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Abstract. Client-server object-oriented database manage-
ment systems differ significantly from traditional centralized
systems in terms of their architecture and the applications
they target. In this paper, we present the client-server archi-
tecture of the EOS storage manager and we describe the con-
currency control and recovery mechanisms it employs. EOS
offers a semi-optimistic locking scheme based on the multi-
granularity two-version two-phase locking protocol. Under
this scheme, multiple concurrent readers are allowed to ac-
cess a data item while it is being updated by a single writer.
Recovery is based on write-ahead redo-only logging. Log
records are generated at the clients and they are shipped to
the server during normal execution and at transaction com-
mit. Transaction rollback is fast because there are no updates
that have to be undone, and recovery from system crashes
requires only one scan of the log for installing the changes
made by transactions that committed before the crash. We
also present a preliminary performance evaluation of the im-
plementation of the above mechanisms.
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1 Introduction

The major components of any database storage system are
the ones that provide support for concurrency control and re-
covery. Concurrency control guarantees correct execution of
transactions accessing the same database concurrently. Re-
covery ensures that database consistency is preserved despite
transaction and process failures. To achieve these goals, a
storage system controls access to the database and performs
some bookkeeping activities such as locking and logging
during normal transaction execution. The database is check-
pointed periodically in order to reduce the amount of work
that has to be done during restart after a crash. It is essen-
tial that the concurrency control, logging, and checkpointing
activities of a storage manager interfere as little as possible
with normal transaction execution.

Today, most commercial and experimental database sys-
tems operate in a client-server environment. Providing trans-
actional facilities in a storage manager for client-server
object-oriented database management systems (OODBMSs)
raises many challenging issues because of the significant ar-
chitectural differences between client-server and centralized
systems and the differences in the applications targeted by
them. This paper presents a semi-optimistic two-phase (2PL)
locking protocol and a redo-only recovery scheme that are
being used in the EOS client-server object storage manager.
We discuss implementation as well as performance charac-
teristics of these protocols.

In traditional centralized database architectures and most
of today’s commercial client-server relational database sys-
tems, queries and operations are shipped from client ma-
chines to the server, which processes the requests and returns
the results. In contrast, most of the client-server OODBMSs
follow a data-shipping approach, where clients operate on
the data items the server sends to them (e.g., Kim et al.
1990; Deux et al. 1991; Lamb et al. 1991; Franklin et al.
1992a). Although there are several alternatives for the gran-
ularity of the data items exchanged between the server and
the clients, virtually all client-server systems have adopted
the page-server model because of its simplicity and the
potential performance advantages over the other alterna-
tives (DeWitt et al. 1990). Under the page-server model, the
server and the clients interact with each other by exchanging
database pages.

In a data-shipping client-server system each client has a
buffer pool, also referred to asclient cache, where it places
the pages fetched from the server. The clients perform most
of the database modifications while the server keeps the sta-
ble copy of the database and the log. An important obser-
vation is that each client cache can be seen as an extension
of the server’s cache and, thus, updated pages present in
a client cache can be considered as being shadows of the
pages residing on the server. Hence, the two-version 2PL
(2V-2PL) protocol (Bernstein et al. 1987) could be imple-
mented easily with no additional overhead. Furthermore, if
the pages updated by a transaction running on a client are
never written to the database before the transaction commits,
then there is no need to generate undo log records and the
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system is able to offer redo-only recovery. This is because
the database will never contain modifications that must be
rolled back when a transaction aborts or when the system
restarts after a crash.

EOS is a data-shipping client-server storage manager
based on the page-server architecture with full support for
concurrency control and recovery. EOS has been prototyped
at AT&T Bell Laboratories as a vehicle for research into dis-
tributed storage systems for database systems and specially
those that integrate programming languages and databases.
EOS is the storage manager of ODE (Biliris et al. 1993),
an OODBMS that has been developed at AT&T. The ma-
jor characteristics of the transactional facilities provided by
EOS are the following.

– The concurrency control mechanism combines the multi-
granularity locking protocol (Gray and Reuter 1993)
with the 2V-2PL protocol (MG-2V-2PL). The mini-
mum locking granularity is a database page. For a given
database page, there is always one committed version of
the page in the server buffer pool or on disk. A second
version of the page may temporarily reside in the cache
of a client which is executing a transaction that updated
the page. If the transaction commits, the modified copy
of the page is placed in the server buffer pool and it
becomes the committed version of the page. If the trans-
action aborts, the modified copy is discarded. In other
words, a dirty page is placed in the server buffer pool
only if the transaction that modified it commits. This
scheme allows many readers and one writer to access
the same page simultaneously without incurring addi-
tional overhead to the client and server buffer managers.

– Recovery is based on write-ahead redo-only logging.
Transactions do not generate undo log records, and the
updates made by an active transaction are posted to
the database only after the transaction commits. Con-
sequently, transaction rollback is very efficient because
the updates performed by an aborted transaction do not
have to be undone. In addition, system restart recovery
requires only one scan of the log file in order to reapply
the updates made by committed transactions before the
crash. Another important feature of the redo-only pro-
tocol employed by EOS is that the number of pages a
transaction can update is not bounded by the size of the
client buffer pool.

– Checkpoints are non-blocking; active transactions are al-
lowed to continue their processing while a checkpoint is
taken. In particular, EOS employs afuzzy checkpointing
algorithm (Bernstein et al. 1987; Franklin et al. 1992)
that stores only state information on disk and avoids the
synchronous writing of updated pages.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of the EOS architecture. Sec-
tion 3 analyzes the concurrency control and logging proto-
cols employed by EOS and discusses transaction operations
such as commit and abort. Recovery from server crashes and
the checkpoint algorithm are presented in Sect. 4. Section 5
contains the results from several performance experiments.
Related work is covered in Sect. 6 and, finally, we conclude
our presentation in Sect. 7.

2 EOS architecture overview

In this section, we present a brief overview of the facilities
provided by EOS and we describe the distributed architecture
of EOS.

2.1 EOS facilities

EOS provides facilities for storing and manipulating persis-
tent objects. File objects serve as a mechanism for grouping
related objects. Files may contain other files. Every object,
including file objects, is a member of exactly one file ob-
ject and, thus, objects form a tree where internal nodes are
file objects and leaves are ordinary (non-file) objects. EOS
databases are collections of files and ordinary objects. When
a new database is created, a file object is automatically cre-
ated that serves as the root file of all objects within this
database. A database consists of severalstorage areas–
UNIX files or disk raw partitions. A storage area is orga-
nized as a number of fixed-sizeextentswhich are disk sec-
tions of physically adjacent pages.Segmentsare variable-
size sequences of physically adjacent disk pages taken from
the same extent. Each extent has a bitmap associated with
it. The allocation policy within storage areas is based on
the binary buddy system (Biliris 1992a). This scheme im-
poses minimal I/O and CPU costs and it provides excellent
support for very large objects (Lehman and Lindsay 1989;
Biliris 1992b).

Objects are stored on pages, one after the other starting
at one end of the page, and they are identified by system-
generated unique object ids (OIDs). The OID consists of
the storage area number and the page number within the
area the object is stored in, plus a slot number. The slot
number is an index into an array of slots which grows from
the other end of the page toward the objects. Slots contain
pointers to the objects on the page. In this scheme, objects
can be rearranged within a page without affecting OIDs. In
addition, the OID contains a number to approximate unique
ids when space is reused.

EOS objects are uninterpreted byte strings whose size
can range from a few bytes to gigabytes. If an object cannot
fit within a single page, EOS stores the object in as many
segments as necessary and a descriptor is placed in the slot-
ted page; the descriptor points to the segments in which the
actual object is stored (Biliris 1992a). EOS provides trans-
parent access to both small and large objects. Both kinds
of objects can be accessed either via byte-range operations
such as read, write, append, insert bytes, etc., or directly in
the client’s cache, without incurring any in-memory copying
cost. The byte-range operations are important for very large
objects, e.g., digital video and audio, because there may be
memory size constraints that would make it impractical to
build, retrieve or update the whole object in one big step.

EOS offers extensible hashing indexing facilities which
support variable size keys and user-defined hash and com-
parison functions. Other index structures can be built on
top of EOS by using page objects – objects that expand
over the entire available space of a page. For example, B-
trees have been built in this way and they are used in ODE
(Biliris et al. 1993). The EOS architecture has been designed
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Fig. 1. The EOS client-server architecture

to be extensible. Users may define hook functions to be exe-
cuted when certain primitive events occur. This allows con-
trolled access to several entry points in the system without
compromising modularity. Finally, configuration files, which
can be edited by the users to tune the performance and cus-
tomize EOS, are provided.

2.2 The client-server architecture of EOS

Figure 1 shows the architecture of the EOS client-server
storage manager. The EOS server is the repository of the
database and the log. It mediates concurrent accesses to the
database and restores the database to a consistent state when
a transaction is aborted or when a client or server failure oc-
curs. The server is implemented as a multi-threaded demon
process that waits passively for a client application to start
communication. For each client application there is a thread
running on the server which acquires all the locks needed,
sends the requested pages to the application, receives log
records and updated pages, installs the updates made by a
committed transaction, and frees all the resources used by an
aborted transaction. The communication between the server
and the client workstations is done by using TCP/IP connec-
tions over UNIX sockets (Stevens 1990). To avoid blocking
I/O operations, the server creates a disk process for each
storage area accessed by client applications. The disk pro-
cesses access directly the server buffer pool, which is stored
in shared memory, and communicate with the server threads
using semaphores, message queues and UNIX domain sock-
ets (Kernighan and Pike 1984; Stevens 1990).

Client applications are linked with the EOS client li-
brary and perform all data and index manipulation during
normal transaction execution. Each application may consist
of many transactions but only one transaction at a time is ex-
ecuted. Each application has its own buffer pool for caching
the pages requested from the server. For transaction man-
agement, each application has a lock cache, some transac-
tion information, and a logging subsystem that generates log

records for the updated pages. These log records are sent to
the server during transaction execution and at commit time.
A least recently used (LRU) buffer replacement policy is
employed for both the client and server buffer pools.

An application starts a transaction by sending astart
transactionmessage to the server. When the server receives
the message, it assigns a new transaction identifier and cre-
ates a new thread if there is no active one serving this appli-
cation. The application can commit or abort an active trans-
action by sending acommit transactionor abort transaction
message to the server, respectively. The server can unilat-
erally abort a transaction when the transaction is involved
in a deadlock cycle, or when the transaction exceeds the re-
sources allocated to it, or when an internal error is detected.
In this case, an abort message is sent to the transaction the
next time the transaction communicates with the server.

The current implementation of EOS does not support
inter-transaction caching (Wilkinson and Neimat 1990; Carey
et al. 1991; Wang and Rowe 1991; Franklin et al. 1992b)
of either pages or locks. Consequently, when a transaction
terminates (whether committing or rolling back), all pages
present in the application’s buffer pool are purged, and the
locks acquired by the transaction are released. In addition,
no support for distributed transactions is provided. Although
applications may connect to many EOS servers and access
the databases stored with them, EOS does not provide sup-
port for the two-phase commit (2PC) protocol yet.

3 Transaction management in EOS

EOS provides facilities to preserve the atomicity, isolation,
and durability database properties while allowing the inter-
leaved execution of multiple concurrent transactions. Trans-
actions in EOS areserializable(Bernstein et al. 1987), and
recovery is based on logging. In the following sections, we
describe in detail the transactional facilities offered by EOS.

3.1 Concurrency control

Like most commercial database management systems and
research prototypes, EOS uses locking for serializability.
However, EOS takes a semi-optimistic approach to lock-
ing by employing the 2V-2PL protocol. The 2V-2PL is also
coupled with multi-granularity locking (MG-2V-2PL) to re-
duce the number of locks a transaction has to acquire during
its execution.

3.1.1 Lock modes

EOS supports three locking granularities: page-level, file-
level, and database-level. A file is locked by locking the
page containing the file object. A database is locked by
locking the page containing the root file object mentioned in
Sect. 2.1. A page, the smallest lock granule, can be locked
by a transactionT in the following modes.

Intention shared (IS ): There is a file object on the page and
T intends to read an object belonging to the file.

Shared (S): T wants to read an object stored on the page.
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Table 1. The lock compatibility table

Lock compatibility table
Mode requested Existing mode

IS S IX X SIX IC C
IS Y Y Y Y Y Y N
S Y Y Y Y Y N N
IX Y Y Y N Y Y N
X Y Y N N N N N
SIX Y Y Y N Y N N
IC Y N Y N N Y N
C N N N N N N N

Intention exclusive (IX ): There is a file object on the page
andT intends to update an object belonging to the file.

Shared intention exclusive (SIX ): There is a file object on
the page and eitherT read the file object and intends
to update an object in the file orT updated an object
belonging to the file and now wants to read the file ob-
ject.

Exclusive (X): T wants to update an object stored on the
page.

Intention commit (IC ): T had anIX or SIX lock on the
page and it is in the process of committing.

Commit (C): T had anX lock on the page and it is in the
process of committing.

When a transaction accesses an object, the page contain-
ing the object is locked in the appropriate mode. All locks
acquired by a transaction are released when the transaction
terminates (by committing or aborting). Lock acquisition is
implicit when objects are accessed via the byte-range oper-
ations mentioned in Sect. 2.1. However, when a transaction
obtains a direct pointer to an object in the page where the
object resides, the transaction has to call the storage manager
to obtain an exclusive lock on the page before it updates the
object for the first time.

When a page is locked, the file containing this page is
locked, too, in the corresponding intention mode. In addi-
tion, when a file is locked in eitherS or X mode, the pages
the file contains are not locked explicitly, unless the file is
locked inS mode and a page in the file is updated. When a
transaction wants to commit, it converts its locks to commit
locks according to the following rules.

CR1: IS andS locks remain unchanged.
CR2: IX andSIX locks are converted toIC locks.
CR3: X locks are converted toC locks.

Table 1 determines whether a lock request can be granted
or not. Each column corresponds to a lock that some trans-
action can acquire and each row corresponds to a lock re-
quested by some other transaction. A “Y” table entry indi-
cates that the lock request can be granted and a “N” table
entry indicates that the request has to be blocked.

Table 2 is used for lock upgrades. A lock upgrade occurs
when a transaction holds a lock in some mode and then exe-
cutes an operation that requires a different mode for the same
lock. Each column indicates a lock mode that the transaction
holds and each row indicates the lock mode requested by the
new operation. A table entry containing “-” corresponds to
an erroneous case; either violation of the assumption that no
more locks are acquired when the transaction enters its com-

Table 2. The lock upgrade table

Lock upgrade table
Mode requested Existing mode

IS S IX X SIX IC C
IS IS S IX X SIX - -
S S S SIX X SIX - -
IX IX SIX IX X SIX - -
X X X X X X - -
SIX SIX SIX SIX X SIX - -
IC - - IC - IC - -
C - - - C - - -

mit phase and starts acquiringIC andC locks, or violation
of the three convert rules mentioned above.

Transactions that are in the process of committing their
updates are blocked when there are active transactions that
read some of the updated pages. EOS enforces this constraint
in order to generate serializable schedules. In addition, EOS
blocks transactions attempting to read a page that has been
updated by a transaction that is in the process of converting
its locks. In this way, committing update transactions are not
blocked indefinitely.

3.1.2 Deadlock detection

In every lock-based concurrency control algorithm, dead-
locks may occur. The 2V-2PL protocol is more susceptible
to deadlocks than the strict 2PL locking protocol, for it does
not prevent a transaction from reading a page that was up-
dated by another transaction, nor does it prevent a transaction
from updating a page that was read by another transaction.
Consequently, conflicts that may develop during the conver-
sion of locks to commit locks may result in deadlocks.1

A deadlock cycle can be discovered either by using time-
outs or by running a deadlock detection algorithm. Although
timeouts offer a simple and inexpensive solution, they are
very pessimistic and cannot distinguish between deadlocks
and long waits. On the other hand, deadlock detection algo-
rithms require extra CPU cycles during the construction of
the waits-for graph (WFG). However, this additional CPU
demand can be kept fairly low when an incremental approach
is used for building the WFG.

In a data-shipping client-server architecture, arbitrary de-
lays may be introduced because of the communication net-
work and the fact that most of the computation is performed
at the clients. Consequently, deadlock detection is better
suited for this environment than timeouts, and this is the
approach EOS follows. EOS performs deadlock detection
when a lock request has to be blocked.2 In particular, EOS
performs deadlock detection every time a lock request by
some transaction is blocked by another transaction which is
waiting for a lock request to be granted.

When a lock request is blocked, EOS visits the list of
granted lock requests for the same lock entry and checks
whether one of these requests belongs to a transaction that

1 EOS supports the 2PL protocol and applications may choose between
2V-2PL and 2PL depending on the expected workload. The choice of the
locking protocol is done at server start up time and cannot be changed while
the server is running

2 A periodic deadlock detection scheme could also be used
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is waiting for a lock to be granted. If this is the case, the
deadlock detection algorithm is invoked. Because each lock
request structure contains a direct pointer to the transaction
control block of the owner transaction, the above check is
very efficient.

The EOS deadlock detection algorithm consists of two
steps. The first step tries to find deadlock cycles involving
transactions that tried to upgrade their lock modes on the
same locked page. If no cycle is discovered during the first
step, the second step dynamically constructs the WFG and
searches for cycles by following a variation of the depth first
traversal algorithm (Beeri and Obermarck 1981).

In the current implementation, EOS evicts the transaction
whose lock request resulted in the formation of a deadlock
cycle. An alternative approach, which we may adopt in the
future, is to avoid evicting a transaction that is in the process
of committing, unless it is the only choice. A transaction
enters its committing phase at the time it starts converting
its exclusive locks to commit locks (see Sect. 3.3.3).

3.2 Logging and recovery

One factor that affected the design of the EOS recovery
scheme is the way in which applications perform updates.
As we mentioned in Sect. 2.1, applications can update an
object by either calling a function provided by the EOS client
library or by updating the object directly after obtaining a
direct pointer to the object in the page where this object
resides. The latter approach allows applications to update an
object at memory speeds with no extra overhead. However,
this approach makes the detection of the portions of the
object that have been updated much more difficult than the
former approach.

A second challenge we faced is the fact that EOS is de-
signed to handle both traditional and non-traditional database
applications, including CAD, CASE, and GIS. While rela-
tional database systems usually update individual tuples only
once during an update operation and they generate a log
record for each individual update, non-traditional database
applications typically work on several objects by repeatedly
traversing relationships between these objects and updating
some of them as well. Consequently, generating a log record
for each update would not be efficient, since an object may
be updated multiple times by the same application. Grouping
multiple updates in one log record is a better solution.

Finally, since EOS is based on a client-server architec-
ture in which updates are performed at each client, recov-
ery is different than the approach followed in centralized
database systems, where both the updates and the generation
of log records take place at the server. In EOS, log records
are generated at client workstations and they are shipped to
the server, which maintains the log, during normal transac-
tion execution and at transaction commit. However, clients
do not send to the server the updated pages at transaction
commit, as done in the Exodus client-server storage manager
(Franklin et al. 1992a). Instead, EOS employs theredo-at-
server approach; the server reads the log records written
by committed transactions and applies their updates to the
database.

3.2.1 Whole-page redo-only logging

EOS writes to the log entire modified pages instead of in-
dividual log records for updated regions of the page. This
approach has several advantages. It allows the allocation of
larger client buffer pools since no separate space is required
for generating log records. The overhead of performing up-
dates is low since the only required action at update time
is to mark the page dirty. Whole-page logging may also re-
duce log space when several objects residing on the same
page are updated by the same transaction. This is in part due
to the fact that no undo log records are written and in part
due to the fact that only one log header is required. Trans-
action rollback is very efficient since there are no undo log
records. Finally, when the redo-at-server approach is used,
whole-page logging avoids I/O related to posting committed
updates to the database because the server does not have to
read a page from disk to update it.

Nevertheless, a main disadvantage of whole-page log-
ging is that it wastes log space when a small part of a
page is modified. A better approach may be the page diffing
scheme presented by White and DeWitt (1995). However,
the page diffing approach may require disk I/O to apply the
log records to the database under the redo-at-server scheme
employed by EOS; a page that is not cached in the server
buffer pool has to be read from secondary storage before the
updates present in a log record are applied to it.

EOS allows logging to be done asynchronously during
transaction execution so that at commit only a small (tun-
able) number of log records have to be forced to the log.
In particular, when an object is accessed by an application
for the first time, EOS allocates a handle for it and returns
the handle to the application. The application may release an
object handle when the object is not needed anymore. Ev-
ery time the application communicates with the server, EOS
checks whether there is an updated page in the client buffer
that is not being accessed by the application – in which case
all handles for the objects residing on this page are released.
In this case, a log record is generated for this page and it is
sent to the server together with the request.3 Any remaining
log records are sent to the server at transaction commit.

A conceptual view of a redo-only log is shown in Fig. 2.
The log contains three kinds of records:checkpointrecords
indicating that a checkpoint has been taken;commit records
indicating that a transaction has committed;redo records
containing the results of the updates performed by commit-
ted transactions. EOS partitions the log into two kinds of
logs: aglobal log and a number ofprivate logs, as shown
in Fig. 3. Each private log is associated with one transac-
tion only and contains all the log records generated by this
transaction. The global log contains records that are either
commit or checkpoint records. A commit record contains
the committed transaction’s id and the address of its private
log. A checkpoint record contains the location of the commit
record belonging to the first transaction that placed a com-
mit record and which had not finished posting its updates to
the database while checkpointing was in progress. When a
transaction aborts, its private log is simply discarded.

3 Actually, log records are being generated after a number of dirty pages
that are not being accessed by the application is reached. This number
corresponds to an EOS configuration parameter
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The private log could be kept in either the client or the
server machine. In the first approach, we would have to move
the log records of committed transactions from the client to
the server. Allowing those records to reside on the client
machine is undesirable because client machines can connect
to and disconnect from the network at any time. Thus, to
guarantee that the restart procedure will not skip any com-
mitted updates, the update log records must be moved to the
server machine as part of the transaction commit protocol.
We abandoned this approach because of the double copying
involved (first to client local disk and then to server’s log),
and all private logs are stored on the server machine.

When a log record is written in the private log, the log
manager returns a key for the record – calledLog Sequence
Number(LSN) – that can be used later to access that record.
The LSN of a log record corresponds to the address of the
record in the private log file.

3.2.2 Large object recovery

Similar to small objects, large objects must be recoverable.
However, the recovery mechanism must not impose a high
overhead on large object operations. The large object recov-
ery mechanism depends on the way large object data seg-
ments operations are carried out. We examined two methods
for handling large object data segment operations; namely,
buffering and direct disk I/O. We chose the latter technique
because buffering complicates buffer management and re-
quires substantial amounts of contiguous buffer space for
objects whose size may be up to hundreds of megabytes and
even gigabytes (e.g., an MPEG-compressed 100-min movie
requires about 1.125 GB of storage).

We examined two main alternatives for recovery of large
objects: logging and shadowing. Redo-only logging is em-
ployed by EOS for small object recovery. However, the
redo-only logging approach cannot be used for large ob-
ject recovery since large objects are written directly to disk.
Consequently, undo log records must be written to recover
the state of a large object that is updated by an aborted
transaction. These undo log records require extra disk I/O
for reading the previous image of the affected byte-range.

Shadowing is a recovery technique in which updates are
never performed on the current page contents. Instead, new
pages are allocated and written, while the pages whose con-
tents are being updated are retained as shadow copies until
the transaction that performed the updates commits. In case
of transaction rollback, the shadow pages are used to restore
the updates performed by the aborted transaction.

We chose the shadow technique for recovery of large ob-
jects in EOS because it is simple and efficient. Shadowing
does not require the generation of undo log records and, con-
sequently, the redo-only logging scheme employed by EOS
for small object recovery does not require any modifications.
In addition, shadowing causes fewer I/O operations during
transaction rollback and system restart. During transaction
rollback, no I/O is required for restoring the state of a large
object since the original state of the object is present in the
database. During system restart, no I/O is required for redo-
ing committed large object updates because all large object
updates are applied directly to the database during normal
transaction execution.

However, shadowing does not provide protection against
media failures and some additional measures are necessary.
One solution is to store the database in two disks and prop-
agate each update to both disks. Another solution is to use
logging and log all large object updates. Currently, EOS fol-
lows the second approach because duplexed disks are costly.
Before the EOS server writes to disk a large object, it gener-
ates a redo-only log record that is inserted in the in-memory
log buffer. Unlike the traditional WAL protocol, shadowing
does not require the forcing of the in-memory log buffer
to disk. The log buffer, however, is forced to disk when it
overflows and at transaction commit.

It is worth mentioning that logging of large objects for
protection against media failures may degrade the perfor-
mance of the system. This is especially true when large ob-
jects are updated frequently and the sizes of the updated
byte-ranges are large. For this reason, EOS allows logging
for large objects to be turned off when media recovery is
not an issue.

3.3 Transaction execution

A committed transactionT goes through three phases, ac-
tive, committing, and write, which are shown in Fig. 4.T
is in theactive phasefrom the time it starts up until the time
it finishes normal execution and it is ready to commit. At
this point,T must convert all exclusive locks it acquired to
commit locks and send the remaining of the log records to
its private log. During this process,T is in thecommitting
phase. T is said to be committed when the log records are
written to stable storage and a commit log record is placed
in the global log. The last phase is the one whereT es-
tablishes its updates in the server buffer pool; this phase is
calledwrite phase. A transaction can be aborted at any time
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Fig. 4. The states a transaction can be in during its execution

during the active and the committing phases. Once the trans-
action has reached the write phase, its updates are guaranteed
to persist.

3.3.1 Active phase

During normal transaction processing, locks are acquired
from the server and database pages are cached in the appli-
cation’s private buffer pool. When the private pool is full,
pages are replaced to make room for new ones. In the redo-
only logging approach used in EOS, a dirty page that has to
be replaced should never be written to its disk location in
the database before the transaction commits. This is because
no undo information is kept in the log and, thus, the updates
could not be undone. Avoiding writing an uncommitted dirty
page to the database can be achieved in several ways.

A first alternative is to send uncommitted dirty pages
to the server. The server can place these pages either in a
shadow disk location or in its buffer pool. In the latter case,
shadow pages are written when the uncommitted modified
pages are replaced from the buffer pool. The shadow pages
replace the originals when the transaction commits and they
are discarded when the transaction aborts – this approach is
used inO2 (Deux et al. 1991).

A second alternative is to store uncommitted dirty pages
in a swap space. When a dirty page is replaced from the
application’s private pool, it is placed in the swap space
and the buffer manager stores the location of the page in the
buffer control block (BMCB) associated with the page. If the
page is accessed again by the same transaction, the buffer
manager fetches the page in the buffer pool by reading it
from the swap space. A similar approach was proposed by
Franklin et al. (1993) to increase the effectiveness of inter-
transaction caching.

We have chosen the second approach because under 2V-
2PL anS lock does not conflict with anX lock and, conse-
quently, a dirty page present in the server buffer pool could
be read by any transaction. Although we could have pre-
vented this by devising special lock modes, we abandoned
this solution in favor of a simpler lock manager. Hence, EOS
stores the swapped-out dirty pages in a swap storage area.

The swap storage area can be on the client or the server
machine, and it is specified in the EOS configuration files.
As a special case, the private log of a transaction could be
used as the swap space for uncommitted updates – this is the
default in our current implementation (Biliris and Panagos
1993). When a dirty page is replaced from the application’s
private pool, EOS generates a log record containing the page
and the LSN of the log record is stored in the BMCB of this
page. The following paragraph describes the data structures
and algorithms used.

Every pageP in the private cache of a transactionT
has a BMCB associated with it, as well as a buffer frame

where it is stored. The BMCB keeps various information
related to the page, e.g., the lock held byT , the relative
order ofP in the least recently used page list, whetherP
has been updated, etc. When a transaction wants to access
an object on the page, it calls the buffer manager and passes
along the lock modeL that needs to be acquired onP .
The buffer manager executes the following algorithm.

1. Scan the buffer pool to locate the BMCB of P . Depending on
whether the BMCB is found, execute one of the following steps.

2. The BMCB of P is not found.
a) Create a new BMCB for P .
b) Allocate a frame in the buffer pool to place P . If the buffer

pool is full, replace a page from the pool as follows:

i. Find the least recently used page PLRU .

ii. If PLRU has not been updated, free the frame and the
BMCB associated with it.

iii. If PLRU is dirty, send PLRU to the private log file, save
the returned LSN in the BMCB of PLRU , and free its
frame.

c) Request from the server page P with lock L on P and
IL on P ’s file. Return.

3. The BMCB of P is found.

a) If P is present in the buffer pool and no lock upgrade is
needed. Return.

b) If P is present in the buffer pool and the lock mode needs
to be upgraded, request from the server L -lock on P and
IL -lock on P ’s file. Return.

c) If P was swapped out, make room in the buffer pool by re-
placing a page as in step 2b above and request P from the
private log using the LSN stored in P ’s BMCB. Return.

3.3.2 Transaction abort

When a transactionT aborts, no undo action needs to be
carried out besides cleaning up possible object copies in the
transaction private space and removing the private log. In
particular, T sends anabort transactionmessage to the
server, frees various control structures used, and purges the
local cache.

When the server receives anabort transactionmessage,
it releases all locks held byT , purges the private log file
associated withT , and addsT to the list of aborted trans-
actions.

3.3.3 Transaction commit

When a transactionT finishes its active phase and it is
ready to commit, it follows the steps presented below.

1. Without waiting for a response send a convert locksmessage
to the server.

2. Send asynchronously to the private log all remaining log records.
3. Send a commit transactionmessage to the server and wait for

the acknowledgment.

While T is executing step 2 or waiting on step 3, the
server may reply with anabort message. The reason for
the abort may be: (1)T was involved in a deadlock that
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materialized when the server was acquiring the commit locks
for T , or (2) an internal error occurred while writing the
log records or flushing the private log.

On receiving theconvert locksmessage the server exe-
cutes the following steps.

1. For each page locked by T do one of the following:
a) If the lock mode is IX or SIX , upgrade it to IC .
b) If the lock mode is X, upgrade it to C.

2. Release all IS and S locks.
3. Send a successmessage to the application.

An application sends acommit transactionmessage to
the server after it sends all log records generated by the
committing transaction to the server. When the server re-
ceives thecommit transactionmessage it follows the steps
described below.

1. Flush the private log to stable storage.
2. Insert a commitrecord in the global log and flush the global log.
3. Send a successmessage to the application.
4. Write Phase: Install the updates performed by the committed

transaction by scanning the transaction’s private log file. For each
log record corresponding to the after image of a page do the fol-
lowing:
a) If the page is present in the server buffer pool, overwrite its

contents with the data part of the log record.
b) If the page is not present in the server buffer pool, make room

in the buffer pool and place the data part of the log record there.
5. Release all remaining locks (i.e., Cand IC locks).

If an error occurs while the server executes the first two
steps of the above algorithm, it aborts the transaction and
replies with anabort message.

4 Recovery from process crashes

When a client application crashes, the server aborts the trans-
action associated with this application, if any, and the server
thread bound to the application is terminated. When the
server process crashes, the server restart procedure returns
the database to a state that includes all the updates made
by committed transactions before the failure. To reduce the
amount of work the recovery manager has to do during sys-
tem restart, the EOS server periodically takes checkpoints.

4.1 Checkpoints

During normal transaction execution, the server buffer pool
contains two kinds of pages:cleananddirty . A page is clean
when the disk version of the page is the same as the version
of the page that is present in the server buffer pool. A page
is considered dirty when its contents are not the same as
the disk version of the page. Since EOS employs a redo-
only recovery protocol, dirty pages contain only committed
updates. The server’s buffer manager tracks in the BMCB
of each dirty page the location of the commit log record,
referred to asRedoLSN, that belongs to the last committed
transaction that updated this page.

EOS employs afuzzy checkpointalgorithm that takes
checkpoints asynchronously, while other processing is going

on. The EOS checkpoint algorithm does not force any dirty
pages to disk. Instead, EOS has a background process that
forces dirty pages to disk on a continuous basis. Formally,
the steps followed by the EOS checkpoint algorithm are the
following.

1. Compute the address, referred to as CommitLSN, of the earliest
commit record inserted in the global log by transactions that have
started their write phase. If there are no transactions that have
started their write phase, set CommitLSNto be the current end
of the global log.

2. Compute the minimum, referred to as DirtyLSN, of all RedoLSN
values present in the BMCBs of the dirty pages that are present
in the server buffer pool. If the server buffer pool does not contain
any dirty page, then set DirtyLSN to be the current end of the
global log.

3. Set RestartLocto be the minimum of the DirtyLSN and Com-
mitLSNvalues computed above.

4. Write in the global log a checkpoint record that contains the
RestartLoccomputed in the previous step.

5. Save the location of the checkpoint record in a place well known
to the restart procedure.

Note that the checkpoint algorithm visits the list of the
transactions that are in the write phase first and then it com-
putes the minimum of theRedoLSNvalues corresponding to
dirty pages. This is necessary in order to guarantee correct
restart recovery in the case where the server buffer pool does
not contain any dirty pages when the checkpointing process
starts and a transactionT finishes its write phase before the
list of transactions that are in the write phase is examined. In
this case, if the server were to crash after the checkpoint was
taken, the updates made byT would not have been redone
during restart.

4.2 Restart

System restart is done by scanning the global log file and
redoing all the updates made by committed transactions in
exactly the same order as they were originally performed.
After the database state is restored, a checkpoint is taken and
the system is operational again. If the server process crashes
in the middle of the restart procedure, the next restart repeats
the same steps again in an idempotent fashion. Formally, the
steps followed during restart recovery are the following.

1. Get the RestartLocvalue stored in the last checkpoint record of
the global log. For each log record inserted in the global log after
the RestartLocdo the following.

a) If it is a checkpoint record, skip it.
b) If it is a commit record, redo all updates present in the pri-

vate log corresponding to that record by executing the write
phase of the server’s transaction commit algorithm presented
in Sect. 3.3.3.

2. Take a checkpoint.

5 Performance results

In this section we present the results collected from three sets
of experiments. The first set of experiments measures the
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Table 3. Database (DB) configuration

DB Objects Object size Objects Pages
name in DB (B) per page in DB
FewObj 6000 500 6 1000
MediumObj 30 000 100 30 1000
ManyObj 100 000 20 100 1000

overhead of the logging and recovery components of EOS
when only one transaction is active in the system. The sec-
ond set of experiments concentrates on a multi-client setting
and measures the overhead of logging during normal trans-
action processing. The third set of experiments compares the
performance of the 2V-2PL and 2PL locking algorithms.

All experiments presented in this section were run on
SPARCstation 10s running SunOS 4.1.3 and having 32 MB
of main memory and 142 MB of swap space. The clients
and server processes were run on separate machines and
they were connected by an Ethernet network. The database
was stored in a raw disk partition and the database page
size was 4 KB. The log was stored in a regular UNIX file
and fsync() was used at transaction commit for flushing
any internal operating system buffers to disk. All times re-
ported were obtained by using thegettimeofday() and
getrusage() UNIX system calls.

5.1 Logging, abort, and system restart

In this section we present an initial study which measures the
logging overhead, the time required to abort a transaction,
and the time spent when restarting the system after a crash.

5.1.1 Database and system model

Table 3 describes the three databases used for the experi-
ments we ran; this is a variation of the model presented by
Franklin et al. (1992a) for measuring the performance of the
recovery components of client-server systems. Each database
consists of 1000 pages and the key difference among them
is the number of objects they contain. The first database,
calledFewObj, consists of 6000 objects of size 500 B each.
The second database, calledMediumObj, consists of 30,000
objects of size 100 B each. The third database, calledMany-
Obj, contains 100 000 objects of size 20 B each. Space on
pages was purposely left unused so that the total number of
pages is the same for all three databases.

We used only one kind of transaction for the experiments
performed, referred to asUpdate, that sequentially scans the
entire database and overwrites part of each encountered ob-
ject. The server’s cache was set to 16 MB so that the entire
database was cached in main memory and the writing of log
records was the only I/O-related activity. The application’s
buffer pool was set to 8 MB. In this way the entire database
fits in the private pool during transaction processing. How-
ever, the local pool is empty at the beginning of each run.
All the numbers presented in the forthcoming sections were
obtained by running each transaction five times and taking
the average of the last four runs.

Table 4. Performance of logging, transaction abort, and system restart

Database Execution time (s) Logging Abort Restart
name Logging on Logging off overhead time (s) time (s)
FewObj 17.2 15.7 9% 1.0 1.3
MediumObj 18.9 17.3 9% 1.1 1.3
ManyObj 25.6 23.8 7% 1.7 1.3
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5.1.2 Results

In the first set of experiments we measured the overhead of
writing the log records to the log, as it was observed by the
application process. In order to compute this overhead we
altered the EOS server to allow the writing of the log records
to be selectively turned on and off. The execution time for
a transaction includes the time to initialize all EOS internal
structures, to execute and to commit the transaction. If log-
ging is on, the execution time also includes the generation,
shipping and writing of log records, and the forcing of the
log to stable storage.

Table 4 indicates that the overhead of shipping log
records to the server and forcing them to disk decreases as
the number of objects accessed by the application program
increases. As mentioned in Sect. 3.2.1, EOS employs whole-
page logging. Since the number of pages that are updated is
the same in all three experiments, the number of log records
generated is also the same. Thus, the logging overhead is
reduced because the processing time of the application pro-
gram increases.

The time to abort a transaction was measured by the same
set of experiments that were run to measure the effect of
the logging subsystem during normal transaction processing.
This time, each transaction is aborted after it finishes normal
execution and the shipping of all log records to the server.
The abort tests shown in Fig. 5 indicate a slight increase
in the time needed to abort a transaction as the number of
updated objects increases. The time to abort a transaction
corresponds to the time needed to release all the locks held
by the transaction plus the time needed to clean all data
structures used by the transaction. The release of locks takes
the same time for all three databases since page-level locking
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Table 5. Database configuration

Database Number of Objects per Module size Total size
name modules module MB MB
Small 5 10 000 1.24 11.15
Large 5 100 000 6.20 55.75

is used by EOS and the same number of pages is accessed.
Thus, the increase in the abort time is due to the the cleaning
of the object-related data structures - one handle per accessed
object.

To measure the time needed to redo the updates per-
formed by a committed transaction, we turned off the check-
point activity and the server process was crashed immedi-
ately after the transaction committed. During restart, the en-
tire log was scanned and the updates made by the committed
transaction were re-done. The restart tests showed that the
time needed to redo the committed updates is independent of
the number of objects updated. This is so because the num-
ber of log records processed during restart was the same for
all three databases used. The times showed in Table 4 indi-
cate that EOS offers fast system restart compared to normal
processing time.

5.2 The performance of the whole-page redo-only logging

In this section, we present an initial study of the performance
of the whole-page redo-only logging algorithm employed by
EOS. In this study, we used two databases of different sizes
and two different operation sets in order to measure trans-
action response time and system throughput when several
clients are active in the system.

5.2.1 Database and system model

A modified version of the OO1 benchmark (Cattell and
Skeen 1992) was used as the basis for measuring the perfor-
mance of the EOS logging component. We used two different
database sizes in the study, referred to assmall and large.
Table 5 shows the size characteristics of the two databases.
Each database consists of five modules. Each module con-
tains several part objects, each having size equal to 100 B.
Each part object is connected to exactly three other objects.
In order to be able to traverse all objects, one connection
is initially added to each object to connect the objects in a
ring; the other two connections are added at random. Fur-
thermore, one of the part objects serves as the root of the
object hierarchy and it is given a name so that it can be
retrieved later on from the database.

The experiments were performed using two different
traversal operations, referred to asupdate oneand update
all . Both traversals retrieve the root part object of a mod-
ule and they visit all part objects in the module. While the
update all traversal updates all part objects it scans, the up-
date one traversal updates only the very first part object.
In order to avoid performance degradation due to lock con-
flicts and deadlocks, each client accesses a different module
in the database. Thus, the number of clients in all exper-
iments was varied from 1 to 5. During each experiment,
each traversal was run as a separate transaction, which was

Table 6. Small database performance results

Update one Update all
Active Response Throughput Response Throughput
clients (s) (trans/min) (s) (trans/min)
1 3.32 18.07 11.56 05.19
2 3.83 31.33 11.89 10.09
3 4.71 38.22 12.86 14.00
4 5.83 41.17 14.53 16.52
5 7.28 41.21 17.03 17.62

run repeatedly so that the steady-state performance of the
system could be observed. While the server pool was not
flushed between transactions, the client pool is empty at the
beginning of each transaction because EOS does not sup-
port inter-transaction caching in the current implementation.
Each client was given 8 MB of buffer space and the server’s
cache was set to 16 MB.

The following two sections present the collected results.
First we present the results for the small database and then
we analyze the results for the large database.

5.2.2 Small database

This section presents the performance results collected for
the two traversal operations using the small database. Both
traversal operations do not experience any paging because
each individual module is smaller than the client buffer pool
and all five modules are smaller than the server’s cache.
Table 6 contains the collected results. Figure 6 shows the
response time and throughput versus the number of active
clients for both traversal operations.

Each update one traversal produces only one log page
since only one part object is updated and each part object
is much smaller than the database page size. On the other
hand, each update all traversal produces the same number
of log pages as the number of pages updated, namely 278.
However, Table 6 shows that the difference in response time
between the two traversal operations varies from 2.3-fold
to 3.4-fold. This is because EOS writes log records asyn-
chronously, during normal transaction execution. As a re-
sult, at transaction commit time only a small number of log
pages have to be sent to the server and written to the log.

Interestingly, the response time of the update one traver-
sal increases faster than the response time of the update all
traversal as the number of active clients increases. For ex-
ample, when the number of clients increases from one to
two the response time of the update one traversal increases
by 15%, while the response time of the update all traversal
increases by 2%. This is because whole-page logging is not
very effective when only a small region of a page is updated.
Consequently, the overhead of writing log records to private
log files and the overhead of reading these records during the
transaction write phase affect more the update one traversal.
Log writes (reads) are more expensive because the amount
of data written to (read from) each private log file is small,
and the cost of disk seeks is not amortized over the amount
of data written to (read from) disk.

However, when a large number of log records is gener-
ated, the buffering of log records in main memory reduces
the cost of log writes because disk seeks are amortized over
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Fig. 6. Small database results, response (a) and throughput (b)

Table 7. Large database performance results

Update one Update all
Active Response Throughput Response Throughput
clients (s) trans/min (s) trans/min
1 034.92 1.72 133.79 0.45
2 100.03 1.20 307.24 0.39
3 140.05 1.29 387.67 0.46
4 180.68 1.33 474.50 0.51
5 240.17 1.25 579.34 0.52

time. Furthermore, because EOS prefetches log records dur-
ing the transaction write phase, log reads are also less ex-
pensive.

The throughput results shown in Fig. 6 are calculated
from the response time results. While the throughput of the
system almost doubles when the number of active clients
increases from one to two, when more than two clients are
active in the system the throughput increases with a much
slower rate. In particular, when the number of clients in-
creases from four to five, the throughput increases by 6%
for the update all traversal. The increase for the update one
traversal is marginal.

5.2.3 Large database

This section presents the performance results collected for
experiments using the large database. Table 7 shows the col-
lected results numerically and Fig. 7 illustrates the response
time and throughput versus the number of active clients for
both traversal operations.

As in the small database case, the asynchronous send-
ing and writing of the log records during normal transaction
processing keeps the difference in response time between
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the two traversal operations between 2.4 and 3.8 times, de-
spite the fact that the update all traversal generates 2778 log
pages. However, transaction response time increases dramat-
ically when two clients are active in the system. In particu-
lar, the update one traversal becomes 2.8 times slower and
the update all traversal becomes 2.3 times slower. This is
because there is a significant amount of paging going on
in the server’s cache. Since each module consists of 2778
pages and the server’s cache is set to 4000 pages, when two
or more clients are active simultaneously, the server needs
to perform cache replacement. After a number of transac-
tions are committed, the server’s cache consists of pages
that contain committed updates and each cache replacement
operation requires a disk I/O.

Although the throughput of the system drops when two
clients are active, for three and four clients the throughput
increases for both traversals. However, after four clients the
server becomes a bottleneck and the update one traversal
does not scale anymore. The server bottleneck is due to the
overhead of the random seeks to the log disk during the
writing and reading of log records. This is because each
transaction private log file corresponds to a UNIX file in the
current EOS implementation.

5.3 The performance of the 2V-2PL algorithm

This section presents a comparative performance evaluation
of the 2PL and the 2V-2PL protocols in the context of a
client-server environment such as EOS. For each protocol,
we measure the response times of transactions that read a
number of database objects which are updated concurrently
by another transaction, as well as the response time of the
updater transaction.



220

Table 8. Performance results for the reader and writer transactions

Number of clients Response time (s)
2PL 2V-2PL

Total Readers Writers Reader Writer Reader Writer
1 1 0 2.86 n/a 2.86 n/a
1 0 1 n/a 11.56 n/a 11.79
2 1 1 14.01 14.00 3.31 14.07
3 2 1 15.28 15.26 4.68 16.53
4 3 1 17.11 17.20 6.81 19.89
5 4 1 19.18 19.06 9.25 23.22

The small database described in Sect. 5.2 was used as
the basis for comparing the performance of the 2V-2PL algo-
rithm against the performance of the 2PL algorithm. The ex-
periments were performed using two different transactions,
referred to aswriter andreader, that access exactly the same
database module. The writer corresponds to theupdate all
traversal operation studied in Sect. 5.2. The reader, on the
other hand, just visits all part objects in a module and looks
up two fields of each part object, without performing any
updates at all.

Because EOS supports both locking algorithms, no
change had to be made to the system for collecting the per-
formance results. To avoid costs related to cache replace-
ment, each transaction was given 8 MB of buffer space and
the server’s cache was set to 16 MB. During each experi-
ment, the reader and writer transactions were run repeatedly
at each client so that the steady-state performance of the
system could be observed.

5.3.1 Results

We first present results obtained when only one client is
interacting with the server. The goalof this experiment was
to observe the response time of a transaction (including the
overhead of the locking protocol) when there are no lock
conflicts in the system. The first row of Table 8 shows the
response time of the reader transaction when no other client
is active in the system. As we can see, the response time
of the reader transaction does not depend on the particular
locking protocol employed.

The second row of Table 8 shows the response time of
the writer transaction when no other client interacts with
the server. For the writer transaction, 2V-2PL is somewhat
slower compared to 2PL. This is because the 2V-2PL proto-
col requires the client to send one extra message to the server
to convert its exclusive locks to commit locks (this message
corresponds to the first step of the algorithm presented in
Sect. 3.3.3). In addition, while log records are being sent to
the server, the client checks whether the server replied with
an abort message so that to avoid sending unnecessarily the
remaining log records – recall that a transaction may be
aborted while it is in the process of converting its locks.

We now turn our attention to the case where many clients
interact with the server and lock conflicts materialize. Under
this experiment, there is always one writer in the system and
the number of reader transactions varies from one to four –
so the total number of clients varies from two to five. Table 8
presents the results and Fig. 8 illustrates them.

For the 2PL protocol, the average response time of the
readers and the response time of the writer are almost the
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Fig. 8. Reader and writer response times: 2V-2PL vs 2PL

same, regardless of the number of readers that are present
in the system. This behavior was expected since under 2PL
shared and exclusive locks are not compatible. Thus, a reader
is made to wait when it needs to access a page that is locked
by the writer and, similarly, the writer has to wait until all
the readers that are accessing a page finish execution be-
fore it can update any objects residing on that page. Con-
sequently, the aggregate execution and blocking times for
both the readers and the writer are similar.

In contrast, when the 2V-2PL protocol is in use, the
average response time of the readers is much lower than the
response time of both the writer and the reader transactions
under the 2PL protocol. Since the 2V-2PL protocol allows
readers to access objects that are being updated by the writer,
readers are not blocked. However, the average response time
of the reader transactions increases as the number of readers
in the system increases. For example, the average reader
under 2V-2PL is about twice as fast as the reader under
2PL when four readers are interacting with the server; when
only one reader is active, the 2V-2PL reader is 4.2 times
faster that the 2PL reader. This is because a reader may
be blocked when the writer is in the process of converting
its locks to commit locks. As the number of readers in the
system increases, the probability of a reader being blocked
during the writer’s lock conversion process also increases.

Interestingly, the 2V-2PL writer is always slower than
the 2PL writer, due to a number of reasons. First, an extra
message and a check are required by the 2V-2PL protocol,
as mentioned in the beginning of this section. Second, since
each transaction is executed repeatedly by each client, there
is always at least one active reader when the writer starts
converting its locks and, thus, the writer is blocked. How-
ever, the server thread that is responsible for this transac-
tion does not wait until the lock conversion is over. Instead,
it checks whether the client sent any log records, since log
records may be sent while the lock conversion is in progress.
Finally, the conversion of locks to commit locks involves a
traversal of all lock entries belonging to the writer trans-
action. For each lock entry, a number of expensive UNIX
semaphore operations are required for converting the lock.
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6 Related work

There has been a considerable amount of research and exper-
imental work on client-server object stores. There are also
several commercial systems that are based on the client-
server model but few details about the specifics have been
published.

O2 (Deux et al. 1991) employs an ARIES-based (Mo-
han et al. 1992) recovery protocol using shadowing to offer
a redo-only logging scheme. The log is maintained by the
server and only after-images of updates are logged. When a
page containing uncommitted updates is swapped out of the
client cache, a log record is generated first and then the page
is sent to the server. The page is placed in the server buffer
pool unless no space is available, in which case a shadow
page is created. Placing a dirty page in the server buffer pool
is not a problem inO2 because aS lock conflicts with an
X lock (standard 2PL). UnlikeO2, EOS cannot place dirty
pages in the server buffer pool because under 2V-2PL aS
lock is compatible with anX lock. Alternatively, EOS logs
the entire page and it does not have to keep track of the
shadow pages asO2 does.

The Exodus client-server storage system ESM-CS
(Franklin et al. 1992a) employs an ARIES-based recovery
approach, modified to work in a client-server environment,
and uses the steal and no-force buffer management policies.
Concurrency control is based on the strict 2PL algorithm,
and the minimum locking granularity is a database page. In
contrast to EOS, ESM-CS applications send all pages mod-
ified by a transaction to the server at transaction commit.
Aborting a transaction in ESM-CS requires the following
steps: (1) scanning of the log to locate the log records written
by the transaction, (2) undoing the updates present in each
log record, and (3) generating compensation log records. On
the other hand, EOS does not have to scan the log, nor does
it have to undo any updates.

ESM-CS requires three passes over the log during start-
up time; log records are written during undo, and dummy
log records are written in order for the conditional undo to
work correctly. EOS requires only one pass over the log and
it does not generate any log records during restart. Unlike
EOS, ESM-CS buffers large objects and uses logging for
their recovery. In addition, large object recovery is handled
a page at a time, and the pages used to store a large object
contain an LSN-like field. When a byte-range crossing page
boundaries is requested, pages have to be fetched individu-
ally and stripped from their headers before being presented
to the application.

ARIES/CSA (Mohan and Narang 1994) is similar to the
ESM-CS architecture. ARIES/CSA follows the traditional
client-server recovery paradigm where clients send all their
log records to the server as part of the commit processing.
Unlike EOS and ESM-CS, transaction rollback is performed
by the clients in ARIES/CSA. Similar to EOS, ARIES/CSA
clients do not send modified pages to the server at transaction
commit. Although ARIES/CSA employs a fine-granularity
locking protocol, clients are not allowed to update the same
page simultaneously. Instead, a client has to obtain an up-
date token before updating a page as well as a copy of the
page from the previous owner of the update token, as de-
scribed in the algorithms presented by Mohan and Narang

(1991). This results in an increased volume of messages and
it is expensive. ARIES/CSA allow clients to take check-
points. Client checkpoints are stored in the global log file
maintained by the server. In contrast to EOS and ESM-CS,
server checkpointing in ARIES/CSA requires synchronous
communication with all the connected clients.

ObjectStore (Lamb et al. 1991) is a commercial OODB-
MS based on a memory-mapped architecture. The strict two-
phase page-level locking is used together with multi-version
concurrency control. Similar to EOS, ObjectStore employs
a whole-page logging scheme and it uses the log for storing
dirty pages belonging to active transactions. However, due to
the memory-mapped architecture, ObjectStore tends to gen-
erate all log records during transaction commit. In contrast
to EOS, ObjectStore offers inter-transaction caching, nested
transactions, full dumps, and continuous log archiving.

ORION-1SX (Garza and Kim 1988; Kim et al. 1990)
uses both logical and physical locking. The logical lock-
ing is applied on the class hierarchy, whereas the physical
locking is used for transferring objects atomically. ORION-
1SX uses an undo-only recovery protocol. Pages updated
by active transactions can be written in place on disk dur-
ing transaction execution. However, all pages updated by a
transaction are forced to disk at transaction commit. As a
consequence, the performance of the system degrades, since
pages that are updated frequently are forced to disk very
often.

POSTGRES (Stonebraker and Kemnitz 1991) follows a
different recovery scheme than most existing systems as-
suming that stable memory is available. POSTGRES does
not use the write-ahead logging approach, and updates al-
ways create new versions. This approach offers a fast re-
covery with no logging overhead and supports time travel.
However, POSTGRES requires special hardware and a sep-
arate process to store old versions in the historical database
maintained by the system. The same recovery technique is
followed by MNEME (Moss 1990) but without making use
of stable memory.

QuickStore (White and DeWitt 1994) is a memory-
mapped storage system for persistent C++ implemented on
top of ESM-CS. Concurrency control uses the page-level
strict 2PL protocol, and recovery uses the ESM-CS ARIES
redo-undo protocol. White and DeWitt presented a study of
several recovery protocols (1995), including a redo-at-server
scheme and whole-page logging. Similar to EOS, the redo-
at-server studied by White and DeWitt (1995) sends only log
records to the server and not dirty pages. Unlike EOS, these
log records contain redo and undo information and they are
generated using the page diffing scheme. The drawback of
this approach is that the server may have to read a page
from disk before applying a log record. Consequently, per-
formance degrades when the number of clients increases and
the volume of log records generated per client is high.

Although the EOS whole-page logging scheme and the
whole-page logging scheme presented by White and DeWitt
(1995) are similar, they differ in several ways. Unlike EOS,
White and Dewitt’s system places uncommitted dirty pages
in the server buffer pool. In contrast toO2, these pages are
discarded when they have to be replaced before the transac-
tion that updated them commits. Placing uncommitted dirty
pages in the server buffer pool may affect system perfor-
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mance, especially when the server buffer pool experiences
paging, because the buffer hit ratio becomes lower. Another
difference between the two schemes is that EOS installs the
updates of a committed transaction in the server buffer pool
immediately after the transaction is declared committed. On
the other hand, White and DeWitt (1995) use a background
thread which periodically reads committed updates from the
log and installs them in the server buffer pool.

Carey et al. (1991) studied the optimistic 2PL (O2PL)
protocol was studied as part of a performance analysis of
several inter-transaction caching protocols for client-server
systems. Although 2V-2PL is similar to O2PL, the two pro-
tocols differ in several ways. First, transactions running un-
der O2PL do not request any locks from the server until
they are ready to commit. Consequently, several transac-
tions may be updating different copies of the same database
page concurrently and, hence, a high number of deadlocks
is possible. On the other hand, 2V-2PL prevents concurrent
updates on the same database page by allowing only one
transaction to acquire an exclusive lock on the page at a
time. Second, all deadlock cycles under O2PL are discov-
ered only at transaction commit. 2V-2PL discovers deadlock
cycles when they are formed, and it resolves them at that
time. Finally, a family of O2PL protocols supporting inter-
transaction caching was presented in the work of Carey et al.
(1991). EOS does not support inter-transaction caching at its
current implementation. However, inter-transaction caching
of data can be supported in 2V-2PL by using the “check on
access” scheme employed by the 2PL scheme presented by
Carey et al. (1991).

Ephemeral loggingis a new logging approach that has
been described and evaluated by Keen and Dally (1993). The
description presented by Keen and Dally (1993) is based on
a redo-only recovery protocol which does not require check-
pointing of the database and does not abort lengthy transac-
tions that use a lot of log space. However, ephemeral logging
relies on large quantities of main memory capable of storing
both the original and the updated values for all objects that
have updated by an active transaction. Consequently, trans-
actions that perform a large number of updates may not be
able to run because the available memory is not big enough.
EOS does not have this drawback. In addition, ephemeral
logging requires higher bandwidth for logging because it
uses a number of disk log files, referred to as generations,
and a given log record may be written to a number of them.
Finally, the authors do not discuss how this new logging
scheme would be used in a client-server environment.

7 Conclusions

In this paper, we have described the client-server architec-
ture of EOS and have presented the transaction management
facilities provided by EOS. The concurrency control proto-
col was chosen with the goal of increasing the concurrency
level of the system when a given database page is being
accessed by several transactions, one of which is going to
update some objects residing on the page. The recovery pro-
tocol was designed with the goal of minimizing the overhead
of the recovery-related activities during normal transaction

execution and the goal of offering fast transaction abort and
system restart times.

In addition, we have presented several performance stud-
ies of the EOS implementation of the concurrency control
and recovery protocols that we have described in the paper.
From the results collected from these studies and from the
limited number of published performance results for logging
and recovery systems, we concluded that the overhead for
many cases was reasonable, despite the write-intensive na-
ture of the tests we ran. In addition, the performance study
of the 2V-2PL concurrency control method showed that the
concurrency level of the system increases considerably com-
pared with the performance of the strict 2PL. Finally, the
studies raised several issues that have to be addressed in
order to improve the performance of the system, including:
substituting the expensive UNIX semaphores with a faster
test-and-set utility, eliminating the overhead during the write
phase by batching reads from the transaction private log files
so that the number of random seeks is reduced, and batch-
ing log writes to transaction private log files to avoid I/O
overhead due to random seeks.

EOS is used as the storage engine of the ODE OODBMS
(Biliris et al. 1993). The EOS facilities are also being used
in a major AT&T project that provides interactive TV capa-
bilities. This project requires efficient manipulation of multi-
media objects in a client-server environment. EOS runs un-
der UNIX on SPARCstation, Solaris, IBM RS/6000, and SGI
architectures. EOS is written in C++ but it can also be used
by programs written in C. Release 2.0 (Biliris and Panagos
1993) is available free of charge to universities.

We are currently working on issues related to inter-
transaction caching, providing support for multiple servers
and distributed transaction as well as media recovery.
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