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Abstract. In most database systems, the values of many im-
portant run-time parameters of the system, the data, or the
query are unknown at query optimization time. Parametric
query optimization attempts to identify at compile time sev-
eral execution plans, each one of which is optimal for a
subset of all possible values of the run-time parameters. The
goal is that at run time, when the actual parameter values
are known, the appropriate plan should be identifiable with
essentially no overhead. We present a general formulation
of this problem and study it primarily for the buffer size
parameter. We adopt randomized algorithms as the main ap-
proach to this style of optimization and enhance them with
a sideways information passingfeature that increases their
effectiveness in the new task. Experimental results of these
enhanced algorithms show that they optimize queries for
large numbers of buffer sizes in the same time needed by
their conventional versions for a single buffer size, without
much sacrifice in the output quality and with essentially zero
run-time overhead.

1 Introduction

Relational query optimization is an expensive process, pri-
marily because the number of alternative access plans for a
query grows at least exponentially with the number of rela-
tions participating in the query. The application of several
useful heuristics eliminates some alternatives that are likely
to be suboptimal [SAC+79], but it does not change the com-
binatorial nature of the problem. In the future, database sys-
tems will need to optimize queries over much larger sets
of alternative plans. The traditional, heuristically pruning,
almost exhaustive query optimization algorithms are inad-
equate to fulfill the increased requirements, and new algo-
rithms need to be developed.

One of the primary reasons for the increase in the num-
ber of alternative plans is that optimization will be required
for many different values of important run-time parameters
whose actual values are unknown at optimization time. To
avoid the above, current database systems make certain as-
sumptions about the database contents (e.g., value distribu-

tion in relation attributes), the physical schema (e.g., index
types), the values of the system parameters (e.g., number
of available buffers), and the values of the query constants.
Some of these assumptions, however, may be violated at
run time: the database contents and the physical schema
change incessantly [ML86], the multiprogramming level of
the system and the resource needs of concurrently running
queries cannot be predicted, and queries may be executed
with different bindings for their constants, e.g., a selection
within a for-loop in a query embedded in a C program,
or calls to recursive rules in deductive databases. When
these optimization-time assumptions are violated at execu-
tion time, re-optimization is needed or performance suffers.

Motivated by the above, we have studied the problem
of optimizing queries for all possible values of run-time
parameters that are unknown at optimization time (a task
that we call parametric query optimization), so that the
need for re-optimization is reduced. This study has also
been motivated by recent results on flexible buffer alloca-
tion [NFS91, FNS91]. It has been shown that, in deciding
how many buffers to allocate to a query, taking run-time
conditions into account leads to improvement in system per-
formance (e.g., throughput). The reported improvement has
been obtained based on fixed plans that assume a specific
number of allocated buffers. Further improvement in perfor-
mance is expected if a plan is not fixed and can be chosen
to match the actual number of allocated buffers.

In principle, the optimal plan generated by parametric
query optimization may be different for each distinct value
combination of all the possible run-time parameters. In prac-
tice, however, the total cost of generating all these plans
would be prohibitive. A different approach would seek to
produce distinct plans for values of a selected subset of run-
time parameters in less time. It is this approach that we
study in this paper, where we focus on the number of buffer
pages allocated to a query (thebuffer size) as the unknown
parameter. We propose the use of randomized algorithms
to address the tremendous increase in the number of alter-
native plans. Such algorithms have been successfully ap-
plied to various combinatorial optimization problems in the
past, including the optimization of queries with many joins.
We adapt three such algorithms (simulated annealing(SA)
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[KGV83, IW87], iterative improvement(II) [NSS86, SG88],
and two-phase optimization(2PO) [IK90, IK91]) for para-
metric query optimization of select-project-join queries, and
present experimental results that show the effectiveness of
the devised adaptations.

Several projects have considered supporting multiple
plans for a query. The earliest significant work in this area is
by Graefe and Ward [GW89]. They discuss the implemen-
tation of dynamic query plansin the Volcano optimizer gen-
erator [GM91]. These are plans that include achoose-plan
operator, which chooses among multiple available conven-
tional plans given the values of certain run-time parameters.
The proposal is for choose-plan operators to be introduced
in all places of a plan where the choice of subplans under-
neath is sensitive to the values of these parameters. This
work introduces many important concepts related to para-
metric query optimization but does not include a complete
search strategy to identify the dynamic plans and the po-
sitions where the choose-plan operators should be placed.
A complete method based on this approach has been sub-
sequently developed by Cole and Graefe [CG94]. Due to
its importance, it is discussed in detail in Sect. 8. Its main
difference from our approach is that it does have some op-
timization overhead at run time, and that it uses dynamic
programming instead of randomized algorithms.

The XPRS project proposes to select at run time a
parallel plan from a set of plans based on buffer allo-
cations [SKPO88]. Two different optimization algorithms
have been proposed for this task. In an earlier reference
[SKPO88], a ‘binary-search’ approach is advocated, where
a query is first optimized for the smallest (m) and the largest
(M ) possible buffer size; if the two obtained plans are far
from optimal for the buffer size for which they were not cho-
sen, the query is optimized again for the midpoint between
m and M , and the process is repeated. The disadvantage
of this approach is that the amount of time spent in query
optimization grows linearly with the number of buffer sizes
for which the query is optimized, which may be prohibitive.
Also, as has been pointed out elsewhere [GW89], this ap-
proach may work for one or two parameters, but would not
scale up. In a more recent reference [HS91], the assumption
is made that the buffer size is greater than the minimum
required for efficient execution of hash-join. Based on that
assumption, experimental evidence is provided that the op-
timal plan is in general insensitive to buffer size. Hence, an
enhanced version of a conventional query optimizer for a
fixed buffer size is proposed. The enhancements deal with
some special cases where the insensitivity claim does not
hold, and consist of essentially introducing choose-plan op-
erators [GW89].

The Starburst project has also considered incorporat-
ing a second optimization phase that chooses plans at run
time [HP88]. To the best of our knowledge, however, no
technique has been developed to find those plans. Also, Cor-
nell and Yu [CY89] use an integer programming model to
optimize queries and their buffer allocations in a transaction
environment. Even though their concern is different from
ours, their technique still produces only one plan per query,
and that plan is susceptible to changes in buffer allocations.

Our work differs from all the proposals mentioned above
in several aspects. First, we present a general framework for

parametric query optimization that is applicable to arbitrary
parameters and not only buffer size. (In that respect, the work
of Graefe and Ward is also general [GW89].) Second, we
develop complete parametric query optimization algorithms
that produce multiple plans as output. These algorithms are
not based on any assumptions like those made in the XPRS
project [HS91], so they are much more generally applicable.
Third, the experimental results of these algorithms on the
buffer size parameter show that generality is not achieved at
the expense of efficiency or output quality. Hence, we ex-
pect that these algorithms can easily be incorporated in the
systems mentioned above, without jeopardizing their perfor-
mance goals.

This paper is organized as follows. As a background,
Sect. 2 gives preliminary descriptions on SA, II, and 2PO.
Section 3 introduces a general framework for parametric
query optimization and provides experimental evidence for
the need of obtaining multiple plans for different run-time
values of the buffer size parameter. Section 4 presents the
family of algorithms that we have developed, discusses sev-
eral of their characteristics, and provides evidence on how
they are expected to perform. Section 5 contains the re-
sults of several experiments with these algorithms, showing
their effectiveness with respect to both running time and out-
put quality. Section 6 discusses several issues related to our
study. Section 7 gives some ideas on how our approach can
be used for parameters other than the buffer size, as well
as for multiple parameters. Section 8 presents an informal
and preliminary comparison of randomized algorithms and
dynamic programming in the context of optimization with
unknown run-time parameters. Finally, Sect. 9 summarizes
our overall approach and presents some directions for fu-
ture work. The appendix lists the cost formulas used in the
algorithms.

2 Randomized algorithms for conventional query
optimization

In this section, we briefly describe randomized algorithms
as they have been applied to conventional, non-parametric
query optimization. This is a necessary basis for the descrip-
tion of the parametric query optimization algorithms in the
following sections.

Each solution to a combinatorial optimization problem
can be thought of as astate in a space, i.e., a node in a
graph, that includes all such solutions. Each state has a cost
defined by some problem-specific cost function. The goal of
an optimization algorithm is to find a state with the glob-
ally minimum cost. Randomized algorithms performrandom
walksin the state space via a series ofmoves. The states that
can be reached in one move from a state S are called the
neighborsof S. A move is calleduphill (downhill) if the cost
of the source state is lower (higher) than the cost of the des-
tination state. A state is alocal minimumif, in all paths start-
ing at that state, every downhill move comesafter at least
one uphill move. It is aglobal minimumif it has the lowest
cost among all states. It is on aplateau if it has no lower
cost neighbor, and yet it can reach lower cost states with-
out uphill moves. Using the above terminology, we briefly
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outline three randomized optimization algorithms that have
been used for query optimization [IW87, SG88, IK90, IK91].

First, II performs a large number oflocal optimizations.
A local optimization starts at a random state and improves
the solution by repeatedly accepting random downhill moves
until it reaches a local minimum. Its output at the end is the
least cost local minimum that has been visited.

Second, SA starts at a random state and proceeds by ran-
dom moves, which, if uphill, are only accepted with certain
probability. As time progresses, this probability gradually
decreases until it becomes zero, which signifies the termina-
tion of the algorithm. The output of the algorithm as used
in practice is again the least cost state that has been visited.

Third, 2PO is divided into two phases. In the first phase,
II is run for a small period of time, i.e., a few local opti-
mizations. The output of that phase is the initial state of the
next phase, where SA is run with very low initial probability
for uphill moves.

When the above generic optimization algorithms are ap-
plied to query optimization, three parameters need to be
specified: the state space, the neighbors of each state, and
the cost function. Each state in query optimization corre-
sponds to anaccess plan(or simply plan) of the query to
be optimized. By performing selections and projections as
early as possible and excluding unnecessary cross-products1

[SAC+79], a plan can be represented as ajoin processing
tree, i.e., a tree whose leaves are base relations, internal
nodes are join operators, and edges indicate the flow of data.
If all internal nodes of such a tree have at least one leaf as
a child, then the tree is calleddeep. Otherwise, it is called
bushy. In this study, we deal with the plan space that in-
cludes both deep and bushy trees.

The neighbors of a state, which is a join-processing tree
(i.e., a plan), are determined by a set of transformation rules.
Each neighbor is the result of applying one of these rules to
some internal nodes of the original plan once, replacing them
by some new nodes, and usually leaving the rest of the nodes
of the plan unchanged. There are several sets of transforma-
tion rules from which one could choose. WithA,B, andC
being arbitrary join-processing formulas, the ones adopted
in this study are described below [IK90, IK91]:

1. Join method choice:A onmethodi B → A onmethodj B
2. Join commutativity:A on B → B on A
3. Join associativity:(A on B) on C ↔ A on (B on C)
4. Left join exchange:(A on B) on C → (A on C) on B
5. Right join exchange:A on (B on C) → B on (A on C)

Rule 1 changes the join method of a join, e.g., from nested
loops to merge scan.

Finally, the cost of every plan is usually a combination of
the I/O and CPU cost of the plan. The above algorithms have
been successfully applied to conventional, non-parametric
query optimization [SG88, IK90, IK91], which assumes a
certain number of buffersb0 for a given query, and produces

1 The exclusion of cross-products follows the experience with both dy-
namic programming and randomized algorithms on conventional query op-
timization and does not affect the results of this paper in any way. Its
only effect is that it removes large parts of the plan space that include
almost always suboptimal plans, thus making the optimization algorithms
significantly more efficient.

Fig. 1. Overall architecture of parametric query optimization

a single plan that is optimal forb0. 2PO has been shown to
be the dominant algorithm for a wide range of values ofb0.
The main reason for this is that, in all cases, the shape of the
cost function of the plan space forms a‘well’ . That is, some
small percentage of local minima in the space have high
cost, but most of them have low cost, and the connection
cost2 between local minima is still relatively low compared
to the cost range in the whole space. 2PO takes advantage
of the first fact in its II phase to reach the ‘well’ bottom
quickly and then takes advantage of the second fact in its
SA phase to explore the ‘well’ bottom without climbing over
very high hills.

3 Problem formulation and justification

3.1 Problem formulation

Throughout this paper, we useS to denote the set of all
plans that can be used to answer a given query. We also
use c to denote the vector of all those parameters whose
values are assumed to remain unchanged between optimiza-
tion and run time. Each plans in S has an associated
costc(s, c). The goal of any conventional optimization algo-
rithm is to find the plans0 in S that satisfies the condition
c(s0, c) = min{c(s, c) | s ∈ S}. In reality, many parameters
that are part ofc in the above formulation do not remain
constant between optimization and execution time. Hence,
if we use p to denote the parameters that can change, the
cost of a plans is more appropriately written asc(s,p, c).
The task of parametric query optimization is to optimize
the cost of query answering for all possible values of the
p vector. More formally, aplan functions() is of the form
s() : P → S, whereP denotes the domain ofp. Hereafter,
we use the notationS() to denote the set of all such plan
functions. Parametric query optimization finds the optimal
plan function inS(), i.e., the one that generates as output the
optimal plan for any vector of values ofp that may be given
as input; given the vector of actual values ofp at run time,
the plan function returns the plan that should be used by
the query processor. This is schematically shown in Fig. 1,
whereP1, . . . , PN denote possible parameter values, and
AP1, . . . , APN denote the corresponding optimized plans.

In general, for every plan functions(), P can be parti-
tioned so that, for allp1, p2 in the same partition, the plans
s(p1) ands(p2) are identical. These partitions are calledim-
age partitions. The image partitions in the optimal plan func-

2 Roughly, the connection cost is the height (cost) of the hills that need
to be climbed to reach one local minimum from another.
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Fig. 2. Relative costs of planss0(2), s0(20),
ands0(150)

tion are not known a priori but are identified by the para-
metric query optimizer as part of the process of identifying
the optimal plan for each parameter value.

Having defined these notations, we introduce below two
equivalent formulations of parametric query optimization.
Formulation A There are|P| separate optimization prob-
lems, each one identical to the traditional, non-parametric
case with a differentp vector:

∀p ∈ P find s0 ∈ S
s.t. c(s0, p, c) = min{c(s,p, c)|s ∈ S} .

Formulation B There is a single optimization problem over
plan functions:

find s0() ∈ S()

s.t. ∀p ∈ P c(s0(p), p, c) = min{c(s(p), p, c)|s() ∈ S()} .
Example 1.Suppose parametric query optimization is ap-
plied to two parameters: buffer size and the kind of in-
dex available for a certain relation. Let the buffer size
values of interest be in the rangeB=[2,151] and the set
of possible indices beI = {no index, clustered Btree,
non clustered Btree}. The domainP is the cross prod-
uctB×I andp = 〈15, no index〉 is one of the 450 possible
vectors of values defined in the domain. Under Formulation
A, there are 450 different, non-parametric query optimiza-
tion problems that must be solved. The optimal plan func-
tion can be obtained by integrating all the plans found in
those optimizations. Under Formulation B, there is a single
optimization problem, whose solution is the optimal plan
function.

In principle, the two formulations are equivalent. In practice,
while Formulation A is simpler to conceptualize, Formula-
tion B is more efficient to process.

3.2 Justification for using parametric query optimization

One may argue that the conventional approach of optimiz-
ing for a single vectorp0 produces a plan that is (close to)

optimal for all vectorsp ∈ P. We present experimental re-
sults to show that, at least for the buffer size parameter, the
above is not the case; this justifies the use of parametric
query optimization.

Throughout this paper, we uses0(b) to denote the (ap-
proximately optimal) plan produced by 2PO forb buffers.
Furthermore, for notational simplification, we drop the vec-
tor c of parameters that remain constant between optimiza-
tion time and run time, and usec(s0(b0), b) to denote the cost
of the plan that is optimal forb0 buffers when executed in
the presence ofb buffers. If the difference between the costs
c(s0(b0), b) and c(s0(b), b) were generally small, parametric
query optimization for the buffer size parameter would not
be needed. Figure 2 shows that this difference can be quite
high as buffer size changes. The x-axis is the buffer sizeb
which varies from 2 to 150 pages. The y-axis is the ratio
c(s0(b0), b)/c(s0(b), b), which we callrelative costof s0(b0)
with b buffers. Since by definition the costc(s0(b), b) is very
close to the actual minimum for buffer sizeb, the closer
the relative cost is to 1, the higher the quality ofs0(b0) is.
Throughout this paper, the notion of relative cost is used to
judge the quality of plans and plan functions.

Figure 2 includes three typical curves for planss0(b0)
with b0 = 2, 20, and 150. These curves are obtained by
running ten 20-join queries five times each and show the
average relative cost over all queries of the average over
the five runs. The specifics of how the queries and corre-
sponding data sets are generated are given in Sect. 5.2. In
each case, the same general behavior is observed. For buffer
sizes close tob0, the relative cost is close to 1. As the buffer
size moves away fromb0, however, the relative cost may
increase significantly. Part of the reason why this pattern is
formed is that when there is a sufficient number of buffers,
the costs of hash joins are lower than those for merge scans
and nested loops, but when buffers are scarce, the converse
is true [Sha86]. Thus, as the buffer size grows, the optimal
plan for that size tends to include more and more hash joins
and fewer and fewer merge scans and nested loops. The op-
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timal ordering of the joins is affected by the value ofb as
well. Consequently, based on the results of Fig. 2, paramet-
ric query optimization appears to be necessary for efficient
processing of queries at all buffer sizes.

4 Randomized algorithm for parametric query
optimization

4.1 Basic algorithm

Consider a range [bmin, bmax] of buffer sizes. Applying For-
mulation B of parametric query optimization for the buffer
size parameter (and ignoring the vectorc of constants) re-
sults in the following problem:

Find s0() ∈ S() s.t.
∀bmin ≤ b ≤ bmax c(s0(b), b) = min{c(s(b), b)|s() ∈ S()} .
Let R be any randomized algorithm of the type described
in Sect. 2 (II, SA, and 2PO are simply three examples). In-
stead of using R to optimize a given query separately for
each buffer sizebmin ≤ b ≤ bmax, which would be the
case under Formulation A, we proceed concurrently for all
buffer sizes. Abstractly, for each buffer sizeb, there is one
co-routine R[b] that runs R on the conventional plan space
G[b] to identify the optimal plan for the given query when
b buffers are available3. These co-routines have synchro-
nization points. When the running co-routine reaches one of
these points, it releases control to another co-routine that is
randomly chosen among those still running. In our study,
the synchronization points of R[b] have been chosen to be
right in between attempted moves (from the current plan to
one of its neighbors) in R. After the active co-routine R[b]
attempts a move to a neighbor of its current plan (success-
fully or not), another co-routine gains control to attempt a
move to a neighbor of its own current plan.

4.2 Sideways information passing

The above concurrent version of the optimization does not
offer many advantages compared to a serial optimization
for each buffer size separately, because essentially there
is no communication among the co-routines. We enhance
the above co-routines with the ability to share information.
Specifically, lets() be the current plan function defined by
the current plans of the individual co-routines. When the ac-
tive co-routine R[b] attempts to move from plans(b) to a
neighbort of s(b) in G[b], it communicates and sendst to
a preselected subset of the remaining co-routines. The co-
routines in this preselected set are calledfriends of R[b].
Each recipient R[b′] of t comparesc(t, b′) with c(s(b′), b′)
(which is the cost of its current plan), and then decides on
whether to move tot or not in exactly the same way as if
t and s(b′) were neighbors inG[b′]. We use the termside-
ways information passingto refer to this exchange of plans
between co-routine friends.

3 The graph structure ofG[b] is the one described in Sect. 2 and is
identical for all values ofb, but the node costs may differ. That is why we
distinguish each graph by the indexb.

procedure sipR(k)
begin
B := {b | bmin ≤ b ≤ bmax };
s := random plan inS;
foreach b ∈ B do s(b) := s;
while B /= ∅ do

begin
b := random buffer size inB;
t := neighborR[b](s(b));
foreach b− − k ≤ b′ ≤ b+ + k do

begin
compare&moveR[b′](s(b′), t);
if movedR[b′] then B := B ∪ {b′};
end

if finishedR[b] then B := B − {b};
end

end

Fig. 3. Algorithm sipR(k)

Consider the image partition of the current plan function
s() in which b belongs. Letb− andb+ be the minimum and
maximum buffer size, respectively, of that image partition.
Given the natural total order that exists on buffer sizes, we
have chosen the friends of R[b] to be all the co-routines
R[b′] where b− − k ≤ b′ ≤ b+ + k, k ≥ 0. Thus, there is
sideways information passing from the co-routine R[b] to
the co-routines associated with buffer sizes that are similar
to b. The value ofk determines thedepthof the sideways in-
formation passing. Ifk = 0, no information is shared among
the co-routines that have different current plans. In that case,
the algorithm can be thought of as a smart implementation
of Formulation A1 (separate optimizations for each buffer
size), since at any point co-routines of buffer sizes in the
same image partition are always friends and exchange infor-
mation. This information, however, is in some sense trivial,
since it is always a plan that is a neighbor of the current plan
of the recipient co-routine. Thus, in terms of graph traversal,
this algorithm is identical to the non parametric case.4 In that
sense, in the rest of the paper, we refer to the case ofk = 0
as featuring no sideways information passing. Ifk = ∞, the
active co-routine sends its new plan to all other co-routines,
so there is complete information passing. Other values ofk
represent intermediate situations. This concurrent version of
the optimization algorithm R that employs sideways infor-
mation passing at depthk is denoted by sipR(k).

To be more concrete on how sideways information pass-
ing works, we present in Fig. 3 pseudo-code for sipR(k), as
it traverses a single random path. The code fully captures SA
(or the second phase of 2PO), whereas it captures a single
local optimization of II (or of the first phase of 2PO). For II,
the code shown is executed as many times as it is necessary
to perform local optimizations, and then some postprocess-
ing integrates the results of these local optimizations. The
code in Figure 3 captures the concurrent execution of all co-
routines together by showing at all times which one is active.
For that, it uses the following notation for parts of these co-
routines: neighborR[b] is the part of R[b] that accepts a plan

4 Except that, in the non parametric case, independent optimization for
different buffer sizes may generate different random neighbors for a plan,
whereas in our case, if the plans belong in the same image partition, they
always attempt to move to the same neighbor.
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Fig. 4. Illustration for Example 4.1

as input and returns one of its neighbors as output based
on the R algorithm; finishedR[b] is a predicate indicating
whether R[b] has finished or not; compare&moveR[b] takes
two planss(b) andt as input, calculates their costs for buffer
size b, and then decides whether or not to move froms(b)
to t based on the R algorithm; and movedR[b] is a predi-
cate indicating whether the comparison in compare&moveR
succeeded. Note that the foreach-loop within the while-loop
captures the sideways information passing. Havingk = 0
in this line essentially eliminates this feature, as only co-
routines for buffer sizes within the same partition are allowed
to share information.

Example 4.1.Suppose at the beginning of the current itera-
tion of the while-loop there are three image partitions for the
buffer sizes from 13 to 16. As illustrated in Fig. 4,S1 is the
plan in the image partition for 13,S2 the one for 14 and 15,
andS3 the one for 16. Suppose the random buffer size cho-
sen in this iteration isb = 14. GivenS2 as input, suppose that
the routine neighborR[14] returns the planS4 which uses a
merge scan, instead of a nested loop, for the join between
relationsR1 andR2. Furthermore, letk be 1 for the scenario
described in Fig. 4. Then the routines compare&moveR[b′]
are invoked forb′ = 13, 14, 15, 16. Let us assume for this
example thatS4 is a cheaper plan thanS1 andS2 for buffer
sizes 13 and 14, respectively, but that it is not as good as
S2 andS3 for buffer sizes 15 and 16, respectively. Conse-
quently, at the end of this iteration, there are three image
partitions:S4 for buffer sizes 13 and 14,S2 for buffer size
15, andS3 for 16.

If there is no sideways information passing, i.e.,k =
0, then compare&moveR[b′] will only be invoked for b′ =
14, 15. Consequently,S1, S4, S2 and S3 will be the plans
for buffer sizes 13, 14, 15, and 16, respectively.

As shown in Fig. 3, the depthk of sideways information
passing is measured in terms of buffer sizes. We have also
experimented with a different algorithm, where the depthk is
measured in terms of the image partitions of the current plan
function. Let these partitions be identified by their distance
(measured in number of partitions) from the lowest buffer
sizebmin and letr[b] be the image partition whereb belongs.
This algorithm can be seen as a modification of the original

sipR algorithm, where the foreach-loop that implements the
sideways information passing becomes

foreach b′ s.t. r[b] − k ≤ r[b′] ≤ r[b] + k do .
To distinguish between the two versions of the algorithms,
we use sipRs (for ‘s’ize) to denote the original one and sipRr
(for ‘r’ange) to denote the modified one.

4.3 Maintenance of image partitions

Since the sipR algorithm may start from any random plan
function, we choose to generate a random plan and start
with a plan function with a single image partition that covers
the entire range of parameter values. As the sipR algorithm
proceeds, the set of image partitions is enlarged or shrunk
with each call to the compare&moveR function. The current
set of image partitions can be maintained in several ways,
three of which are given below:

1. Keeping a separate copy of a plan (as a tree) for each
parameter value;

2. Keeping a separate copy of a plan (as a tree) for each
image partition; and

3. Keeping a global graph of plans that combines the trees
corresponding to the plans for all image partitions, where
common subplans (subtrees) are shared.

Solution 2 simply improves space efficiency compared to
solution 1, since by definition all parameter values in an
image partition correspond to the same plan. Solution 3 im-
proves space efficiency even further, since, by the nature of
the transformation rules, one expects to have many subplans
that are common among plans of various image partitions.
On the other hand, solution 3 makes the maintenance of
plans quite a bit more complex and expensive, as common
nodes may have to be separated and separate nodes may have
to be merged during transformations. Based on the overall
trade-off, we have decided to adopt solution 2.

4.4 Plan space abstraction

Any analysis of the performance and behavior of random-
ized algorithms requires that the three problem-specific pa-
rameters mentioned in Sect. 2 be specified. When sipR does
not incorporate any nontrivial sideways information pass-
ing (k = 0), it is equivalent to running R separately for
each buffer sizeb in exactly the same way as in conven-
tional query optimization. With sideways information pass-
ing, however, the notion of neighbors becomes more compli-
cated, although the set of plans and the cost function remain
the same for each co-routine. This is due to the communica-
tion of plans occurring among friends. The current plans(b)
of R[b] may be replaced by an arbitrary plant when a friend
attempts to move tot, even if s(b) and t are not neighbors
in G[b].

In order to model R[b] with sideways information pass-
ing as a regular randomized algorithm always moving be-
tween neighbors, we construct below a new graphG∗[b] that
can be used as the abstract space on which R[b] is executed,
following the conventional steps of R and without any com-
munication with any other co-routines. For every nodes in
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Fig. 5. Constructing the graph abstractionG∗[b] from the conventional plan spaceG[b]

G[b], there is a set of nodes{(s, s′) | s′ ∈ S} in G∗[b], i.e.,
s generates as many nodes as there are plans inS. Planss
ands′ are called theprimary andsecondaryplan of a node
(s, s′), respectively. The intuition behind the above is thats
signifies the current plan of R[b] while s′ signifies the cur-
rent plan of a friend of R[b]. The edges ofG∗[b] are defined
as follows. First, any pair of nodes with the same primary
plan are directly connected by a type-1 edge, i.e., all nodes
with the same primary plan form a clique. Second, ift and
u are neighbors inG[b], then for alls there is a type-2 edge
between (s, t) and (u, u) in G∗[b]. Figure 5 shows a simple
example of how the above graph abstraction is constructed
from a conventional plan space5. Note that, because of the
cliques formed by the type-1 edges, starting from any node
in G∗[b], it is possible to move to some node with an arbi-
trary primary plan in at most two moves. Finally, the cost
of a node (s, s′) is equal toc(s, b) for all s′, which implies
that each aforementioned clique forms a plateau.

We claim that running R[b] on the conventional plan
spaceG[b] under control of sipR(k) with sideways infor-
mation passing (k > 0) is equivalent to running R[b] on
G∗[b] with no communication to any other co-routines. To
see why this is the case, first note that the random choice of
buffer-size/co-routine and the sideways information passing
(first statement and foreach-loop in the while-loop of Fig. 3,
respectively) are the only parts that need attention. Lets be
the current plan of R[b] and (s, s) be the current node of R[b]
in G∗[b] (cf. Fig. 5). Choosing a new buffer sizeb′ in the
first statement of the while-loop of sipR(k), such that R[b′]
is a friend of R[b] based on the value ofk, is equivalent to
moving from (s, s) to (s, t) in G∗[b], wheret is the current
plan of R[b′]. Clearly, the two nodes are connected inG∗[b]
via a type-1 edge and have the same cost, so the move is
always legal and always successful. Choosing a neighbor
u of t in R[b′] under sipR(k) and sending it to its friend
R[b] for a possible move is equivalent to attempting to fol-
low a type-2 edge from (s, t) to (u, u) in G∗[b]. Therefore,
since c(s, b) = c((s, t), b) and c(u, b) = c((u, u), b), the two
algorithmic abstractions are equivalent.

5 Strictly speaking, some nodes, such as (t, s) and (t, t), in Fig. 5 are
connected by both type-1 and type-2 edges. However, for the purpose of
randomized algorithms, it makes no difference whether two nodes are con-
nected directly once or twice. The two types of edges discussed here are
merely for the purpose of presentation.

Based on the above, in the next subsection, we use all
the results derived for each conventional optimization al-
gorithm R to understand sipR better and draw conclusions
about its behavior. We should note, however, that running
R onG∗[b] represents only an abstraction, which, if imple-
mented directly, would be extremely expensive due to the
size ofG∗[b].

4.5 ‘Well’ shape of cost function

As mentioned in Sect. 2, the key factor that determines the
success or failure of randomized algorithms is whether or
not the cost functionc forms a ‘well’ over the plan space.
We claim that theG∗[b] graph constructed as above forms
a very definitive ‘well’. Specifically, letg be a global mini-
mum plan in the conventional plan spaceG[b]. As mentioned
in the previous subsection, the distance between any node
(s, s′) of the graph and node (g, g) is at most 2. Moreover,
the intermediate node that connects them is of the form (s, t),
wheret is a conventional neighbor ofg in G[b]. Comparing
the costs of the three nodes yields

c((s, s′), b) = c((s, t), b),

by construction of the clique, and

c((s, t), b) ≥ c((g, g), b),

becauseg is a global minimum inG[b].

Hence, the only local minimums in the new graphG∗[b] are
also global minimums, and they are all mutually connected.
The above implies that a ‘perfect well’ is formed.

The effectiveness of randomized algorithms does not
only depend on the formation of a ‘well’, but also on the
precise node connections that give rise to the ‘well’. In the
above case, the ‘well’ was formed in somewhat of a brute-
force way, by having all pairs of nodes of the form (s, s′)
and (s, t) for somes be connected into a clique with the
same cost. In general, such a ‘well’ should not be expected
to be useful, since choosing the appropriate neighbor (s, t)
of (s, s′) so that a downhill move to (g, g) can then be-
come possible is equivalent to choosing randomly among
all conventional plans. Thus, the graph structure does not
naturally guide a randomized algorithm towards the ‘well’-
bottom and the global minimum. Nevertheless, we claim that
G∗[b] is very good for executing R in a way that captures
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Fig. 6. Average relative cost of local minimum
functions found by sipIIs(k)

the behavior of R[b] on G[b] under the control of sipR(k),
because, when moving from (s, s′) to (s, t), t is the current
plan of some friend of R[b]. Hence, the choice is not random
among all plans, but actually guided by the sideways infor-
mation passing. Given the fact that the cost to buffer ratio is
monotonically decreasing, good plans for one buffer size are
likely, though not necessarily, to be good for similar buffer
sizes as well. Thus, the expectation is that the combination
of the ‘well’-shape ofG∗[b] with execution control that is
based on sideways information passing is very powerful for
effective parametric query optimization.

To verify the above theory on the ‘well’-shape of a cost
function and also the effectiveness of sideways information
passing, we present below two sets of experimental results.
The first experiment involved running many local optimiza-
tions under sipIIs(k) for k = 0, 1, 2, 3, 5, and∞, and compar-
ing the cost of theaveragelocal minimum plan functions
obtained by sipIIs(k), k > 0, with those obtained by run-
ning sipIIs(0). As mentioned above, sipIIs(0) captures the
conventional case where no nontrivial sideways information
passing occurs.

Before presenting the results of this experiment, we first
describe the approximation that we used for identifying lo-
cal minimum plan functions. When no sideways information
passing occurs, a plan is considered to be a local minimum
in G[b] after n randomly chosen neighbors of it are tested
(possibly with repetition), wheren is the actual number of its
neighbors, none of which has lower cost. Note that this does
not guarantee that all neighbors are tested, since some may
be chosen multiple times. A plan that satisfies the above
operational definition is called anr-local minimum (r for
random, since it is based on examining random neighbors),
to distinguish it from an actual local minimum. When side-
ways information passing occurs, we need to approximate
entire local minimum plan functions. We again use an op-
erational definition, but this timeG∗[b] is the underlying
graph. A plan functions() is anr-local minimum functionif,
for every buffer sizeb, (s(b), s(b)) is an r-local minimum in

G∗[b] and, for all buffer sizesb′ such that R[b′] is a friend
of R[b], (s(b), s(b′)) is also an r-local minimum inG∗[b].
This definition has been used to end a local optimization
both in this experiment and the ones reported in Sect. 5 on
the behavior of the algorithms. In all results presented in the
rest of the paper, whenever we refer to a local minimum
(individual plan or plan function), the intended meaning is
always that of an r-local minimum.

Using the r-local minimum approximation, we run
sipIIs(k) for each value ofk on five 20-join queries for
the buffer range [2,70]. (See Sect. 5.2 for more details on
the experiments.) Typically, around 25 local minimum func-
tions were found for each run of sipIIs(k). Figure 6 shows the
average relative cost of local minimum plan functions found
by sipIIs(k), k = 0, 1, 2, 3, 5, and∞. (Recall from Sect. 3.2
that the relative cost is the ratio of the actual cost over the
cost of the plan function found by individual conventional
query optimizations for each buffer size.)

Note the dramatic drop in the cost whenk increases from
0 to higher values. This is due to sideways information pass-
ing, which allows plans that are perceived as local minima
by sipIIs(0) to be compared with plans of lower costs, and
therefore to be no longer regarded as local minima. This
has the effect of removing some of the high-cost local min-
ima, which also reduces the average local minimum cost.
As shown in Fig. 6, for all buffer sizes, the cost reduction
betweenk = 0 andk = 1 is substantial. On the other hand,
further increases in the value ofk do not give further reduc-
tions in cost. This is due to the fact that, as long as there is
sideways information passing, the plan associated with some
buffer size is influenced directly or transitively by changes
in the plans associated with all other buffer sizes.

One additional interesting result of the above experiment
is that, with sideways information passing, not only are the
average local minimum costs lower, but their standard de-
viations are also dramatically reduced. Table 1 shows the
standard deviation of the plan costs over all buffer sizes
of a local minimum plan function when sipIIs(k) is used



140

Table 1. Average standard deviation of local minimum functions found by
sipIIs(k)

sipIIs(0) sipIIs(1) sipIIs(2) sipIIs(3) sipIIs(5) sipIIs(∞)
70.0% 12.8% 12.8% 13.6% 10.7% 15.4%

Table 2. Percentage of local minima replaced due to hill-jumping for
sipIIs(k)

sipIIs(1) sipIIs(2) sipIIs(3) sipIIs(5) sipIIs(∞)
25% 26% 27% 31% 32%

with k = 0, 1, 2, 3, 5, and∞. The standard deviations are
expressed as percentages to their respective averages. For
example, over the buffer range [2,70], the average standard
deviation for sipIIs(0) is 70% of the corresponding average
cost, while that for sipIIs(1) is only about 13% of the corre-
sponding average cost. As these figures indicate, the ‘well’
of the cost function without sideways information passing is
much bumpier than the corresponding ‘well’ with sideways
information passing.

The second experiment that we performed is based on the
following observation. Due to sideways information passing,
a plans in G[b] may be replaced by another plant in G[b]
such that the following condition holds: for any path con-
nectings andt, there exists some third plans′ whose cost is
higher than both the costs ofs and t. This kind of replace-
ment, which we refer to ashill-jumping, is one major reason
why sideways information passing is beneficial. Ideally, a
direct way to verify the benefits of sideways information
passing would be to count the number of times hill-jumping
occurs. This is, however, very costly to implement. Instead,
while running the experiment described above, we counted
the occurrences of a special kind of hill-jumping, i.e., re-
placement of an r-local minimum inG[b] (or equivalently
replacement of an r-local minimum of the form (s, s) in
G∗[b]). More specifically, we counted the number of times
that a plan that has been identified6 as an r-local minimum
in G[b] is replaced due to hill-jumping. Table 2 shows the
average of that number over all buffer sizes in the form of a
percentage over the total number of r-local minima identified
for sipIIs(k), k = 1, 2, 3, 5, and∞. Clearly, this special kind
of hill-jumping occurs quite frequently, thus verifying once
more the ‘well’-shape of the cost function and the benefits
of sideways information passing.

Very similar results with respect to the average cost of
local minima, its standard deviation, and the occurrence of
hill-jumping were obtained when sipIIr was used instead of
sipIIs, so we comment on those experiments no further.

5 Algorithm behavior

5.1 Algorithm implementation

We implemented all four algorithms sipIIs/r(k) and
sip2POs/r(k) for several values of the depthk. In this section,

6 It is possible that before its minimality can be detected, an r-local
minimum is replaced due to sideways information passing. We are not
able to capture this phenomenon in our counts, so the numbers included in
Table 2 represent lower bounds.

we discuss the most important details of these implementa-
tions, in particular, the overall data structure for a state, the
data structure for maintaining the costs of the various plans
in a state and the individual joins in each plan for different
buffer sizes, and the timing of when these costs were up-
dated. The values of various parameters of the randomized
algorithms are also important to their implementation. For
those, we adopted the setup that has been used for conven-
tional query optimization [IK90, Kan91].

Recall that a state in parametric query optimization is a
plan function. As we discussed in Sect. 4.3, the plans in dif-
ferent image partitions of the current plan function may have
common subplans which can be shared. However, the over-
head of maintaining a plan graph where sharing common
subplans may be shared across image partitions is quite ex-
pensive. We thus implemented sharing only within the same
image partition, i.e., the plan function is an array, with one
entry for each image partition, holding the corresponding
plan. The entries in the array are in sorted order of the buffer
sizes of the corresponding partitions. This reduces the time
taken to find the friends of a given partition.

The plan in each entry of the above list is maintained as
a tree structure, with several pieces of pertinent information
stored in each node. The key difference between the above
and the corresponding tree structure for conventional query
optimization is that, for parametric query optimization, each
join node maintains cost information for many buffer sizes.
Specifically, for each join node, an array is used with as
many entries as the number of buffer sizes examined in the
experiment. Each entry of the array holds the cost of that
join for the buffer size corresponding to the array entry. A
similar array is associated with the entire plan to hold its
cost for the different buffer sizes.

An important question is whether or not we should al-
ways maintain the costs in all entries for the arrays in all
join nodes of a plan. Doing so has the advantage that, when
a plan is transformed to one of its neighbors, the cost in each
array entry for only a couple of join nodes must be updated
(except when interesting sort orders change and the change
must be propagated to more join nodes). This update can be
done in constant time for each array entry. The disadvantage
of this approach is that many of these entries are overwritten
before ever being used, and thus computing them represents
pure overhead. A small set of experiments showed that the
overhead outweighed the benefits of the constant-time cost
calculation. Hence, we decided to calculate cost entries on
an as-needed basis. Specifically, when a neighbor plan is
generated, the costs of all the join nodes and the total cost
of the new plan are calculated and stored only for the buffer
sizes in the range [b− − k, b+ + k], whereb− andb+ are the
minimum and maximum buffer sizes of the image partition
of the current plan, respectively, andk is the depth of the al-
gorithm. If for a buffer sizeb′ in the above range the relevant
costs of the current plan are known, then the corresponding
costs of the new plan can be found in constant time. (This
is true at least for allb− − k ≤ b′ ≤ b+ + k.) Otherwise,
all these costs are calculated from scratch in a bottom-up
fashion for the entire plan tree.

Figure 7 is used to illustrate some of the data structures
mentioned above, the costs that are calculated at each step of
the algorithms, and in general their overall flow. Specifically,
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Fig. 7a–d.Steps of sipIIs(1)

it shows four steps of sipIIs(1) starting from a state with a
single random plan. The buffer range in the figure is [2..5]
and all other numbers for costs are artificial and are used
for illustrative purposes only. To keep the example simple,
we also confined ourselves to using only the join method
transformation rule to create neighbors.

The table at the top of each step represents the plan
function corresponding to the current state. For example,
the table in Fig. 7a indicates thatP1 is the current plan for
buffer size range [2..5]. The array called ‘Plan Cost’ above
each plan represents the total cost of the plan for each buffer
size, and the array in each join node of a plan represents the
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Fig. 8. Output quality of sip2POr(1) and sipIIr(1)

cost of the corresponding join for each buffer size. Since
the range of operation has four buffer sizes, all these arrays
have length 4 as well. In planP1, the join costs of the two
joins for buffer size 2 are 4 and 8. Thus, the total cost of the
plan for buffer size 2 is equal 12 (the sum of the individual
costs). For each step, the rightmost plan shown is a neighbor
of some plan in the current state and is the one examined
for a possible move to it.

In step 1,P2 is a neighbor ofP1 and is obtained by
changing the join method of the internal join ofP1. Because
the costs for all buffer sizes are available inP1, all the
corresponding entries forP2 are calculated in constant time.
A comparison of these costs results in the plan function
shown at the top of Fig. 7b.

In step 2, planP3 is generated, which is again a neigh-
bor of P1. Since the image partition ofP1 is [2..3] and the
depth isk = 1 buffer size, the cost ofP3 must be calcu-
lated for the buffer range [2..4] for comparison. Again, all
these calculations may be done in constant time (assuming
that no sort order needs to be propagated). The entries for
buffer size 5 remain empty for all cost arrays ofP3. If at
some later point these costs are needed, they will have to
be calculated from scratch. A comparison of the generated
costs with those ofP1 andP2 for ranges [2..3] and [4..4],
respectively, results in the plan function shown at the top of
Fig. 7c.

In step 3, a neighbor ofP2 is generated (planP4) and
its costs for buffer size range [3..5] are calculated similarly
to step 2. The resulting plan function is shown at the top
of Fig. 7d. In step 4, a neighbor ofP4 is generated (plan
P5). Because the image partition ofP4 is [3..5], the cost of
P5 for the entire buffer size range [2..5] must be calculated.
This is slightly more complicated than in the previous steps,
because the cost ofP4 for buffer size 2 is unknown. Hence,
the cost ofP5 for that buffer size must be calculated from
scratch, while the costs for the buffer size range [3..5] may
be calculated in constant time.

5.2 Experiment testbed

We ran several experiments to test the effectiveness of the
implemented algorithms for query optimization. The ma-
chine used for the experiments was a DECstation 3100. The
algorithms were run on tree queries [Ull82] consisting of
equality joins only. The size of these queries, which were
generated randomly, ranged from 1 to 20 joins. They were
tested with a randomly generated relation catalog where re-
lation cardinalities ranged from 1000 to 100000 tuples, and
the numbers of unique values in join columns varied from
10% to 100% of the corresponding relation cardinality7.
Each page of a relation was assumed to contain 16 tuples.
Each relation had four attributes, and was clustered on one of
them. If a relation was not physically sorted on the clustered
attribute, there was a B+-tree or hashing primary index on
that attribute. These three alternatives were equally likely.
For each of the other attributes, the probability that it had a
secondary index was 1/2, and the choice between a B+-tree
and hashing secondary index were again uniformly random.
As for join methods, we used block nested loops, merge
scan, and simple and hybrid hash-join [Sha86]. The query
cost was a weighted sum of the CPU time and the number
of I/O accesses. The weight was chosen so that the cost of
one disk read or write corresponded to 30 ms. Cost formulas
are listed in the Appendix. In what follows, unless otherwise
stated, the results presented for each algorithm are averages
of five runs of the algorithm on each of ten queries with sim-
ilar characteristics. The values of the buffer size parameter
were those in the range [2, 70].

For every specific query instance, we first ran 2PO sep-
arately for each buffer size (which resulted in the (approxi-
mately) optimal plan functions0() as described in Sect. 3.2)
and obtained its average running time over all buffer sizes.
We then allowed sipII to run for exactly that amount of time

7 This was the most varied catalog (catalog ‘relcat3’) that we used in
previous experiments [IK90].
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Table 3. Output quality of sipIIr(k) and sipIIs(k)

k = 0 k = 1 k = 2 k = 5 k = 10 k = ∞
sipIIr(k) 1.67 1.10 1.11 1.17 1.20 1.17
sipIIs(k) 1.67 1.08 1.08 1.08 1.11 1.17

on the query. Thus, sipII used the same amount of time to
optimize a query over a range of buffer sizes as 2PO used on
the average to optimize that query for a single buffer size.
On the other hand, sip2PO was run for as long as its second
phase (SA) needed to converge.

5.3 Sip2PO versus sipII

We first present results that compare the effectiveness and
performance of sip2PO and sipII. These results have con-
sistently indicated that, unlike the situation for conventional
query optimization, sipII is very competitive with sip2PO.
As a representative, Fig. 8 shows the relative costs of the
output plan functions found by sip2POr(1) and sipIIr(1) for
five 20-join queries. The figure includes the results of two
different versions of sip2POr(1) that took around 1000 s and
2200 s, respectively. When compared with sipIIr(1), which
only takes around 150 s, the relative output costs of both
versions of sip2POr(1) are lower by a mere 1-4% on the
average.

The fact that sipIIr compares favorably with sip2POr
is actually not surprising. Recall from Sect. 4.5 thatG∗[b]
forms a ‘perfect well’. In addition, even the r-local minimum
approximations found by sipIIr(k) and sipIIs(k), k > 0, have
much lower costs than those found by sipIIr(0) and sipIIs(0),
respectively (both with respect to their average and their
standard deviation). Hence, the second phase of sip2PO is
not really necessary. Based on the above, in the remainder
of this paper we concentrate on sipII only.

5.4 Optimal depth for sideways information passing

To evaluate the effectiveness of sideways information pass-
ing, we compare the performance of sipIIs(k) and sipIIr(k)
for various values ofk. Table 3 shows the average relative
costs over the buffer size range [2,70], of the plan functions
found by sipIIs(k) and sipIIr(k), for k = 0, 1, 2, 5, 10, and∞
(given an equal amount of time). The specific results are for
20-join queries, but similar results were obtained for other
queries as well. As Table 3 shows, the improvement from
depthk = 0 to k = 1 is significant. This demonstrates the
usefulness of sideways information passing and is consistent
with the results on the ‘well’-shape of the cost functions over
G∗[b] presented in the previous section.

On the other hand, as the depthk increases beyond 1,
there is a gradual degradation in performance. This is due
to the fact that as the number of plan cost comparisons in-
creases, the time consumed by such comparisons more than
offsets the benefits of a friend occasionally finding a lower
cost plan. In general, the larger the difference between the
buffer sizes of friends, the less likely that the comparison
between the costs of their associated plans is beneficial.
Throughout this paper, we refer to this phenomenon asover-
comparing. Indeed, due to over-comparing, our experiments

Table 4. Average time given to sipIIs(k) for queries of different sizes

Query size (joins) 1 3 5 7 10 20
T (s) 2 14 27 42 62 158

consistently find sipII(1) to be the best among sipII(k) for
all values ofk.

Table 3 also serves to compare sipIIs with sipIIr and
identify some differences between them. First, unlike
sipIIr(k), for small values ofk > 1, the output quality of
sipIIs(k) is comparable to that of sipIIs(1): any small value
of the depthk is equally optimal for sipIIs(k). This result is
consistent with the fact that the optimal depthk for sipIIr(k)
is 1, for an image partition of the optimal plan function
rarely consists of more than five buffer sizes. Second, for
correspondingk values, the output quality of sipIIs(k) is
consistently better than that of sipIIr(k)8. The reason is that
an image partition of the current plan function in sipIIr(k)
may consist of more than one buffer size, and thus sipIIr(k)
is more prone to the effect of over-comparing than sipIIs(k).
Since sipIIs(1) appears to be the dominant algorithm for
parametric query optimization, we devote our full attention
to it in the rest of the paper.

5.5 Effect of query size and running time

In this subsection, we show the effectiveness of sipIIs(1) for
optimizing queries of various sizes as well as how this is
affected when the time consumed by the algorithm varies.
We present results for queries with 1, 3, 5, 7, 10, and 20
joins. With respect to the running time of the algorithm, re-
call that for the results presented so far, the amount of time
given to sipIIs(1) was equal to the average time needed by
2PO to optimize a query for a single buffer size. LetT be
that time. The average values ofT for various query sizes
is shown in Table 4. We performed additional experiments
where the amount of time given to sipIIs(1) wasT /3, 2T /3,
T , and 2T . Figure 9 shows the results of the combined ex-
periments. Specifically, it shows the average over the buffer
size range [2,70] of the relative cost of the output plan func-
tion of sipIIs(1). As expected, more time gives better results
for any query size. The surprising result, however, is that
for small queries, even a time ofT /3 is sufficient to produce
a plan function that is within 1% of the optimal (i.e., a rela-
tive cost of 1). As for larger queries, such as 20-join queries,
a time of 2T produces a plan whose average cost is within
4% of the optimal one. These results are very promising and
indicate that, by using sipIIs(1), parametric query optimiza-
tion can be efficiently supported in current systems. As in
applying II to conventional query optimization, an interest-
ing question that arises in parametric query optimization is
how to determine the running time of a query optimizer for
real applications. This is an issue that requires further study
in the form of a comprehensive performance evaluation on
sipII.

8 The two algorithms coincide whenk=0 or k = ∞ but behave differ-
ently for intermediate values ofk.
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Fig. 9. Output quality of sipIIs(1) with varying experimentation times

Fig. 10. Output quality of sipIIs(1) for different sets of buffer sizes

6 Other issues

6.1 Incomplete sets of buffer sizes

In this subsection, we study the effect on the optimizer effec-
tiveness of dealing only with a subset of all possible values
of the unknown run-time parameter. This may be necessary
when the domain of parameter values is very large, in which
case generating plans for each different value is impractical.
In that case, the resulting partial plan function would beim-
plicitly extended to the full domain of values by some form
of ‘interpolation’. For example, if the actual parameter value
at run time is not in the optimized subset, then the plans gen-
erated for its ‘nearest neighbors’ should be examined and the
best one among them should be chosen for processing.

We have used sipIIs(1) to solve this modified parametric
query optimization problem for the buffer size parameter.
For any setB′ of buffer sizes, the friends of R[b] are all co-
routines R[b′] whereb′ belongs to the same image partition
asb or b′ is the immediately largest or immediately smallest
buffer size inB′ outside of the image partition ofb. We have
experimented withB′ being equal to each of the following
four sets:

BS1 =

{b|2≤ b ≤ 70}, (canonical case based on Formulation B)

BS2 =

{b|2≤ b ≤ 70 andb is even}
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BS3 =

{2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70}
BS4 =

{2, 5, 10, 20, 30, 50, 70} .
The sets have been constructed in a way so that∀i, |BS(i +
1)| < |BSi|. The specific choices for the ‘nonuniform’ sets
BS3 andBS4 were motivated by the observation that the
image partitions of small buffer sizes tend to be smaller
than those of large buffer sizes. Hence, in bothBS3 and
BS4, the density of small buffer sizes is higher. For all sets
BS2−BS4, the plan associated with a missing buffer size
is the better of the plans associated with the closest buffer
sizes (one larger and one smaller) that are in the set.

For each one of the above sets, sipIIs(1) was given the
same amount of time. Figure 10 shows the average over all
buffer sizes of the relative cost of the output plan function
for each set. It contains data for four representative 20-join
queries (Q1-Q4), which differ in how close to the optimal
plan function was the output plan function of sipIIs(1) for
them. Each of the remaining of the ten queries with which
we experimented was similar to one of these four. For almost
all queries (Q1-Q3), using the contiguous range [2,70] (set
BS1) gave the best results. Even for query Q4 whereBS2
andBS3 were better, the results forBS1 were close. Almost
always, as the buffer size set became smaller, the output
quality became worse. On the other hand, the output quality
degradation was not dramatic: between BS1 and BS4, the
cardinality of the buffer size sets dropped by an order of
magnitude, while the relative cost of the output plan barely
increased by 10% in the worst case (Q3). These general
observations were true not only for the average plan cost
over all buffer sizes but for most individual buffer sizes as
well. Hence, we conclude that at least for the buffer size
parameter and for the ranges that we discussed, if given the
choice, using the full domain of values is preferred, but using
a much smaller subset of it is also quite effective.

6.2 Storage overhead of output plan functions

Another issue that arises in parametric query optimization is
the number of image partitions of the output plan function.
Ideally, one wants to have considerably fewer partitions than
the domain of that function, so that only a few plans are
stored in the database.

To provide some feeling for whether this is a serious
problem or not, we present in Table 5 some relevant results
from our experiments with the buffer size parameter. The
first row of the table contains numbers of image partitions
and is the focus of most of the rest of the discussion, whereas
the second row contains the size of the corresponding storage
space in bytes. All numbers are averages over ten 20-join
queries. With respect to the columns of Table 5, the first
column is provided only for reference and contains the total
number of buffer sizes examined, which is an upper bound
on the number of image partitions. The next column shows
the average number of image partitions based on the output
plan function of sipIIs(1). This number turns out to be very
high (clearly impractical). However, many of these plans

form groups such that the members of each group belong
in a plateau and can therefore be replaced in a simple post-
processing step by a single plan without affecting the output
quality. The resulting average number of image partitions of
such a step is shown in the third column: the dramatic drop
to very reasonable numbers is clear. This number may still
be high for some applications, so we have also experimented
with two other postprocessing steps, which put plans in the
same group if their costs for the corresponding buffer sizes
differ by no more than 5% and 10%, respectively. These
results are shown in the last two columns of Table 5. The
5% experiment brings another factor of 2 reduction in the
number of image partitions, whereas the 10% experiment
does not offer any further significant improvements, indi-
cating that for efficient processing of a query over a large
range of buffer sizes, one needs to store approximately six
or seven distinct plans.

Hence, using sipIIs(1) with some postprocessing step of
the form mentioned above appears to be adequate with re-
spect to the final number of plans. In fact, the second row
of Table 5 shows that, even without any postprocessing, the
space required to store the alternative plans is not really
significant.

6.3 Overhead for run-time decision

Recall that the primary goal of parametric query optimiza-
tion is to have minimal run-time optimization overhead, i.e.,
all optimization occurs at compile time and a simple table
look-up determines the appropriate access plan at run time
(Fig. 1). As shown below, our measurements of the run-time
overhead verify that this goal has been achieved.

Our implementation of the run-time optimal-plan selec-
tion is based on storing the plan of each image partition as
a separate tree and building a 1-level index on top of the
set of all plans, like the array at the top of every part of
Fig. 7. That is, given an image partition (i.e., its boundary
buffer sizes), the index returns a pointer to the corresponding
plan. Even without any grouping of the final plan function,
the average number of image partitions was 51 for 20-join
queries (Sect. 6.2), so the entire index occupies a single disk
block. In addition, each 20-join query access plan occupies
one or two additional blocks. So, the entire I/O cost of the
run-time decision has been two to three block accesses. The
corresponding CPU time comes essentially from performing
a handful of comparisons within the index block to identify
the appropriate plan and is, therefore, insignificant. Hence,
the overall overhead of the run-time optimal-plan selection
is essentially zero (i.e., far less than 1 s); the method has
achieved our original goal.

7 Algorithm extensions

7.1 Parametric query optimization for other parameters

Our focus so far has been on the single parameter such as
buffer size and index parameters. To examine the effective-
ness of the devised algorithms for general parametric query
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Table 5. Average size of the output plan function of sipIIs(1)

Number of No = 5% 10%
buffer sizes grouping grouping grouping grouping

Number of image partitions 69 51.4 21.4 6.2 5.0
Storage space (Kbytes) 62.2 17.7 6.4 5.5

Table 6. Output quality of sipIIs(1) for the index parameter

Query size 1 join 3 joins 5 joins 7 joins 10 joins
Relative cost 1.00 1.00 1.00 1.01 1.13

optimization, we have performed a limited set of experi-
ments with the index parameter. We chose this parameter
because most others are similar to the buffer size parameter
in that there is a natural continuity and total order in their
domain of values, which are expected to make those param-
eters behave similarly in parametric query optimization. We
experimented again with ten queries ranging from 1 join to
10 joins. For 10- and 20-join queries, changing the index of
one relation does not affect the cost of plans that much,
so experimenting only with 10-join queries was enough.
The values of the index parameter were taken from the set
{no index, non clustered Btree, non clustered hashing,
clustered Btree, clustered hashing}. These values were
considered to be ordered as in the above set, and co-routine
friends were determined based on that order, as for the buffer
size case. The specific ordering tried to approximately cap-
ture some monotonicity between the index value and the cost
of a relation scan, although there were clearly many cases
where this approximation was inaccurate.

Table 6 contains the average relative cost of the output
plan function of sipIIs(1) as a function of the query size.
For all queries with up to seven joins, sipIIs(1) found a
plan function that is very close to the optimal. For 10-join
queries, the relative cost of the output was higher than the
corresponding cost found when the buffer size parameter
was varied. As mentioned above, for such queries, the cost
is relatively insensitive to a single index change. Therefore,
the opportunities for hill-jumping are very limited, and the
algorithm behaves similarly to the case where a fixed index
type is considered, where the second phase of 2PO is nec-
essary for effective optimization. Nevertheless, the overall
results are very promising and indicate that randomized al-
gorithms enhanced with sideways information passing may
be the generic answer to parametric query optimization for
arbitrary parameters.

Both the buffer size and the index type are discrete pa-
rameters. In reality, there are continuous run-time parameters
as well, e.g., predicate selectivity. Clearly, for such parame-
ters, one cannot deal with all their possible values, because
there is an infinite number of them. One simple extension
of our algorithms to handle this case is to use some se-
lected parameter values during optimization, as was done
with incomplete sets of buffer sizes in Sect. 6.1. Then, given
a specific parameter value at run time, the algorithm would
choose between those plans found for the selected parameter
values closest to the given one.

7.2 Scaling to multiple parameters

Abstractly, applying our parametric query optimization ap-
proach to multiple parameters is straightforward. The only
difference is that the parameter space for the plan functions
becomes multidimensional. This requires an efficient multi-
dimensional data structure to maintain the image partitions
in the plan function, during the execution of the algorithm
and also when storing the final result for use at run time. In
addition, friends should be defined in multiple dimensions,
but otherwise the notion of sideways information passing re-
mains identical. Other than that, our implementation remains
valid and can be easily applied. Of course, in practice, the
key questions that arise include the running time of the algo-
rithm, the cost of the resulting plan function relative to the
actual optimal, and the number of resulting image partitions,
which determines the run-time overhead as the multidimen-
sional index on the plan function is traversed. Investigating
the effectiveness of our parametric query optimization tech-
niques for multiple parameters is beyond the scope of this
paper, but is part of our current and future effort.

8 Dynamic programming algorithms

All current relational database systems that we are aware of
use a heuristically pruning, dynamic programming algorithm
for query optimization, usually an enhanced and tuned-up
version of the original algorithm of System R [SAC+79].
The randomized algorithms that we have discussed in this
paper represent a completely different style of optimization.
It has already been shown that for small queries (approxi-
mately up to ten joins), dynamic programming is superior to
randomized algorithms, whereas for large queries the oppo-
site holds [Kan91]. In this section, we provide a preliminary
discussion of how the two approaches compare when dealing
with unknown run-time parameters. We distinguish between
the case of allowing essentially no run-time optimization
overhead, which we have called parametric query optimiza-
tion and has been the focus of our work, and the case where
nontrivial run-time overhead is allowed, as proposed by Cole
and Graefe in what they calleddynamic query optimization
[CG94].

8.1 Zero run-time overhead

We believe that, for parametric query optimization, where
one wants no run-time overhead, the break-even point be-
tween randomized algorithms and dynamic programming is
at smaller queries than for conventional query optimization.
This belief is supported by the fact that dynamic program-
ming or any of its heuristic variants cannot take advantage
of sideways information passing. For ann-way join query,
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these algorithms proceed by optimizing allk-way join sub-
queries of the original query for all values ofk from 1
to n. For parametric query optimization, consider the co-
routine abstraction again, where each co-routine runs such
a dynamic programming algorithm. In that case, co-routine
friends are not helpful. Using the buffer size parameter as
an example, we observe that knowing the best plan for a
subquery found by R[b] does not provide any information to
R[b′] about the best plan that it should find. R[b′] still has
to compare all alternatives among themselves and proceed
accordingly. Thus, any extensions to dynamic programming
that remain faithful to the principles of the algorithm will
have to operate in a way similar to sipR(0). The running time
of the extended algorithms should increase significantly for
the same size queries compared to their conventional ver-
sions. Thus, sipIIs(1) should be preferred over dynamic pro-
gramming for parametric query optimization for many more
(smaller) queries than 2PO is for non-parametric query op-
timization.

Clearly, the above needs further investigation and also
experimental verification. It is conceivable that heuristics can
be added to dynamic programming that not only find an ap-
proximation to the optimal plan function but which can make
use of sideways information passing. Although we believe
that sipIIs(1) will still remain the preferred algorithm, we
plan to study these alternatives and resolve these issues.

8.2 Non-zero run-time overhead

To obtain an effective algorithm based on dynamic program-
ming, Cole and Graefe proposed thedynamic query opti-
mization approach [CG94], which leaves part of the opti-
mization process for run time. Specifically, this approach is
based on the notion ofincomparability of costs. In particu-
lar, the cost of a plan is not a single value but an interval of
values, corresponding to the minimum and maximum cost of
the plan obtained over the entire range of possible parame-
ter values (e.g., buffer sizes). Alternative plans are compared
based on their cost intervals. When the minimum cost of a
plan is higher than the maximum cost of another, then the
former can be pruned, but when the two cost intervals over-
lap, then both plans are kept until run time. In other words,
instead of spending significant amount of compile time to
identify the exact image partitions and the corresponding
optimal plans, partial ordering of plans is allowed. At run
time, the cost of the partially ordered plans is re-evaluated
using the actual run-time parameter values, and the optimal
plan for the occasion is identified.

Clearly, this approach significantly reduces the required
compile time by shifting some of the decisions to run time,
where parameter values are known, and makes dynamic pro-
gramming effective. The resulting run-time overhead, how-
ever, may be significant, since essentiallyall plans stored
must be read from disk and have their cost re-evaluated.
Although sharing of common nodes across partially ordered
plans reduces not only the storage space but also the time it
takes to re-evaluate the cost of the plans, that time may still
be non-negligible. For example, in the experiments of Cole
and Graefe, the run-time decision overhead went up to 74%
of the query processing time [CG94].

Table 7. Symbols used in cost formulas

CI/O number of page accesses
CCPU number of CPU instructions
P (R) number of pages inR
T (R) number of tuples inR
V (A,R) number of unique values for attribute A inR
B(A,R) number of buckets in hash table for attribute A inR
LP (I) number of leaf pages of indexI
D(I) depth of B-tree indexI
Ccomp number of instructions to compare keys in main memory
Chash number of instructions to hash a key
Cmove number of instructions to move a tuple in main memory
Cswap number of instructions to swap two tuples in main memory

Whether systems should strive for zero run-time over-
head or not is a question whose answer may be partly based
on philosophical and stylistic grounds. Beyond that, how-
ever, it also depends on the exact comparison of the compile-
time costs of sipIIs(1) and the Cole-Graefe dynamic pro-
gramming algorithm. Such a comparison is beyond the scope
of this paper, but will be part of our future work.

9 Conclusions and future work

We have formalized the problem of parametric query opti-
mization and studied it primarily with regard to the buffer
size parameter. We have adopted randomized algorithms as
the main approach to this style of optimization and have
introduced sideways information passing to increase the ef-
fectiveness of these algorithms in the new task. Extensive
experimentation has shown that these enhanced algorithms
optimize queries for large numbers of buffer sizes in the
same time needed by their conventional versions for a single
buffer size, without much loss in the output quality. These
experiments have also identified sipIIs(1) as the most effec-
tive of the randomized algorithms for a very broad spectrum
of cases. Finally, we have provided evidence that these al-
gorithms are applicable to the general form of parametric
query optimization. Experiments with the index parameter
have shown that sipIIs(1) once again can obtain multiple
query plans with very comparable output quality in short
times.

To the best of our knowledge, the approach presented in
this paper for parametric query optimization is the first of
its kind, since it offers a complete query optimization algo-
rithm that has a plan function as output, makes no assump-
tions about any properties of the plan costs, and incurs no
run-time overhead. We believe that incorporating sipIIs(1)
into a query optimizer will significantly enhance the perfor-
mance of queries. When a query is ready to be executed,
the database system will know the precise values of the pa-
rameters that were unknown at query optimization time. It
will take a simple table look-up with the parameter values to
identify the appropriate plan for the execution. The savings
in execution cost of using a plan that is specifically tailored
to the actual parameter values as opposed to one obtained
for typical parameter values could be very significant.

There are several issues that we plan to address in our
future work. The most important ones are a detailed com-
parison of randomized algorithms and the dynamic program-
ming algorithm (especially the Cole and Graefe approach)
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for parametric query optimization, and comprehensive ex-
perimentation with large vectors of diverse parameters to
understand the scalability of the developed algorithms. The
results of these studies will complement those presented in
this paper and shed some new light into how parametric
query optimization should be approached in future database
systems.

Appendix

Cost formulas for joins

This appendix lists all the cost formulas for joins that we
used in our experiments. Selectivities, relation sizes, and
buffer sizes are parameters of these formulas, which include
both I/O and CPU costs. These formulas are based on the
assumptions that i) values in each column are uniformly
distributed, ii) LRU is the policy used in page replacement,
and iii) there is no data sharing in the sense that each query
can only access data in its own buffers.

Table 7 defines the symbols used in the cost formu-
las. While most of these symbols are self-explanatory, it
is worth pointing out that we express CPU costs in units of
CPU instructions, and I/O costs in units of page accesses.
In our experiments, we assume that each CPU instruction
takes 0.001 ms, and that each I/O takes 30 ms. Furthermore,
as we use Shapiro’s cost formulas for hash joins [Sha86],
we setCcomp, Chash, Cmove andCswap to 3, 9, 20 and 60
units, respectively, to ensure compatibility of our formulas
with his. Finally, we use the notationR onA S to represent
a join between the outer relationR and the inner relation
S on attributeA. Joins on more than one attribute are not
considered here and in our experiments.

There are three join methods considered in our experi-
ments – hash join, nested loops, and merge scan. Here, we
only include the formulas for the latter two methods; the
formulas for hash join are listed in [Sha86].

A Nested-loops joins

In this section, we examine three different cases for nested
loop joinsR onA S. We first consider the case when there
is no index on attributeA for the inner relationS. Then we
study the cases when there is either a hash index or a B-tree
index forS. In all three cases, we use file scan for relation
R.

A.1 File scan forS

If both the outer and inner relations have no index onA, then
there are two cases, depending on the number of available
buffersb. If P (S) ≤ (b− 1), we can read in all pages ofS.
Then, the formulas for CPU and I/O costs are:

CCPU = T (R) ∗ T (S) ∗ Ccomp ,

CI/O = P (R) + P (S) .

In calculating the CPU costs, we assume in our experiments
that the cost of opening and closing a relation or an index
is 0. WhenP (S) > (b− 1), the cost formulas become:

CCPU = T (R) ∗ T (S) ∗ Ccomp ,

CI/O = P (R) + dP (R)
b− 1

e ∗ P (S) .

A.2 Hash index forS

There are two cases: one where the hash index is a primary
index, and the other where the index is a secondary index.

A.2.1 Primary hash index.If we use the primary hash index
for S, the CPU cost is given by:

CCPU = T (R) ∗ (Chash +
T (S)

B(A,S)
∗ Ccomp) .

The I/O cost depends on the number of buffersb. If b is
not larger than the average number of pages in each bucket,
(more specifically, ifb < (1 + d P (S)

B(A,S)e)), we assume that
we only give one buffer toS. Then the I/O cost becomes:

CI/O = P (R) + T (R) ∗ (1 + d P (S)
B(A,S)

e) .

Now, whenb ≥ (1 +d P (S)
B(A,S)e), we assume that we give

m times of (1+d P (S)
B(A,S)e) buffers toS, wherem is the largest

integer such thatb ≥ m ∗ (1 +d P (S)
B(A,S)e). In other words, the

buffers are divided intom partitions, each of which can con-
tain all the pages of an average bucket. Then the accessing
of pages inS can be viewed as a random reference to the
buckets. In [NFS91], we derive the following formula for
approximating (very closely) the expected number of page
accesses for a random reference of lengthk to a file of size
N usings buffers:

CI/O ≈ (1){
N ∗ [1− (1− 1/N )k0] k < k0
s + (k − k0) ∗ (1− s/N ) otherwise

,

wherek0 = ln(1− s/N ) / ln(1− 1/N ). Applying Eq. 1 by
settingN = B(A,S), k = T (R), ands = m, we obtain the
I/O cost for the case whenb = m ∗ (1 + d P (S)

B(A,S)e):
CI/O ≈
P (R) + (1 +d P (S)

B(A,S)e) ∗B(A,S) ∗ [1− (1− 1
B(A,S) )

k0]
T (R) < k0

P (R) + (1 +d P (S)
B(A,S)e) ∗ [m + (T (R)− k0) ∗ (1− m

B(A,S) )]
otherwise

wherek0 = ln(1− m
B(A,S) ) / ln(1− 1

B(A,S) ). This completes
our analysis when the hash index is a primary index.

A.2.2 Secondary hash index.Now consider the situation
when we use a secondary hash index. LetI be the index
andB(A, I) denote the number of buckets forI. Then the
CPU cost is given by:

CCPU = T (R) ∗ (Chash +
T (S)
B(A, I)

∗ Ccomp) .
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As for the I/O costs, it again depends on the number of
buffer b. If b < (3 + d P (I)

B(A,I)e), we give one buffer each to
R, S andI. Then the I/O cost becomes:

CI/O = P (R) + T (R) ∗ (1 + d P (I)
B(A, I)

e +
T (S)

V (A,S)
) .

Otherwise, whenb ≥ (3 + d P (I)
B(A,I)e), we give 1 buffer to

each ofR andS, but m ∗ (1 + d P (I)
B(A,I)e) buffers toI. The

I/O cost is then:

CI/O ≈
P (R) + (1 +d P (I)

B(A,I)e) ∗B(A, I) ∗ [1− (1− 1
B(A,I) )

k0]
+T (R) ∗ T (S)

V (A,S) T (R) < k0

P (R) + (1 +d P (I)
B(A,I)e) ∗ [m + (T (R)− k0) ∗ (1− m

B(A,I) )]
+T (R) ∗ T (S)

V (A,S) otherwise

wherek0 = ln(1− m
B(A,I) ) / ln(1− 1

B(A,I) ). This completes
our analysis when the hash index is a secondary index.

A.3 B-tree index forS

A.3.1 Primary B-tree index.If we use the primary B-tree
index, the CPU cost is given by:

CCPU = T (R) ∗ T (S)
V (A,S)

∗ Ccomp .

As for the I/O cost, ifb < (3 + d P (S)
V (A,S)e), the cost is:

CI/O = P (R) + T (R) ∗ (D(I) + d P (S)
V (A,S)

e) .

Otherwise, whenb ≥ (3 + d P (S)
V (A,S)e), we give one buffer to

R, one buffer to the root node of the index, one buffer to a
leaf page of the index, but (m ∗ d P (S)

V (A,S)e) buffers toS. The
I/O cost is then given by:

CI/O ≈
P (R) + d P (S)

V (A,S)e ∗ V (A,S) ∗ [1− (1− 1
V (A,S) )

k0]
+T (R) ∗ (D(I)− 1) T (R) < k0

P (R) + d P (S)
V (A,S)e ∗ [m + (T (R)− k0) ∗ (1− m

V (A,S) )]
+T (R) ∗ (D(I)− 1) otherwise

,

wherek0 = ln(1− m
V (A,S) ) / ln(1− 1

V (A,S) ). This completes
our analysis when the B-tree index is a primary index.

A.3.2 Secondary B-tree index.If we use a secondary B-tree
index, the CPU cost is:

CCPU = T (R) ∗ T (S)
V (A,S)

∗ Ccomp .

As for the I/O cost, ifb < (3 + d LP (I)
V (A,S)e), the I/O cost is:

CI/O = P (R) + T (R) ∗ (D(I) + d LP (I)
V (A,S)

e +
T (S)

V (A,S)
) .

Otherwise, we give one buffer to each of relationsR andS,
one buffer to the root node of the index, but (m ∗ d LP (I)

V (A,S)e)
buffers to the leaf pages of the index. The I/O cost then
becomes:

CI/O ≈
P (R) + d LP (I)

V (A,S)e ∗ V (A,S) ∗ [1− (1− 1
V (A,S) )

k0]
+T (R) ∗ (D(I)− 1 + T (S)

V (A,S) ) T (R) < k0

P (R) + d LP (I)
V (A,S)e ∗ [m + (T (R)− k0) ∗ (1− m

V (A,S) )]
+T (R) ∗ (D(I)− 1 + T (S)

V (A,S) ) otherwise

,

wherek0 = ln(1− m
V (A,S) ) / ln(1− 1

V (A,S) ). This completes
our analysis when the B-tree index is a secondary index.

B Merge-scan joins

B.1 M-way sort-merge

Before we proceed to present the cost formulas we used for
merge-scan joins, we first give the formulas for sorting a
relation. The sorting procedure we assumed is M-way sort-
merge, the costs of which are summarized below.

Csort
CPU (R) =

T (R) ∗ ln2
T (R) ∗ b
P (R)

∗ (Ccomp +Cmove) +

(dlnb P (R)e − 1) ∗ T (R) ∗ (b ∗ Ccomp +Cmove) , (2)

Csort
I/O (R) = 2∗ P (R) ∗ dlnb P (R)e . (3)

Given b buffers, the merge-sort takesdlnb P (R)e passes. In
the first pass,P (R)

b sorted runs are produced, each of which
is b pages. To sort then = T (R)∗b

P (R) tuples in each run, a CPU
cost proportional ton ln2n is required. Thus, the total CPU
cost for the first pass is given by the first line of Equation 2.
Merging occurs in the second and subsequent passes. In each
step in a merging pass,b tuples are compared, and the tuple
with the minimum search-key value is output to a file for
subsequent passes. This gives rise to a total (merging) cost
corresponding to the second line of Equation 2. As for the
I/O cost, 2∗P (R) page accesses are required for each pass.

B.2 No index for the outer relationR

There are three cases to be considered if there is no index
for R (and thusR has to be sorted).

B.2.1 No index forS. First, consider the case whenS has
to be sorted as well. Then the combined costs are:

CCPU = Csort
CPU (R) +Csort

CPU (S) +Cmjoin
CPU (R,S),

CI/O = Csort
I/O (R) +Csort

I/O (S) +Cmjoin
I/O (R,S).

The sorting costs forR andS are given by Eqs. 2 and 3. The
costsCmjoin

CPU (R,S) and Cmjoin
I/O (R,S) represent the CPU

and I/O costs of performing a merge join onR andS, after
these relations are sorted. These costs depend on the number
of available buffersb. If b < (min( P (R)

V (A,R) ,
P (S)
V (A,S) ) + 1), we

give one buffer to each ofR andS. Then the costs become:

Cmjoin
CPU (R,S) = T (R) ∗ T (S)

V (A,S)
∗ Ccomp,

Cmjoin
I/O (R,S) = P (R) + T (R) ∗ P (S)

V (A,S)
.
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Table 8. Extra symbols used in merge-scan cost formulas

Csort
I/O

(R) number of page accesses for sortingR

Csort
CPU (R) number of CPU instructions for sortingR

Cmjoin
I/O

(R,S) number of page accesses for performing a merge join onR andS

Cmjoin
CPU (R,S) number of CPU instructions for performing a merge join onR andS

Otherwise, suppose without loss of generality thatP (R)
V (A,R) ≥

P (S)
V (A,S) . Then we give one buffer toR and P (S)

V (A,S) buffers to
S. The costs are then given by:

Cmjoin
CPU (R,S) = T (R) ∗ T (S)

V (A,S)
∗ Ccomp

Cmjoin
I/O (R,S) = P (R) + P (S)

This completes our analysis of the case whenS does not
have any index.

B.2.2 Primary B-tree index forS. Now consider the case
when we use the primary B-tree index. Then the combined
costs simply become:

CCPU = Csort
CPU (R) +Cmjoin

CPU (R,S),

CI/O = Csort
I/O (R) +Cmjoin

I/O (R,S),

where the costsCsort
CPU (R), Cmjoin

CPU (R,S), Csort
I/O (R) and

Cmjoin
I/O (R,S) are exactly the same as those given in the

previous subsection.

B.2.3 Secondary B-tree index forS. Finally, consider the
case when we use a secondary B-tree index. While the CPU
cost is still given byCCPU = Csort

CPU (R)+Cmjoin
CPU (R,S), the

I/O cost varies according tob. If b < (2+d LP (I)
V (A,S)e), the cost

is:

CI/O = Csort
I/O (R) +D(I) + P (R) + T (R) ∗ LP (I) + T (S)

V (A,S)
.

On the other hand, if (2+LP (I)
V (A,S) ) ≤ b < (1+ LP (I)

V (A,S) + t(S)
V (A,S) ),

we give one buffer to each ofR andS, and LP (I)
V (A,S) buffers

to the index. The I/O cost is then:

CI/O =

Csort
I/O (R) +D(I) + P (R) +LP (I) + T (R) ∗ T (S)

V (A,S)
.

Finally, if b ≥ (1+ LP (I)
V (A,S) + T (S)

V (A,S) ), then we give one buffer

to R, LP (I)
V (A,S) buffers to the index, and as many buffersb1 as

possible toS (i.e. b1 = b − 1− LP (I)
V (A,S) ). The I/O cost then

becomes:

CI/O = Csort
I/O (R) +D(I) + P (R) +LP (I)

+

{
P (S) ∗ (1− (1− 1

P (S) )
k0) if V (A,R) ∗ T (R)

V (A,S) < k0

b1 + (V (A,R) ∗ T (R)
V (A,S) − k0) ∗ (1− b1

P (S) )) otherwise

wherek0 = ln(1− b1
P (S) )/ ln(1− 1

P (S) ).

B.3 Primary B-tree index for the outer relationR

There are once again three cases to be considered, depending
on whetherS has an index or not.

B.3.1 No index forS. The situation here is very similar to
the one analyzed in Sect. B.2.2. The only difference is that
instead ofR, now S is the relation to be sorted. Thus, the
costs are given by:

CCPU = Csort
CPU (S) +Cmjoin

CPU (R,S),

CI/O = Csort
I/O (S) +Cmjoin

I/O (R,S),

where the costsCsort
CPU (S), Cmjoin

CPU (R,S), Csort
I/O (S) and

Cmjoin
I/O (R,S) are exactly the same as those before.

B.3.2 Primary B-tree index forS. The situation here is very
similar to the one analyzed in Sect. B.2.1. The only differ-
ence is that now no sorting costs are required:

CCPU = Cmjoin
CPU (R,S) ,

CI/O = Cmjoin
I/O (R,S) ,

where the costsCmjoin
CPU (R,S) andCmjoin

I/O (R,S) are given
by the same formulas listed in Sect. B.2.1.

B.3.3 Secondary B-tree index forS. The situation here is
very similar to the one studied in Sect. B.2.3. The only dif-
ference is that now the cost for sortingR can be saved:

CCPU = Cmjoin
CPU (R,S)

andCI/O is given by the three formulas in Sect. B.2.3, with-
out the costCsort

I/O (R) in each case.

B.4 Secondary index for the outer relationR

There are three cases depending on whetherS has an index
or not.

B.4.1 No index forS. The CPU cost is given by:

CCPU = Csort
CPU (S) +Cmjoin

CPU (R,S)

whereCsort
CPU (S) andCmjoin

CPU (R,S) are the same as before.
The I/O cost depends onb. If b < (2 + P (S)

V (A,S) ), the cost is:

CI/O = = Csort
I/O (S) +D(IR) +LP (IR)

+T (R) ∗ (1 +
P (S)

V (A,S)
) ,

whereIR denotes the index forR.
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Otherwise, ifb ≥ (2 + P (S)
V (A,S) ), we give one buffer to

the index, P (S)
V (A,S) buffers toS, and as many buffersb1 as

possible toR (i.e. b1 = b − 1− P (S)
V (A,S) ). The I/O cost then

becomes:

CI/O = Csort
I/O (S) +D(IR) +LP (IR) + P (S)

+

{
P (R) ∗ (1− (1− 1

P (R) )
k0) if T (R) < k0

b1 + (T (R)− k0) ∗ (1− b1
P (R) )) otherwise

,

wherek0 = ln(1− b1
P (R) )/ ln(1− 1

P (R) ).

B.4.2 Primary B-tree index forS. The situation here is al-
most identical to the one analyzed above. The only differ-
ence is that now the CPU and I/O costs for sortingS can be
saved. In other words, the CPU cost is given by:

CCPU = Cmjoin
CPU (R,S)

and the I/O cost is given by the two formulas in Sect. B.4.1,
without the costCsort

I/O (S) in each case.

B.4.3 Secondary B-tree index forS. The CPU cost is exactly
the same as in the above case, i.e., no sorting costs are
required for bothR andS. The I/O cost depends onb. If
b < (3 + LP (IS )

V (A,S) ), whereIS denotes the index forS, we give
one buffer each toR, IR, S andIS . The I/O cost is then:

CI/O = = D(IR) +LP (IR) +D(IS)

+T (R) ∗ (1 +
LP (IS) + T (S)

V (A,S)
) .

Otherwise, if (3 +LP (IS )
V (A,S) ) ≤ b < (2 + LP (IS )

V (A,S) + t(S)
V (A,S) ), we

give one buffer each toR, IR andS, and LP (IS )
V (A,S) buffers to

IS . The I/O cost becomes:

CI/O = = D(IR) +LP (IR) +D(IS) +LP (IS)

+T (R) ∗ (1 +
T (S)

V (A,S)
) .

Otherwise, ifb ≥ (2 + LP (IS )
V (A,S) + t(S)

V (A,S) ), then we give one

buffer each toR andIR, LP (IS )
V (A,S) buffers toIS , and as many

buffersb1 as possible toS. The I/O is then given by:

CI/O = D(IR) +LP (IR) +D(IS) +LP (IS) + T (R)

+

{
P (S) ∗ (1− (1− 1

P (S) )
k0) if V (A,R) ∗ T (R)

V (A,S) < k0

b1 + (V (A,R) ∗ T (R)
V (A,S) − k0) ∗ (1− b1

P (S) )) otherwise

wherek0 = ln(1− b1
P (S) )/ ln(1− 1

P (S) ). This completes our
analysis on all the cases for merge-scan joins.
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