VLDB (1996) 5: 229-237 The VLDB Journal
© Springer-Verlag 1996

Query processing and optimization in Oracle Rdb

Gennady Antoshenkov, Mohamed Ziauddin

Oracle Corporation, New England Development Center, 110 Spit Brook Road, Nashua, NH 03062, USA; e-mail: zmohamed@us.oracle.com

Edited by C. Mohan / Received August 1994 / Acceped August 1995

Abstract. This paper contains an overview of the technol- Gigabytes, we have experienced a sharp increase in demand
ogy used in the query processing and optimization compofor performance and robustness. In response, we have re-
nent of Oracle Rdb, a relational database management sysised our query optimizer and regression test system and
tem originally developed by Digital Equipment Corporation have made the following VLDB-specific improvements.
and now under development by Oracle Corporation. Oracle 1. To compensate for unavoidable [Ant93a] compile-
Rdb is a production system that supports the most demandime optimization mistakes, we developed and implemented
ing database applications, runs on multiple platforms and iy new run-time (dynamic) optimizer that removed the major
a variety of environments. shortcomings of single table access. Dynamic optimization
of joins is currently in the design stage.

2. For the cases of wrong join order and strategy se-
lection we introduced a tool called Query Outline which
enabled a manual execution plan specification.

3. We made it our design style to propagate each new
optimization technique into all areas where it can be poten-
1 Introduction tially used. Imagine a production database with a changing
data distribution, with new tables added, and indexes rede-
Oracle Rdb is a relational database management system rufined. In this scenario, with time, different system areas get
ning on multiple platforms that include OpenVMS VAX, €mphasized and a particular optimization technique may eas-
OpenVMS Alpha, and Digital UNIX, with more platform ily fall out of reach and stop working. For example, given a
coverage to come. Since all platforms share a common codgorted index on column X, a few ORed equalities on column
base, the query processing and optimization technology iX can be filtered by a single index scan using a range list
|arge|y p|atform-independent’ and further we will concen- technique described in Sect. 2. When the user replaces this
trate on the features common to all the platforms. On VAX sorted index with a hashed index, he expects a performance
and Alpha clusters, Oracle Rdb runs with applications usingmprovement for the equality list restrictions. However, if the
embedded SQL, SQL module language, dynamic SQL, intersorted order on X is needed, and the range list technology
active SQL, and any of the layered products such as Oracléé not propagated to hashed indexes, an unnecessary extra
RALLY. Distributed and heterogeneous query processing issort will be performed, causing a substantial performance
done via DEC DB Integrator (also known as Access Works)reduction. We found that such performance disruptions, be-
that distributes the appropriate SQL query portions to be exing unpredictable, are the most painful to our customers and
ecuted at multiple sites running different database product§ust be avoided early in the development process, during
including Oracle Rdb, DB2, Oracle 7, and Sybase serversdesign stage.
DEC DB Integrator has its own optimizer, the description 4. To achieve equally good performance for the low/high
of which is beyond the scope of this paper. extremes of query complexity and data flow sizes, we de-
The Oracle Rdb query engine is built to handle the highcided to use different techniques for different query com-
end applications, those that use large databases and requipkexities or size levels. And, along with the multi-level tech-
faster processing of simple and complex queries. With theniques, we supplied a number of mechanisms for complex-
customer database sizes approaching tens and hundredsitf escalation and reduction (shortcuts). For example, when
+ Deceased: Oct. 1995 building a table row filter out of the list of row IDs, we first
Oracle Rdb and Oracle RALLY are trademarks of Oracle Corporation.CO”eCt (and sorY) IDs in a tiny pre-allocated b.Uffe.r' Upon
VAX, AXP, OpenVMS, and DEC DB Integrator are trademarks of Digital overflow, we escalate the task and allocate a mid-size burf?r’
Equipment Corporation and upon the second overflow, we escalate further and build
Correspondence tavl. Ziauddin a hashed bitmap.

Key words: Relational database — Optimizer — Dynamic
optimization — Sampling — Query transformation

230

5. We improved our support of binary large objects number of advanced features: BLOB support, constraints,
(BLOBS) by introducing the write-once read-many (WORM) triggers, stored procedures, and user-defined functions. Sec-
option and thus making BLOBs well suited for processingtion 8 concludes the paper.
multimedia objects. Further, a tight integration of BLOBs
into the relational engine was made possible by providing a
choice of placing them into any storage area and referenc2 Query transformation
ing them from any table position. Based on this functionality,
merge of voice, video, graphics, and text can now be easilyThe earliest query transformation in Oracle Rdb takes place
achieved through a SQL Multimedia front end and retrievedin the SQL front end. SQL text is converted into a compact
and manipulated using both SQL and multimedia-specificdirect polish notation, speeding up the message traffic to the
facilities. guery engine, especially for remote communications. Dur-

6. With each new product release, we started to run dng the initial compilation phase, the query parser converts
number of large-scale benchmarks, including TPC-D, Wis-“polish” queries into a linked structure of internal blocks
consin, Set Query, AS3AP [Gray93], and an internal com-well suited for fast query traverse and rearrangement. Also,
plex query benchmark. These benchmark runs have quicklpt this phase, a number of semantically equivalent query
become an important source for the performance evaluatransformations takes place based on query structural prop-
tion, but we still receive most of our detailed performanceerties (and ignoring database properties like data distribu-
feedback from our customers. Because of that, we are stillion in tables and indexes), aiming at better query execution
looking for more exhaustive performance testing tools. plan production. Other semantically equivalent query trans-

The Oracle Rdb query processing component is designefprmations are done during the execution plan selection, and
to provide high execution speed for the full spectrum of further, during code generation.
queries, from the simple ones running in OLTP environ- To broaden the application of join optimization and to
ment to the very complex decision support queries. Cur<educe the number of distinct, run-time operators, some SQL
rently, queries with up to 128 joihsan be evaluated with constructs like IN (SELECT. .) are transformed into joins.
the boolean restriction complexity limited only by the oper- The other example is an enclosure (SELECT AVG(X))
ating system stack bound and the overall query source sizélelivering exactly one row into a boolean expression. Also,

The query processor consists of two major parts, thedn many occasions., we find {:md remove the redundant items
query compiler and query executor, each of which has it§fom query expressions. For instance, the query parser would
own optimizer. Initially, the compiler was designed after detect a (useless) ORDER BY clause appearing along with a
System R [DaNg82] with a cost-based static optimizer. SubNon-grouped aggregation and eliminate it from further pro-
sequently, many new features were added and older ong¥ssIng. .
were replaced in an evolutionary fashion. For instance, in- The views and derived tables are represented as a group
stead of storing the compiled query for further load andof join items and optimized as such, without unnesting. We
execution, Oracle Rdb stores a full or partial execution planuse this approach deliberately for a number of reasons. First,
that also can be manually modified, providing (1) a selectivelt helps to cut down the combinatorial join search; second, it
manual optimization, (2) a faster user-assisted query compitesults in shallower query execution trees; and finally, it en-
lation, and (3) less dependency on changes in the physicables straightforward application of operators such as aggre-
database design. The query executor, on the other hand, nggtion and LIMIT TO N ROWS to the joined group result.
only evolved with the improvement of old techniques and The drawback of this approach is that it restricts join order
the addition of new strategies, but was also re-worked to acPermutations, and therefore can result in potential loss of op-
commodate a new dynamic optimizer that allows switchingtimal join order. However, limited unnesting of subqueries
the strategies in the middle of query evaluation. is performed. A subquery with join dependency (i.e., corre-

This paper contains an overview of the technology used@t€d subquery) is moved upward as much as possible in the
in the query compiler and executor. The rest of the paper idested hierarchy while still maintaining the join dependency.
organized as follows. Section 2 describes various query ex] "€ upward movement causes non-correlated subqueries to
pression transformations useful for building an efficient exe-Move Up to the top level where they are stacked as leading
cution plan. Section 3 outlines the facilities used in the costt€MS In ann-way join. _ _ _
based execution plan selection by the static optimizer. Join _The query parser establishes project operations for each
and single table access strategies are presented in SectsS4Pquery, including only the attributes needed for expression
and 5, respectively. The basic concepts of the dynamic op€valuation (such as boolean) and for the final or intermediate
timizer are given in Sect.6 below. Section 7 introduces a€Sult delivery. In the extreme cases, when no attributes are

requested, e.g., SELECT COUNT(¥)., Oracle Rdb finds

1 To achieve an acceptable or fast query compilation time, large querieghe_ mos't compact 'n_dex a_md sgans it. If all columns 'n a
should be expressed using nested subqueries like views, or derived tabld¥0J€Ct list are contained in an index, the query compiler
(SELECT. .)ASt(f1,- - ., fn). When using the derived tables, the total marks the index for “index-only” access and the index scan-
number of base tables and subqueries should not exceed 128. For examer consequently avoids any row fetches. Following one of
D e oo 10 s e i e ahou e most racltonal qery optimizaton principles, the cam-
half a minute, whereas compilation of a flat 116—Way,j0in will take forever. pllQr pushes selects dqwn thr(.)th subqueries, views, and
Views can be nested arbitrarily with the total number of base tables notu.monsv Whenever pOSSIb|.e.. This k'nd of query_tranSforma'
exceeding 128. Compilation of a 128-way join composed of the 4-way jointion requires some non-trivial design when attribute names
views takes less than a quarter of a minute change across the subquery boundaries and also during the

231

transition between union and join subquery types. After thevariable binding time when all boolean variables except the
join order is established, the final binding of the attributesindex key attributes are assigned some values. The earliest
becomes known, and the code generator pushes the newlhariable binding can take place either during query execu-
exposed selections even further down into the table and intion, when a start of an index scan is initiated, or during
dex scans. the last stages of compilation, when the join order is al-
The other (classical) way of producing and utilizing ex- ready determined and all boolean operands are found to be
tra selects is to derive them from the transitive closureskey attributes or constants. We wrote prototype software for
of equality chains. In Oracle Rdb, the transitive closuresthe binding time boolean transformation and found that: (1)
are exploited to their fullest extent. For instance, transi-all desirable value-based transformations totk * log(n))
tivity in (T1.X=T2.X AND T2.X=T3.X) increases the join time, whereas similar variable-based transformations typi-
search space by adding an extra T1.X=T3.X join equal-cally required a polynomial time, (2) deeper transformations
ity. boolean (T1.X=T2.X AND T2.X%10) adds an extra are possible when dealing with values because values allow
T1.X>10 restriction for table T1. Selectivities of the re- immediate evaluation and linear ordering, and (3) after the
dundant conjuncts introduced by transitivity closures are ig-value-based transformation, an efficient index scan similar to
nored in the query scope where they are redundant. In théhe range list scan can be performed using the transformed
first example, assuming the join order join(join(T1,T3),T2), boolean as a range list analog.
a partial solution join(T1,T3) will incorporate selectivity of As an illustration of the importance of the “range list”
T1.X=T3.X, and then the full solution join(join(T1,T3),T2) transformation, consider a particular case of a combined
will incorporate selectivity of T1.X=T2.X, but not selectiv- NULL restriction X IS NULL AND Y IN (5,7). In Ora-
ity of T2.X=T3.X. In the second example, we incorporate cle Rdb, a unique NULL value is stored for each attribute
selectivity of T1.X>10 into one join leg and selectivity of type, which makes it possible to treat IS NULL as an equal-
T2.X¢10 into the other leg and then compensate for onéty. (Note that in accordance with SQL definition, a NULL
of the two selectivities at the join(T1,T2) application point. value compares high with all non-NULL values.) This allows
Though the extra selectivity is ignored at and above thethe compiler to transform the above boolean into a range list
join node, it has its expected effect on the strategy selectiof{NULL ||5, NULL||5], [NULL ||7, NULL||7]) and make in-
within a join leg, especially if table T1 or T2 happens to be dex scans very efficient. A frequent case of a concatenated
a derived table or view. attribute range [I5< X||Y<3||7 has a lengthy SQL expres-
At the early parsing stages, NOT operators present irsion (X=1 AND Y>5) OR (X>1 AND X<3) OR (X=3
boolean expressions are eliminated by using De Morgan’AND Y <7). Oracle Rdb creates a range list out of it, and
boolean transformations. After that, each IN predicate with aduring execution, performs a seamless single index scan over
set of literals is converted into ORed equalities, and then durthe original concatenated range. This method is also applied
ing code generation, into a list of index ranges to be scannetb and yields a fast index scan for a string concatenated
in the forward or reverse direction (see range list zig-zag skipSQL expression like S[I52 BETWEEN “aal|“bbb” AND
discussion below). ORed equalities of IN predicate that are'zz”||“yyy”. And further, LIKE predicates, whose patterns
also ORed with comparisons, BETWEEN, and other rangestart with literal characters, are ANDed with a range or range
producing predicates applied to the same attribute are corlist (for upper/lower case letters) derived from this leading
verted into a single common range list. literal portion in order to enrich the pool of range restric-
Even more sophisticated boolean transformations betions.
come necessary for improving the index scan for a com-
posite index key. When several attributes comprise an index
key and there are enough ANDed equalities specified for & Execution plan selection
sequence of leading key attributes, a multi-attribute range
list can be constructed. In such cases, Oracle Rdb producé® determine a join order, Oracle Rdb performs an exhaus-
the range lists from both disjunctive and conjunctive formstive search and produces a left-deep tree of two-way joins
of a boolean restriction. For instance, given an index onfor each individual subquery. Each partial solution based on
key X||Y, restrictions X=1 AND (Y IN (5,7) OR ¥10) some join subset might or might not deliver an intermediate
and (X=1 AND Y=5) OR (X=1 AND Y=7) OR (X=1 AND result in some order. To reduce the exhaustive search space,
Y>10) will produce the same range list (B, 1|5], [1]|7, the query optimizer employs a number of different heuristics.
1|71, [1]]11, 1| oc]) where || stands for logical concaten- For example, it uses a depth-first search to create a total ini-
ation. tial solution for a subquery. All subsequent solutions, total
Historically, boolean transformation has been an area obr partial, are pruned if they cost more than a known to-
constant and intensive improvement. Everyone on the detal solution. Only the least-cost solutions and solutions with
velopment team acknowledges its utmost complexity andifferent “interesting” orders are considered for further ex-
importance. Projection of a boolean into a concatenated atension, where an order is interesting if it can be used for
tribute sequence of a composite index key is a difficult andenforcement of ORDER BY, GROUP BY, DISTINCT, or
elaborate task by itself. But this task becomes even hardefior a sort merge strategy execution.
when the attributes with known and unknown values in- The least expensive join orders are determined individ-
terchange during the join order permutation, making indexually for each subquery: first for the innermost subqueries,
applicability to appear and disappear, partially or fully. then for the containing subqueries, until the main subquery
One way of dealing with the boolean transformation is reached. Both intermediate data orders and equality tran-
complexity is to delay doing the full transformation until the sitivities are propagated globally across the subqueries. For

232

example, a merge strategy can be selected for the containintpe reduced db/query versions used in debugging tend to de-
subquery that uses the order delivered by an index scan ofiate from the original cost calculation and deliver strategies
the contained subquery. not identical to those needed for debugging.)

In Oracle Rdb, execution plan selection is based on the With an extended syntax SELECT.. LIMIT TO n
cost model where the cost of an operator represents the esiROWS, the number of rows delivered by such a subquery
mated number of disk 1/0Os needed to perform the associatei$ restricted to no more than rows. Similar restrictions
task. The cost functions take into account savings in I/Osare imposed (1) by constructs like EXISTS predicate imple-
due to buffering of data as well as physical clustering of mented as a subquery to deliver no more than one row, (2)
data. The primary source of input to the cost model is theby an explicit user intention OPTIMIZE FOR FAST FIRST
table and index cardinalities. These basic statistics on table® terminate a query after receiving the first few records, and
and indexes are dynamically maintained with a precision(3) by propagating the “fast first” optimization request (with
of log,(n), wheren is the actual table or index cardinality. uncertainn) down the execution tree. The opposite inten-
When needed, the precise values can be enforced by runnirt@n of reading all result rows can be specified explicitly as
a maintenance utility. OPTIMIZE FOR TOTAL TIME, can be set implicitly by op-

Part of the cost model is calculation of the clustering ef-erators like sort and aggregates, and can also be propagated
fect done for clustered record placement explicitly specifieddown the execution tree. Note that the above data flow lim-
in the schema, as well as, for implicit clustering of indexesiting intentions come in two distinct types: certain (LIMIT
having some leading key attributes in common with the clus-TO n) and uncertain (FAST FIRST). The industrial query
tering index. Accidental clustering is accounted for during optimizers today mostly supportcertain limiting type, ig-
query execution by the dynamic optimizer using a learningnoring the cases whamcertainlimits play a dominant role.
mechanism. Detection of clustering typically yields a many-One of these cases is when an interactive user gets the first
fold performance improvement. Large-scale benchmarks andnswer screen and decides with about equal probability to
customer feedback made us aware of why accidental cluserminate the query or to run it to completion. Another case
tering occurs fairly often. One of the reasons for accidentalamounts to the limit propagation down through the execu-
clustering is that some related attributes like serial numbetion tree, where according to our experiments [Ant93a] any
and manufacture date follow virtually the same order (butcertainty quickly deteriorates into a zipfean [Zipf49] type of
this knowledge never becomes part of a database schema)ncertainty. Unlike in traditional implementations, the Or-
Another reason why unaccounted accidental clustering ocacle Rdb optimizer deals with uncertain limits directly by
curs is because the initial table load was done in the order ofmarking the uncertain execution tree areas and running a
one or more attributes. There is a whole class of applicationparallel competition algorithm, described further in Sect. 6.
that load large tables overnight or on weekends for subse- A case of processing not more than one row is recognized
guent read-only use. Any hidden clustering in such casedy the optimizer and is assumed to deliver a sorted order,
remains intact through the duration of the table’s existencethus avoiding a redundant sort. During execution, sorts are

To obtain a good estimate of the index range scan costully avoided upon detection of zero or one incoming row.
is almost a hopeless task, given that range boundary expre3his shortcut may seem insignificant, but in practice it might
sions contain variables. Except for common sense, our onlyield a substantial performance improvement. For example,
guidance in picking the cost formula was balancing betweerif a data flow is sorted within a nested loop and almost each
over- and under-estimation reported by our customers. As itnner loop iteration delivers one or no rows, the effect of
stands today, the cost of an index scan over a range or randke initial sort cost avoidance becomes quite noticeable. The
list involves its estimation as a function of the number of optimizer also avoids redundant sorts when one data order
“leading” equalities involved in a multi-attribute key restric- subsets another (e.g., a sort for delivering an ORDER BY
tion. To estimate the cost of repetitive single-key retrievals,X,Y is not used if a Merge strategy within this subquery
the cost of a B-tree descent takes into account the tree heiglaiready delivers the order X,Y,Z). In addition, it combines
and a correction factor for the buffering effect. Coupled with the project order (from GROUP BY and DISTINCT) with
the cost-based execution plan selection is a manual contrahe output order (from ORDER BY) into a single order,
over the choice of join sequence, join and table retrievalwhenever possible. Limiting execution activities to a single
strategies, and sets of indexes to use for each retrieval. Thimw fetch takes place in some instances of aggregation, e.g.,
control is a part of the Query Outline feature and it is fully MIN(X) and MAX(X) do a single descent into an index B-
generic, that is, any partial join order or selective recommeniree when an index on X is available. For multi-attribute
dations on the strategy or index choice can be given. Théndexes (say on X,Y,Z) a single-descent MIN(Z)/MAX(Z)
optimizer will enforce the applicable recommendations andretrieval can be achieved if restriction X=8 AND Y=5 is
apply the regular cost-based procedure to resolve any urpart of the query’'s WHERE clause. When all columns of
specified optimization dimensions. We found this flexibility interest are part of an index then “index-only” retrieval is
useful for the quality and performance of manual optimiza-used, which avoids fetching rows altogether. boolean selec-
tion, as well as for the partial strategy freeze that, unliketions based entirely on columns of an index are evaluated as
the traditional stored query plans, lives longer with a chang-part of an index scan, thus avoiding redundant row fetches.
ing schema and continues to benefit from future query opti- Selection of a locking strategy in Oracle Rdb can be con-
mization improvements. In addition, Query Outlines greatlytrolled by the LOCK FOR UPDATE option. With this option
simplify and speed up testing and problem solving when aspecified, any rows retrieved from the stored tables are im-
particular strategy has to be reproduced with a short querynediately locked for update. Without this option, rows are
on a miniaturized database version. (The problem here is thdirst locked for read and only those that survive all query re-

233

strictions have their locks upgraded to “update” just beforeof more complex outer join predicates, Oracle Rdb uses a
the update is actually performed. When all rows touchedcombination of mini-nested loop and bitmaps in order to
during retrieval are going to be updated, all rows are au-separate, and process individually, the semi-joins and anti-
tomatically “update” locked, thus avoiding the costly lock semi-joins on one or both join sides within an equi-join-key
upgrades. group. When the non-equality portion of the outer join pred-
icate is applied to the cartesian product of groups of rows
on each side having the same join key value, there might
4 Join strategies be rows in each of these two groups that are fully rejected
from the cartesian product (these rejected rows constitute
Oracle Rdb supports nested loop and merge join strategiegnti-semi-join). While evaluating the cartesian product, the
With the n-way nested loop join, the join columns of the two bitmaps, one per side, keep track of those rows, which
outer streams become available to the inner streams for sdsecome part of the semi-join. At the end of cartesian prod-
lection. Therefore, the inner streams generally use indexedct evaluation, semi- and anti-semi-joins are fully separated
access to locate only matching rows. The non-correlated sukand the NULL-padded anti-semi-joins are delivered as part
gueries or single-row value expressions are stacked as outef this outer join.
streams of am-way nested loop join each delivering a single
row, so that no actual looping occurs but rather a collection
of needed data elements takes place.

The two-way merge join works on two sorted streams
that can come from a table retrieval, from other joins, or from
a subquery. Groups of rows with matching duplicate keys orSingle-table access in Oracle Rdb employs either a sequen-
both sides are processed by a mini-nested loop mechanisrtial scan of a table, or scan of one or more indexes with
When the merge order is delivered by an index scan, ther without associated row fetches, or direct access of a row
merge key value from the opposite side is passed to the indelty the row identifier (RID) supplied as part of a table re-
side and is further passed to the index scanner to perforrstriction. Sequential table scan is accelerated by performing
an efficient skip of all lower key values. This type of merge asynchronous prefetches of buffers containing data pages.
is called zig-zag skip, reflecting a pattern of the key skipTo avoid a full scan of a big storage area when it contains
B-tree traverse. a mixture of different tables or indexes, small tables stored

A skip key can be passed to the index through sev-within that area are accessed using the most compact index,

eral subqueries, including the cases of intermediate aggref available. If there is an opportunity to organize the re-
gations grouped by one or more merge key attributes. Contrieval in different ways and there is a substantial uncertainty
sider the query SELECT A.X, (SELECT AVG(B.X) FROM in choosing the optimal alternative, then a generic retrieval
B WHERE B.X=A.X AND B.X IN (1,10,100)) FROM A; strategy called Leaf is used as described in Sect.6. Other-
where indexes on X are defined for both tables A and B. Thigwise, the traditional sequential or indexed retrieval strategies
query will use the Merge strategy for joining tables A and are used.
B. The AVG aggregate will perform grouping on attribute X Index retrieval supports the forward and reverse scans of
because of the “correlation” equality B.X=A.X. Merge keys sorted (B-tree) indexes and the exact match lookup of hashed
will be passed from side A over the aggregate and into thendexes. The data rows may or may not be fetched depend-
index scan of B, thus enabling the B scan to perform zig-zagng on whether the needed columns are all part of the index
skip to the value greater than or equal to the value passelley. The start and stop points of an index scan are controlled
from side A. by the low and high bound key values of a single range or

Merge with zig-zag skip is the ultimate strategy to use inby those of a sorted non-intersecting list of ranges. To skip
demanding applications that provide the necessary indexethe gaps between the ranges, the index scanner checks the
for joins and complex selections. Compared with the othercurrent index page for inclusion of the low bound of the
two join strategies widely used in the industry, zig-zag mergenext range, and upon failure, it descends a B-tree to this low
efficiently skips over the mismatched key stretches on bottbound (see also a similar zig-zag algorithm in [CHHI91]).
join sides, whereas the nested loop join skips (rather, jumpsRestrictions on index key attributes not reducible to ranges
over the keys on one side only and hash join performs a comare checked before a row is fetched. Note the positive per-
plete scan of both sides. Today we use the key skip mechdermance impact of the ORed range list scan. The scanner
nism for two-way merge joins and for range list index scansopens the index only once, touches only the relevant pages,
(see below). In the future, we plan to useway common moves in a given direction without looping back, and de-
key merge joins that offer an opportunity to skip over largerlivers the records in a sorted order. In addition, Oracle Rdb
mismatched key ranges and use hash joins in cases of indexercises the same retrieval tactic for hashed indexes when
absence [Gra94] in order to avoid sorts that are expensiva restriction is composed of ORed key equalities. For the
and offer little chance for skipping. Left, right, and full outer query SELECT * FROM T WHERE X IN (7,2,5,0); with
joins are supported through the use of the same nested loape hashed index on X present, the scanner will sort the key
and merge join algorithms. The mismatched key rows on onequalities into the equality list (0,2,5,7), open the index only
or both sides are padded with nulls and delivered. When thence, retrieve rows for each key value, and deliver them in
outer join predicate is composed only of join key equalities,the sorted order. The equality list tactic applied to hashed
groups of rows with matching duplicate keys on both sidesindexes made some of our benchmark queries run several
are processed by a mini-nested loop mechanism. In the cagegnes faster due to the sort avoidance.

5 Single-table access

234

Application of the above scan tactic to both sorted andfor plan selection stability. In fact, assuming unknown cor-
hashed indexes illustrates the advantage of the technologglations between intermediate data flows, the most common
propagation approach mentioned in the Introduction. Con-query operators like AND, OR, JOIN, UNION, EXISTS tend
sider for instance, a customer parametric query SELECTo quickly degenerate arbitrary-precise estimates into fully
X,COUNT(*) FROM T WHERE X IN (:p1,:p2,:p3) GROUP uncertain, zipfeah[Zipf49] probability distributions when
BY X ORDER BY X; with a sorted index defined on X. This the number of query operators grows.
guery does only one scan and aggregation and runs very fast. The effect produced by, say, the AND operator on differ-
Then the customer decides to improve the performance bgnt probability distributions of selectivities of the two AND
replacing the sorted index X with the hashed index X. With- operands is not easily observable because manual calcula-
out the technology propagation, he would do three individ-tion of it is difficult (next to impossible) and special software
ual scans, one for each parameter, and then sort the uniomaust be written to run the desired experiments. To see the
ized result. Performing sort, especially with many duplicatesblurring impact of ANDing, consider a boolean R1 AND
present, would reduce the query speed rather than increa$®2 where restrictions R1, R2 can be enforced by scanning
it. With the range list technology propagated to hashed intwo different indexes and a precise selectivity estimate of
dexes, no extra sort would be needed, and a direct hask0% is available on each restriction. The selectivity prob-
bucket fetch (1 1/0) would be performed instead of a B-treeability distributionspse;r1) and pseyr2) have 100% prob-
descent (several 1/0s), yielding the expected query speedbility concentrated at point 0.2 and have zero probability
increase. everywhere else in the selectivity interval [0,1]. A realistic

When several ORed parts of a restriction can be resolvedssumption of overlapping of selected rows could be: rows
by scanning different indexes, the appropriate multiple indexfully overlap yielding the result selectivity of 0.2 (case of +1
retrievals are performed and their result streams are concateeorrelation); rows overlap partially yielding 0.04 selectivity
nated. Possible multiple delivery of the same rows is avoidedO correlation); rows do not overlap yielding 0 selectivity
by applying a negation of restrictions on the previous streamg—1 correlation); all other overlapping degrees are equally
to the current stream. Note that NULL value treatment in thisprobable. Calling this amnknowncorrelation assumption,
arrangement should be the opposite to the way it is done ithe calculated selectivity probability distribution of R1 AND
regular boolean evaluation. For obvious efficiency reasonsR2 with unknown correlation between R1 and R2 happens
Oracle Rdb uses several types of data compressions. Tée be a curve closely resembling a hyperbola, with a peak
ble rows have their repeated characters compressed on tka zero selectivity. This fundamental property of the ANDed
user’s request. Indexes, in addition to the traditional prefixdistribution is largely unknown in the research community,
and tail compression [BaUn77], provide (1) order-preservingbut the consequence of it is that even knowing selectivities
repeated character compression, (2) support for indexing obn the two indexes one has no realistic guidance to judge
first few characters of long attributes, and (3) elimination whether two indexes should be scanned or only one. To make
of an attribute’s guaranteed constant common prefix withinthe situation worse, different combinations of different index
the valid value range. All three non-traditional index key portions may correlate differently, making precalculation of
compressions were implemented upon customer request. Faorrelations on all index pairs a task of a great magnitude.
example, in case (1), an index of company or person names Another source of uncertainty has to do with a request
expressed in a Japanese (4-B Kanji) character set was cofer the fast first record delivery described in Sect. 3. We as-
sidered the backbone of physical database design by owume that in this case the number of rows requested from
Japanese clients. The names needed a maximum of aboah execution tree node before a forceful node closing has a
200 B to be reserved with an average of 8—-12B utilized forhyperbolic probability distribution. The rationale for this is
the name and the rest of the space filled with blanks. Thesimple: the probability of being asked for exactly ten rows
composite index keys had a telephone number or some othés much higher than for exactly a million rows. In the index
items following the name attribute, thus excluding the possi-retrieval case, a request for ten rows should be satisfied best
bility of trailing blank compression. Without blank compres- by scanning through the first ten index entries and immedi-
sion, the index grew several times the table size for tablestely fetching and delivering data rows. On the contrary, a
compressed by the repeated character encoding. After weequest for a million rows is best processed by scanning the
discovered and implemented an order-preserving repeateddex, collecting row IDs, sorting them, and then fetching
character encoding, indexes shrank by a factor of ten andata rows from the ordered sequence of pages, thus reading
the entire database was reduced to a fraction of its originabach page only once. So, once again, we will never know in
size. advance which of these two strategies should be selected.

Given the impossibility of an adequate compilation time
estimation even for moderately complex queries, we turned
6 Dynamic optimization to dynamic optimization methods [GrWa89], [Ant91],
[Roy91] that use the alternative plans for query and its
Traditionally, execution plan selection done during queryparts, and that change the plans during execution. Today,
compilation time uses a variant of the Selinger et al. | S
[SACL79] cost model, propagating mean cost estimates _ The degenerated uncertain distribution tends to closely resemble hyper-
through intermediate query results into the final query COSt.bOIa (a particular case of zipfean distribution) which is a concave function,

L . concentrating half of the probability around zero and spreading the other
However, the Va“dlty of this model has recently been S€-half to the right of zero area. In contrast, “certain” distributions tend to be

riously challenged [loCh91], [Ant93a] by proving that the approximated by a bell shape which is convex and concentrates almost all
estimation error grows much faster than the rate sufficienprobability in a limited area around the bell center.

235

Oracle Rdb employs dynamic optimization for single-tablefly) a row ID list. With each new row ID, an almost precise
retrieval encapsulated in the Leaf retrieval strategy (Leafestimate of the number of reads necessary for the final row
strategy nodes always appear at the leaf level of the execdetches is calculated. This I/O estimate is compared against
tion tree because they access base tables, not views or othigre cost of the currently best strategy for the entire table
types of subqueries). The Leaf retrieval design is based ometrieval. If the projected final fetch cost closely approaches
the “competition” architecture and cost model described inor exceeds the cost of the best available strategy, the dy-
[Ant91], [HOEN95], [Ant93a], [Ant93b]. namic optimizer abandons this index scan as unproductive
The idea of competition is simple. Suppose that two dif- and starts another scan if more indexes are available. Here,
ferent processes can accomplish the same task and the casimpetition takes place not on the basis of the process com-
probability distribution of one or both processes is zipfean.pletion, but between the two projected costs. Given that the
Since for zipfean processes probabilities of being very in-index scan cost might often be a mere fraction of the final
expensive are significant, it makes sense to run them botFetch cost (one index page might contain a hundred row IDs),
simultaneously (or a single zipfean alone) for a small amounthe first phase extra scan overhead is reduced accordingly.
of time just sufficient to hit all those cases where the task In addition to the three competition types described
can be accomplished quickly. If during this time no processabove, several other types of competition take place and in-
completion is encountered, then we have to guess and coneract in the Leaf strategy, covering major combinations of
tinue only one process that we think has a lower cost. Th&1) whether row fetches via a given index are needed or not;
trick here is that this second phase, being costly, is entere(R) whether a particular order is expected to be delivered or
only on those occasions when the cheap and highly probanot, and (3) whether the fast first row delivery is requested
ble first phase fails. This advantage offsets the expense of ar not. To further improve the competition efficiency, a se-
redundant first-phase process run, given enough skewness géience of index involvement is revised at each retrieval start
the cost hyperbolic distribution. Competition also stabilizesby quick probing into the index [Ant93a]. In the future, we
the system behavior because the number of the mistakenlglan to achieve more precise estimation via index sampling
chosen long processes becomes reduced. Now, consider onftee efficient sampling techniques and stop rules are avail-
again two different index retrieval strategies suitable for theable in [OIR089], [Ant92], [LINS90], [HaSw92]).
“fast first” delivery request. Index scan with immediate row Improving estimation efficiency done at the table re-
fetches has a hyperbolic cost probability distribution becauserieval start will certainly transform some of the hyperbolic
cost is proportional to the number of requested rows, whichcost distributions into more certain bell-shape functions. This
we assume, has a hyperbolic distribution. Index scan thatvill eliminate the need for running some of the competitions.
sorts all selected row IDs before row fetches and deliveryAt the same time, the estimator itself will absorb many of
has a very substantial initial cost of a complete index scarthe potentials for simultaneous exploration of the least ex-
and row ID sort, so its cost distribution is not a zero-peakpensive retrieval arrangements. One simply cannot afford
hyperbola. In the Leaf strategy, we use the following com-to get engaged into sampling from one index when a sin-
petition arrangement of these two basic strategies. First, wgle descent into a leaf B-tree node of the other index can
scan, fetch, and deliver data until the row count hits someuncover a single result row or emptiness of the result, es-
threshold — this is a first competition phase exercising a sinpecially when fetching singletons constitutes the bulk of a
gle zipfean process. Then, if the threshold is reached, wevorkload. We see competition being a major contributor to
switch to the bulk row ID accumulation, sort, and final row efficient estimation. And, apart from estimation, some hy-
fetches. With this arrangement, we might lose on multipleperbolic uncertainties like those encountered in the presence
data page reading during the first phase, but simultaneouslyf the “fast first” request will never go away.
we avoid the large expense of the second phase, when in As for the past, before the dynamic optimizer introduc-
fact only a few rows are requested. It often happens thation in 1990, we performed the ANDed multi-index retrieval
two or more indexes are available for conjunctive retrieval.by scanning the indexes and sort-merging their RID lists.
In such cases, the Leaf strategy collects the row ID listsThis strategy, being efficient when the optimal subset of
from the indexes and intersects them following the basicuseful indexes is selected correctly, caused us a lot of trou-
idea of Babb'’s arrays [Babb79]. What is unique to our in-ble because a reliable optimal subset selection was impos-
tersection technique is that we scan simultaneously the twaible to achieve at compile time. The mistakes of selecting
indexes estimated as most selective and collect row IDs intethe wrong index subset dropped the performance by a few
two in-memory buffers while there is sufficient space avail- decimal orders and literally forced us to shift the selection
able. This way we often discover a shorter index quickly, decision into the run time.
even if our original estimates where incorrect, and then do The dynamic optimization approach we have chosen is
further row ID list intersections faster because the consecgeared to deal with high uncertainties at execution time by
utive intersections can become only smaller. Compared taising parallel runs and by using an entirely dynamic cost
the “fast first” competition, the conjunctive two-index com- model. This contrasts the Leaf retrieval strategy with a ta-
petition runs two scan processes during its first phase, ndble retrieval approach in [MHWC90] that also switches the
one. strategies, but relies on the statically calculated thresholds
When resolving zipfean uncertainties, a more efficientfor making the switching decisions. Compared to the mul-
competition can be arranged if, during the first phase, a runtiple precalculated plan approach [GrWa89], [INSS92], we
ning process can also deliver a reliable estimate of the cogend to assume that the dynamic removal of high uncertain-
of some other activities to be performed in the future. In theties would open a much larger space for the execution plan
Leaf node, an index scan collects (and also intersects on theework than it is possible to exhaust by the limited num-

236

ber of precalculated alternatives. Also, dynamic plans arg2) manipulating large objects of a diverse nature, (3) inte-
as vulnerable to estimation uncertainties as the static optigrated support of a huge number of users, (4) high processing

mizer. Thus, we see it to be more advantageous if the fulspeed, and (5) support of growing query complexity.
scale query and execution plan transformation is performed To fulfill these requirements for query processing and

at execution time.

optimization, we channel our major effort into a few main

directions. We deliver support for the new extended func-
tionality, following closely the evolving SQL3 standard. We

7 Advanced features

also work on incorporation of different types of parallelism

and, as a part of the performance increase effort, we migrate

Following customer requests, a number of advanced feature
were designed into the product. From the very beginning,
starting with its first release, Oracle Rdb supported BLOBSs .
that can be stored as chains of manageable byte sequenc%l
called segmented strings. Segmented strings are used f
storing text, multimedia and other objects of arbitrary size,
and are updated on a per-segment basis. Special provisio
are made to enable an efficient storage of BLOBs on th
WORM devices [Ren92].
Oracle Rdb also supports integrity constraints and trig-

gers. Several types of triggers are supported, such as AF-

number of boolean transformations from the compiler into
the run time, with the net effect of a larger key skip at
index scan and significant optimizer simplification. To effi-
gntly store and process large tables and indexes, we made
roads into new areas of data compression. This includes (1)

itmap compression with fast set operations [Ant95] and (2)
r%der-preserving “dictionary” compression [ALM94], which

atches the existing order-indifferent “dictionary” compres-
sions in speed and compression rate.

TER INSERT, BEFORE UPDATE, AFTER UPDATE, and References
BEFORE DEL.ETE' A trigger can nest othgr triggers asIHALM94] Antoshenkov G, Lomet D, Murray J (1994) Order-preserving
long as recursion does not take place. Special-purpose con-

straints such as primary key, foreign key, NOT NULL, and

UNIQUE constraints are supported in addition to general-[Ant91]

purpose CHECK constraints. Special-purpose constraints are

optimized so that they are evaluated only when it is neces-

sary, depending on the update action. For example, primarﬂﬁ”tgz]

key, NOT NULL, and UNIQUE constraints need not be eval-

uated when a row is deleted from a table. Likewise, a foreignaneza)

key constraint need not be evaluated when a row is deleted

from a foreign key table. To further improve the constraint

enforcement efficiency, the user has been given an optiofAnt93b]

to evaluate the constraints either upon operating on a row

or at the transaction commit time. It makes sense to use thﬁ\ntgs]

latter option for a bulk integrity check when the expectation

of a constraint violation is low. In the bulk check case, the

constraint optimizer collects a RID list of rows to be veri- [Babb79]

fied, thus reducing the check set size from an entire table to

a much smaller set of rows. [BaUn77]
Two important features implemented in Oracle Rdb in re- CHHIOL

]

sponse to customer requests are stored procedures and user-

defined functions. The abstract data types are targeted for

the near future. Stored procedures are part of the client-

server architecture that aims at reducing the message trafPaNg82]

fic. User-defined functions and data types open the way for

a much deeper integration of various applications into theGra94]

database engine. Other advanced features include the SURSray93]

port for distributed transaction update capability using a two-

phase commit protocol, and the internationalization suppor{crwasg]

using different collating sequences and character sets.
[HaSw92]

8 Conclusion [HoEn95]

Today's requirements on database management systeni¥{SS92]
which are rooted in the information explosion phenomenon,
can be condensed into a single statement: various entitigg,cpoy
should be pushed to their extremes. Among the extremes
are (1) storing and processing very large data collections,

key compression. Technical report. DEC Cambridge Research
Laboratory, Cambridge, July

Antoshenkov G (1991) Dynamic optimization of a single ta-
ble access. Technical report DBS-TR-5, DEC-TR-765. DEC
data base systems group, Cambridge, July

Antoshenkov G (1992) Random sampling from pseudo-
ranked B+ Trees. In: Proc 18th VLDB Conf, August, Van-
couver, Canada

Antoshenkov G (1993) Dynamic query optimization in
Rdb/VMS, In: Proc 9th Int Conference on Data Engineer-
ing, April, Vienna, Austria

Antoshenkov G (1993) Query processing in DEC Rdb: major
issues and future challenges. IEEE Bull the Techn Comm
Data Eng 16: 42-52

Antoshenkov G (1995) Byte-aligned bitmap compression
(poster abstract). In: IEEE Data Compression Conf, March,
Snowbird, Utah

Babb E (1979) Implementing a relational database by means
of specialized hardware. ACM Trans Database Syst 4: 1-29
Bayer R, Unterauer K (1977) Prefix B-trees. ACM Trans
Database Syst 2: 11-26

Cheng J, Haderle D, Hedges R, lyer B, Messinger T, Mohan
C, Wang Y (1991) An efficient hybrid join algorithm: a DB2
prototype. In: Proc 7th Int Conf Data Engineering, Kobe,
April

Daniels D, Ng P (1982) Query compilation in*.RIEEE
Database Eng 5: 15-18

Graefe G (1994) Sort merge-join: an idea whose time has
passed? In: Proc Int Conf Data Engineering, Houston, Texas
Gray G (ed) (1993) The benchmark handbook, 2nd edn. Mor-
gan Kaufmann, San Mateo, California

Graefe G, Ward K (1989) Dynamic query execution plans.
In: Proc ACM SIGMOD Conf, May, Portland, Oregon

Haas P, Swami A (1992) Sequential sampling procedures for
query size estimation. Proc ACM SIGMOD Conf, June, San
Diego, California

Hobbs L, England K (1995) Rdb: a comprehensive guide.
Digital Press, Boston, Massachusetts, pp 157-174

loannidis YE, Ng RT, Shim K, Sellis TK (1992) Paramet-
ric query optimization. In: Proc 18th VLDB Conf, August,
Vancouver, Canada

loannidis Y, Christodoulakis S (1991) On the propagation of
errors in the size of join results. In: Proc ACM SIGMOD
Conf, June, Denver, Colorado

[LINS90]

[MHWC90]

[OIR089]

[Ren92]

Lipton R, Naughton J, Schneider D (1990) Practical selec- [Roy91]
tivity estimation through adaptive sampling. In: Proc ACM
SIGMOD Conf, June, Atlantic City, New Jersey

Mohan C, Haderle D, Wang Y, Cheng J (1990) Single ta- [SACL79]
ble access using multiple indexes: optimization, execution,

and concurrency control techniques. Advances in Database
Technology EDBT’90, Venice, ltaly, pp 29-43 [Zipf49]
Olken F, Rotem D (1989) Random sampling from B+ Trees.

In: Proc 15th VLDB Conf, Amsterdam, The Netherlands

Rengarajan TK (1992) Rdb/VMS support for multi-media
databases, (foils only). In: Proc ACM SIGMOD Conf, San

Diego, May

237

Roy S (1991) Adaptive methods in parallel databases. PhD
Dissertation, Department of Computer Science, Stanford Uni-
versity, California

Selinger P, Astrahan M, Chamberlin D, Lorie R, Price T
(1979) Access path selection in a relational database manage-
ment system. In: Proc ACM SIGMOD Conf, Boston, June
Zipf GK (1949) Human behavior and the principle of least
effort. Addison-Wesley, Reading, Massachusetts

