushed to the disk!! @ transaction,’, whose update triggers the need for a
Despite this, if all log records describing & Bee restruc-  Node split, has not yet updated any record to be moved by
turing on a path are naturally guaranteed to occur later orthe split, the split can be performed in an action mdep_endent
the log than the log records for the logical record updateOf and beforel'. Then, updates that do not commute with the

operations that require the path to be well-formed, then n trl_JcturaI change are only blocked during this indgpendent
extra care is required. But this is not guaranteed. action. Further, of course, the structural change will not be

One way of dealing with this problem is to ensure thatUndone if7" aborts. _
log records for B-tree operations always appear later in the  Other leaf node splits in page-oriented UNDO systems
log than the log records for the logical UNDOs that need aMust be done within an updating database transaction. In this
well-formed path to their update. That way, the tree will be €8S, the database locks are held to the end of transaction

recovered before the logical UNDO that needs it. One carfnd the structural change must be undone if the transaction

use concurrency control to restrict the sequence in which op@POrts:

erations are performed. For example, the ARIES/IM (Mohan

and Levine 1992) Btree method provides a single structure 4.4.2 Move locks

modification lock (SMO), which is locked in exclusive (X)

mode when a structure modification is in progress. Only aln this section, we describe the requirements of move locks.
single modification can be active at a time. They may be implemented in several ways, depending on
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the lock granularities and modes available in the underlyingThus, we indicate what our approach requires from a recov-
system. ery method, without specifying exactly how these require-

For page-oriented UNDO, move lock is required that ments are satisfied.
conflicts with non-commutative updates. The move lock
causes the structure change operation to wait until all trans-
actions that are updating records to be moved have comé4.5.1 Logging
pleted. Further, it blocks updating transactions from chang- . . )
ing records moved until the moving transaction completesWe assume that write-ahead logging (the WAL protocol) is
Fina”y, the move lock keeps updates from Consuming Spacélsed to ensure that actions are at(.)mlc, i.e., all or ﬂothlng.
that would prevent the undoing of the move. Since reads dd he WAL protocol assures that actions are logged so as to
not require UNDO, concurrent reads can be tolerated. Hencermit their UNDO, prior to making changes in the stable
move locks may be compatible with share-mode locks. (Thi¢database. . .
assumes that all access to records is throughTtteee, fol- Our atomic actions are not user-visible and do not in-
lowing links when sibling terms indicate that it is necessary.volve user-commitment promises. Atomic actions need only
Otherwise, say with a table scan using page locks, reader%e “relat|VE|y” durable. That s, they must be durable prior to
can miss a moved record or see it twice.) the commitment of transactions that use their results. Thus,

When |eaf-n0de_sp|itting occurs in a System with page-it iS not necessary téorce to diska “commit” |Og record
oriented UNDO, the move lock must be held to the endWhen an atomic action completes. This “commit” record can
of the transactiori” that does the splitting. The posting of be written when the next transaction commits, forcing the
the index term for Sp“ts cannot occur until and unlédss |Og This transaction is the first one that m|ght depend on the
commits, so that UNDO of the split is possibleZifaborts. results of the atomic action. When the log record of the com-
For the same reason, any other transaction which traverségit of the transaction and the last log record of the atomic
the sibling pointer created b§’s split may not post the action (its “commit” log record) are on disk, both the trans-
index term untill” commits. Therefore, a move lock must be action and the atomic action are durable. This optimization
distinguished from a share lock. A transaction encountering@ssumes that any transaction which might depend on these
a move lock on a sibling traversal does not schedule aresults uses the same log.
index-posting. This implies that, in a database with page-
oriented UNDO, transactions must set database locks at leaf . ) )
level when traversing links, in order to detect possible move?-5-2 ldentifying an atomic action
locks.

A move lock can be realized with a set of individual
record locks, a page-level lock, a key-range lock, or eve
a lock on the whole relation. This depends on the imple-
mentation specifics. If the move lock is implemented using
a lock whose granule is a node size or larger, once grantecf
no update activity can alter the locking required. This one .
lock is sufficient. the recovery manager are as (i) a separate database transac-

Should the move lock be realized as a set of record Iockst'on’ (i) a special system transaction, or (iil) as a “nested

the need to wait for one of these locks means that the |atclgop—level action” (Mohan et al. 1992). Our approach works

e ; : ith any of these techniques, or any other that guarantees
on the splitting node must be released. This permits Changeg\gtomicity. One strength of the method is that it realizes high

to be locked. Since the space involved (one node) is lim.concurrency While providing independence from the details
ited, the frequency of this problem should be low. The nodeOf the surrounding database system.
is relatched and examined for changes (records inserted or

deleted). The following outcomes are possible.

Atomic actions must complete or partial executions must
rpe rolled back. Hence, the recovery manager needs to know
about atomic actions, as it is the database system component
responsible for the atomicity property, i.e., the all-or-nothing
xecution of the action.

Three possible ways of identifying an atomic action to

5 Multi-action structural changes

1. No change is required to the locks needed to impleme
the move lock. Proceed with the structural change.

2. The structural change becomes unnecessary. Abort t X
structural change action. at enables the high concurrency of our approach.

3. The structural change remains necessary, but different |0an if the mult|plle atgmlc a(;:tlons mvorivedbm a ‘Tfrl:jc'l d

locks are needed to implement the move lock. Reques, u(rja c f:\jngel are tlru yhln ependent can they be schedu eh
the new locks. If a wait is required, release the nOdemteer[r)jnt ,ﬁlrg gltr(u)c?talratll (ce:?\a%ane age'lgtei:lveri]tg‘%os%si?oﬁr?;
latch and repeat this sequence until all needed locks are Pt . ge, ying p
held a potentially long period while leaving thél-tree well-

formed.

mi’he database activity that triggers a structural change is
hI[%rgely isolated from the change itself. It is this isolation

We want our approach to index tree concurrency and reThere is a window between the time a node splits in one
covery to work with a large number of recovery methods.atomic action and the index term describing it is posted in
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another. Between these atomic actiond/dree is said to  nodes to be restructured without a second search of the nodes
be in an intermediate state. These states are, of course, wethh the path, and to find a location within an index node
formed and can be successfully searched. However, searcithere a new index term is to be inserted or an old one
ing a tree in an intermediate state may result in more nodedeleted.
on the search path or in the existence of underutilized nodes To verify saved information, we use state identifiers
which should be deleted. Hence, we try to complete all struc{Lomet 1990) within nodes to indicate the states of each
tural changes. And, it is not always the case that we havenode. We record these identifiers as part of our saved path.
already scheduled atomic actions to do this. The basic idea is that if a node and its state id (stored in the
There are at least two reasons why we “lose track” ofnode) equal a remembered node and state id, then there have
which structural changes need completion, and hence neetbt been any updates to the remembered node since the pre-
an independent way of rescheduling them. vious traversal. Hence, the remembered descendent can be

used, avoiding a second search of the node. (Log sequence

LA system crash may Interrupt a structural change aftehumbers are used as state identifiers in many commercial
some of its atomic actions have been executed, but n°§ystems)

i&:]"' I}Zfr:](;?/ tfotgézlssirfo d;rfgctthtgr? Isnctﬁé?l?lglziritiact?o\it(ijgr:_ Whether node consolidation is possible has a major im-
9 P 9, act on how we handle saved information. The extent to
that remove them. Hence, database crash recovery do

not need to know about interrupted structural changes ich we can trust this saved information changes when
P 9€S. hode consolidation is allowed. We outline the effects of sup-

2. We only schedule the posting of an index term to a sin-_ "~ . . S
gle parent. We rely on subsequent detection of interme-portIng or not supporting node consolidation here.

diate states to complete multi-parent structural changes.
This avoids the considerable complexity of trying to post5.2.1 No-consolidate case

index terms to all parents, either atomically or via the o )
Schedu”ng of mu|t|p|e atomic actions. Consolidation Not Supported [CNS] Invariant: A nOde,

o once responsible for a key subspace, is always responsible
Structural changes are detected as being incomplete by @ the subspace.

tree traversal that includes following a side pointer. At this  cNS has three effects on our tree operations.
time, we schedule an atomic action to post the index term. In ) ) ]
the case of leaf-level tree traversal in a system where movel- During a tree traversal, an index node is searched for an
locks may be in place, a transaction following a side pointer ~ index or sibling term for the pointer to the next node to
must test for such a lock by, for example, attempting to place  °€ searched. We need not hold latches so as to assure
an instant duration lock incompatible with move locks. If a  the pointer's continued validity. The latch on an index
move lock is detected, no index-posting is scheduled. node can be released after a search and prior to latching
Several tree traversals may follow the same side pointer, & child or sibling node. Only one latch at a time is held
and hence try to post the index term multiple times. A sub- _ during a traversal. _ -
sequent node consolidation may have removed the need tg- When posting an index term in a parent node, it is not
post the index term. These are acceptable, because the state Necessary to verify the existence of the nodes resulting
of the tree igestable Before posting the index term, we test ~ rom the split. These nodes are immortal and remain
that the posting has not already been done and still needs to "€sponsible for the key space assigned to them during
be done. the split.
The need to perform node consolidation is indicated by 3- During a node split, the parent index node to be updated

encountering an underutilized node. At this point, a node S €ither the one remembered from the original traver-

consolidation is scheduled. As with node-splitting, the sal (the usual case) or a node that can be reached by
tree state is tested to make sure that the consolidation is following sibling pointers. Thus “retraversals” to find a
only performed once, and only when appropriate. parent always start with the remembered parent. If the

state identifier in the parent is the same as the remem-
bered state identifier, the index term is posted to the

5.2 Exploiting saved state remembered parent. Should state identifiers be unequal,
the parent may have delegated responsibility for part of
Exploiting saved information is an important aspect of effi-  itS subspace to a sibling. But there is a side pointer from
cient index tree structural changes. The bad news of indepen- the parent to its sibling which can be followed to find the
dence is that information about tié-tree acquired by early entry of interest. We choose to update only the first par-
atomic actions of the structural change may have changed, €ntnode encountered that contains an index term for the
and so cannot be trusted by later atomic actions. [THeee split node that needs now to include an index term for

may have been altered in the interim. Thus, saved informa- theé neéw node. Subsequent sibling traversals will com-
tion may need to be verified before it is used, and in general, Plete the updating required for multiple parent nodes.
later atomic actions must verify that their execution remains
appropriate. : . 5.2.2 Consolidate case

The information that we save consists of search key,
nodes traversed on the path from root to data node containinGonsolidation Possible [CP] Invariant: A node, once re-
the search key, and the location of the relevant index termsponsible for a key subspace, remains responsible for the
within those nodes. This information can permit us to locatesubspace only until it is deallocated.
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Deallocated pages are not responsible for any key subis improved if they can exploit saved state. Thus, in the
space. When re-allocated, they may be used in any wayscheduling of atomic actions, provision is made to associate
including being assigned responsibility for different key sub-saved state with these actions.
spaces, or being used in other indexes. This affects the “va- ) ] -
lidity” of remembered state. While saved path information 1. Required database locksilocks that were identified as
can make retraversals of an index tree in later atomic actions needed ahead of time are indicated. When the action is
very efficient, it needs to be verified before being trusted. executed, it will request these locks prior to requesting

The effect CP has on the tree operations is as follows: ~ any latches. This will frequently avoid the need to release
and then reacquire leaf node latches.

1. During a tree traversal, latch-coupling is used to ensures ggyed path: It is always potentially useful to save the

that a node referenced via a pointer is not freed before
the pointer de-referencing is completed. The latch on the
referenced node is acquired prior to the release of the
latch on the referencing node. Thus, two latches need to
be held simultaneously during a traversal.

. When posting an index term in a parent node, we must
verify that the node produced by the split continues to

exist. Thus, in the atomic operation that posts the index
term, we also verify that the node that it describes exists
by continuing our traversal down to this node. When

deleting an index term, we consolidate the node into its
containing node in the same atomic action as the index
deletion.

path traversed by earlier atomic actions. Usually, this
path information will remain valid, and hence traver-
sals during subsequent actions can be dramatically faster.
The saved information in the"B-tree case consists of
<node, state id, record locationfor each node of the
path and a search key. An equal comparison of the saved
state id for a node and its present state id replaces the
search within the node and permits us to proceed to the
next node on the saved path without any check of the
node contents. Saved location is useful to avoid search-
ing for the place in an index node where a new index
term should be posted because of a split of one of its
children.

. During a node split, the remembered parent node to be
updated may have been deallocated. How to deal with
this contingency depends upon how node deallocatiory stryctural changes
is treated. There are two strategies for handling node

deallocation. In this section, we present the step-by-step details of our

a) Deallocation is NOT a node updateA page’s state  concurrency and recovery algorithm. Tree updates are de-
identifier is unchanged by deallocation. It is impos- composed into a sequence of atomic actions, one for each
a page has been deallocated. However, we ensurtching and locking for each atomic action are presented
that the root does not move and is never deallocatedpere.
Then, any page reachable from the root via a tree A node split is triggered by an update of the original
traversal is guaranteed to be allocated. Thus, tree rengde. Node consolidation, which makes changes at two lev-
traversals start at the root. A node on the path isg|s of the/I-tree and moves information from one node to
accessed and latched using latch-coupling, just as ilynother is considered to be an update at the level of the
the original traversal. Typically, a path retraversal is parent of the consolidated nodes (where an index term is
limited to relatching path nodes and comparing newdeleted). Each atomic action is an instance of a single uni-
state ids with remembered state ids, which will usu-yersal action, regardless of the specifics of the update. This

ally be equal. _ program treats both the CP and CNS cases.
Deallocation is a node update:Node deallocation

changes not only space management information, but
also the page’s state identifier to indicate that de-g 1 sService subroutines
allocation has taken place. This requires the posting

of a log record and possibly an additional disk ac-\ye identify a number of subroutines that will be invoked as
cess to write the modified page should the page noy,rt of the universal action at appropriate places.
be reused before it needs to be flushed. However, th

remembered parent node in the path will always be
allocated if its state identifier has not changed and6 1.1 FindNode
retraversals can begin from there. If it has changed,

_however, one must go up_the path, setting and rel.easbur Find Node returns the address of a node at LEVEL
|fng IthheShunt'l a _node with an lénchangﬁd state id 'Sl‘vvhose approximately contained space includes a KEY. The
ound or the root is encountered. A path retraversa parent node to this node is left S-latched. Latch-coupling is
begins at this node. Since node deallocatl_on IS Tar€sed with CP, but a parent node latch can be released before
full retraversals of the tree are usually avoided. acquiring a child or contained sibling node latch with CNS.
This routine handles both new traversals and retraversals.
To do this, each traversal updates the saved path associated
with the structural change. With CP, retraversals start either
Atomic actions that are spawned as a result of a databasat the root (when deallocation is not an update) or else at
transaction need to be scheduled to run. Their performancthe lowest unchanged node of the path (when deallocation

b)

5.3 Scheduling atomic actions
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is an update). With CNS, the saved parent of a node can brode and the creation of the new node are logged. These
simply latched and used. changes are ascribed to the surrounding atomic action or
When a side pointer is traversed durignd Node, an  database transaction.
index-posting action is scheduled for the parent level of the If the split node is not the root, an index term is generated
tree. (The root is not allowed to have side pointers.) Ancontaining the new node’s address as a child pointer, and an
exception is made if a move lock is detected in a systemndex-posting operation is scheduled for the parent of the
using page-oriented UNDO. In this case, no index-postingcurrent node. In the case of a split leaf node in a page-
is scheduled, as the transaction splitting the leaf could stilloriented UNDO system, the index-posting is not scheduled
abort and have to UNDO the split. (In systems supportinguntil after the transaction commits.
non-page-oriented UNDO, once the page is split and the If the split node is the root, a second node is allocated.
latches are released, the split is not undone and no mov&he current node’s contents are removed from the root and
locks are necessary.) put into this new node. A pair of index terms is generated
Similarly (with CP), when an underutilized node is en- that describe the two new nodes, and they are posted to the
countered, except at the root level, an index delete actionioot. These changes are logged.
which also consolidates nodes, is scheduled for the parent
level of the underutilized node.
6.1.4 Verify Consolidate

6.1.2 Verify Split Verify Consolidate checks whether a sparse node can be
consolidated with another node. The parent of the sparse
Verify Split (needed only with CP) confirms that the node node is already U-latched. If the consolidation has already
referenced by a new index term still exists. The index NODEtaken placeVerify Consolidatereturns, indicating that con-
to which the term is to be posted has been found and upsolidation is inappropriate.
date latched beforehand. If the index term has already been We prefer to treat the sparse node as the contained node,
posted, false is returned, indicating that the posting is inapand move its contents to its containing node as there is less
propriate. data to move. This is possible, space permitting, when the
Otherwise, the child node which is the original split- sparse node is a single parent node and its containing node
ting node is S-latched. It is accessed to determine whetheas a child of its parent. In this case, containing and con-
a side pointer refers to a sibling node that is responsible fotained nodes are uniquely identified avierify Consolidate
the space that contains the space denoted in the new inde®turns, indicating which nodes are to be consolidated.
term. If not, then the node whose index term is being posted When the above condition does not exist, we make the
has already been deleted and false is returned. If so, true sparse node the containing node in the consolidation and
returned, indicating that index-posting remains appropriatetry to find an appropriate contained node. There may not
If a sibling exists that is responsible for space containing,be a unique contained node, and one may not even exist.
but not equal to the space denoted in the index term beingtither return, indicating that consolidation is inappropriate,
posted, this sibling becomes the one whose index term i®r select one contained node, and attempt consolidation with
posted. (This happens if the original containing node is splitit. No latches are left on any nodes checked.
again before the posting of the index term of the first split.)
The S-latches are dropped here so that the U latch on the
parent node can be safely promoted to an X-latch. The nev6.1.5 Consolidaté&Nodes
node whose index term is being posted cannot be consoli-
dated while a latch is held on a parent. Consolidate Nodesabsorbs a contained node into its con-
taining node. It is invoked as part of the atomic action that
deletes the contained node index term. The single parent
6.1.3 SplitNode of the contained node has been U-latched previously. First
the containing node is X-latched, then the contained node.
Split Node divides the contents of a current node betweenThe containing node is checked to determine if it has a side
the current node and a new node. It is invoked whenever th@ointer to the contained node and has sufficient space to
current node has insufficient space to absorb an update. Thabsorb the contained node contents. If not, consolidation
current node has been U-latched beforehand. If the currens canceled, the X-latches are dropped, and the parent U-
node is a leaf node, and non-page-oriented UNDO is notatch is promoted to X so as to enable the reinsertion of
supported, a move lock is requested. If a wait is requiredthe previously deleted index term. Otherwise, consolidation
the U-latch on the current node is released. It is reacquired¢ontinues.
after the move lock has been granted. If the nodes to be consolidated are leaf nodes, a move
The U-latch on the current node is promoted to X. Thelock is requested. If a wait is required for the move lock,
space management information is X-latched and a new nodthe X-latches on the leaf nodes are released, but the U-latch
is allocated. The key space and contents directly containedn the parent is retained. When the move lock is obtained,
by the current node are divided, such that the new node&onsolidate Nodesis re-executed from the start.
becomes responsible for a subspace of the key space. A The contents of the contained node are then moved to the
sibling term is placed in the current node that references theontaining node. The appropriate space management infor-
new node and its key subspace. The change to the curremation is X-latched, and the contained node is deallocated.
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The changes to containing and contained nodes are loggedset Target Node.U latch NODE. Traverse sibling point-
and ascribed to the node consolidate atomic action. Then ers, U-latching each node, and for CP, latch coupling,
X-latches are dropped. until the node is found whose directly contained space
includes KEY. Set NODE to be this node. NODE is left
U-latched. U-latches are used because we do not know
which node on this level will be updated until we read
it. For CP, the parent of NODE can be unlatched now if
NODE is above the leaf level. If NODE is at leaf level,
NODE may be unlatched later to wait for database locks,
and its parent latch will be needed to make sure NODE
is not deallocated.
Verify Operation Need. Verify that the operation intended
is still appropriate.

— Leaf node UPDATE: the action is always appropriate.

— Index POSTING: invoke/erify Split to verify that
posting the index term remains appropriate.

— Index DROPPING: invokeVerify Consolidate to
verify that deleting an index term and consolidating
nodes remains appropriate.

If the action is now inappropriate, terminate the atomic
action.

Space Test.Test NODE for sufficient space to accommo-
date the update. If sufficient, then X-latch NODE and
proceed taRequest Remaining Locks Otherwise, split

6.2 The universal action

One should regard our universal action (cal#uversal) as
encompassing the operations necessary to perform an update
at exactly one level of thél-tree. The form of the update
will vary. During its execution, however, it may be necessary
to make a structural change to thEtree.

Universal takes the following arguments.

— LEVEL of the tree to be updated;

— KEY value for the search; The KEY value can be more
complex than a simple byte string value. Such complex-
ity is ignored here. For example, see Evangelidis et al.
(1995) and Evangelidis et al. (1997) for the specifics of
how this works with hB-trees.

PATH that was saved for index-posting and for consoli-
dation.

LOCKS that need to be acquired in order for the opera-
tion to complete;

OPERATION which is one of (i) posting an index term,
(i) dropping an index term and consolidating two nodes,
or (iii) accessing or updating a leaf node. (The descrip-
tion below is written in terms of updates to simplify the

NODE by invokingSplit Node (This will not occur for

index-dropping.) Then check which resulting node has
a directly contained space that includes KEY, and make
that NODE. This can require descending one more level

discussion. The access case is simpler and uses S-latches i the 17-tree should NODE have been the root where

instead of U-latches.) Again, we ignore the complexities
of dealing with specific data structures, both those rep-
resenting the node and those representing the update.

When dealing with a leaf node (case iijyniversal ex-

the split causes the tree to increase in height. Release
the X-latch on the other node, but retain the X-latch on
NODE. Repeat thiSpace Teststep.

Request Remaining Locks.If NODE is a leaf node and

ecutes as part of a database transaction. (Consolidating leaf database locks have not been acquired because it was not
nodes and dropping the resulting index term is not consid- known which were needed a priori, they are requested
ered a leaf node operation and does not execute as part of Nere. If a wait is necessary, the U-latch on NODE is
a database transaction.) However, posting or deleting index 'eleased. After the database lock(s) are acquired, return

terms for index nodes are all in short duration independent  t0 Get Target Node _
atomic actions. Update Node.Update NODE by performing the requested

Universal performs the following steps.

Request Initial Locks. If database locks are known to be
needed, get them now, prior to holding any latches. This
avoids having to release latches subsequently in order to
get them.

Search. Execute Find Node to find a node(NODE) at

operation. Post a log record describing the update to the
log. If NODE is a leaf node, this log record is associated
with the database transaction. Otherwise, it is associated
with an independent atomic action. If the update is not an
index-dropping, proceed tBparse Node CheckOther-
wise, demote the X-latch on NODE to U and proceed to
Consolidate

LEVEL whose approximately contained space includes Consolidate.Invoke Consolidate Nodesto consolidate the

KEY. For CP, the parent of NODE is left S-latched, en-
suring that re-searching the tree is avoided and that node
consolidations involving children of this node will not
occur during this action. (When the update is to the root,
do not invokeFind Node and do not latch any nodes.)

lower level nodes. If it fails, cancel the index-dropping
atomic action, which undoes the prior NODE update.
Note that the U-latch retained on the index node permits
us to perform the UNDO by promoting the U-latch to X
and reinserting the dropped index term.

Using a KEY, from a search argument, instead of at- Sparse Node Checklf NODE is now underutilized and

tempting to locate a subspace means that only one par-
ent of a split child node will be found. Most of the time,
i.e., for single parent nodes, updating this node will com-
plete the index-term-posting for a split. When multiple
parent nodes exist for a split node, several executions
of Universal may be needed before all parents are up-
dated. And these are scheduled as a result of searches
with other keys that required side pointer traversals.

NODE is not the root, schedule an index dropping atomic
action to delete an index term in the parent of NODE by
consolidating NODE with a sibling. If NODE is the root
and it is underutilized, but has more than one child, we
let this condition persist.

If NODE is the root, and it has only a single child, we can
schedule a special atomic action that consolidates this
child with the root, thus reducing the height of the tree by
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Time—-Key Space

one. This action is similar to other node consolidates in? 400

that it must: (i) test that it is still appropriate, (ii) acquire

appropriate latches and the necessary move lock, and

(iii) move the contents of the child node into the root, oL w|

(iv) deallocate the child node, and (v) log the effects of 0 now

the action. It differs from ordinary consolidations only

in that the parent serves as the containing node, and that **° o e

no index-term-dropping is involved. 8 | ~—
Complete. Release all latches still held byniversal. If 100 100 100

Universal was an independent atomic action, release its 0 8 now L a— T g now

database locks and commit the action by writing an ap-

propriate commit record. If this is a leaf node update,

however, the database locks are held by the surrounding

database transaction, and remain held. Note that move — gpedponter o8 for seart c

1T

400

400

locks are never acquired in non-page-oriented UNDO ¢

systems, so the releasing of the page latches for a split  “® 00 ===
at leaf level commits the split (makes it a nested top-level \ s 100 A
action) as in (Mohan and Levine 1992). ’ | A 0 o ow

100 100 |
88 now o 88 now

250

Leaf-level splits in page-oriented UNDO systems are part
of database transactions. Other structural changes take plaeg. 3. The time-split B-treea First, A covers time from 0 to now and
within independent atomic actions. These actions only exekeys from 100 to 400 (400 is the maximum key value. )i splits by time
cute for a short duration. = 88 and delegates the previous time intervalBo A is still responsible

for all of time, but only directly contains time after or equal to 8Now
A splits by key.A now contains two sibling pointersd is the container
. . . for C and A is the container fo3. A is still responsible for all time and
7 Applicability to various search structures for keys between 100 and 400, but directly contains only records which
intersect the time after 88 and the keys between 100 and 250
We have used B*-trees as a running example of how our

concurrency method works. This s the simplest case, SinC%ode directly containing a key space to access history nodes
only a single attribute is being indexed. In this section, we y 9 y sp y

describe briefly how the TSB-tree and the’hree can be Elbrits Zorlliia(;ﬂ tnsatr)(erg\i;woeuii\s/t?)rfl(;?gliﬁf regi(; rt?a? 'IT rtr?:liesspt?]%e.
described aslT-trees, and hence exploit our concurrency new cErrentpnode res onsibleyfor notgrﬁerel i.ts current ke
control and recovery method. P y y

space, but for the entire history of this key space.

In the TSB-tree, many nodes may be multi-parent nodes,
but these are all historical nodes. No historical nodes ever
split and nodes are never consolidated. Thus, in the TSB-

. . tree, the existence of multi-parent nodes and the fact that
A TSB-tree (Lomet and Salzberg 1989) provides indexedy, e than one history sibling pointer may point to the same
access to multiple versions of key-sequenced records. As Bistorical node causes no extra difficulties

result, it indexes these records both by key and by time. We

take advantage of the property that historical nodes (nodes

created by a split in the time dimension) never split again.7 .2 The hB-tree

This implies that the historical nodes have constant bound-

aries and that key space is refined over time. In the hB-tree (Lomet and Salzberg 1990), the idea of con-
Splits in the TSB-tree can be made in two dimensions,taining and contained nodes is explicit and is described with

either by time or by key. In Fig. 3, the region covered by ak-d-tree fragments. The “External” markers can be replaced

current node after a number of splits is in the lower right- with the addresses of the nodes which were extracted, and

hand corner of the key space it started with. A time splita linking network established with the desired properties. In

produces a new (historical) node, with the original node di-addition, when the split is by a hyperplane, instead of elim-

rectly containing the more recent time. A key split producesinating the root of the local tree in the splitting node, as in

a new (current) node, with the original node directly con- Lomet and Salzberg (1990), one child of the root (say, the

taining the lower part of the key space. right child) points to the new sibling containing the contents
With time splits, a history sibling pointer in the current of the right subtree. This makes the treatment of hyperplane

node refers to the history node. The new history node consplits consistent with that of other splits. This is illustrated

tains a copy of prior history sibling pointers. These pointersin Fig. 4.

can be used to find all versions of a given record. An hB-tree with these modifications is called an’hB
With key splits, a key sibling pointer in the current node tree. A complete description and explanation of’hBee

refers to the new current node containing the higher part otoncurrency, node splitting, and node consolidation is given

the key space. The new node will contain not only recordsin Evangelidis et al. (1997).

with the appropriate keys, but also a copy of the history sib- Any time a node containing entries representing spaces

ling pointer. This pointer preserves the ability of the currentis split, it is possible for the split to also split the space de-

7.1 The TSB-tree
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a 1000 atomic actions which do not impede normal database activ-
A ity. Only leaf-node-splitting might execute in the context of
. a database transaction. Should the recovery method support
oo e “Ic_)g|cal_" UNDO_, in which updated records can move while
still being subject to UNDO recovery, structural changes
even at the leaf level can occur outside of the database
1000 — x=17000 transaction. If an insertion triggers a major structural mod-
b 750 ] \y*:m ification, it is useful to be ablggto postpo]ne the greater part
A / e of the modification until after the transaction completes. In
0 sibling term in A most cases, the postponed actions will be performed in a
loooo 17000 20000 timely manner, soon after the triggering transaction, so that
other transactions will not have to follow sibling pointers.
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