
The VLDB Journal (1997) 6: 191–208 The VLDB Journal
c© Springer-Verlag 1997

Heuristic and randomized optimization
for the join ordering problem

Michael Steinbrunn1,?, Guido Moerkotte2,??, Alfons Kemper1,???

1 Universiẗat Passau, Fakultät für Mathematik und Informatik, D-94030 Passau, Germany
2 Universiẗat Mannheim, Lehrstuhl für Praktische Informatik III, D-68131 Mannheim, Germany

Abstract. Recent developments in database technology, such
as deductive database systems, have given rise to the demand
for new, cost-effective optimization techniques for join ex-
pressions. In this paper many different algorithms that com-
pute approximate solutions for optimizing join orders are
studied since traditional dynamic programming techniques
are not appropriate for complex problems. Two possible so-
lution spaces, the space of left-deep and bushy processing
trees, are evaluated from a statistical point of view. The re-
sult is that the common limitation to left-deep processing
trees is only advisable for certain join graph types. Basi-
cally, optimizers from three classes are analysed: heuristic,
randomized and genetic algorithms. Each one is extensively
scrutinized with respect to its working principle and its fit-
ness for the desired application. It turns out that randomized
and genetic algorithms are well suited for optimizing join
expressions. They generate solutions of high quality within
a reasonable running time. The benefits of heuristic optimiz-
ers, namely the short running time, are often outweighed by
merely moderate optimization performance.

Key words: Query optimization – Join ordering – Heuristic
algorithms – Randomized algorithms – Genetic algorithms

1 Introduction

In recent years, relational database systems have become
the standard in a variety of commercial and scientific ap-
plications. Because queries are stated in a non-procedural
manner, the need for optimizers arises that transform the
straightforward translation of a query into a cost-effective
evaluation plan. Due to their high evaluation costs, joins are
a primary target of query optimizers. If queries are stated in-
teractively, there are generally only few relations involved.
The optimization of these expressions can be carried out

? e-mail: steinbrunn@db.fmi.uni-passau.de
?? e-mail: moer@pi3.informatik.uni-mannheim.de
??? e-mail: kemper@db.fmi.uni-passau.de
Correspondence to:M. Steinbrunn

by exhaustive search, possibly enhanced by pruning tech-
niques that exclude unlikely candidates for good solutions.
For instance, in System R [SAC+79], a dynamic program-
ming algorithm is employed for the optimization of joins.
This approach works well as long as only few relations are
to be joined, but if the join expression consists of more
than about five or six relations, dynamic programming tech-
niques quickly become prohibitively expensive. Queries of
this kind are encountered in recent developments such as de-
ductive database systems, where join expressions may con-
sist of a large number of relations. Another source for such
queries are query-generating database system front ends and
complex views. In both cases, very complex queries may
be issued without the end user being aware of it. Even in
object-oriented database systems [KM94], complex join ex-
pressions may be encountered; while forward traversal of
object references are usually very well supported by special-
ized access mechanisms and would not be treated as ordinary
join operations, this is not true forbackwardtraversal. This
would require appropriate index structures such as Access
Support Relations [KM92], the processing of which, in turn,
involves the handling of potentially very complex join ex-
pressions for both initial materialization and maintenance.

Hence, there is a demand for optimization techniques
that can cope with such complex queries in a cost-effective
manner. In this paper, we shall examine approaches for the
solution of this problem and assess their advantages and dis-
advantages. The rest of the article is organized as follows:
in Sect. 2 we give an exact definition of the problem and the
terms and present several cost models that we shall be using
later on in our analysis. Section 3 deals with the problem of
different solution spaces for evaluation strategies. In Sect. 4
we describe common optimization strategies with the vary-
ing working principle, which are subject to a quantitative
analysis in Sect. 5. Section 6 concludes the paper.

2 Problem description

The problem of determining good evaluation strategies for
join expressions has been addressed from the development
of the first relational database systems [WY76; YW79;
SAC+79]. The work in this area can be divided into two

192

major streams: First, the development of efficient algorithms
for performing the join itself, and second, algorithms that
determine the nesting order in which the joins are to be
performed. In this article, we shall be concentrating on the
generation of low-cost join nesting orders while disregarding
the specifics of join computing – Mishra and Eich [ME92]
provide a good overview on this subject.

In relational database systems where queries are stated
interactively, join expressions that involve more than about
five or six relations are rarely encountered. Therefore, the
computation of an optimal join order with lowest evaluation
cost by exhaustive search is perfectly feasible – it takes but
a few seconds of CPU time. But if more than about eight
relations are to be joined, the generally NP-hard problem
of determining the optimal order [IK84] can no longer be
solved precisely; we have to rely on algorithms that compute
(hopefully) good approximate solutions. Those algorithms
fall into two classes: first, augmentation heuristics that build
an evaluation plan step by step according to certain criteria,
and second, randomized algorithms that perform some kind
of “random walk” through the space of all possible solutions
seeking a solution with minimal evaluation cost.

2.1 Definition of terms

The input of the optimization problem is given as thequery
graph (or join graph), consisting of all relations that are to
be joined as its nodes and all joins specified as its edges.
The edges are labelled with thejoin predicateand thejoin
selectivity. The join predicate maps tuples from the carte-
sian product of the adjacent nodes to{false, true}, depend-
ing on whether the tuple is to be included in the result or
not. The join selectivity is the ratio “number of tuples in
the result/number of tuples in the cartesian product”. As a
special case, the cartesian product can be considered a join
operation with join predicate≡ true and a join selectivity
of 1.

The search space(or solution space) is the set of all
evaluation plans that compute the same result. Apoint in the
solution space is one particular plan, i.e. a solution for the
problem. A solution is described by theprocessing treefor
evaluating the join expression. Every point of the solution
space has acost associated with it; acost functionmaps
processing trees to their respective costs. The processing
tree itself is a binary tree that consists of base relations as
its leaves and join operations as its inner nodes; edges denote
the flow of data that takes place from the leaves of the tree
to the root.

The goal of the optimization is to find the point in the
solution space with lowest possible cost (global minimum).
As the combinatorial explosion makes exhaustive enumer-
ation of all possible solutions infeasible and the NP-hard
characteristic of the problem implies that a faster algorithm
(presumably) cannot exist, we have to rely on heuristics that
compute approximate results.

2.2 Cost models

Our investigations are based on the cost models discussed
in this subsection. Each of these cost models measures cost

as the number of pages that have to be read from or writ-
ten to secondary memory. The execution environment is not
distributed. The database is assumed to be much larger than
the available main memory, so all costs besides I/O can be
neglected without introducing too large an error. All cost
models are based on parameters listed in Table 1. The join
operations themselves are equijoins. A common term for
each of the cost formulae below is the cost for writing the
result of the join operation to the secondary memory. This
cost is

Cwrite(R1 on R2) =
σ12 · |R1| · |R2|

bs/tsR12

2.2.1 Nested loop join

The cost for performing a nested loop join (depending on
the presence of index structures) is [EN94]:

1. Without index support

Cnl (R1 on R2) = bR1︸︷︷︸
readR1

+

(⌈
bR1

ms− 1

⌉
· bR2

)
︸ ︷︷ ︸
readR2 and perform join

2. Primary B+-tree index on the join attribute ofR2

Cnl (R1 on R2) = bR1︸︷︷︸
readR1

+ |R1| · (xR2 + 1)︸ ︷︷ ︸
use index to find matching tuple inR2

3. Secondary B+-tree index on the join attribute ofR2

Cnl (R1 on R2) = bR1︸︷︷︸
readR1

+ |R1| · (xR2 + sR2)︸ ︷︷ ︸
use index to find matching tuple inR2

4. Hash index on the join attribute ofR2

Cnl (R1 on R2) = bR1︸︷︷︸
readR1

+ |R1| · h︸ ︷︷ ︸
use index to find matching tuple inR2

h is the average number of page accesses necessary to
retrieve a tuple fromR2 with a given key. We use the
valueh = 1.2 for a primary hash index, andh = 2.2 for
a secondary hash index.

2.2.2 Sort-merge join

The cost for performing a sort-merge join operation is
[EN94]:

Csm(R1 on R2) = CR1 +CR2

whereCR1 andCR2 is computed according to the following
cases:

1. The relation is sorted on the join attribute (or there is a
primary B+-tree index on the join attribute)

CRx
= bRx

,

i.e. there is only the cost for reading the relation.

193

Table 1. Cost model parameters

Parameter Meaning

|R| Cardinality (number of tuples) of relationR

tsR Tuple size of relationR (in bytes)

bs Size of a disk block (in bytes)

ps Size of a tuple reference (tuple identifier, TID)

ms Main memory size (inbs units)

σ12 Join selectivity for joinR1 on R2

(
σ12 = |R1onR2|

|R1×R2|
)

bR Number of blocks occupied by relationR

fo Fanout of an internal B+-tree node
(

fo = b0.69 · bs/(ks + pr)c
)

(ks = key size,pr = size of a page reference)

xR Height of a B+-tree index on the join attribute ofR minus one
(
xR =

⌈
logfo bR

⌉
− 1, assumingps≈ ks + pr

)
sR Selection cardinality ofR’s join attribute (average number of tuples with the same value of the join attribute)

2. There is a secondary B+-tree index on the join attribute

CRx =
⌈
|Rx| · ps

0.69 · bs

⌉
+ bRx ,

i.e. the leaf nodes of the index tree (assuming to be 69%
full) have to be scanned for pointers to the tuples of the
relation, and the blocks containing the tuples themselves
must be read at least once.

3. There is no sort order on the join attribute; explicit sort-
ing is required

CRx
= bRx

logmsbRx
+ bRx

We assume the merge-sort algorithm is applied, where
the number of merge passes depends on the amount of
main memory available.

2.2.3 Hash join

We assume that a “hybrid hash join” is carried out. This
algorithm performs very well over a large range of available
main memory. The cost is [Sha86]:

bR1 + bR2 + 2 · (bR1 + bR2

) · (1− q)

whereq denotes the fraction ofR1 whose hash table fits into
main memory. It is computed as:

q =
ms−

⌈
1.4·bR1−ms

ms−1

⌉
bR1

The constant 1.4 accounts for the hash table’s load factor of
about 71%.

2.2.4 Cost of an entire processing tree

In order to estimate the cost for evaluating an entire pro-
cessing tree, the cost for each node is computed recursively
(bottom-up, right-to-left) as the sum of the cost for obtaining
the two son nodes and the cost for joining them in order to
get the final result.

If the outer relation (R1 in the cost formulae) is not a
base relation, and the join algorithm is a nested loop join,
we assume that pipelining is possible, which saves the costs

Fig. 1. Computation of processing tree costs

for writing an intermediate result to disk and to read it back
into main memory.

For instance, the processing tree in Fig. 1 (where all join
nodes are supposed to be nested loop joins) is evaluated as
follows:

1. The join operationR3 on R4 (node 1) is performed. Be-
cause both operands are base relations, the cost for read-
ing bothR3 andR4 is included in the estimate. Further-
more, the result of this operation has to be written to
disk as an intermediate relation.

2. The join operationR1 on R2 (node 2) is performed.
Again, both operands are base relations, so the cost for
scanning them has to be counted. But in contrast to
node 1, no intermediate result has to be written to disk,
because the tuples can be pipelined to node 3, the root
of the processing tree.

3. In node 3, both intermediate resultsR1 on R2 and
R3 on R4 are joined together in order to compute the
final result. WhileR1 on R2 does not need to be read
from disk due to the pipeline from node 2,R3 on R4
must be read back in, and the final result must be writ-
ten to disk.

We note that the boxed join nodes’ results (Fig. 1) must be
written to secondary memory. These considerations are valid
if (and only if) the two processing nodes in question are both
nested loop joins. If either node 2 or node 3 in the example
tree in Fig. 1 were anything else but nested loop joins, the
cost for writing the intermediate result to disk and reading
it back into memory would have to be charged.

194

3 Solution space for the join ordering problem

Generally, the solution space is defined as the set of all pro-
cessing trees that compute the result of the join expression
and that contain each base relation exactly once. The leaves
of the processing trees consist of the base relations, whereas
the inner nodes correspond to join results of the appropriate
sons. As the join operation is commutative and associative,
the number of possible processing trees increases quickly
with increasing number of relations involved in the join ex-
pression in question. Traditionally, a subset of the complete
space, the set of so-calledleft-deep processing trees, has been
of special interest to researchers [SAC+79; SG88; Swa89].
We shall now study the characteristics of both the complete
solution space and the subset of left-deep trees as the most
interesting special cases, although other tree shapes might
be contemplated, e.g. right-deep trees or zig-zag trees, which
are mainly of interest in distributed computing environments
(see, for example [LVZ93]).

3.1 Left-deep trees

This subset consists of all processing trees where the inner
relation of each join is a base relation. For a fixed number
of base relations, the specification “left-deep” does not leave
any degrees of freedom concerning the shape of the tree, but
there aren! ways to allocaten base relations to the tree’s
leaves. It has been argued that good solutions are likely to
exist among these trees, because such trees are capable of
exploiting the cost-reducing pipelining technique on each of
its join processing nodes. In case a processing tree consists
solely of nested loop joins (either with or without index sup-
port), not a single intermediate result has to be materialized
on secondary memory.

3.2 Bushy trees

In this solution space, we also permit join nodes where both
operands are “composites” (i.e. no base relations). Thus,
the solutions in this space are in no way restricted. Con-
sequently, this solution space includes left-deep as well as
other special tree shapes as (strict) subsets. Because the
shape of possible processing trees can be arbitrary, the car-
dinality of this set is much higher than the cardinality of the
left-deep space: forn base relations, there are

(2(n−1)
n−1

)
(n−1)!

different solutions. However, although the degrees of free-
dom in constructing bushy trees are much higher, the capa-
bility of exploiting the pipelining technique is restricted to
a subset of the tree’s join processing nodes. The more the
shape of the tree tends toward right-deep (i.e. the join nodes’
left operands are base relations), the smaller is the size of
this subset. For a right-deep tree, none of its join processing
nodes is capable of pipelining.

In [OL90], an adaptable plan enumeration strategy for
linear (chain) and star-shaped join graphs is proposed that
reduces the number of plans whose costs have to be evalu-
ated considerably. Ifn denotes the number of relations in the
join graph, there are (n3 − n)/6 (bushy tree solution space)
or (n− 1)2 (left-deep tree solution space) feasible joins for

linear graphs. For star graphs, there are (n−1)·2n−2 (bushy
tree solution space) feasible joins. However, this approach
requires a specially tailored “join plan enumerator” for ev-
ery class of join graphs that might be encountered, and for
arbitrary join graphs still the entire solution space must be
considered in order to guarantee that the optimal solution
cannot be missed.

4 Join ordering strategies

The problem of finding a good nesting order forn-relational
joins can be tackled in several different ways:

1. Deterministic algorithms.Every algorithm in this class
constructs a solution step by step in a deterministic
manner, either by applying a heuristic or by exhaustive
search.

2. Randomized algorithms.Algorithms in this class pursue a
completely different approach: a set ofmovesis defined.
These moves constituteedgesbetween the different so-
lutions of the solution space; two solutions are connected
by an edge if (and only if) they can be transformed into
one another by exactly one move. Each of the algorithms
performs a random walk along the edges according to
certain rules, terminating as soon as no more applicable
moves exist or a time limit is exceeded. The best solution
encountered so far is the result.

3. Genetic algorithms.Genetic algorithms make use of a
randomized search strategy very similar to biological
evolution in their search for good problem solutions. Al-
though in this aspect genetic algorithms resemble ran-
domized algorithms as discussed above, the approach
shows enough differences to warrant a consideration of
its own. The basic idea is to start with a random popula-
tion and generate offspring by random crossover and mu-
tation. The “fittest” members of the population (accord-
ing to the cost function) survive the subsequent selection;
the next generation is based on these. The algorithm ter-
minates as soon as there is no further improvement or
after a predetermined number of generations. The fittest
member of the last population is the solution.

4. Hybrid algorithms.Hybrid algorithms combine the strate-
gies of pure deterministic and pure randomized algo-
rithms: solutions obtained by deterministic algorithms
are used as starting points for randomized algorithms
or as initial population members for genetic algorithms.

4.1 Deterministic algorithms

The algorithms discussed in this section either employ heuris-
tics or a (pruned) search of the solution space in order to
optimize the given join expression. We shall take a closer
look at four different algorithms of this class with varying
complexity and performance.

4.1.1 Dynamic programming

This is the classical algorithm that has been used for join
order optimization in System-R [SAC+79]. It searches the

195

function DynProg

inputs rels “List of relations to be joined”
outputs pt “Processing Tree”

partialsolutions :={All scans for all attributes involved}
“Remove all elements frompartialsolutions
with equivalent, lower-cost alternative”

for i := 2 to |rels|
for all pt in partialsolutions

for all R in rels such that R not in pt

pt :=

 J

J
pt

�
�
�
R

on

end
end
“Remove all elements frompartialsolutions
with equivalent, lower-cost alternative”

end

return “Arbitrary element frompartialsolutions”

Fig. 2. Algorithm “Dynamic Programming”

solution space of left-deep processing trees. Firstly, the set
of partial solutions is initialized with all possible scan nodes
for all relation attributes that participate in the query. For
instance, if there is an index on attributeR.A, then both the
index scan and the ordinary file scan are considered feasible
partial processing trees. In the next step, every element with
a cheaper, equivalent alternative is pruned from the set of
possible partial solutions, where an alternative is considered
“equivalent” if it joins the same set of relations and the
sort order of the partial result is the same. In the following
loop, the algorithm constructs in thekth iteration a set ofk-
relation partial solutions from a set of (k−1)-relation partial
solutions. When this loop terminates, the setpartialsolutions
consists of at least one, possibly several equivalent, optimal
solutions.

A pseudo code rendering of this algorithm is shown in
Fig. 2. Apart from the removal of all equivalent alternatives
but the cheapest one, the original algorithm according to the
cited reference performs further pruning of the search tree: it
defers the introduction of cartesian products into partial solu-
tions as long as possible, thus removing unlikely candidates
for the optimal solution. However, although this strategy re-
duces the computational complexity, the result is no longer
guaranteed to be optimal.

A major disadvantage of this algorithm is the high mem-
ory consumption for storing partial solutions. That (and the
exponential running time) makes its application for queries
that involve more than about 10–15 relations prohibitively
expensive.

In very recent work, Vance and Maier [VM96] devised a
very efficient, so-called light-weight implementation of dy-
namic programming for bushy tree join optimization. Their
method allows to optimize join queries with up to about 18
relations – albeit with a rather simplified cost model.

function MinSel

inputs rels “List of relations to be joined”
outputs pt “Processing Tree”

pt := NIL

do

if pt = NIL then
Ri := “Relation with smallest cardinality”

pt :=

�
�
�
Ri

else
Ri := “Relation fromrels with smallest selectivity factor

for the join with pt”

pt :=

 J

J
pt

�
�
�
Ri

on

end

rels := rels\ [Ri]

while rels/= []

return pt;

Fig. 3. Minimum selectivity algorithm

4.1.2 Minimum selectivity

Good solutions are generally characterized by intermedi-
ate results with small cardinality. Theminimum selectivity
heuristicbuilds a left-deep processing tree step by step while
trying to keep intermediate relations as small as possible. In
this regard, this resembles Ingres’ decomposition strategy
[WY76]; however, unlike the decomposion strategy, which
considers only the operands’ cardinalities, the minimum se-
lectivity heuristic makes use of theselectivity factorσ of the
join R1 on R2 to achieve small intermediate results. Firstly,
the set of relations to be joined is divided into two subsets:
the set of relations already incorporated into the intermedi-
ate result, denotedRused (which is initially empty), and the
set of relations still to be joined with the intermediate result,
denotedRremaining (which initially consists of the set of all
relations). Then, in each step of the algorithm, the relation
Ri ∈ Rremaining with the lowest selectivity factor

σi :=

∣∣∣∣∣Ri on

(
on

Ru∈Rused

Ru

)∣∣∣∣∣
|Ri| ·

∣∣∣∣∣ onRu∈Rused

Ru

∣∣∣∣∣
is joined with the (so far) intermediate result and moved from
Rremaining to Rused. Figure 3 shows the complete algorithm
for left-deep processing trees.

4.1.3 Krishnamurthy-Boral-Zaniolo algorithm

On the foundation of [Law78] and [MS79], Ibaraki and
Kameda [IK84] showed that it is possible to compute the op-
timal nesting order in polynomial time, provided the query

196

graph forms a tree (i.e. no cycles) and the cost function is
a member of a certain class. Based on this result, Krishna-
murthy et al. [KBZ86] developed an algorithm (KBZ algo-
rithm) that computes the optimal solution for a tree query in
O(n2) time, wheren is the number of joins.

In the first step, every relation plays, in turn, the role of
the root of the query tree. For all roots, the tree is linearized
by means of aranking functionthat establishes the optimal
evaluation order for that particular root. The linearized tree
obeys the tree’s order, in other words, a parent node is al-
ways placed before the son nodes. The evaluation order with
lowest cost is the result of the algorithm.

By transforming the query tree into a rooted tree, a parent
node for every node can be uniquely identified. Thus, the
selectivity of a join, basically an edge attribute of the query
graph, can be assigned to the nodes as well. If the cost
functionC can be expressed asC(Ri on Rj) = |Ri| ·g(|Rj |),
whereg is an arbitrary function, the join cost can be assigned
to a particular node, too. This is, in principle, possible for
nested loop join algorithms, but not for merge join or hash
join algorithms. The cost can be computed recursively as
follows (Λ denotes the empty sequence, andl1 andl2 partial
sequences):

C(Λ) = 0

C(Ri) =

{ |Ri| if Ri is the root node
g(|Ri|) else

C(l1l2) = C(l1) + T (l1)C(l2)

The auxiliary functionT (l) is defined as:

T (l) =

{
1 if l = Λ (empty sequence)∏

Rk∈l σk|Rk| else

σk denotes the selectivity of the join ofRk with its parent
node.

The algorithm is based on the so-called “adjacent se-
quence interchange property” [IK84] for cost functions that
can be expressed asC(Ri on Rj) = |Ri| · g(|Rj |). If the join
graphJ is a rooted tree andA, B, U andV are sequences
of J ’s nodes (U andV non-null), such that the partial order
defined byJ is not violated byAV UB andAUV B, then

C(AV UB) ≤ C(AUV B) ⇔ rank(V) ≤ rank(U)

The rank of a non-null sequenceS is defined as

rank(S) :=
T (S) − 1
C(S)

Thus, the cost can be minimized by sorting according to the
ranking function rank(S), provided the partial order defined
by the tree is preserved.

The algorithm for computing the minimum cost process-
ing tree consists of the auxiliary functionlinearize and the
main functionKBZ. Firstly, the join tree is linearized ac-
cording to the functionlinearize in Fig. 4, where a bottom-up
merging of sequences according to the ranking function is
performed. In the last step, the root node becomes the head
of the sequence thus derived. However, it is possible that the
root node has a higher rank than its sons, therefore a nor-
malization of the sequence has to be carried out. That means
that the first relation in the sequence (the root node) is joined

function Linearize

inputs root “Root of a (partial) tree”
outputs chain “Optimal join order for the tree-shaped join graph

with root ‘root’ ”

chain := []
for all succin Sons(root)

lin := Linearize(succ)
“Merge lin into chainaccording to ranks”

end

chain := root + chain
“Normalize the root node‘root’ (cf. text)”

return chain;

Fig. 4. Auxiliary function linearize

function KBZ

inputs joingraph
outputs minorder “join order”

tree := “Minimum spanning tree ofjoingraph”
mincost :=∞
forall node in tree

lin := Linearize(node)
“Undo normalization”

cost := Cost(lin)
if cost< mincostthen

minorder := lin
mincost := cost

end
end

return minorder;

Fig. 5. KBZ algorithm

with its successor. If necessary, this step has to be repeated
until the order of the sequence is correct. The cost of the
sequence is computed with the recursive cost functionC.

In the main functionKBZ (Fig. 5), this procedure is car-
ried out for each relation of the join graph acting as the root
node. The sequence with lowest total cost is the result of the
optimization.

The algorithm can be extended to general (cyclic) join
graphs in a straightforward way, namely by reducing the
query graph to its minimal spanning tree using Kruskal’s
algorithm [Kru56]. The weight of the join graph’s edges is
determined by the selectivity of the appropriate join, and
the minimal spanning tree is determined as the tree with the
lowest product of edge weights, rather than the sum of the
edges’ weights, common in other applications of Kruskal’s
algorithm. This extension has been suggested by Krishna-
murthy et al. [KBZ86]. However, if the join graph is cyclic,
the result is no longer guaranteed to be optimal – it is but
a heuristic approximation. When we speak of the KBZ al-
gorithm in later sections, we refer to this extension with the
computation of the minimal spanning tree of the join graph.

Due to its working principle, the KBZ algorithm requires
the assignment of join algorithms to join graph edgesbefore
the optimization is carried out. This requirement and the re-
strictions concerning the cost model are the main drawbacks

197

function AB

inputs joingraph
outputs minorder “join order”

while number of iterations≤ N2 do
begin

randomizemethods;
while number of iterations≤ N2 do
begin

apply KBZ;
changeorder;
changemethods;

end;
end;
post process;

return minorder;

Fig. 6. AB algorithm

of the KBZ algorithm. The more sophisticated and detailed
the cost model is, the more likely it is that KBZ’s optimal
result based on an (almost inevitably crude) approximation
is different from the real optimum. Furthermore, separating
the two tasks of join order optimization and join method
assignment invalidates the main advantage of the KBZ al-
gorithm, namely to yield the optimal solution inO(n2) time.
In the following section, an algorithm is discussed that tries
to remedy this situation.

4.1.4 AB algorithm

The AB algorithm has been developed by Swami and Iyer
[SI93]. It is based on the KBZ algorithm with various en-
hancements trying to remove the restrictions that are im-
posed on the join method placement. The algorithm permits
the use of two different join methods, namely nested loop
and sort-merge. The sort-merge cost model has been simpli-
fied by Swami and Iyer such that it conforms to the require-
ments of the KBZ algorithm [C(R1 on R2) = |R1| · g(|R2|)
for some functiong; cf. Sect. 4.1.3]. The algorithm runs as
follows (cf. Fig. 6):

1. In randomizemethods, each join in the join graph is as-
signed a randomly selected join method. If the join graph
is cyclic, a random spanning tree is selected first.

2. The resulting tree query is optimized by the KBZ algo-
rithm (apply KBZ).

3. changeorder attempts to further reduce the cost by
swapping relations such that “interesting orders” can be
exploited.

4. This step comprises a single scan through the join order
achieved so far. For each join, an attempt is made to
reduce the total cost by changing the join method em-
ployed (changemethod).

5. Steps 2 to 4 are iterated until no further improvement is
possible orN2 iterations are performed (N = number of
joins in the join graph).

6. Steps 1 to 5 are repeated as long as the total number of
iterations of the inner loop does not exceedN2.

Fig. 7. Moves for bushy tree solution space traversal

7. In a post-processing step (postprocess), once more the
order of the relations is changed in an attempt to reduce
the cost.

The AB algorithm comprises elements of heuristic and ran-
domized optimizers. The inner loop searches heuristically for
a local minimum, whereas in the outer loop several random
starting points are generated in the manner of the iterative
improvement algorithm (cf. Sect. 4.2.1). However, without
ignoring the contribution of the KBZ algorithm, even with
the AB extension it is hardly possible to make use of a
sophisticated cost model.

4.2 Randomized algorithms

Randomized algorithms view solutions aspoints in a solu-
tion space and connect these points by edges that are de-
fined by a set ofmoves. The algorithms discussed below
perform some kind of random walk through the solution
space along the edges defined by the moves. The kind of
moves that are considered depend on the solution space: if
left-deep processing trees are desired, each solution can be
represented uniquely by an ordered list of relations partic-
ipating in the join. Two different moves are proposed in
[SG88] and [Swa89] for modifying these solutions: Swap
and 3Cycle. Swap exchanges the positions of two arbitrary
relations in the list, while 3Cycle performs a cyclic rota-
tion of three arbitrary relations in the list. For instance, if
R1R2R3R4R5 was a point in the solution space, the applica-
tion of Swap might lead toR1R4R3R2R5, whereas 3Cycle
could yieldR5R2R1R4R3.

If the complete solution space with arbitrarily shaped
(bushy) processing trees is considered, the moves depicted
in Fig. 7 (introduced by Ioannidis and Kang [IK90]) are used
for traversal of the solution space.

4.2.1 Iterative improvement

If the solution space of the join optimization problem did
contain but one global cost minimum without any local
minima, we could use a simple hill-climbing algorithm for
finding this minimum. However, because the solution space

198

function IterativeImprovement

outputs minstate “Optimized processing tree”

mincost :=∞
do

state := “Random starting point”
cost := Cost(state)

do
newstate := “stateafter random move”
newcost := Cost(newstate)
if newcost< cost then

state := newstate
cost := newcost

end
while “Local minimum not reached”

if cost< mincostthen
minstate := state
mincost := cost

end

while “Time limit not exceeded”

return minstate;

Fig. 8. Iterative improvement algorithm

does contain local minima, hill-climbing would almost cer-
tainly yield one of them. Theiterative improvement algo-
rithm [SG88; Swa89; IK90] tries to overcome this problem
in the following way (Fig. 8): after selecting a random start-
ing point, the algorithm seeks a minimum cost point using
a strategy similar to hill-climbing. Beginning at the starting
point, a random neighbour (i.e. a point that can be reached
by exactly one move) is selected. If the cost associated with
the neighbouring point is lower than the cost of the current
point, the move is carried out and a new neighbour with the
lower cost is sought. This strategy is insofar different from
genuine hill-climbing, as no attempt is made to determine
the neighbour with the lowest cost. The reason for this be-
haviour is the generally very high number of neighbours that
would have to be checked. The same holds for the check of
whether a given point is a local minimum or not. Instead
of systematically enumerating all possible neighbours and
checking each one individually, a point is assumed to be a
local minimum if no lower-cost neighbour can be found in
a certain number of tries.

This procedure is repeated until a predetermined number
of starting points is processed or a time limit is exceeded.
The lowest local minimum encountered is the result.

4.2.2 Simulated annealing

Iterative Improvement suffers from a major drawback: be-
cause moves are accepted only if they improve the result
obtained so far, it is possible that even with a high number
of starting points the final result is still unacceptable. This is
the case especially when the solution space contains a large
number of high-cost local minima. In this case, the algorithm
gets easily “trapped” in one of the high-cost local minima.

Simulated annealing (Fig. 9) is a variant on iterative im-
provement that removes this restriction [IW87; SG88]. In

function SimulatedAnnealing

inputs state “Random starting point”
outputs minstate “Optimized processing tree”

minstate := state; cost := Cost(state); mincost := cost
temp := “Starting temperature”
do

do
newstate := “stateafter random move”
newcost := Cost(newstate)
if newcost≤ cost then

state := newstate
cost := newcost

else“With probability e
newcost−cost

temp ”
state := newstate
cost := newcost

end

if cost< mincostthen
minstate := state
mincost := cost

end
while “Equilibrium not reached”
“Reduce Temperature”

while “Not frozen”

return minstate;

Fig. 9. Simulated annealing algorithm

Cost

Starting State

Stop of II

Minimum
Stop of SA

Fig. 10. Iterative improvement versus simulated annealing

simulated annealing, a move may be carried out even if
the neighbouring point is of higher cost. Therefore, the al-
gorithm does not get trapped in local minima as easily as
iterative improvement. As the name of simulated anneal-
ing suggests, the algorithm tries to simulate the annealing
process of crystals. In this natural process, the system even-
tually reaches a state of minimum energy. The slower the
temperature reduction is carried out, the lower the energy
of the final state (one large crystal is of lower energy than
several smaller ones combined). Figure 10 illustrates this
behaviour: one iteration of iterative improvement stops in
the first local minimum, whereas simulated annealing over-
comes the high-cost barrier that separates it from the global
minimum, because the simulated annealing algorithm always
accepts moves that lead to a lower cost state, but also accepts
moves that increase costs with a probability that depends on
the temperature and the difference between the actual and
the new state’s cost.

Of course, the exact behaviour is determined by param-
eters like starting temperature, temperature reduction and

199

stopping condition. Several variants have been proposed in
the literature – we shall present the detailed parameters in the
next section where we analyse and compare those simulated
annealing variants.

4.2.3 Two-phase optimization

The basic idea for this variant is the combination of iterative
improvement and simulated annealing in order to combine
the advantages of both [IK90]. Iterative improvement, if ap-
plied repeatedly, is capable of covering a large part of the
solution space and descends rapidly into a local minimum,
whereas simulated annealing is very well suited for thor-
oughly covering the neighbourhood of a given point in the
solution space. Thus, two-phase optimization works as fol-
lows:

1. For a number of randomly selected starting points, lo-
cal minima are sought by way of iterative improvement
(Fig. 8).

2. From the lowest of these local minima, the simulated
annealing algorithm (Fig. 9) is started in order to search
the neighbourhood for better solutions.

Because only the close proximity of the local minimum
needs to be covered, the initial temperature for the simu-
lated annealing pass is set lower than it would be for the
simulated annealing algorithm run by itself.

4.2.4 Toured simulated annealing

An approach similar to two-phase optimization has been
proposed by Lanzelotte et al. [LVZ93] in the context of a
distributed computing environment. In toured simulated an-
nealing, several simulated annealing “tours” with different
starting points are performed. Each starting point is derived
from a deterministic algorithm that greedily builds process-
ing trees using some augmentation heuristic. For instance,
the minimum selectivity heuristic (discussed in Sect. 4.1.2)
could be used to provide these starting points.

Similarly to two-phase optimization, the main benefit of
toured simulated annealing is the reduced running time. The
starting temperature for the different tours is set much lower
(0.1 times the initial plan’s cost) than for simulated annealing
with a random starting point, so the annealing process does
not spend much time accepting moves that do not improve
the current solution.

4.2.5 Random sampling

In [GLPK94], a radically different idea is pursued. All ran-
domized algorithms discussed so far are based on transfor-
mations that attempt to reduce a given solution’s evaluation
cost according to a set of rules until no further improvement
can be achieved. However, an analysis of the cost distribu-
tion in the solution space reveals that a significant fraction
of solutions is rather close to the optimum. An algorithm
that draws a truly random sample of solutions should there-
fore contain the same fraction of good solutions as the en-
tire space; however, designing such an algorithm that selects

each processing tree with equal probability is not trivial. In
the above-mentioned work, such an algorithm (designed for
acyclic join graphs) is presented; its application is most ap-
propriate when a reasonably good (evaluation cost of less
than two times the minimum cost) evaluation plan has to be
identified quickly, as the experimental results in [GLPK94]
indicate.

4.3 Genetic algorithms

Genetic algorithms are designed to simulate the natural evo-
lution process. As in nature, where the fittest members of
a population are most likely to survive and propagate their
features to their offspring, genetic algorithms propagate so-
lutions for a given problem from generation to generation,
combining them to achieve further improvement. We pro-
vide a brief overview of the terminology and the working
principles of genetic algorithms. For a comprehensive intro-
duction, the reader is referred to [Gol89].

4.3.1 Terminology

Because genetic algorithms are designed to simulate biolog-
ical evolution, much of the terminology used to describe
them is borrowed from biology. One of the most impor-
tant characteristics of genetic algorithms is that they do not
work on a single solution, but on a set of solutions, thepop-
ulation. A single solution is sometimes called aphenotype.
Solutions are always represented asstrings (chromosomes),
composed ofcharacters (genes)that can take one of several
different values (alleles). The locus of a gene corresponds
to theposition of a character in a string. Each problem that
is to be solved by genetic algorithms must have its solutions
represented as character strings by an appropriateencoding.

The “fitness” of a solution is measured according to an
objective function that has to be maximized or minimized.
Generally, in a well-designed genetic algorithm, both the
average fitness and the fitness of the best solution increases
with every new generation.

4.3.2 Basic algorithm

The working principle of the genetic algorithm that we use
to optimize join expressions is the same as of the generic
algorithm described below.

Firstly, a population of random character strings is gen-
erated. This is the “zero” generation of solutions. Then, each
next generation is determined as follows:

1. A certain fraction of the fittest members of the population
is propagated into the next generation (selection).

2. A certain fraction of the fittest members of the population
is combinedyielding offspring (crossover).

3. A certain fraction of the population (not necessarily the
fittest) is altered randomly (mutation).

This loop is iterated until the best solution in the popula-
tion has reached the desired quality, a certain, predetermined
number of generations has been produced or no improvement

200

Fig. 11. Encoding of bushy processing trees:a join graph; b processing
tree;c encoded tree

has been observed for a certain number of generations. In the
next section, we shall examine how this generic algorithm
can be adapted to the problem of optimizing join expres-
sions.

4.3.3 Genetic algorithm for optimizing join expressions

Because genetic algorithms were not almost studied as in-
tensively for join order optimization as other randomized
algorithms, we shall discuss the questions associated with
the employment of genetic algorithms for optimizing join
expressions in more detail. In particular, we will not merely
provide the techniques that we finally implemented, but
some of the alternatives we considered (and tested) as well.
Even if the basic algorithm remains unmodified, many vari-
ations for solution encoding, selection, crossover and muta-
tion may be contemplated.

4.3.3.1 Encoding.Before a genetic algorithm can be applied
to solve a problem, an appropriate encoding for the solution
and an objective function has to be chosen. For join opti-
mization, the solutions are processing trees, either left-deep
or bushy, and the objective function is the evaluation cost
of the processing tree that is to be minimized. For encoding
processing trees, we considered two different schemes:

1. Ordered list
a) Left-deep trees. Solutions are represented as an or-

dered list of leaves. For instance, the processing tree
((((R1 on R4) on R3) on R2) on R5) is encoded as
“14325”.

b) Bushy trees. Bushy treeswithout cartesian products
are encoded as an ordered list of join graph edges.
This scheme has been proposed in [BFI91]. As an ex-
ample of this encoding scheme, we represent the pro-
cessing tree depicted in Fig. 11b as a character string.
In a preliminary step, every edge of the join graph is
labelled by an arbitrary number, such as in Fig. 11a.
Then, the processing tree is encoded bottom-up and
left-to-right, just the way as it would be evaluated.
So, the first join of the tree joins relationsR1 andR2,
i.e. edge 1 of the join graph. In the next steps,R12
andR3 are joined, thenR4 andR5, and finallyR123
andR45, contributing edges 2, 4 and 3, respectively.
Thus, the final encoding for our sample processing
tree is “1243” (Fig. 11c).

2. Ordinal number encoding
a) Left-deep trees. A chromosome consists of a se-

quence of ordinal numbers of the processing tree’s

list of leaves. For instance, the processing tree ((((R1 on

R4) on R3) on R2) on R5) is encoded as follows:
– An ordered listL of all participating relations is

made (for instance, based on their indices), such
asL = [R1, R2, R3, R4, R5].

– The first relation in the processing tree,R1, is
also the first relation in our listL, so its in-
dex “1” is the first gene of the chromosome.
R1 is then removed from the listL, so L :=
[R2, R3, R4, R5].

– The second relation in the processing tree,R4, is
the third relation in the listL, so “3” becomes
the second gene of the chromosome. After re-
moval ofR4, L becomes [R2, R3, R5].

– This process is repeated until the listL is ex-
hausted. In our example, the final encoding for
the processing tree is “13211”.

b) Bushy trees. For bushy trees, the ordinal numbers in
the chromosome denote join nodes similar to the or-
dered list of join edges described above. But instead
of specifying the join node by the corresponding join
graph edge, the join’s operands are used for that pur-
pose. For instance, the processing tree in Fig. 11b is
encoded as follows:

– An ordered list of all participating relations is
made exactly as for left-deep tree encoding:L :=
[R1, R2, R3, R4, R5].

– The first join node in the processing tree isR1 on

R2, which involvesR1 andR2 with index “1”
and “2”, respectively, so “12” becomes the first
gene of the chromosome.R1 andR2 are replaced
by R12, soL := [R12, R3, R4, R5].

– The next node in the processing tree joins rela-
tionR3 with the resultR1 on R2 (index 2 and 1),
yielding gene “21” andL := [R123, R4, R5].

– Repeating this process finally leads to the com-
plete chromosome “12 21 23 12”.

In the actual implementation, the chromosome’s genes carry
additional information, namely operand order [encoding (1b)]
and join algorithm (all encoding schemes).

4.3.3.2 Selection.The selection operator is used to separate
good and bad solutions in the population. The motivation is
to remove bad solutions and to increase the share of good
solutions. Mimicking nature, selection is realized as shown
in Fig. 12. The sample population consists of four solutions,
and the objective function, cost, has to be minimized. The
cost value for each of the solutions is listed in the table in
Fig. 12. Each solution is assigned a sector of size inverse
proportional to its cost value on a biased roulette wheel.
Four spins of the wheel might yield the result in the second
table, where Solution 4 has not been selected – it “became
extinct due to lack of adaptation.”

This selection scheme is based on the fitness ratio of the
members of the population: the better a member satisfies the
objective function, the more it dominates the wheel, so one
(relative) “super” population member may cause the pre-
mature convergence to a mediocre solution, because of the

201

Fig. 12. Selection

disappearance of other members’ features. Those features
may be valuable, even if the solution as a whole is not of
high quality. To avoid this, we useranking-based selection.
This means that it is not the value of the objective function
itself but only its rank is used for biasing the selection wheel.
In Fig. 12, for instance, it is not the cost values that would
determine the fraction of the wheel a solution is assigned to,
but just its rank value, i.e. 4 for solution 1, 3 for solution 2,
2 for solution 3 and 1 for solution 4.

General experience shows that ranking-based selection
usually makes the evolution process advance more slowly,
but the risk of untimely losing important information con-
tained in weaker solutions is much lower.

Another variant is to keep the best solution in any case.
This strategy (sometimes referred to as “elitist”) helps speed
up the convergence to the (near) optimal solution, because
the risk of losing an already very good solution is elimi-
nated.

4.3.3.3 Crossover.The crossover operator is a means of
combining partially good solutions in order to obtain a supe-
rior result. The realization of a crossover operator depends
heavily on the chosen encoding. For instance, the crossover
operator has to make sure that the characteristics of the par-
ticular encoding are not violated. Such a characteristic is the
uniqueness of each character in the string for the ordered list
encoding scheme. The crossover operator and the encoding
scheme are tightly coupled, because often the implementa-
tion of a particular crossover operator is facilitated (or even
made possible at all) if a particular encoding scheme is used.
Basically, we considered two different crossover operators,
namely subsequence exchangeand subset exchange. They
work as follows:

1. Subsequence exchange (ordered list encoding). An ex-
ample of the application of this operator is shown in
Fig. 13. It assumes the ordered list encoding scheme. In
each of the two offspring chromosomes, a random subse-
quence is permuted according to the genes’ order of ap-
pearance in the other parent. For instance, in Fig. 13, the
subsequence “532” is selected from the string “45321”.
The first gene of its offspring remains the same as in the
parent (4). The second gene is taken from the first gene

3 154 2 3 451 2

��
��*HHHHj

4 532 1 4 352 1

“Parents” “Offspring”

Fig. 13. Crossover 1 – subsequence exchange for ordered list encoding

1 32 11 1 43 11

��
��*HHHHj

4 43 21 4 32 21

“Parents” “Offspring”

Fig. 14. Crossover 2 – subsequence exchange for ordinal number encoding

3 1 5 4 2 2 1 5 4 3

��
��*HHHHj

45 321 45 231

“Parents” “Offspring”

Fig. 15. Crossover 3 – subset exchange

of the other parent (3). The second gene of the other
parent (1) cannot be used, because it is already present,
so the third gene of the offspring is taken from the third
gene of the other parent. Continuing this process yields
at last the offspring chromosome “43521”. Determining
the second offspring is carried out similarly.

2. Subsequence exchange (ordinal number encoding). This
operator is a slight variation of the above. It is intended
for use in conjunction with the ordinal number encod-
ing. In contrast to the first version of the sequence ex-
change operator, the two subsequences that are selected
in the two parents must be of equal length. These sub-
sequences are then simply swapped. This is only feasi-
ble with the ordinal number encoding because we do not
have to worry about duplicated characters. Fig. 14 shows
a sample application of this operator.

3. Subset exchange (ordered list encoding). The basic idea
for this operator is to avoid any potential problems with
duplicated characters by simply selecting two random
subsequences with equal length in both parents that con-
sist of the same set of characters. These two sequences
are then simply swapped between the two parents in or-
der to create two offspring. Figure 15 depicts an example
of the application of this crossover operator.

4.3.3.4 Mutation.The mutation operator is needed for in-
troducing features that are not present in any member of the
population. Mutation is carried out by random alteration of a
randomly selected chromosome. If the operator must not in-
troduce duplicate characters, as in ordered list chromosomes,
two random genes are simply swapped in order to carry out
the mutation; with ordinal number encoding, a random gene
of the chromosome is assigned a new, random value.

202

a b

c d

Fig. 16. Join graphs:a chain;b star;c cycle; d grid

Mutation, the “spice” of the evolution process, must not
be applied too liberally lest the process be severely disrupted.
Usually, only a few mutations are performed in one gener-
ation.

If the “elitist” variant of the selection operator is used,
one might also consider excepting the best solution in the
population from being mutated. The reasons for doing so are
explained in the paragraph above describing the selection
operator.

5 Quantitative analysis

5.1 Preliminaries

The generation of queries for the benchmarks permits inde-
pendent setting of the following parameters:

1. Class of the join graph
2. Distribution of relation cardinalities
3. Attribute domains

The shape of the join graph can be chosen from the following
four classes: chain, star, cycle and grid (Fig. 16).

Relation cardinalities and domain sizes fall into four cat-
egories, S, M, L and XL, as specified in Table 2; for instance,
35% of all relations comprise between 1000 and 10 000 tu-
ples. These figures were chosen such that join results and
cost values are neither too small (because of the error that
would be introduced due to the page granularity of the cost
model) nor too large (loss of accuracy due to limited floating
point arithmetic resolution).

The query itself is specified such that all relations from
a particular join graph are to be joined; the selectivities
that are associated with the graph’s edges are computed ac-
cording to the estimate used in System-R [SAC+79], i.e.
σ = 1/min(dom(attribute1), dom(attribute2)). Index struc-
tures (either hash tables orB+-trees) facilitate read access
on 20% of all relation attributes. While constructing a join
graph, relation cardinalities and attribute domain sizes are
drawn independently; however, various “sanity checks” en-
sure that, for instance, a relation’s cardinality cannot exceed
the product of its attribute domain sizes.

Each point in the following diagrams represents the av-
erage of at least thirty optimized queries, which proved to
be a good compromise between the conflicting goals “avoid-
ance of spurious results” (due to atypical behaviour of single
runs) and “running time,” as preliminary tests showed.

From the optimization strategies discussed in Sect. 4, we
implemented the following algorithms: the System-R algo-
rithm, the minimum selectivity heuristic and the KBZ algo-
rithm from the class of deterministic optimizers, and simu-
lated annealing, iterative improvement and genetic (all three

in several variants) from the class of randomized/genetic op-
timizers. All deterministic algorithms yield solutions in the
subspace of left-deep processing trees, whereas some of the
randomized/genetic algorithms operate in the entire solution
space (bushy trees).

All cost figures are scaled with respect to the best solu-
tion available apart from System-R (because the System-R
algorithm could not be run for all parameter settings due to
its high running time). For instance, a solution with a scaled
cost of two is twice as expensive to evaluate as the best plan
computed by any algorithm for that particular query. How-
ever, a curve for the algorithm that actually did compute
the best solution is not necessarily shown in every plot. In
other words, the set of algorithms that compete for the best
solution is always the same, regardless of the subset that is
depicted in a particular plot.

5.2 Solution spaces

Before presenting the benchmark results, we will take a
closer look at the two solution spaces. The left-deep tree
space is a subset of the bushy tree space, so we can expect
lower running times of optimizers that operate in the left-
deep space. On the other hand, there is the danger of missing
good solutions that are not left-deep trees.

In order to get some insight into the advantages of using
one solution space instead of the other, we determined both
the “left-deep optimal” and “bushy optimal” solutions for
one hundred randomly selected queries with six participat-
ing relations. The histograms for the four different join graph
types in Fig. 17a–d show the percentage of cases where the
left-deep tree optimum and bushy tree optimum is of equal
cost (i.e. the optimal solution is in fact a left-deep tree; la-
belled L=B). Following from left to right: the percentages
of cases where the bushy tree optimum has less than 2%,
between 2% and 5%, etc., lower cost than the left-deep tree
optimum.

Considering these histograms, it becomes apparent that
the shape of the join graph makes a big difference: for chain
and cycle, we can find in half of all cases a better solu-
tion in the bushy tree solution space; for cycle, about one
fifth even more than 50% cheaper than the best left-deep
tree solution. Consequently, the investment in searching the
bushy tree solution space should be profitable. On the other
hand, for star join graphs in most of the cases the optima
are left-deep trees anyway, because other tree shapes neces-
sarily comprise cartesian products. Finally, for the grid join
graph, the situation is not as clear as for the other three:
80% of the optima are left-deep trees, but a non-neglectable
fraction of the bushy tree optima are far cheaper than their
left-deep counterparts. A choice in favour of the bushy tree
solution space would depend heavily on the optimization al-
gorithms’ capability to locate these solutions (cf. [IK91]).
In the remainder of this section, we will investigate whether
the bushy tree optimizers can exploit the potential of good
solutions in the bushy tree solution space.

203

Table 2. Relation cardinalities and domain sizes

Class Relation cardinality Percentage (%)
S 10–100 15
M 100–1000 30
L 1000–10000 35
XL 10000–100000 20

100%

Class Domain size Percentage (%)
S 2–10 5
M 10–100 50
L 100–500 30
XL 500–1000 15

100%

0

20

40

60

80

100

L=B < 2% < 5% < 10% < 25% < 50% > 50%

P
er

ce
nt

 S
ol

ut
io

ns

0

20

40

60

80

100

L=B < 2% < 5% < 10% < 25% < 50% > 50%

P
er

ce
nt

 S
ol

ut
io

ns

a b

0

20

40

60

80

100

L=B < 2% < 5% < 10% < 25% < 50% > 50%

P
er

ce
nt

 S
ol

ut
io

ns

0

20

40

60

80

100

L=B < 2% < 5% < 10% < 25% < 50% > 50%

P
er

ce
nt

 S
ol

ut
io

ns

c d

Fig. 17. Left-deep versus bushy processing trees:a chain;b star;c cycle; d grid

Fig. 18. Deterministic algorithms; chain join graph

5.3 Benchmark results for deterministic algorithms

In the first series of benchmarks, we shall examine deter-
ministic algorithms. Figures 18–21 show the results for the
System-R algorithm (Sect. 4.1.1), the minimum selectivity
heuristic (Sect. 4.1.2), and the KBZ algorithm (Sect. 4.1.3).
Because none of the cost formulae in Sect. 2.2 fulfils the
KBZ algorithm’s requirement, we used a simple approxima-
tion that counts the processed tuples for a nested loop join

Fig. 19. Deterministic algorithms; star join graph

(without considering index structures) in order to be able to
run the algorithm. The cost of a complete evaluation plan
thus derived, however, was computed according to the exact
formulae.

On each of the diagrams, the scaled cost (cost of the op-
timized evaluation plan divided by the cost of the best plan
derived byany of the optimization algorithms discussed in
this section except System-R) is plotted against the number
of relations participating in the query; the join graph type

204

Fig. 20. Deterministic algorithms; cycle join graph

is noted in the respective caption. Note the smaller scale
in the y-axis for the star join graph. All deterministic al-
gorithms yield left-deep processing trees; in addition, the
best join method is determined locally for each join node,
i.e. proceeding bottom-up and selecting the least costly join
method for each node. The results for the System-R opti-
mization are plotted for five to ten participating relations
in order to provide some “absolute” basis for comparison
purposes.

Despite the simple cost approximation for running the
KBZ algorithm, this optimizer turns out to be the best of the
two (heuristic) deterministic optimizers for the chain, star
and cycle join graphs. Especially, the solutions for the star
join graph can hardly be improved by any of the other algo-
rithms we tested, be it deterministic, randomized or genetic.
For cycle and grid, the results are not quite as competi-
tive, because these join graphs are cyclic and a spanning
tree must be selected prior to the application of the KBZ
algorithm. This effect becomes especially apparent for the
grid join graph, where the minimum selectivity heuristic per-
forms best. The System-R algorithm, which computes the
optimal left-deep processing tree without cartesian products,
achieves on the average a cost factor slightly above one,
even though some solutions have cost factors below one,
i.e. better than any of the approximate solutions. The reason
why this cost factor is often higher than one is due to the
limitation of the System-R algorithm to left-deep processing
trees without cartesian products.

To summarize the results for heuristic optimizers, we
can note the following points: firstly, both of the discussed
optimizers have a very short running time – the KBZ al-
gorithm managed to compute the results for the 30-relation
star queries in less than 2s of CPU time each, the minimum
selectivity heuristic in less than 0.1s for each one of the
same queries. Secondly, the performance in terms of qual-
ity is – except for star join graphs – competitive only for
small queries, where KBZ performs best for the join graphs
with low connectivity and minimum selectivity for the grid
join graph. However, for small queries, one would probably
not want to rely on heuristic algorithms, but compute the
optimal solution using some kind of search strategy.

Fig. 21. Deterministic algorithms; grid join graph

5.4 Benchmark results for randomized
and genetic algorithms

The next set of benchmarks is carried out with random-
ized algorithms (cf. Sect. 4.2) and genetic algorithms (cf.
Sect. 4.3). We will compare three variants of iterative im-
provement (called IIJ, IIH [SG88] and IIIO [IK90]), and of
simulated annealing (called SAJ, SAH [SG88] and SAIO
[IK90]) and two variants of genetic algorithms (Genetic,
BushyGenetic). Furthermore, the results of the System-R
optimization are shown for five to ten participating rela-
tions. The parameters for each algorithm are derived from
the cited references (II, SA) or they were determined in pre-
liminary tests (Genetic, BushyGenetic). In addition, for all
algorithms generating left-deep trees, a search proceeding
from the leaves of the tree to the root is performed for all
trial solutions in order to determine the most appropriate join
method on each join node.

Exactly as in the first set of benchmarks with the heuristic
algorithms, the scaled cost is plotted against the number of
relations participating in the join – please note the different
scale in Fig. 22. The parameters of the algorithms mentioned
above are as follows:

1. SAJ
– A move is either a Swap or a 3Cycle, i.e. only left-

deep processing trees are considered.
– The starting temperature is chosen such that at least

40% of all moves are accepted.
– The number of iterations of the inner loop is the same

as the number of joins in the query.
– After every iteration of the inner loop, the tempera-

ture is reduced to 97.5% of its old value.
– The system is considered frozen when the best solu-

tion encountered so far cannot be improved in five
subsequent outer loop iterations (i.e. temperature re-
ductions) and less than 2% of the generated moves
are accepted.

2. SAH
– A move is either a Swap or a 3Cycle, i.e. only left-

deep processing trees are considered.
– The starting temperature is determined as follows: the

standard deviationσ for the cost is estimated from a
set of sample solutions and multiplied by a constant
value (20).

205

Fig. 22. Randomized algorithms, left-deep tree solution space; chain join
graph

– The inner loop is performed until the cost distribution
of the generated solutions is sufficiently stable (for
details see [SG88]).

– After every iteration of the inner loop, the tempera-
ture is multiplied by max(0.5, e−

λt
σ) (λ = 0.7; σ see

above).
– The system is considered frozen when the difference

between the minimum and maximum costs among
the accepted states at the current temperature equals
the maximum change in cost in any accepted move
at the current temperature.

3. SAIO
– Moves are chosen from join method change, com-

mutativity, associativity, left join exchange and right
join exchange. The entire solution space (bushy pro-
cessing trees) is considered.

– The starting temperature is twice the cost of the (ran-
domly selected) starting state.

– The number of iterations of the inner loop is 16 times
the number of joins in the query.

– After every iteration of the inner loop, the tempera-
ture is reduced to 95% of its old value.

– The system is considered frozen when the best solu-
tion encountered so far cannot be improved in four
subsequent outer loop iterations (i.e. temperature re-
ductions) and the temperature falls below one.

4. Iterative improvement (IIH, IIJ, IIIO)
– All starting points are chosen randomly.
– For an algorithm IIx, moves are chosen from the

same set as the corresponding SAx algorithm.
– Local minima are determined according to [SG88]

(IIH, IIJ) and [IK90] (IIIO), i.e. a solution is consid-
ered a local minimum ifk randomly selected neigh-
bours fail to improve the result.k is the number of
join graph edges for IIH and IIJ; for IIIO,k is the
number of neighbouring states.

– In order to perform a “fair” comparison between II
and SA, the total number of solutions considered is
approximately the same for both the corresponding
IIx and SAx algorithms.

5. Two-phase optimization (IIIO+SAIO)
– Ten random starting points for the II phase.

Fig. 23. Randomized algorithms, left-deep tree solution space; star join
graph

Fig. 24. Randomized algorithms, left-deep tree solution space; cycle join
graph

– SA phase starts with the minimum from the II phase
and the starting temperature is 0.1 times its cost.

6. Genetic algorithms (Genetic/BushyGenetic)
– Solution space: left-deep processing trees/

bushy processing trees
– Encoding: ordered list of leaves/

ordinal number encoding
– Ranking-based selection operator
– Sequence exchange crossover operator
– Population: 128
– Crossover rate 65% (65% of all members of the pop-

ulation participate in crossover)
– Mutation rate 5% (5% of all solutions are subject to

random mutation)
– Termination condition: 30 generations without im-

provement / 50 generations without improvement

In Figs. 22–25, the results for the left-deep tree op-
timizers are depicted. Although the parameter setting for
SAH/SAJ and IIH/IIJ is similar, we note that the J variants
perform poorly for all but one of the join graph types. SAH
and IIH perform much better, where, in turn, SAH is su-
perior to IIH. In all cases, SAH and the genetic algorithm
computed the best evaluation plans among the left-deep tree
optimizers, with a slight superiority of the genetic algorithm.
Apparently, the sophisticated equilibrium/freezing condition
for SAH is the main reason for its good results. A closer
look at the benchmark data revealed that indeed SAJ visited

206

Fig. 25. Randomized algorithms, left-deep tree solution space; grid join
graph

Fig. 26.Randomized algorithms, bushy tree solution space; chain join graph

much less solution alternatives than SAH. The II variants
that were designed to consider about as many different so-
lutions as the respective SA algorithms reflect this fact: IIH
achieves better results than IIJ. Apart from the quality of the
derived results, another important criterion for selecting an
optimizer is its running time, which we will investigate later.
In the meantime, we will look at the performance of those
optimizers that operate in the bushy tree solution space.

These optimizers, namely SAIO, IIIO, two-phase opti-
mization (2PO) and a genetic algorithm (BushyGenetic), are
compared in Figs. 26–29. In addition, the best two left-deep
optimizers’ curves (SAH and Genetic) are included in order
to facilitate direct comparison. It turns out that, in terms of
quality, none of the implemented algorithms performed bet-
ter than the 2PO algorithm, regardless of the join graph type,
although the gap between SA, II and 2PO is quite narrow.
In the left-deep case the genetic algorithm showed a slight
superiority over the SA results, but this is not so in the bushy
tree solution space. Although the genetic algorithm does not
perform particularly poor, it cannot quite equal the quality
of SA or 2PO.

Only for star queries, all algorithms exhibit very simi-
lar behaviour (divergence just about 1%), so the algorithms’
running time would be the decisive factor in this case. For
all other join graphs, every bushy tree optimizer easily out-
performs even the best implemented left-deep tree optimizer,
which confirms that these algorithms are indeed capable of

Fig. 27. Randomized algorithms, bushy tree solution space; star join graph

Fig. 28.Randomized algorithms, bushy tree solution space; cycle join graph

locating the superior solutions of the bushy tree solution
space.

Let us now look at the running times for the different
optimizers. Although the quality of the generated solutions
is a very important characteristic, the running time of an al-
gorithm has a considerable impact on the final choice. The
intended application area determines how much time can be
spent on the optimization: queries that are stated interac-
tively and run only once do not warrant the same amount
of optimization as compiled queries that are repeated hun-
dreds or thousands of times. In Fig. 30, the average running
times (CPU times) for Genetic, SAH, BushyGenetic, SAIO,
IIIO, 2PO and System-R are plotted against the number of
relations participating in the queries (chain join graph). The
running times for the various algorithms were determined
on a SPARCstation 20/612MP.

From the six randomized/genetic algorithms, SAIO has
the longest running times with up to 2800s of CPU time
for 30-relation queries. Although 2PO yields slightly better
solutions, it requires a running time of about 1300s, only
half of SAIO’s time. As expected, left-deep tree optimiz-
ers (SAH, Genetic) run faster than bushy tree optimizers,
but gain of speed must be paid by loss of quality. Surpris-
ingly, the BushyGenetic algorithm runs even faster than both
the left-deep optimizers, even though it yields solutions that
are at least as good as theirs: it can handle the 30-relation
queries on average in about 500s. In contrast to the random-

207

Fig. 29. Randomized algorithms, bushy tree solution space; grid join graph

ized/genetic algorithms, the computation of the optimal left-
deep tree without cartesian products is in our implementation
feasible only for queries involving up to 12 twelve relations;
for instance, 13-relation queries already require on average
an optimization time of more than 1 h.

In Fig. 31, for the same six algorithms, the approach to
their respective final solutions is shown. Each time the cur-
rently best solution is improved, the gain in absolute cost
units is noted (y-axis), together with the time of its occur-
rence (x-axis). Because only a single optimization run for
a 20-relation query (chain join graph) is plotted, we can-
not draw any far reaching conclusions, but nevertheless the
curves reflect the algorithms’ typical behaviour quite well.
Both simulated annealing algorithms, SAIO as well as SAH,
spend a good deal of the total running time investigating
high-cost processing trees; SAIO required more than 150s
to reach a cost level of less than ten times the cost of the fi-
nal solution. SAH ran faster, but it still took a very long time
for the approach to its final solution. On the other hand, both
2PO and iterative improvement (IIIO) achieved a very good
result in less than 1s and less than 3s running time, respec-
tively. For the genetic algorithms, it is especially BushyGe-
netic that can reach acceptable solutions very quickly. Even
the initial population consisted of at least one member with
an evaluation cost that is as low as SAIO’s after running
more than 100 times as long. Although the drawing of the
initial population is not guaranteed to be unbiased in our
implementation, we can note that genetic algorithms nicely
supplement the approach in [GLPK94] (Sect. 4.2.5): in a first
step, a random sample could be drawn using the algorithm
presented in [GLPK94], which can be used in a second step
as the initial population for the genetic algorithm.

5.5 Summary

Comparing the performance of the various optimization al-
gorithms, we can draw the following conclusions.

Algorithms that perform an exhaustive or near exhaustive
enumeration of the solution space, such as dynamic program-
ming, can compute the optimal result, but the high running
time makes their application only feasible for queries that
are not too complex (i.e. less than about 10–15 relations for
left-deep processing trees). For the same reason, searching

Fig. 30. Total running times

Fig. 31. Approach to the final solution

the bushy tree solution space can be carried out only for very
simple queries (in our experiments, about six to seven rela-
tions), so the advantages of this solution space can hardly
be exploited.

Heuristic optimizers avoid the high time complexity of
exhaustive enumeration, but the results are, especially for
complex queries with many participating relations, rarely ac-
ceptable. The KBZ algorithm, although yielding the optimal
left-deep solution under certain circumstances, is difficult to
apply in practice: the need for cost model approximations
and problems concerning join method assignment limits its
usefulness. We found that only for star queries is the KBZ
algorithm competitive; its short running time compared to al-
ternative algorithms (especially randomized/genetic) makes
it the solution of choice.

Finally, randomized and genetic algorithms operating in
the bushy tree solution space are the most appropriate op-
timizers in the general case, provided the problems are too
complex to be tackled by exhaustive enumeration. The ques-
tion of which of the discussed algorithms is the most ad-
equate depends on the particular application area, namely
whether short running time or best optimization performance
is the primary goal. If good solutions are of highest impor-
tance, 2PO, the algorithm that performed best in our experi-
ments, is a very good choice; other SA variants, for instance
toured simulated annealing (TSA; [LVZ93]), that we did not
implement are likely to achieve quite similar results. The
“pure” SA algorithm has a much higher running time with-
out yielding significantly better solutions. If short running

208

time is more important, iterative improvement (IIIO), the
genetic algorithm (BushyGenetic), and, to a lesser extent,
2PO are feasible alternatives; especially the first two de-
grade gracefully if they are preempted: in the example run
in Fig. 31, they achieved acceptable results in less than 1s.
Moreover, as mentioned above, genetic algorithms can be
combined very well with the transformationless approach in
[GLPK94].

6 Conclusion

We have studied several algorithms for the optimization of
join expressions. Because of new database applications, the
complexity of the optimization task has increased; more re-
lations participate in join expressions than in traditional re-
lational database queries. Enumeration of all possible eval-
uation plans is no longer feasible. Algorithms that compute
approximate solutions, namely heuristic, randomized and ge-
netic algorithms, show different capabilities for solving the
optimization task. Heuristic algorithms compute solutions
very quickly, but the evaluation plans are in many cases
far from the optimum. Randomized and genetic algorithms
are much better suited for join optimizations; although they
require a longer running time, the results are far better.

For the question of the adequate solution space, we have
found that, with the exception of the star join graph, the
bushy tree solution space is preferable in spite of the fact
that “pipelining” (avoiding writing intermediate results to
secondary memory) can be carried out mainly by left-deep
processing trees.

Another consideration is the extensibility of randomized
and genetic algorithms: both can be designed to optimize
not merely pure join expressions, but complete relational
queries. In addition, some of them (namely the iterative im-
provement and genetic algorithms) can be easily modified
to make use of parallel computer architectures.

Acknowledgements.We should like to thank the referees for their valu-
able comments and suggestions on an earlier draft of this paper, and our
colleagues for countless CPU-hours on their workstations. This work was
partially supported by grant DFG Ke 401/6-1 and SFB 346.

References

[BFI91] Bennet K, Ferris MC, Ioannidis YE (1991) A genetic algorithm
for database query optimization. In: Proc 4th Int Conf Genetic
Algorithms, San Diego, Calif, pp 400–407

[EN94] Elmasri E, Navathe SB (1994) Fundamentals of database sys-
tems, 2nd edn. Benjamin/Cummings, Redwood City, Calif

[GLPK94] Galindo-Legaria C, Pellenkoft A, Kersten M (1994) Fast, ran-
domized join-order selectoin – why use transformations? In:
Proc Conf Very Large Data Bases (VLDB), Santiago, Chile,
September, pp 85–95

[Gol89] Goldberg DE (1989) Genetic algorithms in search, optimization
& machine learning. Addison-Wesley, Reading, Mass

[IK84] Ibaraki T, Kameda T (1984) Optimal nesting for computing
N -relational joins. ACM Trans Database Syst 9:482–502

[IK90] Ioannidis YE, Kang YC (1990) Randomized algorithms for op-
timizing large join queries. In: Proc ACM SIGMOD Conf Man-
agement of Data, Atlantic City, NJ, April, pp 312–321

[IK91] Ioannidis YE, Kang YC (1991) Left-deep vs. bushy trees: an
analysis of strategy spaces and its implications for query opti-
mization. In: Proc ACM SIGMOD Conf Management of Data,
Denver, Colo, May, pp 168–177

[IW87] Ioannidis YE, Wong E (1987) Query optimization by simulated
annealing. In: Proc ACM SIGMOD Conf Management of Data,
San Francisco, Calif, pp 9–22

[KBZ86] Krishnamurthy R, Boral H, Zaniolo C (1986) Optimization of
non-recursive queries. In: Proc Cof Very Large Data Bases
(VLDB), Kyoto, Japan, pp 128–137

[KM92] Kemper A, Moerkotte G (1992) Access support relations: an
indexing method for object bases. Inf Syst 17:117–146

[KM94] Kemper A, Moerkotte G (1994) Object-oriented database man-
agement: applications in engineering and computer science.
Prentice-Hall, Englewood Cliffs, NJ

[Kru56] Kruskal JB (1956) On the shortest spanning subtree of a graph
and the travelling salesman problem. Proc Am Math Soc 7:48–
50

[Law78] Lawler E (1978) Sequencing jobs to minimize total weighted
completion time subject to precedence constraits. Ann Discrete
Math 2:75–90

[LV93] Lanzelotte R, Valduriez P, Zaı̈t M (1993) On the effectiveness
of optimization search strategies for parallel execution spaces.
In: Proc Conf Very Large Data Bases (VLDB), Dublin, Ireland,
pp 493–504

[ME92] Mishra P, Eich MH (1992) Join processing in relational data-
bases. ACM Comput Surv 24:63–113

[MS79] Monma C, Sidney J (1979) Sequencing with series-parallel
precedence constraints. Math Oper Res 4:215–224

[OL90] Ono K, Lohman GM (1990) Measuring the complexity of join
enumeration in query optimization. In: Proc Conf Very Large
Data Base (VLDB), Brisbane, Australia, pp 314–325

[SAC+79] Selinger PG, Astrahan MM, Chamberli DD, Lorie RA, Price
TG (1979) Access path selection in a relational database man-
agement system. In: Proc ACM SIGMOD Conf Management
of Data, Boston, USA, May, pp 23–24

[SG88] Swami A, Gupta A (1988) Optimization of large join queries.
In: Proc ACM SIGMOD Conf Management of Data, Chicago,
Ill, May, pp 8–17

[Sha86] Shapiro LD (1986) Join processing in database systems with
large main memories. ACM Trans Database Syst 11:239–264

[SI93] Swami A, Iyer B (1993) A polynomial time algorithm for op-
timizing join queries. In: Proc IEEE Conf Data Eng, Vienna,
Austria, April, pp 345–354

[Swa89] Swami A (1989) Optimization of large join queries: combining
heuristics and combinatorial techniques. In: Proc ACM SIG-
MOD Conf Management of Data, Portland, Ore, May, pp 367–
376

[VM96] Vance B, Maier D (1996) Rapid bushy join-order optimization
with cartesian product. In: Proc ACM SIGMOD Conf Manage-
ment of Data, Montreal, June, pp 35–46

[WY76] Wong E, Youssefi K (1976) Decomposition – a strategy for
query processing. ACM Trans Database Syst 1:223–241

[YW79] Youssefi K, Wong E (1979) Query processing in a relational
database management system. In: Proc Conf Very Large Data
Bases (VLDB), Rio de Janeiro, Brazil, pp 409–417

