
The VLDB Journal (1997) 6: 1–25 The VLDB Journal
c© Springer-Verlag 1997

The hBΠ-tree: a multi-attribute index supporting concurrency,
recovery and node consolidation

Georgios Evangelidis1, David Lomet2, Betty Salzberg3

1Informatics Dept., Technological Educational Institute of Thessaloniki, P.O. Box 14561, GR-54101 Thessaloniki, Greece
2Microsoft Corporation, One Microsoft Way, Bldg 9, Redmond, WA 98052-6399, USA
3College of Computer Science, Northeastern University, Boston, MA 02115, USA

Edited by R. Sacks-Davis. Received 27 June 1994 / Accepted 26 September 1995

Abstract. We propose a new multi-attribute index. Our ap-
proach combines the hB-tree, a multi-attribute index, and
theΠ-tree, an abstract index which offers efficient concur-
rency and recovery methods. We call the resulting method
the hBΠ -tree. We describe several versions of the hBΠ -tree,
each using a different node-splitting and index-term-posting
algorithm. We also describe a new node deletion algorithm.
We have implemented all the versions of the hBΠ -tree. Our
performance results show that even the version that offers
no performance guarantees, actually performs very well in
terms of storage utilization, index size (fan-out), exact-match
and range searching, under various data types and distri-
butions. We have also shown that our index is fairly in-
sensitive to increases in dimension. Thus, it is suitable for
indexing high-dimensional applications. This property and
the fact that all our versions of the hBΠ -tree can use the
Π-tree concurrency and recovery algorithms make the hBΠ -
tree a promising candidate for inclusion in a general-purpose
DBMS.

Key words: Multi-attribute index – Concurrency – Recovery
– Node consolidation

1 Introduction

Traditional database management systems (DBMSs) effi-
ciently organize, access, and manipulate very large quantities
of data for business applications in banks, airlines, govern-
ment agencies, hospitals, and other large organizations. Al-
most all of them implement some variation of the B+-tree
[BM72, Com79] for ordered single-attribute indexing.

In general, “traditional” data can be viewed as linear
data. Each data item is identified by some attribute that dis-
tinguishes it from other data items and this is what we call
a primary key for the data item. The primary key defines a
total order for the data items in the database. B+-tree indexes
on a primary key are often (dynamic) clustering indexes as

Correspondence to: B. Salzberg

well, if the leaf level of the index consists of pages that con-
tain the actual data items. Such a single-attribute clustering
index is very efficient for answering range queries on the
indexed attribute, since data items with comparable values
for their indexed attribute will be in the same or neighboring
pages.

However, today new applications that deal with “non-
traditional” data require innovative solutions to storage and
access problems. These include scientific applications, such
as those proposed for the terabytes of meteorological, as-
tronomical, and geographic data, streaming in daily from
satellites, and design databases for CAD and VLSI.

This data is called multi-attribute data. It must be or-
ganized in terms of more than one attribute, for example
latitude and longitude and height above the earth.

A straightforward way to handle multi-attribute data is
to use many single-attribute indexes (e.g., B+-trees), one for
each attribute of interest. Unfortunately, this is a highly inef-
ficient solution. Only one of the indexes can be a clustering
index and during insertions or deletions all indexes need
updating.

To efficiently handle multi-attribute data, one needs ex-
plicitly multi-attribute indexes. It is essential to cluster
“nearby” k-dimensional data in contiguous areas of a disk.
There is no “perfect” way to map multi-attribute data on lin-
ear physical disk storage, though. In general, the desirable
properties of multi-attribute indexes are [Sal91]:

1. good space utilization in both index and data nodes,
2. high fan-out (the index should be significantly smaller

than the data collection),
3. fast exact match search (given the coordinates, the data

should be obtained quickly),
4. fair clustering in data pages by all attributes for good

range search performance,
5. easy integration with the query, locking, and recovery

systems of existing DBMSs,
6. simple design for incremental growth and shrinkage (in-

sertion and deletion algorithms).

2

1.1 Related work

There are two basic types of multi-attribute data:

Point data that can be viewed as geometrical points in a
k-dimensional space, without necessarily being geomet-
rical data. Examples are (x, y, z) triplets in the three-
dimensional Euclidean space, or (SSN, city) pairs in a
two-dimensional space.

Spatial data that can be viewed as subspaces in ak-di-
mensional space, for example, polygons in the two-
dimensional Euclidean space. This type of multi-attribute
data is almost always geographical data.

Proposed point data indexing methods include Z-ordering
[OM84], the grid file [NHS84], the K-D-B-tree [Rob81], and
the hB-tree [LS90]. Z-ordering mapsk attributes to a single
one by alternating their bit representations. Then it uses any
single-attribute index, e.g., the B+-tree, to index the result-
ing attribute. The rest of the mentioned methods explicitly
index multi-attribute data.

Proposed methods for spatial (or non-point) data in-
clude the R-tree [Gut84] and its variations (R+-tree [SRF87],
R∗-tree [BKSS90]), and the cell tree [Gue89]. An alter-
native approach mapsk-dimensional spatial objects to 2k-
dimensional points. This can be done by taking the mini-
mum bounding box of the spatial object and using a 2k-
dimensional point to represent it (low and high values for
each attribute) [Hin85]. Then, any point data method can be
used to index the transformed space.

Concurrency control in B+-trees has been the subject
of many papers [BS77, LY81, Sal85, Sag86, SG88, ML89,
LS92]. Most of these papers, with the exception of [ML89,
LS92], have not addressed the problem of system crashes
during structure changes.

1.2 Our approach

We introduce a new access method for multi-attribute data
that we call the hBΠ -tree. It is based on the hB-tree, a multi-
attribute point data access method [LS90] and theΠ-tree,
an abstract index tree for which a general algorithm for con-
currency and recovery is available [LS92].

The Π-tree is essentially a generalization of the Blink-
tree [LY81]. The Blink-tree has side-pointers or links point-
ing from each index node to the next index node on the same
level of the tree in key order. Links enable index-term post-
ing to be separated from index-node splitting, since, when
information about a split has not yet been posted to the par-
ent, search can follow the links and still be correct. This
implies that the locks needed for splitting can be dropped
before the locks for posting are acquired.

A recent study compared the performance of various con-
currency control algorithms [SC91]. Its most important con-
clusion was that algorithms using the link technique provide
the most concurrency and the best overall performance.

The Π-tree generalizes the Blink-tree, because it treats
the multi-attribute case, it considers node consolidation, and
it considers recovery as well as concurrency. We modify the
hB-tree so that it becomes a special case of theΠ-tree. This
involves minor structural changes to the hB-tree.

In addition, and perhaps more importantly, we invent
new node-splitting and index-term-posting, and node consol-
idation and index-term-dropping algorithms. The new index-
node-splitting and index-term-posting algorithms correct an
error in the hB-tree. Also, the hB-tree had no node consoli-
dation algorithm.

The result of this modification of the hB-tree is called
the hBΠ -tree. In a series of experiments, we test the vari-
ous splitting and posting algorithms and measure the overall
performance of the hBΠ -tree.

1.3 Overview

In Sect. 2, we review theΠ-tree [LS92]. We modify the
hB-tree [LS90] to become a subcase of theΠ-tree. We call
the new method the hBΠ -tree and we present its structural
characteristics in Sect. 3.

Section 4 is devoted to the various node splitting and
index-term-posting algorithms for the hBΠ -tree. Section 5
presents a node consolidation algorithm for the hBΠ -tree.

The splitting/posting and consolidation algorithms have
been tested in the implemented hBΠ -tree under various
data distributions. The data we used was either computer-
generated or geographical data from the Sequoia 2000 Stor-
age Benchmark [SFGM93]. The results are shown in Sect. 6.

Finally, in Sect. 7 we summarize and give some direc-
tions for future work.

2Π-tree concurrency and recovery

In this section we briefly review a general algorithm for
concurrency and recovery for a wide class of index trees
(single-attribute, multi-attribute, or versioned) [LS92]. This
algorithm is applicable to an abstract index tree structure,
theΠ-tree.

The main idea is to make it possible to hold only short-
term locks on non-leaf nodes. This is achieved by making
Π-tree structure changes consist of a sequence of atomic
actions [Lom77]. Most of these actions are separate from
the transaction whose update triggered the structure change
and each one of them leaves the tree in an intermediate
well-formed state.

What we do here is review the structure of aΠ-tree and
the concurrency and recovery algorithms applying to it. In
the next section, we will modify the hB-tree only slightly (by
adding side pointers) to make it aΠ-tree. We will also add
some features to aid in node consolidation. This will make
the Π-tree concurrency, recovery and node consolidation
algorithms applicable to the modified hB-tree.

2.1 Structure

The Π-tree is a rooted DAG. It consists of index and data
nodes. Each node is responsible for a specific part of the key
space. AΠ-tree node:

– can be directly responsible for some part of the space.
For an index node, it is the space the node distributes
among its children nodes and is described by index

3

C C C
C

C

CC
C

c) After posting split

W

W W

W

X

W

X
X

X

W

X

a) Before splitting X from C b) After X splits from C d) After consolidating W with C

P PP P

Fig. 1a–d.Splitting, posting, and consolidating in theΠ-tree

terms, and, for a data node, it is the space where ex-
isting and potential data points lie;

– can also delegate responsibility for part of the space to
sibling nodes. This space is described by sibling terms.

The index and sibling terms include pointers toΠ-tree
nodes. The pointers to sibling nodes are called side pointers.
If a node C contains a side pointer to a node X, C is referred
to as the container node for X and X is referred to as an
extracted node of C.

Each level of the tree begins as one node, the root. Node-
splitting always creates a new sibling node on the same level.
When information about a root node split is posted, a new
root node and a new level to the tree are created. Posting
of other split information does not create new levels. Data
nodes are all on the bottom level of the tree.

In theΠ-tree, it is possible for a node to be referred to by
more than one parent. This happens whenever the boundary
of a parent split cuts across a child boundary. Then both
the old parent and its new sibling on the same level of the
tree are parents of the child. This child is called a multi-
parent node. (Nodes which are not multi-parent nodes are
single-parent nodes.)

2.2 Searching

For exact match searches, a unique path, that may include
side pointers, is followed down to the leaf (data) level.
Searches start at the root of theΠ-tree. At every node vis-
ited, if the search point is included in the node’s directly
contained space, a child pointer is followed that leads to a
lower level node. Otherwise, a side pointer is followed until
a sibling index node that directly contains the search point is
found. Eventually, a leaf data node is reached. If necessary,
side pointers at leaf level lead to a data node whose directly
contained space includes the search point. The record for the
search point will be present on that node, if it exists at all.

Since we are only interested in the case where node con-
solidation is possible, we must deal with the fact that nodes
can be deallocated. Because of this, searching uses lock-
coupling. The lock held on a node is not released until the
lock on the next node (its child or sibling) is acquired. In the
case an update is to be made at some level of the tree, the
nodes are locked with an exclusive lock at the level of the

tree where the update is to be made. (In [LS92], a slightly
less restrictive lock is used at the update level; we are mak-
ing a simplification.) On all other levels, or if no updates are
to be made, the search locks are share locks.

If an update or read is to be to on a data item, only the
database lock on the data item (of whatever granularity the
database system supports) is held to end of transaction. The
node locks of the searching algorithm of [LS92] need not
be held once the search has finished and the data item is
read or updated. (Database locks are not part of theΠ-tree
algorithms, which are mainly concerned with tree structure
modifications.)

For range searches, multiple children nodes are visited
at each level. These are the nodes whose directly contained
space intersects the query window. Eventually, the multiple
paths that are followed lead to all data nodes that satisfy the
search.

2.3 Node-splitting and index-term posting

When an insertion causes aΠ-tree node to overflow, that
node is split, with part of the contents going to a new sibling
node, and a new index term is posted to the parent. In theΠ-
tree node-splitting and the index-term posting are performed
by separate recoverable atomic actions, as follows:

Node-splitting: an updating process detects anΠ-tree node
C that is full and cannot accommodate the update. C
is split and part of its contents are moved to a newly
created node, X. Node-splitting concludes by storing a
sibling term and side pointer for X in C. Since C now
contains a side pointer to X, C is a container node for
X and X is considered extracted from C. (see Figs. 1a
and b). It is not true that C will forever be a container
for X. Another node, Y, could split from C at a later
time and take with it the pointer to X. Then Y would
be a container for X and C would be a container for Y.
Containment/extraction in theΠ-tree is determined by
the existence of side pointers.
Only the node C which is split need be locked (with an
exclusive lock) during the node-splitting atomic action.
If C is a data node, and the insertion is part of a transac-
tion, the lock on C may need to be held to end of trans-
action. Splits above the data node level are never part of

4

a database transaction. All splits immediately schedule
index-term posting, once their locks are dropped.

Index-term posting: an index term that describes the space
that was extracted from the container is posted to the
parent of the container in the current search path (see
Fig. 1c). An index-term-posting atomic action always
posts to a single parent. Since aΠ-tree node may have
more than one parent, index posting may consist of
several separate index-term-posting atomic actions. The
node where the posting is to take place is exclusively
locked during the posting. In addition, the container child
to which the index term refers is locked briefly with a
share lock, to check that a side pointer still exists whose
information still needs posting. To check that the parent
is the correct one and that it has itself not been changed
since the posting was scheduled, state identifiers in the
parent are checked against those in the posting request.
If they do not match, search for the correct parent begins
again in the root. More details can be found in [LS92].

Node-splitting is exactly the same (except for possible
database locks) at the abstraction level of theΠ-tree in
[LS92] for both data and index nodes. However, a particu-
lar Π-tree (such as a B+-tree) may have index terms which
look quite different from data records. The details of such
splitting will differ from example to example. Much of this
paper discusses the details of splitting, index-term posting,
and node consolidation for the hBΠ -tree. These cannot be
deduced from theΠ-tree.

When index-term posting involves multiple parents (be-
cause a parent split across a child boundary) or when a sys-
tem failure interrupts index-term posting, theΠ-tree is left
in a consistent state. Searchers can always traverse or visit
an extracted node by going through its container node and
following the side pointer. That is, two instances of theΠ-
tree can be structurally different, because index-term post-
ing has not been performed or completed, but semantically
equivalent. Traversal of a side pointer results in scheduling
the index-term-posting atomic action for the missing index
term.

Below, we describe in detail the node-splitting and
index-term-posting atomic actions:

Node-splitting atomic action
1. A node C (Container) is overfull and cannot accommo-

date an insertion. C is locked with an exclusive lock.
2. A new node X (eXtracted) is allocated.
3. The directly contained space of C is partitioned into two

parts.
4. One part remains in C and the other is moved (delegated)

to X.
5. A sibling term for X is included in C. C is unlocked

if C is an index node and not a data node. Data nodes
involved in splits may have to hold locks until end of
transaction.

Index-term-posting atomic action
0. Scheduling: either a tree traversal using a (multi-attribute)

KEY traverses a side pointer, or a node split has just been
performed, at LEVEL. This causes a posting action to be
scheduled.

1. Using KEY find P (Parent), where P is the node at
LEVEL+1 that contains KEY. Lock P with an exclusive
lock.

2. Find the child C (Container) of P where KEY belongs.
Lock C with a short-term share lock.

3. Using KEY find the sibling X (eXtracted) of C (by find-
ing a side pointer).

4. If no such sibling X of C exists, EXIT (posting has al-
ready been performed or node has been consolidated)
and drop all locks. If X exists, drop the lock on C.

5. Post index term: include in P an index term that describes
the space of X, and update in P the index term that
describes the space of C. Then drop the lock on P.

2.4 Node consolidation

To improve storage utilization, aΠ-tree node whose storage
utilization drops below a prespecified threshold should be
consolidated with another node that can be either its con-
tainer node or a node that has been extracted from it.

In theΠ-tree, regardless of whether the sparse node is a
container or an extracted node, the contents of the extracted
node are moved to the container node and the extracted node
is deallocated. All references to the deallocated node must
be removed from its parent(s). That is why, in theΠ-tree,
unlike node-splitting (which can be performed using multiple
independent atomic actions), node consolidation has to be
completed by a single atomic action.

We want atomic actions to involve as few nodes as pos-
sible, so we require three conditions for node consolidation:

1. both the container and the extracted nodes must be chil-
dren of the same parent,

2. the extracted node must be a single-parent node, and
3. the container node has sufficient space to absorb the con-

tents of the extracted node.

In Fig. 1c, we assume that node W is sparse and can be
consolidated with node C since both W and C have P as par-
ent. C absorbs W’s contents, the reference to W is removed
from P, and the index term for C is adjusted (Fig. 1d). Here
is the node consolidation algorithm:

Node-consolidation atomic action
0. Scheduling: a tree traversal using KEY visits a sparse

node at LEVEL.
1. Using KEY find P (Parent), where P is the node at

LEVEL+1 that contains KEY. Lock P with an exclusive
lock.

2. Find the child S (sparse) of P where KEY belongs. Lock
S with an exclusive lock. It is not required that P refer
to S. P need only have KEY in its directly responsible
space.

3. If S is NOT sparse anymore, EXIT and drop locks.
4. If no child of P (container of or extracted from S) is

found to merge S with, EXIT and drop locks. Otherwise
lock the child to merge with with an exclusive lock.

5. Let C and W be the container and extracted nodes (S
can be either one of them).

6. If W is NOT single-parent, EXIT and drop all locks.

5

7. Drop index term: remove index term for W from P, and
adjust C’s index term in P to include W’s space. If the
index term for W has never been posted, this step can
be skipped.

8. Drop sibling term: replace pointer to W in C with W’s
contents.

9. Deallocate W. Drop all locks.

2.5 Concurrency efficiency and recovery issues

An atomic action holds at most three exclusive locks on ex-
istingΠ-tree nodes at all times: in the case of node-splitting,
it is on the node that is about to be split, and in the case of
index-term posting, it is on the node where posting will take
place. In the case of the node consolidation, it is on the par-
ent and the two children. In the case of index-term posting,
a short-term share lock is also held on the container child.
Searching holds at most two locks at a time. No other locks
are held by atomic actions. Because only a small number of
locks are held and because most atomic actions are indepen-
dent of database transactions, concurrency is efficient.

Atomic actions are logged. If there is a failure before an
atomic action completes, it is rolled back. Complete atomic
actions (actions all of whose log records are on disk) are
redone at recovery if their results have not reached the disk.
Thus, the transaction manager must know about atomic ac-
tions in the sense it knows about database or system trans-
actions. More details can be found in [LS92].

3 The hBΠ -tree: structure

In this section, we first briefly review the hB-tree and then
we describe the structural modifications that transform the
hB-tree into the hBΠ -tree.

3.1 Review of the hB-tree

3.1.1 Structure

The hB-tree (or holey Brick tree) [LS90] consists of index
and data nodes.

– Index nodes are responsible fork-dimensional subspaces.
They contain a kd-tree [Ben79] which is used to organize
information about children on the next lower level of the
hB-tree and about regions which have been extracted and
transferred to siblings on the same index level.

– Data nodes contain the actual data records. Data nodes
may also contain kd-trees that enable the data nodes
to describe their own inner boundaries (collection of
records, known as record lists, that occupy ak-dimen-
sional region) and the extracted data-level sibling re-
gions.

Figure 2 contains an example hB-tree. We have a two-
dimensional attribute space. The root of the hB-tree is the
index node I, which is responsible for the whole space. Its
kd-tree describes the next level of the hB-tree, which consists
of two data nodes, A and B. There are three kd-tree paths in

KEY SPACE
x0

B

I

A

y0
A

B

rec
list3

x0

y0to A

to Bto A

x0

y0

ext

rec
list1

rec
list2

x: −inf, +inf
y: −inf, +inf

x: −inf, +inf
y: −inf, +inf

x: x0, +inf
y: y0, +inf

A

y0

x0

index
node

data
nodes

reclist1
reclist2

reclist3

Fig. 2. A two-dimensional hB-tree with one index node and two data nodes

I’s kd-tree: paths (x0-left) and (x0-right, y0-left) constitute
the index term for child node A, and path (x0-right,y0-right)
constitutes the index term for child B. These kd-tree paths
indicate that all records in which bothx ∈ [x0,+∞) and
y ∈ [y0,+∞) are located in node B (unless otherwise noted,
equality is assumed to be on the right path in our kd-tree
figures), and the rest of the records are located in node A.
Data node A also contains a kd-tree. Its paths describe the
spaces occupied by its two record lists and the space that
was extracted from A and was delegated to B. Finally, data
node B contains only a record list.

To summarize, a path from the root of a kd-tree to a leaf
kd-tree node can represent either

1. an index term for index nodes (that describes a region
of a child) or an inner boundary for data nodes (that
describes the region occupied by a record list), or

2. a sibling term (that describes the region of a node that
has been extracted from that node due to a prior split).

In addition, each node stores a description of the space it
is responsible for. These are two attribute values (low, high)
for each attribute. These values are called the boundaries of
the hB-tree node. For example, in Fig. 2 the boundaries of I
and A are the whole space, whereas the boundaries of B are
(x: [x0, +∞), y: [y0, +∞)).

Unlike other multi-attribute indexes that split nodes by
hyperplanes (e.g., the K-D-B-tree or the Grid File), the hB-
tree can use more than one attribute to describe the extracted
region. Therefore, nodes can be bricks with holes that repre-
sent extracted regions, hence the name holey Brick tree. For
example, in Fig. 2, node A is a brick from which a corner
has been extracted.

(Note that splitting is not symmetric unless the kd-tree
is split at the root. If the kd-tree is not split at the root,
the boundaries of a node C describe a space which strictly
contains the space described by the boundaries of the node
X which has been extracted from C. In the case of a split at
the root of the kd-tree, neither sibling is designated as the
“extracted” or the “container” sibling. Also, for a split at the
root, no sibling terms are created.)

6

3.1.2 Searching

Searching for point data is straightforward. We start the
search at the hB-tree root. The root is searched by traversing
its kd-tree. Every kd-tree node has information which in-
cludes an attribute and its value. By comparing this value to
the value of the corresponding attribute of the search point,
one can decide on which of the two children of the kd-tree
node one should visit next.

This process leads us to lower levels of the hB-tree and
eventually to a data node. That data node contains the region
where the search point belongs, if it exists at all. Finally, the
points of the node are searched with the help of the kd-tree
of the node.

To illustrate, assume thaty0 = 0 andx0 = 0 and assume
that we are searching for point (10,−5) using the example
hB-tree of Fig. 2. We start from the root I of the hB-tree and
we follow the kd-tree path the search point directs us to,
that is, (x0-right, y0-left). This path leads us to data node
A, where the same procedure using A’s kd-tree leads us to
record list reclist2. This record list is the place where our
search point is located, if it exists at all.

3.1.3 Node-splitting

When an insertion causes a data or index hB-tree node to
overflow, its kd-tree is used to find a kd-subtree whose size
is between one and two thirds of the contents of the node.
For data nodes, if necessary, a record list is split using one
or more attributes and new kd-tree nodes are introduced to
describe the resulting subspaces. A new hB-tree node is al-
located and part of the contents of the overflowing node are
moved to it. When the split is not at the root of the kd-tree,
a special marker, called an external marker, is included in
the original node to indicate that part of its contents have
been extracted. (When the split is at the root of the kd-tree,
there is no external marker.)

For example, in Fig. 2, A’s kd-tree shows that A, which
initially was responsible for the whole attribute space, was
split by a corner (bothx and y attributes were used). All
records in which bothx ∈ [x0,+∞) andy ∈ [y0,+∞) were
moved to a newly allocated node B. Two kd-tree nodes,
x0, andy0, were introduced to describe the new space de-
composition. The resulting kd-tree in A describes A’s inner
boundaries and the extracted region (indicated by the exter-
nal marker).

The kd-tree nodes in the path from the kd-tree root of the
node to the extracted subtree which describe the extracted
region and have not been posted during another splitting are
posted to the parent hB-tree node. Posting of index terms
may trigger additional node splits at higher levels. In Fig. 2,
kd-tree nodesx0 andy0 were posted in the index node I to
describe the splitting of node A.

When the splitting boundary of an index node intersects
the space of a child, that child becomes a multi-parent node.
Its address is stored both in the original and the new sibling
node. All of the parents of a multi-parent node are on the
same level of the tree, since all splits create a new node on
the same level of the tree as the original node.

QQ

x1

x2

y2

y1

ext K K

(a) kd−tree (b) corresponding space

K

K

extM L

M

L

y1

y2

x1 x2In the hB−tree

In the hB −tree

(c) kd−tree (d) corresponding space

x1

x2

y2

y1

K

L

M

R

K

K

M

R

L

QQ

y2

y1

x1 x2

cont:T

cont:F

Fig. 3. Intra-node organization of hB-tree and hBΠ -tree nodes using kd-
trees

3.2 Making the hB-tree aΠ-tree

In the following discussion, we describe the transformations
that make the hB-tree aΠ-tree. In order to transform the
hB-tree into a case of theΠ-tree when a split at node N
occurs, we need to place the actual address of the node that
is extracted from N in N. When the split is not at the root
of the kd-tree, we will simply replace external markers with
this address. We must also treat the case of a split at the
root. We shall use Fig. 3 to illustrate these changes and the
changes we make to support node consolidation.

Figure 3a shows the intra-node organization of an index
hB-tree node Q, and Fig. 3b shows the corresponding space
decomposition. Each path in the kd-tree of node Q corre-
sponds to either an index term or a sibling term. Here, the
path (x1-left, y1-left) corresponds to a sibling term and de-
scribes space that has been extracted from Q and delegated
to a sibling on the same level as Q. This space is represented
by the shaded region of Fig. 3b. The remaining four paths in
the kd-tree of Q correspond to index terms. They describe
the decomposition of the space node Q is directly responsi-
ble for among its children, namely nodes K, L, and M. These
spaces are represented by the white regions of Fig. 3b.

3.2.1 Side pointers

The first and most important modification is the replacement
of external markers by pointers to the extracted nodes, called
side pointers. In Fig. 3c, the thick arrow with the address of
node R represents the side pointer that is now used in the
place of the external marker. Right after the split of R from
Q, R will contain a kd tree which had been a subtree of the
kd tree which was in Q. R is on the same level as Q. R is
not on the same level as L, M and K, which are children
of Q. In Fig. 3d, the shaded region represents the space the
extracted node R is responsible for.

Now, we can be lazy about posting index terms that
describe a node split. A search that should visit the extracted
node can still visit it through its container node.

7

For example, in the hB-tree the index term that describes
the extraction of node R from node Q (see Fig. 3a) must be
posted in the parent of Q at the time of the split, otherwise
one cannot visit node R. In the hBΠ -tree, the inclusion of
the side pointer to R in Q allows us to perform the posting
any time after a split without affecting search correctness
(see Fig. 3c).

3.2.2 Splitting a node at its kd-tree root

Another important modification is the way node-splitting is
done, when the kd-tree of the node is split at the root. In
the original hB-tree, one of the subtrees becomes the kd-
tree of the node that is split, and the other one becomes
the kd-tree of the newly allocated node. The original kd-tree
root disappears and no external marker is created for this
split. In the hB-tree, splitting at the root produced symmetric
children, where neither can be identified as the “container”
or “extracted” child.

In the hBΠ -tree, we keep the kd-tree root in the origi-
nal node and we simply extract the appropriate kd-subtree,
which again becomes the kd-tree of the new hBΠ -tree node.
Now the container/extracted relationship is also indicated by
the side pointer from the container to the extracted sibling
node. In this case, we are transforming a symmetric relation-
ship to an asymmetric one, where one sibling is arbitrarily
declared to be the container and the other the extracted sib-
ling. Π-trees require this asymmetry.

3.3 Supporting node consolidation

To support node consolidation, we make further structural
changes. Given an hBΠ -tree node N, the idea is to be able
to determine the following information without having to
visit extra hBΠ -tree nodes:

1. the containment order of the children of N and
2. whether a child node of N is multi-parent or not.

For example, in the hB-tree of Fig. 3a, we are not in a
position to know the above-described information: (1) we do
not know the address of the node that was extracted from Q,
(2) we do not know whether the child L of Q was extracted
from the child M of Q, or vice versa, and (3) we do not
know whether the child K of Q is multi-parent or not.

3.3.1 Decorations

To determine the containment order of the children of a
node, we begin by associating each kd-tree node with the
the address of the hBΠ -tree node it was posted from. We
use the term decoration for the children addresses associated
with kd-tree nodes.

We can achieve space savings and reduced bookkeeping
by following two conventions. First, a kd-tree node that has
the same decoration as its parent kd-tree node does not need
to store the decoration again (for example, in Fig. 3c, kd-
tree nodesy1 andx2 did not store their decoration, since
they were sharing the same decoration with their parent).

Second, if a kd-tree node’s left or right pointer is a child
pointer and is the same as the kd-tree node’s decoration,
then that pointer does not need to be stored (for example,
in Fig. 3c, kd-tree nodesy1 andy2 did not store their right
pointers and kd-tree nodex2 did not store its left pointer,
since they were the same as their decorations). We say that
decorations and child pointers that are not stored are NULL.
Note that decorations are relevant to index nodes only. Data
nodes do not have children.

The collection of kd-tree nodes with the same decoration
forms a decorated fragment that describes the partitioning of
the space of the child node appearing as decoration among
its siblings. We observe that now one can determine the
containment order of the children of a node by just looking
at the kd-tree of that node. For example, the kd-tree of node
Q in Fig. 3c indicates that first node L was extracted from
K, and later node M was extracted from L. The K-fragment
consists of kd-tree nodesx1, y1, andx2, the L-fragment of
kd-tree nodey2, and the M-fragment is empty, indicating
that either M has not been split yet, or that no splitting of M
has been posted yet. The arrows in the space decomposition
of Fig. 3d indicate the containment order of the children of
node Q.

3.3.2 Continuation flags

Whenever a decorated fragment is partitioned by an index
hBΠ -tree node split, the extracted kd-subtree is decorated
with the same decoration as the split decorated fragment.
After the completion of the split, the child hBΠ -tree node
that appears as decoration will be a multi-parent node. It
will be pointed to by both the original node and the newly
created node.

We distinguish the multiple parents of an hBΠ -tree node
N by referring to the parent where the original root of the
N-fragment is located as the prime parent of N. All the other
parents of N, where the N-fragment is continued, are called
secondary parents of N. We also refer to the concatenation
of the decorated fragments for a node in its parent nodes as
the full decorated fragment for that node. The root of the full
decorated fragment is always located in the prime parent.

Since node consolidation in theΠ-tree requires that the
node that is being deleted is referenced only by a single
parent, we have to be able to detect whether a node is multi-
parent or not by examining its current parent. To accomplish
this, we keep a special continues-to flag with every side
pointer. The continues-to flag of a side pointer is TRUE
or FALSE, indicating whether the decorated fragment that
contains that side pointer is continued to the sibling node or
not. This is a way to determine if the child node that appears
as the decoration is multi-parent or not. For example, the
TRUE continues-to flag of the side pointer to R in Fig. 3c
indicates that the child node K of node Q is multi-parent,
and that node R is its other parent.

In addition, some of the index-term-posting algorithms
that we describe in the next section require that we are able
to determine whether a parent node P of a node N is the
prime parent or a secondary parent of N. Clearly, if N is
the decoration of a kd-subtree of P’s kd-tree, P is the prime
parent of N. But if N happens to be the decoration of the

8

root of P’s kd-tree, it may be the case that the N-fragment in
P is a piece of the full N-fragment. For this reason, all hBΠ -
tree nodes also store a special continues-from flag. When a
decorated fragment is partitioned by an index node split, we
make the continues-from flag of the extracted node TRUE,
to indicate that it is a secondary parent of the child node
that appears as the decoration of the root. For example, the
FALSE continues-from flag of hBΠ -tree node Q in Fig. 3c
indicates that Q is the prime parent of K. Note that, regard-
less of the value of Q’s continues-from flag, Q is the prime
parent of both L and M.

3.4 Terminology and notation

Table 1 shows the terminology that we will be using in the
following sections.

In Fig. 3c, the index term for node K consists of all the
kd-tree nodes in the two paths from the root of Q’s kd-tree
to K, i.e., x1, y1, andx2. The K-subtree is the whole kd-
tree, the L-subtree is the same as the L-fragment, and the
M-subtree is empty. If we consider Q to be the parent node
(P) and K to be the container node (C), then we have two
PtoC-paths: (x1-left, y1-right) and (x1-right,x2-left). In the
space decomposition figure (3d), index terms for the children
of Q correspond to one or more white rectangles, and their
containment order is represented by the thick arrows.

Also, in Fig. 3c, the sibling term for node R consists of
all the kd-tree nodes in the path from the root of Q’s kd-tree
to R, i.e.,x1, andy1. If we consider Q to be the container
node (C) and R to be the extracted node (X), then the CtoX-
path is (x1-left, y1-left). In the space decomposition figure
(3d), the sibling term for the sibling R of Q corresponds to
the shaded rectangle.

4 The hBΠ -tree: splitting/posting

In the previous section, we showed how kd-trees are used to
represent index and sibling terms. In this section, we describe
in detail how kd-trees should be split, how sibling terms
are created during hBΠ -tree node-splitting, and finally, how
index terms should be posted, and more importantly, what
they should look like.

4.1 Description of a problem

We begin by showing here how one could adapt the origi-
nal hB-tree node-splitting and index-term-posting algorithms
(described in [LS90]) for use in the hBΠ -tree. This is a
straightforward adaptation, since the main innovation of the
hBΠ -tree are the side pointers and the fact that node-splitting
and index term posting are performed by separate atomic ac-
tions.

We then show that the original algorithms are flawed
and that an hBΠ -tree (or an hB-tree) that uses them is not
well-formed. In particular, search is not correct. Our new
algorithms, described in Sect. 4.2, will correct this flaw.

A B

y10

y5

x15x7 x10

y10

x15x7

y5

x10

y10 x15

x7

B

y5

x10

(a) before (b) after

B

A
x:−inf, +inf
y:−inf, +inf

x:−inf, +inf
y:−inf, +inf

AA B

y10 x15

x10

y5

x7
K

L

M

N

K

L

K

L

O

M

M

N O
M

N O

M

K

M

L

M

N

O
cont:T

cont:Tx: 7 , 15
y:−inf, +inf

Fig. 4a and b.Original index node splitting

4.1.1 Original index-node-splitting

We distinguish index-node-splitting from data-node-splitting.
Index nodes contain a kd-tree only, whereas data nodes con-
tain either a collection of records known as a record list, or
a kd-tree and one or more record lists.

Index-node-splitting is straightforward. In [LS90], it is
shown that one can always split off a kd-subtree with be-
tween one third and two thirds of the kd-tree nodes. This
is the extracted kd-subtree that is moved to the extracted
node (a newly allocated hBΠ -tree node). The root of the
extracted kd-subtree takes the decoration of the decorated
fragment it belonged to. The parent of the root of the ex-
tracted kd-subtree is made to point to the extracted node.
This is done by replacing the child pointer of the parent cor-
responding to the extracted kd-subtree with a pointer to the
extracted hBΠ -tree node.

For example, in Fig. 4, node B was split off node A.
(In Fig. 4 and subsequent figures, we use the notationxn
as shorthand forx = n.) The kd-subtree rooted aty5 was
extracted and a side pointer to B, indicated by the thick
arrow, was included in A’s kd-tree. Note that the child M of
A is now referenced to by both A and B and hence is a multi-
parent node. Also, note that the space directly contained by
A has now become holey.

The procedure for locating the root of the extracted kd-
subtree is very simple:

1. Start from the kd-tree root.
2. Visit the child that represents the root of the larger kd-

subtree.
3. If the size of that kd-subtree is between one third and

two thirds of the page size, then this is the root of the
extracted kd-subtree, else repeat from step 2.

Note that the extracted space is described by the kd-tree
path from the root of the split node to the extracted kd-
subtree. This is always ak-dimensional region (or Brick).

4.1.2 Original data-node-splitting

To describe data-node-splitting, let us assume that we start
with an hBΠ -tree that has a single data node (and, of course,
no index nodes at all). That node will contain a single record

9

Table 1. hBΠ -tree terminology

Term Description
– hBΠ -tree node 2k-dimensional array stored in an hBΠ -tree node

boundaries that describes the space the node is responsible for
– index term kd-nodes in the path(s) from the root of a

kd-tree to a child node pointer
– sibling term kd-nodes in the path from the root of

a kd-tree to a sibling node pointer
– decorated fragment set of kd-tree nodes with common decoration
– full decorated fragment the concatenation of all the decorated fragments

(e.g. full A-fragment) for a node in its multiple parents
– decorated subtree kd-subtree rooted at a decorated kd-tree node
– P, C, X (P)arent, (C)ontainer and e(X)tracted nodes
– PtoC-path a path from the root of the C-fragment in P to C
– CtoX-path the path from C’s kd-tree root to X

A A B

rec
list−1

x:−inf, +inf
y:−inf, +inf

x20

rec
list−2

x:−inf, +inf
y:−inf, +inf

rec
list−3

x: 20, +inf
y:−inf, +inf

x20

B

B

(b) after(a) before

AA B

Fig. 5a and b.Data node hyperplane split

list. Once the node becomes full and cannot accommodate
another insertion, it has to be split.

In the hBΠ -tree (and the hB-tree), one can simultane-
ously use more than one attribute to split a record list. We
talk about hyperplane ork-dimensional corner splits when
one ork attributes are used, respectively. Every record list
keeps track of the attribute that was last used to split it. The
splitting algorithm uses this information to split the record
list by a different attribute next time in a round-robin fash-
ion.

We first try to split our record list using the current split-
ting attribute and so that at worst a one third/two thirds split
is made. If this is not possible, then we try with the next
attribute and so on. If a split with one attribute is possible
(this was almost always the case in our experiments), we
create a new kd-tree node whose attribute is the same as the
splitting attribute. One of its children is the remaining record
list and the other a side pointer to the extracted node, where
the extracted record list is moved. For example, in Fig. 5,
data node A was split and all records withx ≥ 20 were
extracted to a newly created node B. The appropriate kd-
tree node was included in A to describe the node’s “inner”
boundaries and the extracted region.

In the case that no hyperplane split is possible, we can
use more than one attribute, and then, we have a corner
split. For example, in Fig. 6, there is no way to extract be-
tween one third and two thirds of the node’s contents by
performing a hyperplane split. On the other hand, we can

A x20 B

rec
list−1

x:−inf, +inf
y:−inf, +inf

A

B

y20

x20
rec
list−2

B

y20

rec
list−3

rec
list−4

x:−inf, +inf
y:−inf, +inf

x: 20, +inf
y: 20, +inf

(a) before (b) after

A A B

Fig. 6a and b.Data node corner split

use both indexing attributes and extract all records that have
both x ≥ 20 andy ≥ 20. This kind of split introduces two
kd-tree nodes in node A that describe the resulting space de-
composition. In [LS90], it is shown that it is always possible
to achieve a one third to two thirds corner split.

If there is a kd-tree in the data node, we may be able
to find and extract a kd-subtree that refers to a collection of
record lists, instead of splitting a record list. In that case,
data node-splittings do not introduce new kd-tree nodes.

4.1.3 Original index term posting

Suppose a node C (for Container) is split and a new node
X (for eXtracted) is created. Once the node-splitting atomic
action is over, or when the side pointer from C to X is
traversed, we want to post the description of the split to the
current parent node P (for Parent) of C. The objective of
index-term-posting is to include (post) a description (index
term) of X’s space in P, and also to modify the already
existing index term in P for C, so that it reflects the new
(shrunk) space of C.

For example, in Fig. 7, the shaded kd-subtree was split
off node K and now resides in node M. The parent P of K
initially only contains index terms for its children K and L.
Index term posting has to include in P the minimum number
of kd-tree nodes in the path from the root of the kd-tree of
the container node K to the extracted node M that describe
the extracted space. This is the so-called condensed path.

10

x5

y5

y10

x15

x20y15

A

L B

D

E

F

L

A

x5

y5

y10

x15 x20

y15

B

D

F E
B

K

x5
L

K

y10

M

x5

L

K

Space of K

parent of K

after

before

index term posting

previously
extracted
space

condensed path

M

extracted
kd−subtree
that has been
moved to M

extracted
space

P P

Fig. 7. Original index term posting

In our example, it consists of kd-tree nodesx5 (that has
already been posted) andy10. Note thaty5 does not belong
to the condensed path, sincey10 is a tighter boundary for the
extracted space. Once posting has been performed, node P
contains a new index term for M, and has an updated index
term for K: before the boundaries for K were (x ≥ 5 and
y = anything) and now they are (x ≥ 5 andy < 10).

We have just sketched the basic ideas behind index term
posting. We will not describe this procedure in more detail.
The reason is that we have found that the posting algorithm
for the hB-tree [LS90] is not correct. In the following sec-
tions, first we demonstrate the problem, and then we present
in detail various alternative splitting and posting policies that
remedy the problem.

4.1.4 hB-tree splitting/posting algorithm flaw

The directly contained space of a data hBΠ -tree node, i.e.,
the one that does not include space that has been delegated
to a sibling node due to a split, can be viewed as a union of
disjoint rectangular regions corresponding to the record lists
that reside in the node.

We call the boundaries of these disjoint spaces at the
data level or of collections thereof data space boundaries
(or DSBs). We have found that if index nodes are split in
such a way that the extracted space and/or the remaining
directly contained space of the nodes do not correspond to a
DSB there will be search correctness problems. We say that
such splits do not preserve DSBs. Also, we say that a kd-
tree defines DSBs when the space decomposition it describes
preserves DSBs.

With the help of the scenario demonstrated in Figs. 8–
11, we show that the splitting and posting algorithm of the
hB-tree [LS90] is erroneous. These figures use an hBΠ -tree,
but the argument we will use also holds for hB-trees. In the
first three phases of our scenario, we can see the state of an
hBΠ -tree after:

– C2 was extracted from C1, and the condensed path (y5,
x10) was posted to B1 (see Fig. 8),

– B2 was extracted from B1, and the condensed path (y5)
was posted to A1 (see Fig. 9),

y5

C1

x5
D1

...
more

...
more

x10

C2

D2

...
more

C2

...
more

y5

B1
C1

x10

C2

C2C1

C1

x10

y5

C1

C2

x5 x10

y5

...

...

...
...

The tree
structure

The space
decomposition

B1

Fig. 8. Phase 1: C2 was split off C1 and the condensed path (y5, x10) was
posted to B1

y5 x10

y5 The space
decomposition

x10B1 B2

B1

B2

A1

A1B1

B2

C1

B2

C1

C2

The tree
structure B2

B1

C1

C2C1

...
more

y5

C1

x5
D1

...
more

...
more

x10

C2

D2

...
more

C2

...
more

C1

C2

x5 x10

y5

...

...

...
...

y5

y5

Fig. 9. Phase 2: B2 was split off B1 and the condensed path (y5) was
posted to A1

– C3 has just been extracted from C1, and we are ready to
post the index term for that split (see Fig. 10).

The algorithm described in [LS90] does not cope with
space decompositions that do not preserve DSBs. As shown
in Fig. 11, it would post kd-tree nodex5 abovey5 in B1,
and change the C1 decoration to a C3 decoration in B2.
Note that in the hBΠ -tree we need two separate index-term-
posting atomic actions to do this. This is because node C1
happens to be a multi-parent node.

But, then we would have a major problem. A process
searching for point (2, 9), which is in C1, would be directed
from node A1 to node B2, and eventually to node C3. That
is, search is not correct. The problem occurred because node
B1 was split along a boundary that did not preserve DSBs.

What is needed to correct the hB-tree flaw is to preserve
DSBs at the index levels. We have found various policies
that accomplish this. Basically, they involve restrictions on
the places where nodes can be split, or the nature of the index
term that is being posted. In the next section, we present a
hierarchy of the various resulting splitting/posting algorithms
that preserve DSBs.

11

x10

y5

y5 x10

y5 The space
decomposition

x10

y5

B1 B2

B1

B2

A1

A1B1

B2

C1

B2

C1

C2

C1 C3 C2

C3
C2

x5
D1 D2

...
more

...
more ...

more

...
more

The tree
structure B2

B1

C1

C2

C1
C3 C2

...

... ...

C1

...
more

...

Fig. 10.Phase 3: C3 was split off C1 and we are ready to post the condensed
path

x10

y5

x10

y5 The space
decomposition

x10

y5

B1 B2

B1

B2

A1

A1B1

B2

C2

C1 C3 C2

C3
C2

x5
D1 D2

...
more

...
more ...

more

...
more

The tree
structure B2

B1

C2

C1
C3 C2

...

... ...

y5

x5
C1

B2

C3 C3

C1 C1

y5

x10x5

y5
y5

search point (2, 9)

...
more

...

Fig. 11. Phase 4: The condensed path (x5, y5) was posted to B1, and the
C1 decoration was changed to a C3 decoration in B2, but now searches for
point (2, 9) are not correct

4.2 New approaches to splitting and posting

We introduce three different approaches to splitting and post-
ing which correct the flaw in the hB-tree. All of these ap-
proaches preserve DSBs. One of them, the CB (Complete
Boundaries), has the best performance characteristics. How-
ever, implementors may prefer to use the other approaches
for reasons of algorithmic simplicity, as the performance dif-
ferences are not great. In any case, reading the descriptions
of the simpler approaches aids in understanding the CB ap-
proach.

4.2.1 Solution 1: post full paths

One way to preserve DSBs is to always post the full path
during index term posting. Here the interesting thing to ob-
serve is that this reduces posting to appending to or relabel-
ing (with new decorations) an already posted kd-tree. (This
is already the case when posting index terms from the data
level splits in the hB-tree.)
Claim: Posting reduces to appending or relabeling when full
paths are always posted.
Proof of claim: First we treat the case where scheduled
posting occurs in the same order as the corresponding node-
splitting. We also assume that there is only one parent node
for the node(s) to be split, and it has room for all the new
postings.

x10

y5

The space
decomposition

y5

B1 B2

B1

A1

A1B1

B2

C1

B2
C2

C1 C3 C2

C3
C2

x5
D1 D2

...
more

...
more ...

more

...
more

The tree
structure B2

B1

C1
C3 C2

...

... ...

...
more

B1

x5

y5

x10

C1

C1

B2
C2

x5

y5

x5

C1C3

...

Fig. 12. Posting the full paths: kd-trees at index levels define DSBs

Suppose first we extract X from C. We then post the full
path from the root of the kd-tree in C to the root of the
kd-tree of X (the CtoX-path) to the parent P. The next split
could be at C or at X. If it is at X, suppose Y is extracted
from X. Then the path from the root of the kd-tree in X to
the root of Y is appended to the path already in P.

Suppose, instead, that the second split is in C. Say, a
node Z is extracted from C. Then the path from the root of
the kd-tree in C to the root of the kd-tree in Z intersects
the CtoX-path (possibly only at the root of the kd-tree in
C). The new path then is connected to the already posted
CtoX-path where they intersect by appending the part that is
not shared. It is also possible that the new path is a subpath
of the already posted CtoX-path. Then the already posted
CtoX-path need only be decorated with the address of Z in
the appropriate place. This new decoration is a kd-tree node
decoration if Z now contains the side pointer to X, or it is a
kd-tree leaf decoration if not.

Now suppose we have asynchrony and we are posting
full paths. Can it be that a later posting is missing the earlier
split information to append to? This might happen if A split
from B and the information was not posted and then D split
from A. However, we adapt the policy of posting only split
information from the first side pointer we see in a chain
starting from a child whose address we already have. Using
this policy, posting full path always appends to an existing
path.

Now suppose that the parent P has been split and part of
the posted information is in one node and part is in a sibling.
We claim that this does not change the fact that new posting
information is always appended to an existing path. This is
because the kd-trees on one level of a hBΠ -tree can logically
be considered as forming one large kd-tree by concatenating,
following sibling pointers. This proves the claim.

Thus, the kd-tree (concatenation of all kd-trees) of a level
of the hBΠ -tree is a prefix of the kd-tree of the level below.
Since the level-0 (data level) kd-tree defines DSBs, the same
will be true for the level-1 kd-tree, and so on. Hence, a path
from the root of a kd-tree to any kd-tree node in the kd-tree
defines DSBs.

Figure 12 shows the hBΠ -tree of Fig. 10 if we post the
full paths. Now, kd-tree nodex5 was posted to B1 as part
of the index term for C2. Therefore, the index term for the
subsequent splitting of B1 defines a DSB.

12

x10

y5

The space
decomposition

x10

y5

B1 B2

B1
B2

A1

A1B1

B2

C1

B2

C2

C1 C3 C2

C3
C2

x5
D1 D2

...
more

...
more ...

more

...
more

The tree
structure B2

B1

C1
C3 C2

...

... ...

...
more

y5

x10

y5

x10

B1

C1

C1
C2

...

Fig. 13. Splitting at decorations: kd-trees at index levels define DSBs

There is a drawback in posting full paths, though, that
has to do with the size of the index terms. The hB-tree uses
condensed paths in order to have a worst case guarantee of
2k + 1 kd-tree nodes for the size of the index term. Posting
full paths cannot offer any guarantee on the size of the index
term.

4.2.2 Solution 2: split at decorations only

Another way to preserve DSBs is to split nodes only at
boundaries defined by their children. This is also a recursive
procedure that preserves DSBs across the tree levels. By
definition, data nodes define DSBs because they are collec-
tions of record lists. At higher hBΠ -tree levels, when index
hBΠ -tree nodes are split only at boundaries defined by their
children (so that the root of the new hBΠ -tree node was
a decorated kd-tree node before the split), no multiparent
nodes are created. (We call this policy splitting at decora-
tions). This means each new hBΠ -tree index node has the
boundaries of the union of its children. Recursively, these
are DSBs.

Figure 13 shows the hBΠ -tree of Fig. 10 when nodes are
split at decorations only. Node B1 was not allowed to be
split by extracting the kd-subtree rooted atx10. Instead, the
extracted kd-subtree was the right child ofx10 whose root
was C2-decorated (not shown in the figure). Therefore, the
index term for B2 in A1 does includex10. Note that, in order
to split off C3 from C1, we used a decorated kd-subtree, too.

One advantage of splitting at decorations is that, since
no multi-parent nodes are ever created, index term posting
can always be completed with a single atomic action. On
the other hand, index nodes cannot be split anywhere. This
can degrade index node storage utilization. Whenever it is
not possible to find a decorated kd-subtree with between one
third and two thirds of the size of a page, we have a “bad”
quality split.

4.2.3 Solution 3: split at complete boundaries only

The two previous solutions tell us that we have DSBs any-
where in a kd-tree when we always post the full paths, or
at decorated kd-tree nodes regardless of the posting policy
(full or condensed paths). In this section, we describe a new

B

A

corresponds to the
root of B’s kd−tree

a

b

c

d

e

f g

kd−tree of node P

decorated kd−tree node

additional candidate kd−tree
nodes for extraction

full paths

...

...

...

...... ...

... ...

h

Fig. 14. Splitting at complete boundaries: kd-trees at index levels define
DSBs

splitting policy which is a combination of the two previ-
ous solutions. It assumes that the condensed paths are being
posted, but offers more candidate kd-subtrees for extraction
(in addition to the decorated ones).

Let us assume that we have a decorated kd-tree node,
i.e, a root of a decorated fragment, in an index hBΠ -tree
node at levelL. Let n1 be that kd-tree node andn0 be its
parent kd-tree node (which, of course, belongs to a different
decorated fragment). Imagine that the kd-tree pathn0, n1,
n2, . . . , np, p ≥ 1, is full, i.e., there are no missing kd-tree
nodes between any two kd-tree nodes in the path. In other
words, we already know that the path from the the previous
decoration that ends inn0 defines DSBs (it is the index term
for the child node appearing as the decoration ofn1), and
we now extend it with a full path that, by definition, also
defines DSBs. We can extract the kd-subtree rooted atn1,
becausen1 is decorated. But we can also extract kd-subtrees
rooted at any child of a node on the pathn1, n2, . . . , np,
and still preserve DSBs.

For example, in Fig. 14, we can see the kd-tree of node
P. Two of the children of P are nodes A and B. We can
see that kd-tree noded corresponds to the root of the kd-
tree of node B. This is because it is decorated and there
are no missing kd-tree nodes above it. Also, kd-tree nodec
corresponds to the kd-tree node that carries the side pointer
to B in the kd-tree of A that is the container of B. We can
extract any of the following kd-trees: (a) the one rooted atd,
becaused is decorated (solution 2), (b) the one rooted ate,
because there are no missing kd-tree nodes aboved, (c) the
one rooted atf , because there are no missing nodes above
d ande, and (d) the one rooted atg, for the same reason we
can extract the one rooted atf .

We say that these additional splitting points in the kd-
trees of index nodes define complete boundaries. In order
to make this splitting approach work, we need to have a
way to determine whether a kd-tree path is full or not. The
bookkeeping needed to implement this splitting approach
will be described in a later section.

The complete boundaries are not the only places where
DSBs are preserved when posting the condensed paths.
Imagine that there exists a kd-tree pathn1, n2, . . . , np
(p ≥ 2k), with no missing kd-tree nodes, that contains both
a low and a high boundary for each one of thek indexing

13

attributes. Then, if the kd-tree pathnp, np+1, . . . , nq, q ≥ p,
is also full, clearly, a kd-subtree rooted at any child of a
kd-tree node in that path is a candidate for extraction.

It is not very likely that there will be full paths which
contain low and high boundaries for every attribute and
which are also reasonably short. Even for a two-dimensional
hBΠ -tree such a path will have to be at least four kd-tree
nodes long and may be much longer. Therefore, we choose
not to consider this scenario in our “complete boundaries”
solution.

4.3 Algorithm hierarchy

In the previous section, we defined one new policy for post-
ing index terms and two new policies for splitting nodes.
We summarize all the existing node-splitting and index-
term-posting policies, and we present a hierarchy of split-
ting/posting algorithm that preserve DSBs at the index lev-
els.

The term splitting policy refers to the the way index
nodes are split. When splitting an index node, we have three
options regarding the way we split its kd-tree:

A Anywhere: This policy may split a decorated fragment
Consequently, multi-parent nodes may be introduced.
At most one multi-parent node is introduced per split.

D At decorated kd-subtrees: That is, we always extract a
decorated subtree. All hBΠ -tree nodes are single-parent
nodes.

CB At complete boundaries: In addition to splitting at deco-
rated fragments, we can split at any kd-tree node after a
decorated kd-tree node, as long as the path from the par-
ent of the decorated kd-tree node to that kd-tree node is
full, i.e., there are no missing kd-tree nodes. This policy
introduces multi-parent nodes, as well.

The term posting policy refers to the nature of the index
terms that are posted. An index term is comprised of copies
of some of the kd-tree nodes in the path from the root of
the kd-tree of the container node to the extracted node. An
index term must describe the space that was delegated to the
extracted node. We have two options regarding the nature of
the index term:

fp We can use as an index term the full path to the extracted
node. That is, all kd-tree nodes in the path are posted by
a posting action.

cp We can use as an index term the condensed path to the
extracted node: These are the kd-tree nodes of the full
path that define the “tighter” low and high boundaries
for each dimension. Hence, 2k + 1 is the maximum size
of an index term (the extra kd-tree node may be needed
in order to correctly merge the condensed path with the
existing kd-tree of the parent where posting takes place).

In Fig. 15, we present all possible algorithm configura-
tions. Algorithm CB/fp is irrelevant, since there are no miss-
ing kd-tree nodes when posting the full path. CB/fp is the
same as A/fp.

It is important to notice that, since data nodes do not have
decorated subtrees, if their kd-tree has to be split, any sub-
tree can be extracted (as in the hB-tree). Any place in a data

A/cp

D/cp

D/fp

A/fp
POSTING POLICIES

fp: full path
cp: condensed path

CB/cp

SPLITTING POLICIES

A: anywhere
D: at decorated fragments
CB: at complete boundaries

Fig. 15. Splitting/posting algorithm hierarchy

node’s kd-tree defines DSBs, and therefore, we can achieve
the best possible node storage utilization. Thus, the restric-
tion we impose on splitting applies only to index nodes.

We observe that algorithm A/cp corresponds to the orig-
inal splitting/posting algorithm for the hB-tree, the one we
have shown to be erroneous because it does not preserve
DSBs. In the following sections, we will examine the other
four algorithms (below the horizontal line of Fig. 15) that
preserve DSBs and discuss the advantages and disadvan-
tages of each one. We expect to obtain “better” hBΠ -trees
when using algorithms that are higher in the graph of Fig. 15.

4.4 Algorithm D/fp

In this section, we describe the simplest splitting/posting
algorithm: it splits index nodes only by extracting decorated
subtrees (D) and posts the full CtoX-path (fp), hence the
name D/fp. This algorithm uses both Solutions 1 and 2 in
order to preserve DSBs.

4.4.1 Splitting at decorations (D)

When we split at decorations in the hBΠ -tree, data nodes are
split anywhere (like the hB-tree). But, for index hBΠ -tree
nodes, the extracted subtree must be a decorated subtree. In
general, the kd-tree of an index node must be exhaustively
searched in order to find the most suitable decorated subtree
for extraction. In some cases, it may not be possible to lo-
cate a decorated subtree whose size is between one and two
thirds of a node’s size. We always extract the best possible
decorated subtree, i.e., the one whose size is closest to half
the hBΠ -tree node size.

Finally, if no decorated subtree exists, we can drop the
splitting action and reschedule it in the future (that would
be the case in Fig. 16a if kd-tree nodex10 were missing).
(This case never occurred in our experiments since most
kd-tree nodes were decorated.) Remember that index hBΠ -
tree nodes are split when they have not enough space to
accommodate an index term posted by a posting action. By
deferring a splitting action in an index node, we actually
defer a posting action. This is acceptable, since search is
still correct.

Here is the algorithm for splitting at decorations, in a
node C:

Splitting at decorations (D)
1. Find a decorated subtree in C whose size is closest to

half a node’s size, else EXIT.

14

y5

x5

K

D

E L

F

x15

y5

C

D

K

E L F

x5 x10 x15

x10

(a) C and its space before the subtree rooted
 at x10 is extracted to create node X.

x, y: −inf, +inf

y5

C

K

x5

D

E

x15

y5

X

D

K

E X

x5 x15
x, y: −inf, +inf

(b) C and its space after X was split off C.
 NOTE: the double path is the CtoX−path.

Fig. 16. D/fp: X has been split off C: the full CtoX-path must be posted to
the parent of C

2. Create a new node X, extract the decorated subtree from
C, and move it to X.

3. In C, replace the extracted subtree with a pointer to X
(this is the side pointer).

Next, we show how to post the full CtoX-path of Fig. 16b,
that is indicated by the double edges, to the parent P of C.
After the posting has been performed, node P will be able
to direct searchers directly to X.

4.4.2 Posting the full path (fp)

In this variation of the hBΠ -tree we post the full CtoX-
path, that is, all kd-tree nodes from the CtoX-path that have
not already been posted. Since we split at decorations, all
hBΠ -tree nodes have exactly one parent. Thus, we only need
to post the index term for a split to one hBΠ -tree node.
Also, since the full paths are being posted, posting reduces
to bringing the PtoC-path up to date, so that it reflects the
space decomposition described by the CtoX-path.

The resulting algorithm is quite straightforward. All we
have to do is compare the PtoC-path against the CtoX-path.
If it is equal or longer than the CtoX-path, we simply X-
decorate part of it. If it is shorter than the CtoX-path, we
append the extra kd-tree nodes of the CtoX-path to it, in-
cluding a pointer to X.

Figs. 17–19 demonstrate the three cases discussed above.
Node P corresponds to the parent of node C of Fig. 16. In
each case, P and the space it is responsible for are shown
before and after the posting takes place. The double edges
in the kd-trees indicate the PtoC-path that in each case is
compared to the CtoX-path of Fig. 16b. The algorithm is the
following:

Case 1: The PtoC-path is longer than the CtoX-path: this
indicates that all kd-tree nodes of the CtoX-path have
already been posted by other posting actions. All we
have to do is X-decorate the first node of the PtoC-path
which no longer refers to space in C (see Fig. 17).

Case 2: The PtoC-path and the CtoX-path are the same
length: again, all kd-tree nodes of the CtoX-path have
already been posted. We make the last kd-tree node of
the PtoC-path point to X (see Fig. 18).

Case 3: The PtoC-path is shorter than the CtoX-path: that
is, the PtoC-path is a prefix of the CtoX-path. We append
a copy of the extra CtoX-path to the PtoC-path, with the
last posted node pointing to X (see Fig. 19).

P

D

x15

C

x5

y5

(a) Before posting

D

x15
C

y5

x5

x10E

F

C FE

x10 P

(b) After posting

D

x15

C

X

x5

y5
D

x15
C

y5

x5

E x10

F

X

FE

x10

Fig. 17a and b.D/fp: PtoC-path> CtoX-path: X-decorate remaining PtoC-
path

P

D

x15

C

x5

y5

(a) Before posting

C

D

x15
C

y5

x5

E

E

P

(b) After posting

D

x15

C

X

x5

y5D

x15
C

y5

x5

XE

E

Fig. 18a and b.D/fp: PtoC-path == CtoX-path: make last node of PtoC-
path point to X

4.4.3 Discussion

Posting the full path (fp) may increase the size of the index
terms posted. Especially when the data is skewed, we may
end up posting long CtoX-paths. Splitting at decorations (D)
requires an exhaustive search of the whole kd-tree of the
index hBΠ -tree node to find the largest decorated subtree
whose size is between one and two thirds of the contents of
the node. It may be the case that such a subtree does not
exist at all. In this case, we will have a bad quality split. If
bad splits are too frequent, the utilization of the index nodes
will decrease, and the size of the index will increase.

4.5 Algorithm A/fp

In this section, we relax the splitting policy by allowing
hBΠ -tree nodes to be split anywhere (A), but we still require
that the full CtoX-paths are posted (fp), hence the name A/fp.
This algorithm uses Solution 1 to preserve DSBs.

4.5.1 Splitting anywhere (A)

For this algorithm, when an index node needs to be split,
there is no limitation on where its kd-tree can be split. The
procedure for finding the kd-subtree that has to be extracted
was described earlier in the description of the original index-
node-splitting algorithm.

D

x15

D

x15P

C

C

(a) Before posting

 D

x15P

C

D

x15
C

y5

x5

X

C X

x5

y5

(b) After posting

Fig. 19a and b.D/fp: PtoC-path< CtoX-path: append the extra nodes of
CtoX-path to PtoC-path

15

y5

x5

K

D

E L

F

x15

y5

C

D

K

E L F

x5 x10 x15

x10

(a) C and its space before the subtree rooted
 at x10 is extracted to create node X.

x, y: −inf, +inf

y5

C

K

x5

D

E

x15

y5

X

D

K

E X

x5 x15
x, y: −inf, +inf

(b) C and its space after X was split off C.
 NOTE: the double path is the CtoX−path.

Fig. 20a and b. A/fp: X has been split off C: the condensed CtoX-path
must be posted to the parent(s) of C

P x15

y5

P

(b) After posting

x15

X

x5

y5

(a) Before posting

C

C
x10

F

F

x10

F

X

F

x10x5 x10
x: 5, 15
y: 5, +inf

x: 5, 15
y: 5, +inf

Fig. 21a and b.A/fp: P is a secondary parent of C: P’s space is equal to
X’s space

4.5.2 Posting the full path (fp)

Although the posting policy (fp) is the same as in algo-
rithm D/fp, the new splitting policy (A), which may intro-
duce multi-parent nodes, affects the way posting is done.
The posting scenarios we describe are based on Fig. 16 of
Sect. 4.4. We repeat this figure, as Fig. 20, in order to make
the description of the examples easier to follow. Below, we
examine all the possible cases.

Case 1: P is a prime parent of C: identical to D/fp.
Case 2: P is a secondary parent of C: then, the C-fragment

in P is part of the full C-fragment. The root of the full
C-fragment, which corresponds to the root of C’s kd-tree
(and the first kd-tree node of the CtoX-path), is located
in a container of P. Therefore, we have to find the point
in the CtoX-path where posting should start. In order
to do that, we start with the boundaries of C and we
refine them as we traverse the CtoX-path. Our purpose
is to match them with the boundaries of P. There are two
scenarios:
Case 2.1: The CtoX-path runs out of kd-tree nodes, i.e.,

we have to follow the side pointer to X, in order to
match the boundaries of P. This indicates that the
space described by the C-fragment in P now belongs
to X. We simply X-decorate the root of P’s kd-tree
(which also is the first kd-tree node of the PtoC-path).
This is the case in the example of Fig. 21.

Case 2.2: We match the boundaries of P and there are
more kd-tree nodes in the CtoX-path. The kd-tree
node that comes next in the CtoX-path is the point
where posting should start. We post the remain-
ing CtoX-path in P as described in Case 1. Fig-
ure 22 demonstrates this scenario. Once we match
the boundaries of P at kd-tree nodey5 of C (see
Fig. 20), we follow Case 1, regarding kd-tree node
y5 as the root of the CtoX-path.

P x15

C

x5

y5

P

(b) After posting

x15

C

X

x5

y5

(a) Before posting

CE E

x5

E

C
y5

C
y5

x5

XE

x: −inf, 15
y: −inf, +inf

x: −inf, 15
y: −inf, +inf

Fig. 22a and b.A/fp: P is a secondary parent of C: P’s space contains X’s
space

4.5.3 Discussion

A/fp still does not guarantee the worst case size for the index
terms, since it posts the full paths like D/fp. What is new
here is the splitting policy which is a great improvement over
the D/fp algorithm, as now we can always split a kd-tree by
removing between one third and two thirds of its contents.
Index node space utilization is expected to be better than the
D/fp algorithm.

4.6 Algorithm D/cp

In this section, we describe an algorithm that relaxes the
posting policy of algorithm D/fp, instead of relaxing its split-
ting policy (as A/fp does). It uses Solution 2 to preserve
DSBs.

4.6.1 Splitting at decorations (D)

We split hBΠ -tree nodes at decorations only. As a result,
all nodes are single-parent nodes. This splitting policy is
described in Sect. 4.4.

4.6.2 Posting the condensed path (cp)

In Sect. 4.1.3 we introduced the notion of the condensed
path. It is the minimum collection of the kd-tree nodes of
the CtoX-path that are necessary to describe the extracted
region. In the worst case, the condensed path consists of
2k + 1 kd-tree nodes. These are two tightest low and high
boundaries for each one of thek attributes. We may also
have to post an extra kd-tree node, called the divergence
node, in order to glue pieces of the kd-tree where posting is
performed together.

When we post the condensed paths, we may have “miss-
ing” kd-tree nodes in the middle of kd-tree paths. Posting
them later, during an index-term-posting atomic action, is
similar to filling in gaps in existing kd-trees.

We are now faced with a new problem, which was first
brought to our attention by (M. Barrena, pers. comm.). This
is illustrated in Fig. 23. After inserting kd-tree nodec in be-
tween kd-tree nodesa andb, we need to determine whether
the kd-subtree rooted atc, which is the previous right child
of a, will become a left or a right child ofb. We call the
kd-subtree rooted atc the hanging tree.

Here is the answer to this problem. Assume that node
X is extracted from node C and, while posting the index

16

...

......

...

......

...

......

...

...
OR

a a

c b

c

a

b

c

Before posting b After b becomes the right child of a, where will c go?

Fig. 23. D/cp: hanging tree problem

x10

y5

C2

B3

B4

x5
C1

B2

B1 B2

x5
B1

x15

B2

A1

before

after

x5
B1

B2

A1

x10

x15

y5

B4B3

B3

Posting the index term for B4’s extraction form B2 in A1

y10

x15

y10

y10

the hanging tree

Fig. 24. D/cp: solving the hanging tree problem

term for this split in the parent P of C, we have to insert
a missing kd-tree node, sayb, in the C-fragment of P. The
fact thatb was missing indicates that during another index-
term-posting (say, for the extraction of Y from C),b was not
in the condensed path. That is, there was a tighter boundary
(some other kd-tree noded with the same attribute) further
down the path from C to Y that was posted instead.

We claim thatd will still be present in the hanging tree.
To see that, remember that we split at decorations only. Thus,
the C-fragment resides in its entirety in a single parent.

We look ford in the hanging tree. Ifd’s value is smaller
thanb’s value, then the hanging tree becomes a left child of
b, otherwise a right child ofb.

Figure 24 demonstrates the above problem. The parent
A1 of B2 is shown before the index term that describes B4’s
extraction from B2 has been posted. Note that the condensed
path for the extraction of B3 from B2 did not include kd-
tree nodex10, sincex15 further down the path from B2
to B3 was a tighter boundary for the extracted space. That
kd-tree node, i.e.,x15, is used to determine where to put the
hanging tree rooted aty10, after we postx10 in P.

In order to describe all the cases that can be encountered
during index term posting, we use the example of Fig. 25.
Node X has been extracted from C, and kd-tree nodesy5,
x4, andx6 comprise the condensed path.x4 is a lower and
x6 is a higher boundary for attributex, whereasy5 is a
lower boundary for attributey. Figure 26 shows the parent
P of C.

The algorithm for posting the condensed path in the par-
ent P of C will have to traverse the CtoX-path and the PtoC-
path in parallel. For every kd-tree node in the CtoX-path, if
the node:

1. belongs to the condensed path, but has already been
posted: we do nothing; for example, in Fig. 26a, node

D

K

L

X

C

K

K DKEX L

E

Space as seen by C

y5

y5

x4

x10

x12x8

x6

x6 x8 x10 x12x4

Fig. 25. D/cp: X has been split off C and we have to post the condensed
path in the parent P of C

y5

x12

C

D

P

x12

y5

DC

C

Space as seen by P

(a) Before posting

y5
C

C DCX C

Space as seen by P

y5

x4

x10

x12x6
D

C

X

P

(b) After posting

x4 x6 x10 x12

Fig. 26a and b.D/cp: posting the condensed path to the parent P of C

y5 was posted when the extraction of D from C was
posted.

2. belongs to the condensed path, and has to be posted
above existing kd-tree nodes of the C-fragment: we insert
it between the current and the next kd-tree nodes of the
PtoC-path. We examine the hanging tree (the one rooted
at the next node in the PtoC-path) to find a node with
the same attribute as the newly posted node, and, based
on the attribute-value of that node, we determine if the
hanging tree becomes a left or a right child of the newly
posted node. In Fig. 26b, nodex4 is posted abovex12. In
this example,x12 happened to be the root of the hanging
tree, and since 12 is greater than 4,x12 became the right
child of x4. Also, kd-tree nodex10 is not the tightest
highx-boundary for X, but has to be posted to P because
it is a divergence node, that is, it is needed in order to
make possible the merging of the condensed path into
the kd-tree of P. (In the case that the newly posted node
is now the root of the C-fragment, as withx10 in Fig. 24,
it receives the C-decoration.)

3. belongs to the condensed path, and has to be posted
below existing kd-tree nodes of the C-fragment: we ap-
pended it in the C-fragment in P. This is the case of node
x6 in figure 26b.

4. is a redundant node: we skip that node. This is the case
of nodex8 in Fig. 25.

4.6.3 Discussion

Algorithm D/cp has the drawbacks inherent in the split-
ting policy D, that is, a “good” split may sometimes not
be achievable. Its best and very desirable property is that
there is an upper bound on the size of the index term that
is posted by a posting action. The maximum size of the
condensed path is 2k + 1 nodes.

17

4.7 Algorithm CB/cp

The CB/cp algorithm also posts condensed paths. But, in
addition to allowing kd-trees to be split at decorations, we
also allow them to be split at full paths after a decoration.
These are places in the kd-trees where we have complete
boundaries, as described in the discussion of Solution 3 in
Sect. 4.2.3. Therefore, the algorithm preserves DSBs.

Since we must be able to detect these complete bound-
aries, we introduce a new field in every kd-tree node, called
the counter field. First, we present a procedure that sets and
updates the counters of kd-tree nodes during posting, and
then we describe the node-splitting policy CB that uses the
counter fields. Finally, we describe how index-term-posting
is affected by the new splitting policy.

4.7.1 The counter field

The idea is to store in every kd-tree node a counter that
indicates how many kd-tree nodes are missing between this
kd-tree node and its current parent. Kd-tree nodes at the
data level of the hBΠ -tree will always have a zero counter.
Similarly, since full paths are always posted to the level just
above the leaves, even whencp posting is used, that level
will have only zero counters.

Below, we describe the procedure for setting the counter
of a newly posted kd-tree node at the levels above the parent-
of-leaf level of the hBΠ -tree. As usual, we assume that hBΠ -
tree node X has been extracted from C and we post the
condensed CtoX-path in the parent P of C. To simplify the
explanation, we assume that (i) first, all not previously posted
kd-tree nodes are being posted, and not only the ones in the
condensed path, and (ii) then, the kd-tree nodes that are not
in the condensed path, and therefore should not have been
posted, are eliminated. When a node is posted or when a
node is eliminated, the counter in the root of its hanging
tree is also adjusted.

Procedure for setting or updating the counter field
of kd-tree nodes in P:

LET a be a kd-tree node in the full CtoX-path
LET a′ be the copy ofa posted to P
LET b′ be the root of the hanging tree (if any) that

becomes a child ofa′
Phase 1: Post all in path

FOR every kd-tree nodea in the full CtoX path
that has not already been posted to P{
posta′ as a copy ofa
counter(a′) = counter(a)
IF there exists a hanging tree withb′ being its root
THEN counter(b′) = counter(b′) - [counter(a′) + 1] }

Phase 2: Drop nodes not in condensed path
FOR each kd-tree nodec′ that should have not been
posted to P{

LET d′ be the only child ofc′
counter(d′) = counter(d′) + [counter(c′) + 1]
eliminatec′ }

We demonstrate the use of the above procedure with the
example of Fig. 27. In Fig. 27a, node B3 was extracted from
B1, and the condensed path (x30) was posted to the parent

....

....
more

more

B3

B2

B4

B1

C1

C2

x10:1

x30:0

x20:1

x15:2

B1

B3

A1

x30:2

Only the extraction of
B3 has been posted in A1

(b)

B3

B4

x30:0

x20:1

x15:2

A1

x10:1
B1

PHASE 2

B3

B4

x30:0

A1

x10:1
B1

x15:4

Now, we post the extraction of B4 in A1

PHASE 1

Eliminate kd−nodes
that are not in the
condensed path

(c)(a)

Post all non−posted
kd−tree nodes in
the full path

Fig. 27a–c.CB/cp: setting and updating the counter fields during posting

A1 of B1. Notice that in B1 counter(x30) = 0, but in A1
counter(x30) = 2, sincex10 (with counter = 1) was not in the
condensed path and was not posted to A1. Now, assume that
B4 is extracted from B1. In Fig. 27b, the first phase of our
counter setting and updating procedure posts all non-posted
kd-tree nodes of the full path from B1 to B4. Notice how the
counter ofx30 changes back to zero. Finally, in Fig. 27c, the
second phase of the procedure eliminates kd-tree nodex20
that should not have been posted, and appropriately updates
the counter ofx15.

4.7.2 Splitting at complete boundaries (CB)

Here we describe the new splitting policy CB. Whenever we
want to split an index hBΠ -tree node, we use the following
algorithm to determine the root of the extracted kd-subtree
(see also Solution 3 in Sect. 4.2.3):

Step A: Start from the root of the kd-tree.
Step B: Search the tree recursively testing all kd-subtrees

whose root:
1. is decorated, or
2. is not decorated, but has its parent kd-tree node be-

longing to a path that has the following properties:
a) the path starts at a decorated kd-tree node, and
b) all of the path’s kd-tree nodes have their counter

equal to zero.
Step C: Among all those candidate kd-subtrees, choose the

one with contents closer to half the size of an hBΠ -tree
node.

4.7.3 Posting the condensed path (cp)

Since decorated fragments can be split, we may have multi-
parent nodes. Therefore, it may be necessary to post the
index term for a split to more than one parent. Here is the
algorithm for posting the condensed path:

Case 1: P is a prime parent of C: same as algorithm D/cp.
Also, we need to set or update the kd-tree node counter
fields.

18

x5:0

y5:0

x10:0

B2

B3

C1

B4
x15:0

C2

B1

x5:0

y5:0B3

B1

A2

A1

B2

x15:1
B1

A2

(a) before (b) after

B1

A2

x10:0

B2

x15:0B4

Posting the extraction
of B4 from B1 in A2

x, y: −inf, +inf

x, y: −inf, +inf x: 5, +inf
y: 5, +inf

x: 5, +inf
y: 5, +inf

Fig. 28a and b.CB/cp: posting to a secondary parent

Case 2: P is a secondary parent of C: same as algorithm
A/fp, but we post the condensed path as described in
algorithm D/cp. Also, we need to set or update the kd-
tree node counter fields.

During posting we can always solve the problem of the
hanging tree in the same way we did in algorithm D/cp. Our
argument is still valid, despite the fact that now we may
split decorated fragments. A missing kd-tree node indicates
that, during an index-term-posting atomic action, a tighter
boundary than this missing node was posted instead. The
tighter boundary cannot belong to another (extracted) part
of the decorated fragment, because decorated fragments are
partitioned by node splits only when there is a full path from
their root to the extracted kd-subtree. This is not the case
here, since we have a missing kd-tree node. Therefore, the
part of the decorated fragment where the missing node is
posted always contains the tighter boundary for that missing
node. As in algorithm D/cp, we use this boundary in order
to determine where to put the hanging tree.

Figure 28 demonstrates an example of posting to a sec-
ondary parent. In Fig. 28a, the index terms for the extractions
of B2 and B3 from B1 had already been posted to the par-
ent A1 of B1, when A2 was extracted from A1. Using the
CB splitting policy,x15 was a candidate kd-subtree for ex-
traction, since its parenty5 belonged in a path that started
from a decoration (B1) and all of its kd-tree nodes had a
zero counter. Since the B1-fragment was split, B1 became a
multi-parent node.

According to Case 2 of the posting algorithm, we start
with the boundaries of B1 and we refine them, following
the path from B1 to B4, until we match the boundaries of
A2. Then, we start posting the condensed version of the rest
of the path from B1 to B4, that is, kd-tree nodex10. In
Fig. 28b, we see A2 after the posting has been performed.
Notice the new updated counter value forx15 in A2.

4.7.4 Discussion

The CB splitting policy is a significant improvement over the
D splitting policy. There are more potential splitting points
for kd-trees, and we expect to have a good index node uti-
lization. Also, it is even more unlikely that we will end up

not being able to split a kd-tree and having to drop a posting
action, as described in the discussion of algorithm D/fp.

One drawback of this algorithm is the fact that all kd-tree
nodes need to store an extra field. Since all kd-tree nodes at
the data level and the parent-of-leaf level have their counters
equal to zero, and most of the time kd-tree nodes at the
higher index levels do not have missing kd-tree nodes above
them, we may choose not to store zero counter fields. Also,
even non-zero counters will be small numbers. Therefore,
their storage representation will be a small number of bits.

4.8 Summary of algorithm properties

Table 2 summarizes the advantages and disadvantages of
the various splitting/posting algorithms we described in the
previous sections. We do not include an entry for algorithm
A/cp.

5 The hBΠ -tree: consolidating

Node consolidation in the hBΠ -tree is performed along the
lines ofΠ-tree node consolidation: the sparse hBΠ -tree node
is consolidated with a sibling node and the parent of the
deleted node is modified to reflect the change. For reasons
of simplicity and efficiency, we always choose to consoli-
date a sparse hBΠ -tree node with its container node. In the
following, the term extracted node will refer to the node
we want to deallocate. So, the three conditions for hBΠ -tree
node consolidation are:

1. the extracted (sparse) node shares the same parent with
its container,

2. the extracted node is a single-parent node, and
3. the container node has sufficient space to absorb the con-

tents of the extracted node.

Conditions 1 and 2 are not as restrictive as they appear to
be. Note that, since at most one decorated fragment is split
per hBΠ -tree node split, there is a limit on the number of
multi-parent nodes created. In the worst case, there will be
as many multi-parent nodes at a given level of the hBΠ -tree
as parent nodes at the level above. With a fan-out of 140
(typical for an hBΠ -tree with node size 4K), at most 0.7%
of the nodes at a given level will be multi-parent. The same
argument holds for hBΠ -tree nodes that do not share the
same parent with their container node. These are exactly the
nodes whose decoration (child pointer) appears at the root
of the kd-tree of their parent. In the worst case, there will
be as many such nodes at a given level as parent nodes at
the level above.

On the other hand, condition 3 may be quite restrictive. A
sparse node cannot be consolidated unless its container node
is empty enough to absorb it. This condition may delay node
consolidation.

Since an hBΠ -tree node uses a kd-tree for its intra-node
organization, we also have to reorganize the kd-trees of the
parent and container nodes of the extracted node.

In this section, we first show how one can determine
whether a node can be deleted by examining the kd-tree of
its parent. This is independent of the posting policy in use

19

Table 2. Splitting/posting algorithm comparison

Property Splitting Posting Worst case Worst case split Multiple Concurrency
Algorithm algorithm algorithm index term size parents
D/fp Restrictive Append Skewed Large No High
A/fp Flexible Append Balanced Large Yes High
D/cp Restrictive Merge Skewed Small No High
CB/cp Quite Flexible Merge Quite Balanced Small Yes High

(b) (c)

x1
X

y1
A

x2

B

P P

x1

x2

C

X

Q

P

x2

A

C

X

The container of X
is not a child of P

X is multi−parent

B

X can be consolidated
with its container C

(a)

y1 y1

x1

cont:T

Fig. 29a–c.Determining when consolidation is possible

(fp or cp). Then we show how to use pruning to reorganize
kd-trees. Pruning is affected by the posting policy.

5.1 Determining when consolidation is possible

The bookkeeping information we keep in the hBΠ -tree en-
ables us to determine whether the two conditions for node
consolidation are met by only examining the kd-tree of the
parent of the sparse node.

Let us assume that C is the container of the sparse node
X (extracted) and P is the parent of X. Node X is single-
parent when all (if any) continues-to flags in the X-fragment
in P are FALSE. Also, C is a child of P if X is not the
decoration of the root of P’s kd-tree. In that case, C corre-
sponds to the last decoration seen before the X decoration
in the path from the root of P’s kd-tree to the X decoration.
Figure 29 demonstrates cases when nodes can and cannot be
consolidated.

In Fig. 29a, X is the decoration of the root of the kd-
tree of P. This indicates that either X has no container, or
the container of X is not a child of P. Since condition 1
does not hold, consolidation cannot proceed. In Fig. 29b,
C is the container of X and condition 1 holds, but the X-
fragment extends to the sibling Q of P, that is, X is multi-
parent. Condition 2 does not hold and consolidation cannot
proceed. Later, if Q is consolidated with P, perhaps X can
be deallocated. In Fig. 29c, both conditions hold and X can
be consolidated with C, if there is space in C.

According to condition 2 for node consolidation, a node
cannot be consolidated unless there is a container node for
it. There is one exception when the root of the hBΠ -tree is
left with a single child. In this case, the root of the hBΠ -tree
is consolidated with this node and the height of the hBΠ -tree
is decreased by one.

5.2 kd-tree pruning algorithm

We distinguish two different cases for kd-tree pruning, de-
pending on the posting policy in use (fp or cp). In both cases,

(a) before pruning (b) after pruning

C

(X)

D C D

x1 x1

y1

Space SpaceP P

x1

y1

C

(X)

D

x1

D

C

Fig. 30a and b.Full-path pruning in P

kd-tree nodes from the kd-trees of P and C (when C is a data
node) may be candidates for elimination. In general, kd-tree
nodes are eliminated when their absence does not change
the space decomposition and preserves the properties of the
kd-trees according to the posting policy in use.

When the cb/cp algorithm is used and we eliminate kd-
tree nodes, we have to accordingly update the counter field
of its only, if any, child kd-tree node. In particular, if kd-tree
noden is eliminated andn′ is its child kd-tree node, then
counter(n′) = counter(n′) + (counter(n) + 1).

5.2.1 Full-path pruning

First, we treat the case of pruning when fp posting is used.
After a sparse node x is consolidated with its container C,
there may be a chance to eliminate certain kd-tree nodes in
P’s kd-tree, as shown in Fig. 30.

In Fig. 30a, after the removal of the reference to X from
P’s kd-tree, kd-tree nodey1 can be eliminated since both
its children are NULL. In other words, now that X ceases
to exist, its index term has to be dropped. It happens that
y1, which belongs to the index term for X, does not belong
in any index term for some other child of P. Hence,y1 is
redundant. The pruned kd-tree is shown in Fig. 30b.

All our pruning algorithms traverse the kd-tree in P in
an upwards direction from the dropped reference to X. Here
is the pruning algorithm for index node P:

FULL-PATH PRUNING IN INDEX NODE P
Requirement: X-fragment was empty in P
(X was a child pointer)

FOR each kd-tree node in (ascending) order in the
path from the reference to X (that now is NULL)
to the C decoration in P’s kd-tree

IF both the children of the kd-tree node are NULL {
make the child of the kd-tree node’s

parent NULL
eliminate the kd-tree node }

ELSE
DONE

Note that this kind of pruning can take place only when
the X-fragment is empty in P. Also, it can eliminate the

20

C
x1

(a) before pruning (b) after pruning

D

D

x1
D

D

x1

y1

CSpace Space

rec
list1

rec
list2

combined
rec list

rec
list2

rec
list1

formerly in X

y1

x1

combined
rec list

Fig. 31. Full-path pruning in C

whole kd-tree of P. For example, in Fig. 30b, kd-tree node
x1 will be eliminated when D is consolidated with C. In
this case, we cannot consolidate P with its container as part
of the atomic action that consolidated D with C. Instead,
P will remain empty, containing only a child pointer to C
(an empty C-fragment), until it is consolidated by another
atomic action. The scenario we have described above is usu-
ally avoided, since P would have already been consolidated
before it became empty.

A similar pruning algorithm may be applicable to the
kd-tree of the container C of X. Figure 31a demonstrates
such a scenario, with C and X being data nodes. Node X
that contained a single record list is consolidated with node
C. The side pointer to X is replaced by the contents of X
making kd-tree nodey1 redundant. In Fig. 31b,y1 has been
eliminated and its two record lists have been combined and
become a child of its parent kd-tree nodex1. The pruning
algorithm for data node C follows:

FULL-PATH PRUNING IN DATA NODE C
Requirement: X’s contents was a single
record list

FOR each kd-tree node in (ascending) order in the
path from the side pointer to X (that now points
to X’s contents) to the root of C’s kd-tree

IF both the children of the kd-tree node are
record lists {

create a new record list by merging
the two lists

make the new list a child of the
kd-tree node’s parent

eliminate the kd-tree node }
ELSE

DONE

When C is an index node and X’s contents is an empty
kd-tree (see discussion in the previous section) the full-path
pruning algorithm for the kd-tree of C is identical to the one
used to prune the parent P.

When the root node of the hBΠ -tree is left with a single
child node, the above algorithm will eliminate all kd-tree
nodes in the kd-tree of the root. No kd-tree is needed to
describe the space decomposition among the children of the
root, since there is only one child. In this case, the root is
deallocated and its child node becomes the new root of the
hBΠ -tree.

5.2.2 Condensed-path pruning

The kd-tree pruning algorithm described above is also ap-
plicable when the posting policy is to post condensed paths.
But, now, one may be able to eliminate additional kd-tree

(a) before pruning (b) after pruning

C (X) D C D

Space SpaceP P

D

C
x1
C

(X)

D

x2

x2

x2x2x1

Fig. 32a and b.Condensed-path pruning in P

C (X)D

SpaceP

x2

C

(X)
x2

x3x1

D E

x3x1

E

Fig. 33. Redundant divergence kd-tree nodes cannot be eliminated

nodes in the kd-trees of P and C. Figure 32a demonstrates
such a scenario for the parent P of X. The reference to X is
dropped in the kd-tree of its parent P, making kd-tree node
x1 redundant. In Fig. 32b,x1 has been eliminated and, since
it happened to be the root of the C-fragment, its childx2 is
decorated with C. Notice that node D, previously a sibling
of X, now becomes a sibling of C.

A kd-tree node is redundant when the space decompo-
sition described by the kd-tree the node belongs to is not
affected by the elimination of that kd-tree node. We assume
for algorithmic simplicity that the ancestor-descendent rela-
tionship of pairs of kd-tree nodes is not changed by pruning.
Only nodes in the path from the reference to X ascending
to the C decoration in P may be eliminated. A consequence
of this decision is that sometimes a kd-tree node, both of
whose children are kd-subtrees, cannot be eliminated by our
algorithm, even if it is redundant. Such a kd-tree node is
called a divergence kd-tree node. In Fig. 33, kd-tree node
x2 is a divergence node.

Here is an algorithm that determines whether a kd-
tree noden of the kd-tree of an hBΠ -tree nodeH is non-
divergence redundant (ND-redundant) or not. Note that this
test works both for index and data hBΠ -tree nodes.

KD-TREE NODE ND-REDUNDANCY TEST
IF one of the children of n is NULL (H is an
index node) or a RECORD-LIST (H is a data node) {

find the boundaries of all children and siblings
of H that are reachable from H through n

IF n appears in at least one of the node
boundaries

RETURN FALSE
ELSE

RETURN TRUE }
ELSE

RETURN FALSE

In the ND-redundancy test algorithm, the boundaries we
are talking about are boundaries calculated from the kd-tree
node paths inH. Using the above kd-tree node redundancy
test, we can now proceed to the description of the additional
pruning procedures for P and C.

21

(a) before pruning (b) after pruning

D D

Space Space

x2

C C

x1

D

rec
list1

rec
list2

rec
list3

D

rec
list4

rec
list5

y1 y1rec
list1

x2

x2

rec
list4

rec
list5

rec
list3

rec
list2

formerly in X

x2

y1

y1

x1

Fig. 34a and b.Condensed-path pruning in C

CONDENSED-PATH PRUNING IN INDEX NODE P
FOR each kd-tree node in order in the path from
the reference to X (that now is NULL) to the C
decoration in P’s kd-tree

IF the kd-tree node is ND-redundant {
make its parent point to the kd-tree node’s

only child
eliminate the kd-tree node }

An example of condensed-path pruning in a parent index
node is shown in Fig. 32. Node X is consolidated with node
C and kd-tree nodex1 in P’s kd-tree becomes ND-redundant
and is eliminated.

We may be able to eliminate additional kd-tree nodes
in C. These are the kd-tree nodes that lie in the path from
C’s kd-tree root to the side pointer to X (that now has been
replaced by X’s contents) and that are ND-redundant.

The condensed-path pruning algorithm when C is an in-
dex node is exactly the same as the one used to prune P. The
same is true when C is a data node, with the only difference
being the fact that, after the elimination of a ND-redundant
node, the records of its record list will have to be re-inserted
in the resulting pruned kd-tree. This is a local re-insertion
and does not involve any hBΠ -tree traversals. This scenario
is demonstrated in Fig. 34, where kd-tree nodex1 is elimi-
nated, since it is not needed to describe D’s space. Records
from record list 1, that wasx1’s child, are re-inserted in the
pruned kd-tree and modify record lists 2 and 3.

6 Performance results

In this section, we first describe the nature of multi-attribute
data we used to test the various versions of the hBΠ -tree,
and then we present the performance results we obtained.

6.1 Workload

We used both computer-generated data and data from the
Sequoia 2000 Storage Benchmark [SFGM93].

6.1.1 Computer-generated data

Computer-generated data were created by skewing values
obtained from a random number generator. To do this, we
performed the following transformation on each value (v is
the old value andv′ is the new one):

v′ = vn, for 0≤ v ≤ 1 ,

wheren determines the degree of skewness. For example,
for n = 21.85, we get a 90:10 skewed distribution [Knu68,
Lom83, GSE+94].

In our experiments, we used 250 000 records, each one
consisting of 12 4-byte attributes. To simulate hBΠ -trees
of various dimensionalities, we used between one and 12
of them as indexing attributes. In order to stress the various
algorithms and assess the performance of the hBΠ -tree under
extreme situations, we used only skewed values for all the
indexing attributes (obtained usingn = 3000 for a 90:10
distribution). In the rest of this section, we will be referring
to this kind of data as computer-generated data.

6.1.2 Sequoia data

The Regional version of the Sequoia 2000 Storage Bench-
mark [SFGM93] consists of geographic data from the state
of California. This is point, polygon, graph, and raster data.
In our experiments, we used the point data. The point data
file consists of 62 584 California place names and their co-
ordinates, in the following format:

easting : northing : name

The first two fields represent distance in kilometers from the
center of the coordinate system. The third field is a variable
length string representing the name of the place. Here is a
portion of the file:

-1645982:-659926:Abbot, Mount
-1844542:-422024:Abbott
-1779525:-893112:Abbott Canyon
-1680181:-722305:Abbott Creek
-1902477:-126821:Abbott Lake
...

In the rest of this section, we will be referring to this
kind of data as “Sequoia data”.

6.2 hBΠ -tree Performance: point data

We present performance results both for the computer-
generated and the Sequoia data. In particular, we measure
node space utilization, index size (that is related to fan-out),
and range query performance.

First we report a very interesting result. Regardless of (a)
the data distribution we used, (b) the total number or size
of records we inserted, or (c) the splitting/posting algorithm
we used, the average number of kd-tree nodes posted per
index-term-posting atomic action was only slightly larger
than one.

This is because record lists are almost always split us-
ing exactly one attribute (i.e., by a hyperplane). Hence, all
posting actions that involve data nodes (i.e., that post to the
first index level above the data level) have to post exactly
one kd-tree node. Also, most of the time index nodes have
balanced kd-trees that are usually split by extracting either
child of their kd-tree root (i.e., by a hyperplane). This kind
of index node split also requires the posting of exactly one
kd-tree node.

22

Table 3. Good versus bad split cases under various algorithms and node
sizes

Node Size−→ 512 1024 2048 4096 512 1024 2048 4096
Algorithm Good Split Bad Split
D/cp or D/fp 1498 388 89 23 253 16 3 0
CB/cp 1696 399 91 23 2 0 0 0
A/fp Always Never

512 1024 2048 4096
page size
in bytes

% Space
 Utilization

63

64

65

66

67

68

69

data node

Computer−generated point data
250,000 two−dimensional points

(record size = 32 bytes)

each attribute follows

a 90:10 skewed distribution

index node (D/cp and D/fp)
index node (A/fp and CB/cp)

= average fraction of each node
 which is non−empty

Fig. 35. Space utilization when using skewed computer-generated data

6.2.1 Node space utilization

Figures 35 and 36 show the node space utilization of the
hBΠ -tree when using computer-generated and Sequoia point
data, respectively. Node space utilization is the percentage
of the node which has information (rather than empty space).
For comparison, the B+-tree is known to have a 69% node
space utilization.

We observe that, in both figures, algorithms D/fp and
D/cp perform identically. The same is true for algorithms
A/fp and CB/cp. This is as expected, because splitting poli-
cies A and CB achieve much better splitting quality, i.e., the
extracted contents are closer to half the size of a page, than
splitting policy D. The comparably low index node space
utilization when the page size is 4 Kbytes is attributed to the
fact that the number of index nodes is very small (only 20)
and the sparse root page is included in the calculations.

Table 3 shows the quality of the various splitting policies
when we use skewed computer-generated data. A “good”
quality split is a split that extracts between one and two
thirds of a node’s contents. As we can see, splitting policy
CB is a great improvement over splitting policy D. In our
experiments it essentially performs as well as policy A.

In general, node space utilization is very high, even for
small page sizes, and is comparable to B+-tree node space
utilization.

6.2.2 Index size

Figure 37 shows the proportion of the hBΠ -tree which is
above the leaves (when using computer-generated data). We
call this the size of the index. By “index” we refer to the
collection of index hBΠ -tree nodes. We count the percentage
of the index nodes over the total number of hBΠ -tree nodes.
The inverse of that number is an approximation of the fan-
out of the hBΠ -tree. For example, if 1% of the nodes are
index nodes, then the fan-out is close to 100 (i.e., each node
has approximately 100 children).

512 1024 2048 4096

% Space
 Utilization

63

64

65

66

67

68

69

data node
index node (A/fp and CB/cp)
index node (D/fp and D/cp)

62,584 points representing

California place names

Sequoia Point data

node size
in bytes

(average record size = 29 bytes)

Fig. 36. Space utilization when using point data from the Sequoia Bench-
mark

page size
in bytes

index node (CB/cp)
index node (A/fp)

Computer−generated point data
250,000 two−dimensional points

(record size = 32 bytes)

index node (D/cp)
index node (D/fp)

each attribute follows

a 90:10 skewed distribution

% Index nodes over total
 number of nodes

512 1024 2048 4096

1

2

3

4

5

6

7

0.76

This shows that in all cases,
the index nodes are only a small
fraction of the data structure
when the page size is 4K bytes.

Fig. 37. Index size when using skewed computer-generated data. This is
the proportion of the tree which is above the leaves.

Again, all algorithms perform almost identically. This is
explained by the fact that we post one new kd-tree node
per posting on average. Also, even when we post condensed
paths, the missing kd-tree nodes are often later posted by
other posting actions.

The smaller the percentage of index nodes is, the larger
the fan-out of the tree will be. In Fig. 37, we observe that for
a node size of 4 K, the index hBΠ -tree nodes are less that
1% of the total number of hBΠ -tree nodes, yielding a fan-
out of 130. In the current implementation of the hBΠ -tree,
we use a fixed kd-tree node size (20 bytes).

Since, in our experiments with two-dimensional skewed
data, the condensed paths were always the same as the full
paths, we ran the same experiments with the same data
records, but using only one indexing attribute (essentially,
we used the hBΠ -tree as a B+-tree). Table 4 shows data
concerning the kd-tree nodes that were posted at the index
levels using the various algorithms and under various node
sizes. Each table entry consists of three numbers in the for-
mat a:b:c, wherea is the number of kd-tree nodes posted,
b is the number of kd-tree nodes that were not posted, i.e.,
they did not belong to the condensed paths, andc is the
number of the missing kd-tree nodes that were eventually
posted since they belonged to some condensed path.

Table 4 shows that, even for one-dimensional skewed
point data, the condensed paths are almost the same as the
full paths, especially for large node sizes. Less than 1/400
of the total number of kd-tree nodes is not posted, because
it does belong to the condensed path when the node size is
0.5 K and we use either algorithm D/cp or CB/cp. Of course,

23

Table 4. kd-tree nodes posted and not posted under various algorithms and
node sizes

Node Size 512 1024 2048 4096

Algorithm a:b:c a:b:c a:b:c a:b:c

D/fp 14875:0:0 6671:0:0 3196:0:0 1565:0:0
A/fp 14890:0:0 6674:0:0 3196:0:0 1565:0:0
D/cp 14823:120:68 6665:12:6 3195:1:0 1564:1:0
CB/cp 14804:121:66 6665:14:7 3194:2:1 1564:1:0

0

10

20

30

40

50

60

70

80

90

100

0.01 0.02 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12 10.24 20.48 40.96

%

query
selectivity%

0.5K

1K

2K

4K

selectivity corresponding to a number of
records equal to the average number of
records that a data node can hold

=

matching records

retrieved records

Sequoia Point data

(average record size = 29 bytes)

62,584 points representing California place names

Fig. 38. Range search performance under various node sizes and query
selectivities

there may be data distributions that considerably increase
this number.

6.2.3 Range queries

Finally, we have tested the range search performance of the
hBΠ -tree using the Sequoia data. We performed the same
series of 104 range searches with varying query selectivity
and different node size. The query window was rectangular
and was formed by taking a randomly chosen existing point
as its center. To achieve various query selectivities, we chose
the extent of the window for each attribute to be a random
ratio of the domain range for that attribute.

The results, shown in Fig. 38, indicate very good range
search performance for query selectivities greater than 0.5%,
and sufficiently good for even smaller query selectivities.
Note that, when the query selectivity is approximately equal
to the average number of records in a data node, 25% of
the records retrieved satisfy the query. This is as expected,
because it is likely that in this case the query window will
overlap on average four data nodes.

6.3 hBΠ -tree performance with high-dimensional data

The hBΠ -tree is essentially insensitive to increases in di-
mension. A kd-tree node always stores the value of exactly
one attribute. Thus, the size of a kd-tree node (and, conse-
quently, the size of the kd-trees that reside in the hBΠ -tree
nodes) does not depend on the number of indexing attributes.

However, in addition to a kd-tree, every hBΠ -tree node
stores its own boundaries (i.e., low and high values for all
attributes that describe the space the node is responsible for).
These are 2k attribute values for ak-dimensional hBΠ -tree.
An increase in the number of dimensions does increase the
space required to store a node’s boundaries. This additional
space is not significant for large page sizes. Figure 39, from
[ES93], illustrates this fact.

In this experiment, the version of the hBΠ -tree that uses
the D/fp algorithm was used. Node space utilization is de-
fined as the ratio of the size of a node’s kd-tree and the size
of a page. The decline in utilization is due to increased con-
trol information (hBΠ -tree node boundaries) and not index
term size. For example, when we use 12 indexing attributes
and the size of the value of an attribute is 4 bytes, we need
12∗2∗4 = 96 bytes to store the boundaries of a node. This is
a considerable amount of space for small node sizes (almost
20% of the space of a 0.5 Kbyte node). On the other hand,
it is an almost negligible percentage of the space of a large
node (around 2% of the space of a 4-Kbyte node). With a
page size of 1 Kbytes and larger, there is almost no effect
on the size of the hBΠ -tree and the node space utilization
as the dimensions increase. (Page sizes larger than 2 Kbytes
are not shown.)

This is in contrast, for example, with the R-tree [Gut84],
where index entries are bounding coordinates of objects plus
a pointer. Thus, in the R-Tree (and its variants), the size of
the index is proportional to the dimension of the space.

7 Conclusion

7.1 Summary

Indexing of multi-attribute data in general-purpose DBMSs
is a very desirable feature. This is because the number of
applications that deal with multi-attribute data is continually
increasing. Recently, for example, there has been a great deal
of activity in data warehousing and OLAP (on-line analyti-
cal processing), where many attributes of business data are
used to analyze historical data for trends. Also, there are a
growing number of applications for Geographic Information
Systems (GIS).

These applications expect that the DBMS offers the same
functionality for this kind of data as it offers for traditional
data. The DBMS should use efficient and reliable ways to
store, index, and access the data. For many of these applica-
tions, it is also important to maximize concurrent accessing
of the data by as many users as possible at the same time,
and be able to recover from application errors or system
crashes that result in data inconsistency.

Approaches that use multiple single-attribute indexes are
quite inefficient. That is why there has been extensive re-
search on explicitly multi-attribute indexing. Most proposed
multi-attribute indexes do not offer performance guarantees
and well understood methods for concurrency and recovery.
But these are the requirements for the inclusion of an index
in a general-purpose DBMS.

We wanted to propose a multi-attribute index that would
be appropriate for inclusion in a general-purpose DBMS.
Our approach was to combine the hB-tree, a multi-attribute

24

Data node
space utilization

Page size

2048
1024

512

dim54

56

58

60

62

64

66

68

70

1 2 3 4 5 6 7 8 9 10 11 12

dim54

56

58

60

62

64

66

68

70

1 2 3 4 5 6 7 8 9 10 11 12

Index node
space utilization

dim

1 2 3 4 5 6 7 8 9 10 11 12

5.8

6.0

6.2

6.4

6.6

6.8

7.0

Size of the hB−tree
in Mbytes

5.6

Tree height = 5

Tree height = 4

Tree height = 3

Skewed computer−generated point data

algorithm used: D/fp

150,000 data points

record size = 24 bytes (12 two−byte attributes)

Fig. 39. The hBΠ -tree is fairly insensitive to dimensions when node sizes are greater than 1 K bytes

index with promising performance guarantees, and theΠ-
tree, which offers well-understood and efficient concurrency
and recovery methods. We called the resulting method the
hBΠ -tree.

We presented the necessary modifications that transform
the hB-tree into a case of theΠ-tree, and yield the hBΠ -
tree. Unfortunately, in the process, we discovered a flaw in
the node-splitting and index-term-posting processes of the
hB-tree that affects its well-formedness, making searches
incorrect. We proposed various solutions to the problem.
They work by restricting the places nodes can be split, and/or
by increasing the amount of information that needs to be
posted to describe a split. Finally, we demonstrated how
sparse nodes can be consolidated.

Depending on the way we choose to solve the split-
ting/posting problem, we obtain versions of the hBΠ -tree
with different characteristics. In order to access the perfor-
mance of these various versions and compare them, we have
implemented all of them. We ran extensive experiments with
various type and distributions of data and we concluded that

even the most restrictive versions of the hBΠ -tree, which do
not offer worst case storage utilization and index term size
guarantees, actually perform very well.

7.2 Future work

We have shown that the hBΠ -tree performs very well on
point data. We would like to do further work on spatial (non-
point) data. By mappingk-dimensional bounding rectangles
of spatial objects to 2k-dimensional points, we no longer
cluster the objects in terms of Euclidean distance, but in
terms of size, i.e., large objects are clustered together and
small objects are clustered together. It is interesting to see
how separation by size can benefit certain kinds of range
queries.

This kind of mapping can also result in an altered data
distribution. For example, imagine that our entire data col-
lection consists of small-sized one-dimensional spatial data,
like short line segments, that follow a normal distribution.
When we map them to two-dimensional points of the form

25

(line start point, line end point), we get a highly correlated
distribution. We need to further assess the performance of
our method on such unusual data distributions. In particular,
we want to know how they affect range search performance.
The polygon and graph data from the Sequoia 2000 Bench-
mark [SFGM93] would be appropriate for this purpose.

Another very interesting and important problem are spa-
tial joins. An example of a spatial join is “give me all cities
that are 10 miles away from the Mississippi river”. Assum-
ing that we have two spatial indexes, one for the cities and
one for the rivers, we need efficient ways of answering the
above query. Spatial joins are a hard research problem.

Often indexes are built on existing sets of data. It is not
acceptable to build such a new index by inserting all data
items one by one. Methods for “bulk-loading” should be
available. We would like to investigate this problem on the
hBΠ -tree.

Finally, it would be very interesting to use the hBΠ -
tree in a real general-purpose DBMS, or a GIS database, so
that we obtain an even clearer picture of its capabilities and
possible limitations.

Acknowledgements.This work was partially supported by NSF grants IRI-
91-02821 and IRI-93-03403.

References

[Ben79] Bentley JL (1979) Multidimensional binary search trees in
database applications. IEEE Trans Software Eng SE-5:333–
340

[BKSS90] Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The
R∗-tree: An efficient and robust access method for points and
rectangles. In: Proceedings of ACM/SIGMOD Annual Confer-
ence on Management of Data, pp 322–331

[BM72] Bayer R, McCreight E (1972) Organization and maintenance
of large ordered indexes. Acta Informatica 1:173–189

[BS77] Bayer R, Schkolnick M (1977) Concurrency of operations on
B-trees. Acta Informatica 9:1–21

[Com79] Comer D (1979) The Ubiquitous B-tree. ACM Comput Surv
11:121–137

[ES93] Evangelidis G, Salzberg B (1993) Using the holey brick tree
for spatial data in general-purpose DBMSs. IEEE Database
Eng Bull 16:34–39

[GSE+94] Gray J, Sundaresan P, Englert S, Baclawski K, Weinberger P
(1994) Quickly generating billion-record synthetic databases.
In: Proceedings of ACM/SIGMOD Annual Conference on
Management of Data, Minneapolis, Minn., pp 243–252

[Gue89] Guenther O (1989) The design of the cell tree: an object-
oriented index structure for geometric databases. In: Pro-
ceedings of IEEE Data Engineering Conference, Los Angeles,
Calif., pp 598–605

[Gut84] Guttman A (1984) R-trees: a dynamic index structure for spatial
searching. In: Proceedings of ACM/SIGMOD Annual Confer-
ence on Management of Data, Boston, Mass., pp 47–57

[Hin85] Hinrichs KH (1985) The grid file: implementation and case
studies of applications. PhD thesis, Swiss Federal Institute of
Technology, Zurich, Switzerland

[Knu68] Knuth DE (1968) The art of computer programming volume 3.
Addison-Wesley, Reading, Mass.

[Lom77] Lomet DB (1977) Process structuring, synchronization, and
recovery using atomic actions. SIGPLAN Not 12:128–137

[Lom83] Lomet DB (1983) Bounded index exponential hashing. ACM
Trans Database Syst 8:136–165

[LS90] Lomet D, Salzberg B (1990) The hB-tree: a multiattribute
indexing method with good guaranteed performance. ACM
Trans Database Syst 15:625–658

[LS92] Lomet D, Salzberg B (1992) Access method concurrency with
recovery. In: Proceedings of ACM/SIGMOD Annual Confer-
ence on Management of Data, San Diego, Calif., pp 351–360

[LY81] Lehman P, Yao SB (1981) Efficient locking for concurrent
operations on B-trees. ACM Trans Database Syst 6:650–670

[ML89] Mohan C, Levine F (1989) ARIES/IM: an efficient and high-
concurrency index management method using write-ahead log-
ging. IBM Research Report RJ 6846, IBM Almaden Research
Center, San Jose, Calif.

[NHS84] Nievergelt J, Hinterberger H, Sevcik KC (1984) The Grid File:
an adaptable, symmetric, multikey file structure. ACM Trans
Database Syst 9:38–71

[OM84] Orenstein JA, Merrett T (1984) A class of data structures for
associative searching. In: Proceedings of SIGART-SIGMOD
3rd Symposium on Principles of Database Systems, Waterloo,
Canada, pp 181–190

[Rob81] Robinson JT (1981) The K-D-B-tree: a search structure for
large multidimensional dynamic indexes. In: Proceedings of
ACM/SIGMOD Annual Conference on Management of Data,
New York, N.Y., pp 10–18

[Sag86] Sagiv Y (1986) Concurrent operations on b∗-trees with over-
taking. J Comput Syst Sci 33:275–296

[Sal85] Salzberg B (1985) Restructuring the Lehman-Yao tree. Tech-
nical Report NU-CCS-85-21, College of Computer Science,
Northeastern University, Boston, Mass.

[Sal91] Salzberg B (1991) Practical spatial database access methods.
In: Proceedings of the Symposium on Applied Computing,
Kansas City, Mich., pp 82–90

[SC91] Srinivasan V, Carey M (1991) Performance of B-tree concur-
rency control algorithms. In: Proceedings of ACM/SIGMOD
Annual Conference on Management of Data, Denver, Colo.,
pp 416–425

[SFGM93] Stonebraker M, Frew J, Gardels K, Meredith J (1993)
The Sequoia 2000 Storage Benchmark. In: Proceedings of
ACM/SIGMOD Annual Conference on Management of Data,
Washington, DC, pp 2–11

[SG88] Shasha D, Goodman N (1988) Concurrent search structure
algorithms. ACM Trans Database Syst 13:53–90

[SRF87] Sellis T, Roussopoulos N, Faloutsos C (1987) The R+-tree:
a dynamic index for multi-dimensional objects. In: Interna-
tional Conference on Very Large Data Bases, Brighton, Eng-
land, pp 1–24

