
VLDB (1996) 5: 229–237 The VLDB Journal
c© Springer-Verlag 1996

Query processing and optimization in Oracle Rdb
Gennady Antoshenkov?, Mohamed Ziauddin

Oracle Corporation, New England Development Center, 110 Spit Brook Road, Nashua, NH 03062, USA; e-mail: zmohamed@us.oracle.com

Edited by C. Mohan / Received August 1994 / Acceped August 1995

Abstract. This paper contains an overview of the technol-
ogy used in the query processing and optimization compo-
nent of Oracle Rdb, a relational database management sys-
tem originally developed by Digital Equipment Corporation
and now under development by Oracle Corporation. Oracle
Rdb is a production system that supports the most demand-
ing database applications, runs on multiple platforms and in
a variety of environments.

Key words: Relational database – Optimizer – Dynamic
optimization – Sampling – Query transformation

1 Introduction

Oracle Rdb is a relational database management system run-
ning on multiple platforms that include OpenVMS VAX,
OpenVMS Alpha, and Digital UNIX, with more platform
coverage to come. Since all platforms share a common code
base, the query processing and optimization technology is
largely platform-independent, and further we will concen-
trate on the features common to all the platforms. On VAX
and Alpha clusters, Oracle Rdb runs with applications using
embedded SQL, SQL module language, dynamic SQL, inter-
active SQL, and any of the layered products such as Oracle
RALLY. Distributed and heterogeneous query processing is
done via DEC DB Integrator (also known as Access Works)
that distributes the appropriate SQL query portions to be ex-
ecuted at multiple sites running different database products
including Oracle Rdb, DB2, Oracle 7, and Sybase servers.
DEC DB Integrator has its own optimizer, the description
of which is beyond the scope of this paper.

The Oracle Rdb query engine is built to handle the high
end applications, those that use large databases and require
faster processing of simple and complex queries. With the
customer database sizes approaching tens and hundreds of

? Deceased: Oct. 1995
Oracle Rdb and Oracle RALLY are trademarks of Oracle Corporation.
VAX, AXP, OpenVMS, and DEC DB Integrator are trademarks of Digital
Equipment Corporation
Correspondence to:M. Ziauddin

Gigabytes, we have experienced a sharp increase in demand
for performance and robustness. In response, we have re-
vised our query optimizer and regression test system and
have made the following VLDB-specific improvements.

1. To compensate for unavoidable [Ant93a] compile-
time optimization mistakes, we developed and implemented
a new run-time (dynamic) optimizer that removed the major
shortcomings of single table access. Dynamic optimization
of joins is currently in the design stage.

2. For the cases of wrong join order and strategy se-
lection we introduced a tool called Query Outline which
enabled a manual execution plan specification.

3. We made it our design style to propagate each new
optimization technique into all areas where it can be poten-
tially used. Imagine a production database with a changing
data distribution, with new tables added, and indexes rede-
fined. In this scenario, with time, different system areas get
emphasized and a particular optimization technique may eas-
ily fall out of reach and stop working. For example, given a
sorted index on column X, a few ORed equalities on column
X can be filtered by a single index scan using a range list
technique described in Sect. 2. When the user replaces this
sorted index with a hashed index, he expects a performance
improvement for the equality list restrictions. However, if the
sorted order on X is needed, and the range list technology
is not propagated to hashed indexes, an unnecessary extra
sort will be performed, causing a substantial performance
reduction. We found that such performance disruptions, be-
ing unpredictable, are the most painful to our customers and
must be avoided early in the development process, during
design stage.

4. To achieve equally good performance for the low/high
extremes of query complexity and data flow sizes, we de-
cided to use different techniques for different query com-
plexities or size levels. And, along with the multi-level tech-
niques, we supplied a number of mechanisms for complex-
ity escalation and reduction (shortcuts). For example, when
building a table row filter out of the list of row IDs, we first
collect (and sort) IDs in a tiny pre-allocated buffer. Upon
overflow, we escalate the task and allocate a mid-size buffer,
and upon the second overflow, we escalate further and build
a hashed bitmap.



230

5. We improved our support of binary large objects
(BLOBs) by introducing the write-once read-many (WORM)
option and thus making BLOBs well suited for processing
multimedia objects. Further, a tight integration of BLOBs
into the relational engine was made possible by providing a
choice of placing them into any storage area and referenc-
ing them from any table position. Based on this functionality,
merge of voice, video, graphics, and text can now be easily
achieved through a SQL Multimedia front end and retrieved
and manipulated using both SQL and multimedia-specific
facilities.

6. With each new product release, we started to run a
number of large-scale benchmarks, including TPC-D, Wis-
consin, Set Query, AS3AP [Gray93], and an internal com-
plex query benchmark. These benchmark runs have quickly
become an important source for the performance evalua-
tion, but we still receive most of our detailed performance
feedback from our customers. Because of that, we are still
looking for more exhaustive performance testing tools.

The Oracle Rdb query processing component is designed
to provide high execution speed for the full spectrum of
queries, from the simple ones running in OLTP environ-
ment to the very complex decision support queries. Cur-
rently, queries with up to 128 joins1 can be evaluated with
the boolean restriction complexity limited only by the oper-
ating system stack bound and the overall query source size.

The query processor consists of two major parts, the
query compiler and query executor, each of which has its
own optimizer. Initially, the compiler was designed after
System R [DaNg82] with a cost-based static optimizer. Sub-
sequently, many new features were added and older ones
were replaced in an evolutionary fashion. For instance, in-
stead of storing the compiled query for further load and
execution, Oracle Rdb stores a full or partial execution plan
that also can be manually modified, providing (1) a selective
manual optimization, (2) a faster user-assisted query compi-
lation, and (3) less dependency on changes in the physical
database design. The query executor, on the other hand, not
only evolved with the improvement of old techniques and
the addition of new strategies, but was also re-worked to ac-
commodate a new dynamic optimizer that allows switching
the strategies in the middle of query evaluation.

This paper contains an overview of the technology used
in the query compiler and executor. The rest of the paper is
organized as follows. Section 2 describes various query ex-
pression transformations useful for building an efficient exe-
cution plan. Section 3 outlines the facilities used in the cost-
based execution plan selection by the static optimizer. Join
and single table access strategies are presented in Sects. 4
and 5, respectively. The basic concepts of the dynamic op-
timizer are given in Sect. 6 below. Section 7 introduces a

1 To achieve an acceptable or fast query compilation time, large queries
should be expressed using nested subqueries like views, or derived tables
(SELECT. . .)ASt(f1, . . . , fn). When using the derived tables, the total
number of base tables and subqueries should not exceed 128. For exam-
ple, 12 subqueries with the number of base tables in each subquery not
exceeding 10 and with the total of 116 base tables, will compile in about
half a minute, whereas compilation of a flat 116-way join will take forever.
Views can be nested arbitrarily with the total number of base tables not
exceeding 128. Compilation of a 128-way join composed of the 4-way join
views takes less than a quarter of a minute

number of advanced features: BLOB support, constraints,
triggers, stored procedures, and user-defined functions. Sec-
tion 8 concludes the paper.

2 Query transformation

The earliest query transformation in Oracle Rdb takes place
in the SQL front end. SQL text is converted into a compact
direct polish notation, speeding up the message traffic to the
query engine, especially for remote communications. Dur-
ing the initial compilation phase, the query parser converts
“polish” queries into a linked structure of internal blocks
well suited for fast query traverse and rearrangement. Also,
at this phase, a number of semantically equivalent query
transformations takes place based on query structural prop-
erties (and ignoring database properties like data distribu-
tion in tables and indexes), aiming at better query execution
plan production. Other semantically equivalent query trans-
formations are done during the execution plan selection, and
further, during code generation.

To broaden the application of join optimization and to
reduce the number of distinct, run-time operators, some SQL
constructs like IN (SELECT. . .) are transformed into joins.
The other example is an enclosure (SELECT AVG(X). . .)
delivering exactly one row into a boolean expression. Also,
on many occasions, we find and remove the redundant items
from query expressions. For instance, the query parser would
detect a (useless) ORDER BY clause appearing along with a
non-grouped aggregation and eliminate it from further pro-
cessing.

The views and derived tables are represented as a group
of join items and optimized as such, without unnesting. We
use this approach deliberately for a number of reasons. First,
it helps to cut down the combinatorial join search; second, it
results in shallower query execution trees; and finally, it en-
ables straightforward application of operators such as aggre-
gation and LIMIT TO N ROWS to the joined group result.
The drawback of this approach is that it restricts join order
permutations, and therefore can result in potential loss of op-
timal join order. However, limited unnesting of subqueries
is performed. A subquery with join dependency (i.e., corre-
lated subquery) is moved upward as much as possible in the
nested hierarchy while still maintaining the join dependency.
The upward movement causes non-correlated subqueries to
move up to the top level where they are stacked as leading
items in ann-way join.

The query parser establishes project operations for each
subquery, including only the attributes needed for expression
evaluation (such as boolean) and for the final or intermediate
result delivery. In the extreme cases, when no attributes are
requested, e.g., SELECT COUNT(*). . ., Oracle Rdb finds
the most compact index and scans it. If all columns in a
project list are contained in an index, the query compiler
marks the index for “index-only” access and the index scan-
ner consequently avoids any row fetches. Following one of
the most traditional query optimization principles, the com-
piler pushes selects down through subqueries, views, and
unions, whenever possible. This kind of query transforma-
tion requires some non-trivial design when attribute names
change across the subquery boundaries and also during the



231

transition between union and join subquery types. After the
join order is established, the final binding of the attributes
becomes known, and the code generator pushes the newly
exposed selections even further down into the table and in-
dex scans.

The other (classical) way of producing and utilizing ex-
tra selects is to derive them from the transitive closures
of equality chains. In Oracle Rdb, the transitive closures
are exploited to their fullest extent. For instance, transi-
tivity in (T1.X=T2.X AND T2.X=T3.X) increases the join
search space by adding an extra T1.X=T3.X join equal-
ity. boolean (T1.X=T2.X AND T2.X>10) adds an extra
T1.X>10 restriction for table T1. Selectivities of the re-
dundant conjuncts introduced by transitivity closures are ig-
nored in the query scope where they are redundant. In the
first example, assuming the join order join(join(T1,T3),T2),
a partial solution join(T1,T3) will incorporate selectivity of
T1.X=T3.X, and then the full solution join(join(T1,T3),T2)
will incorporate selectivity of T1.X=T2.X, but not selectiv-
ity of T2.X=T3.X. In the second example, we incorporate
selectivity of T1.X>10 into one join leg and selectivity of
T2.X¿10 into the other leg and then compensate for one
of the two selectivities at the join(T1,T2) application point.
Though the extra selectivity is ignored at and above the
join node, it has its expected effect on the strategy selection
within a join leg, especially if table T1 or T2 happens to be
a derived table or view.

At the early parsing stages, NOT operators present in
boolean expressions are eliminated by using De Morgan’s
boolean transformations. After that, each IN predicate with a
set of literals is converted into ORed equalities, and then dur-
ing code generation, into a list of index ranges to be scanned
in the forward or reverse direction (see range list zig-zag skip
discussion below). ORed equalities of IN predicate that are
also ORed with comparisons, BETWEEN, and other range-
producing predicates applied to the same attribute are con-
verted into a single common range list.

Even more sophisticated boolean transformations be-
come necessary for improving the index scan for a com-
posite index key. When several attributes comprise an index
key and there are enough ANDed equalities specified for a
sequence of leading key attributes, a multi-attribute range
list can be constructed. In such cases, Oracle Rdb produces
the range lists from both disjunctive and conjunctive forms
of a boolean restriction. For instance, given an index on
key X‖Y, restrictions X=1 AND (Y IN (5,7) OR Y>10)
and (X=1 AND Y=5) OR (X=1 AND Y=7) OR (X=1 AND
Y>10) will produce the same range list ([1‖5, 1‖5], [1‖7,
1‖7], [1‖11, 1‖ ∞]) where ‖ stands for logical concaten-
ation.

Historically, boolean transformation has been an area of
constant and intensive improvement. Everyone on the de-
velopment team acknowledges its utmost complexity and
importance. Projection of a boolean into a concatenated at-
tribute sequence of a composite index key is a difficult and
elaborate task by itself. But this task becomes even harder
when the attributes with known and unknown values in-
terchange during the join order permutation, making index
applicability to appear and disappear, partially or fully.

One way of dealing with the boolean transformation
complexity is to delay doing the full transformation until the

variable binding time when all boolean variables except the
index key attributes are assigned some values. The earliest
variable binding can take place either during query execu-
tion, when a start of an index scan is initiated, or during
the last stages of compilation, when the join order is al-
ready determined and all boolean operands are found to be
key attributes or constants. We wrote prototype software for
the binding time boolean transformation and found that: (1)
all desirable value-based transformations tookO(n ∗ log(n))
time, whereas similar variable-based transformations typi-
cally required a polynomial time, (2) deeper transformations
are possible when dealing with values because values allow
immediate evaluation and linear ordering, and (3) after the
value-based transformation, an efficient index scan similar to
the range list scan can be performed using the transformed
boolean as a range list analog.

As an illustration of the importance of the “range list”
transformation, consider a particular case of a combined
NULL restriction X IS NULL AND Y IN (5,7). In Ora-
cle Rdb, a unique NULL value is stored for each attribute
type, which makes it possible to treat IS NULL as an equal-
ity. (Note that in accordance with SQL definition, a NULL
value compares high with all non-NULL values.) This allows
the compiler to transform the above boolean into a range list
([NULL ‖5, NULL‖5], [NULL‖7, NULL‖7]) and make in-
dex scans very efficient. A frequent case of a concatenated
attribute range 1‖5≤ X‖Y≤3‖7 has a lengthy SQL expres-
sion (X=1 AND Y≥5) OR (X>1 AND X<3) OR (X=3
AND Y≤7). Oracle Rdb creates a range list out of it, and
during execution, performs a seamless single index scan over
the original concatenated range. This method is also applied
to and yields a fast index scan for a string concatenated
SQL expression like S1‖S2 BETWEEN “aa”‖“bbb” AND
“zz”‖“yyy”. And further, LIKE predicates, whose patterns
start with literal characters, are ANDed with a range or range
list (for upper/lower case letters) derived from this leading
literal portion in order to enrich the pool of range restric-
tions.

3 Execution plan selection

To determine a join order, Oracle Rdb performs an exhaus-
tive search and produces a left-deep tree of two-way joins
for each individual subquery. Each partial solution based on
some join subset might or might not deliver an intermediate
result in some order. To reduce the exhaustive search space,
the query optimizer employs a number of different heuristics.
For example, it uses a depth-first search to create a total ini-
tial solution for a subquery. All subsequent solutions, total
or partial, are pruned if they cost more than a known to-
tal solution. Only the least-cost solutions and solutions with
different “interesting” orders are considered for further ex-
tension, where an order is interesting if it can be used for
enforcement of ORDER BY, GROUP BY, DISTINCT, or
for a sort merge strategy execution.

The least expensive join orders are determined individ-
ually for each subquery: first for the innermost subqueries,
then for the containing subqueries, until the main subquery
is reached. Both intermediate data orders and equality tran-
sitivities are propagated globally across the subqueries. For



232

example, a merge strategy can be selected for the containing
subquery that uses the order delivered by an index scan of
the contained subquery.

In Oracle Rdb, execution plan selection is based on the
cost model where the cost of an operator represents the esti-
mated number of disk I/Os needed to perform the associated
task. The cost functions take into account savings in I/Os
due to buffering of data as well as physical clustering of
data. The primary source of input to the cost model is the
table and index cardinalities. These basic statistics on tables
and indexes are dynamically maintained with a precision
of log2(n), wheren is the actual table or index cardinality.
When needed, the precise values can be enforced by running
a maintenance utility.

Part of the cost model is calculation of the clustering ef-
fect done for clustered record placement explicitly specified
in the schema, as well as, for implicit clustering of indexes
having some leading key attributes in common with the clus-
tering index. Accidental clustering is accounted for during
query execution by the dynamic optimizer using a learning
mechanism. Detection of clustering typically yields a many-
fold performance improvement. Large-scale benchmarks and
customer feedback made us aware of why accidental clus-
tering occurs fairly often. One of the reasons for accidental
clustering is that some related attributes like serial number
and manufacture date follow virtually the same order (but
this knowledge never becomes part of a database schema).
Another reason why unaccounted accidental clustering oc-
curs is because the initial table load was done in the order of
one or more attributes. There is a whole class of applications
that load large tables overnight or on weekends for subse-
quent read-only use. Any hidden clustering in such cases
remains intact through the duration of the table’s existence.

To obtain a good estimate of the index range scan cost
is almost a hopeless task, given that range boundary expres-
sions contain variables. Except for common sense, our only
guidance in picking the cost formula was balancing between
over- and under-estimation reported by our customers. As it
stands today, the cost of an index scan over a range or range
list involves its estimation as a function of the number of
“leading” equalities involved in a multi-attribute key restric-
tion. To estimate the cost of repetitive single-key retrievals,
the cost of a B-tree descent takes into account the tree height
and a correction factor for the buffering effect. Coupled with
the cost-based execution plan selection is a manual control
over the choice of join sequence, join and table retrieval
strategies, and sets of indexes to use for each retrieval. This
control is a part of the Query Outline feature and it is fully
generic, that is, any partial join order or selective recommen-
dations on the strategy or index choice can be given. The
optimizer will enforce the applicable recommendations and
apply the regular cost-based procedure to resolve any un-
specified optimization dimensions. We found this flexibility
useful for the quality and performance of manual optimiza-
tion, as well as for the partial strategy freeze that, unlike
the traditional stored query plans, lives longer with a chang-
ing schema and continues to benefit from future query opti-
mization improvements. In addition, Query Outlines greatly
simplify and speed up testing and problem solving when a
particular strategy has to be reproduced with a short query
on a miniaturized database version. (The problem here is that

the reduced db/query versions used in debugging tend to de-
viate from the original cost calculation and deliver strategies
not identical to those needed for debugging.)

With an extended syntax SELECT. . . LIMIT TO n
ROWS, the number of rows delivered by such a subquery
is restricted to no more thann rows. Similar restrictions
are imposed (1) by constructs like EXISTS predicate imple-
mented as a subquery to deliver no more than one row, (2)
by an explicit user intention OPTIMIZE FOR FAST FIRST
to terminate a query after receiving the first few records, and
(3) by propagating the “fast first” optimization request (with
uncertainn) down the execution tree. The opposite inten-
tion of reading all result rows can be specified explicitly as
OPTIMIZE FOR TOTAL TIME, can be set implicitly by op-
erators like sort and aggregates, and can also be propagated
down the execution tree. Note that the above data flow lim-
iting intentions come in two distinct types: certain (LIMIT
TO n) and uncertain (FAST FIRST). The industrial query
optimizers today mostly support acertain limiting type, ig-
noring the cases whenuncertainlimits play a dominant role.
One of these cases is when an interactive user gets the first
answer screen and decides with about equal probability to
terminate the query or to run it to completion. Another case
amounts to the limit propagation down through the execu-
tion tree, where according to our experiments [Ant93a] any
certainty quickly deteriorates into a zipfean [Zipf49] type of
uncertainty. Unlike in traditional implementations, the Or-
acle Rdb optimizer deals with uncertain limits directly by
marking the uncertain execution tree areas and running a
parallel competition algorithm, described further in Sect. 6.

A case of processing not more than one row is recognized
by the optimizer and is assumed to deliver a sorted order,
thus avoiding a redundant sort. During execution, sorts are
fully avoided upon detection of zero or one incoming row.
This shortcut may seem insignificant, but in practice it might
yield a substantial performance improvement. For example,
if a data flow is sorted within a nested loop and almost each
inner loop iteration delivers one or no rows, the effect of
the initial sort cost avoidance becomes quite noticeable. The
optimizer also avoids redundant sorts when one data order
subsets another (e.g., a sort for delivering an ORDER BY
X,Y is not used if a Merge strategy within this subquery
already delivers the order X,Y,Z). In addition, it combines
the project order (from GROUP BY and DISTINCT) with
the output order (from ORDER BY) into a single order,
whenever possible. Limiting execution activities to a single
row fetch takes place in some instances of aggregation, e.g.,
MIN(X) and MAX(X) do a single descent into an index B-
tree when an index on X is available. For multi-attribute
indexes (say on X,Y,Z) a single-descent MIN(Z)/MAX(Z)
retrieval can be achieved if restriction X=8 AND Y=5 is
part of the query’s WHERE clause. When all columns of
interest are part of an index then “index-only” retrieval is
used, which avoids fetching rows altogether. boolean selec-
tions based entirely on columns of an index are evaluated as
part of an index scan, thus avoiding redundant row fetches.

Selection of a locking strategy in Oracle Rdb can be con-
trolled by the LOCK FOR UPDATE option. With this option
specified, any rows retrieved from the stored tables are im-
mediately locked for update. Without this option, rows are
first locked for read and only those that survive all query re-



233

strictions have their locks upgraded to “update” just before
the update is actually performed. When all rows touched
during retrieval are going to be updated, all rows are au-
tomatically “update” locked, thus avoiding the costly lock
upgrades.

4 Join strategies

Oracle Rdb supports nested loop and merge join strategies.
With the n-way nested loop join, the join columns of the
outer streams become available to the inner streams for se-
lection. Therefore, the inner streams generally use indexed
access to locate only matching rows. The non-correlated sub-
queries or single-row value expressions are stacked as outer
streams of ann-way nested loop join each delivering a single
row, so that no actual looping occurs but rather a collection
of needed data elements takes place.

The two-way merge join works on two sorted streams
that can come from a table retrieval, from other joins, or from
a subquery. Groups of rows with matching duplicate keys on
both sides are processed by a mini-nested loop mechanism.
When the merge order is delivered by an index scan, the
merge key value from the opposite side is passed to the index
side and is further passed to the index scanner to perform
an efficient skip of all lower key values. This type of merge
is called zig-zag skip, reflecting a pattern of the key skip
B-tree traverse.

A skip key can be passed to the index through sev-
eral subqueries, including the cases of intermediate aggre-
gations grouped by one or more merge key attributes. Con-
sider the query SELECT A.X, (SELECT AVG(B.X) FROM
B WHERE B.X=A.X AND B.X IN (1,10,100)) FROM A;
where indexes on X are defined for both tables A and B. This
query will use the Merge strategy for joining tables A and
B. The AVG aggregate will perform grouping on attribute X
because of the “correlation” equality B.X=A.X. Merge keys
will be passed from side A over the aggregate and into the
index scan of B, thus enabling the B scan to perform zig-zag
skip to the value greater than or equal to the value passed
from side A.

Merge with zig-zag skip is the ultimate strategy to use in
demanding applications that provide the necessary indexes
for joins and complex selections. Compared with the other
two join strategies widely used in the industry, zig-zag merge
efficiently skips over the mismatched key stretches on both
join sides, whereas the nested loop join skips (rather, jumps)
over the keys on one side only and hash join performs a com-
plete scan of both sides. Today we use the key skip mecha-
nism for two-way merge joins and for range list index scans
(see below). In the future, we plan to usen-way common
key merge joins that offer an opportunity to skip over larger
mismatched key ranges and use hash joins in cases of index
absence [Gra94] in order to avoid sorts that are expensive
and offer little chance for skipping. Left, right, and full outer
joins are supported through the use of the same nested loop
and merge join algorithms. The mismatched key rows on one
or both sides are padded with nulls and delivered. When the
outer join predicate is composed only of join key equalities,
groups of rows with matching duplicate keys on both sides
are processed by a mini-nested loop mechanism. In the case

of more complex outer join predicates, Oracle Rdb uses a
combination of mini-nested loop and bitmaps in order to
separate, and process individually, the semi-joins and anti-
semi-joins on one or both join sides within an equi-join-key
group. When the non-equality portion of the outer join pred-
icate is applied to the cartesian product of groups of rows
on each side having the same join key value, there might
be rows in each of these two groups that are fully rejected
from the cartesian product (these rejected rows constitute
anti-semi-join). While evaluating the cartesian product, the
two bitmaps, one per side, keep track of those rows, which
become part of the semi-join. At the end of cartesian prod-
uct evaluation, semi- and anti-semi-joins are fully separated
and the NULL-padded anti-semi-joins are delivered as part
of this outer join.

5 Single-table access

Single-table access in Oracle Rdb employs either a sequen-
tial scan of a table, or scan of one or more indexes with
or without associated row fetches, or direct access of a row
by the row identifier (RID) supplied as part of a table re-
striction. Sequential table scan is accelerated by performing
asynchronous prefetches of buffers containing data pages.
To avoid a full scan of a big storage area when it contains
a mixture of different tables or indexes, small tables stored
within that area are accessed using the most compact index,
if available. If there is an opportunity to organize the re-
trieval in different ways and there is a substantial uncertainty
in choosing the optimal alternative, then a generic retrieval
strategy called Leaf is used as described in Sect. 6. Other-
wise, the traditional sequential or indexed retrieval strategies
are used.

Index retrieval supports the forward and reverse scans of
sorted (B-tree) indexes and the exact match lookup of hashed
indexes. The data rows may or may not be fetched depend-
ing on whether the needed columns are all part of the index
key. The start and stop points of an index scan are controlled
by the low and high bound key values of a single range or
by those of a sorted non-intersecting list of ranges. To skip
the gaps between the ranges, the index scanner checks the
current index page for inclusion of the low bound of the
next range, and upon failure, it descends a B-tree to this low
bound (see also a similar zig-zag algorithm in [CHHI91]).
Restrictions on index key attributes not reducible to ranges
are checked before a row is fetched. Note the positive per-
formance impact of the ORed range list scan. The scanner
opens the index only once, touches only the relevant pages,
moves in a given direction without looping back, and de-
livers the records in a sorted order. In addition, Oracle Rdb
exercises the same retrieval tactic for hashed indexes when
a restriction is composed of ORed key equalities. For the
query SELECT * FROM T WHERE X IN (7,2,5,0); with
the hashed index on X present, the scanner will sort the key
equalities into the equality list (0,2,5,7), open the index only
once, retrieve rows for each key value, and deliver them in
the sorted order. The equality list tactic applied to hashed
indexes made some of our benchmark queries run several
times faster due to the sort avoidance.



234

Application of the above scan tactic to both sorted and
hashed indexes illustrates the advantage of the technology
propagation approach mentioned in the Introduction. Con-
sider for instance, a customer parametric query SELECT
X,COUNT(*) FROM T WHERE X IN (:p1,:p2,:p3) GROUP
BY X ORDER BY X; with a sorted index defined on X. This
query does only one scan and aggregation and runs very fast.
Then the customer decides to improve the performance by
replacing the sorted index X with the hashed index X. With-
out the technology propagation, he would do three individ-
ual scans, one for each parameter, and then sort the union-
ized result. Performing sort, especially with many duplicates
present, would reduce the query speed rather than increase
it. With the range list technology propagated to hashed in-
dexes, no extra sort would be needed, and a direct hash
bucket fetch (1 I/O) would be performed instead of a B-tree
descent (several I/Os), yielding the expected query speed
increase.

When several ORed parts of a restriction can be resolved
by scanning different indexes, the appropriate multiple index
retrievals are performed and their result streams are concate-
nated. Possible multiple delivery of the same rows is avoided
by applying a negation of restrictions on the previous streams
to the current stream. Note that NULL value treatment in this
arrangement should be the opposite to the way it is done in
regular boolean evaluation. For obvious efficiency reasons,
Oracle Rdb uses several types of data compressions. Ta-
ble rows have their repeated characters compressed on the
user’s request. Indexes, in addition to the traditional prefix
and tail compression [BaUn77], provide (1) order-preserving
repeated character compression, (2) support for indexing of
first few characters of long attributes, and (3) elimination
of an attribute’s guaranteed constant common prefix within
the valid value range. All three non-traditional index key
compressions were implemented upon customer request. For
example, in case (1), an index of company or person names
expressed in a Japanese (4-B Kanji) character set was con-
sidered the backbone of physical database design by our
Japanese clients. The names needed a maximum of about
200 B to be reserved with an average of 8–12 B utilized for
the name and the rest of the space filled with blanks. The
composite index keys had a telephone number or some other
items following the name attribute, thus excluding the possi-
bility of trailing blank compression. Without blank compres-
sion, the index grew several times the table size for tables
compressed by the repeated character encoding. After we
discovered and implemented an order-preserving repeated
character encoding, indexes shrank by a factor of ten and
the entire database was reduced to a fraction of its original
size.

6 Dynamic optimization

Traditionally, execution plan selection done during query
compilation time uses a variant of the Selinger et al.
[SACL79] cost model, propagating mean cost estimates
through intermediate query results into the final query cost.
However, the validity of this model has recently been se-
riously challenged [IoCh91], [Ant93a] by proving that the
estimation error grows much faster than the rate sufficient

for plan selection stability. In fact, assuming unknown cor-
relations between intermediate data flows, the most common
query operators like AND, OR, JOIN, UNION, EXISTS tend
to quickly degenerate arbitrary-precise estimates into fully
uncertain, zipfean2 [Zipf49] probability distributions when
the number of query operators grows.

The effect produced by, say, the AND operator on differ-
ent probability distributions of selectivities of the two AND
operands is not easily observable because manual calcula-
tion of it is difficult (next to impossible) and special software
must be written to run the desired experiments. To see the
blurring impact of ANDing, consider a boolean R1 AND
R2 where restrictions R1, R2 can be enforced by scanning
two different indexes and a precise selectivity estimate of
20% is available on each restriction. The selectivity prob-
ability distributionspsel(R1) and psel(R2) have 100% prob-
ability concentrated at point 0.2 and have zero probability
everywhere else in the selectivity interval [0,1]. A realistic
assumption of overlapping of selected rows could be: rows
fully overlap yielding the result selectivity of 0.2 (case of +1
correlation); rows overlap partially yielding 0.04 selectivity
(0 correlation); rows do not overlap yielding 0 selectivity
(−1 correlation); all other overlapping degrees are equally
probable. Calling this anunknowncorrelation assumption,
the calculated selectivity probability distribution of R1 AND
R2 with unknown correlation between R1 and R2 happens
to be a curve closely resembling a hyperbola, with a peak
at zero selectivity. This fundamental property of the ANDed
distribution is largely unknown in the research community,
but the consequence of it is that even knowing selectivities
on the two indexes one has no realistic guidance to judge
whether two indexes should be scanned or only one. To make
the situation worse, different combinations of different index
portions may correlate differently, making precalculation of
correlations on all index pairs a task of a great magnitude.

Another source of uncertainty has to do with a request
for the fast first record delivery described in Sect. 3. We as-
sume that in this case the number of rows requested from
an execution tree node before a forceful node closing has a
hyperbolic probability distribution. The rationale for this is
simple: the probability of being asked for exactly ten rows
is much higher than for exactly a million rows. In the index
retrieval case, a request for ten rows should be satisfied best
by scanning through the first ten index entries and immedi-
ately fetching and delivering data rows. On the contrary, a
request for a million rows is best processed by scanning the
index, collecting row IDs, sorting them, and then fetching
data rows from the ordered sequence of pages, thus reading
each page only once. So, once again, we will never know in
advance which of these two strategies should be selected.

Given the impossibility of an adequate compilation time
estimation even for moderately complex queries, we turned
to dynamic optimization methods [GrWa89], [Ant91],
[Roy91] that use the alternative plans for query and its
parts, and that change the plans during execution. Today,

2 The degenerated uncertain distribution tends to closely resemble hyper-
bola (a particular case of zipfean distribution) which is a concave function,
concentrating half of the probability around zero and spreading the other
half to the right of zero area. In contrast, “certain” distributions tend to be
approximated by a bell shape which is convex and concentrates almost all
probability in a limited area around the bell center.



235

Oracle Rdb employs dynamic optimization for single-table
retrieval encapsulated in the Leaf retrieval strategy (Leaf
strategy nodes always appear at the leaf level of the execu-
tion tree because they access base tables, not views or other
types of subqueries). The Leaf retrieval design is based on
the “competition” architecture and cost model described in
[Ant91], [HoEn95], [Ant93a], [Ant93b].

The idea of competition is simple. Suppose that two dif-
ferent processes can accomplish the same task and the cost
probability distribution of one or both processes is zipfean.
Since for zipfean processes probabilities of being very in-
expensive are significant, it makes sense to run them both
simultaneously (or a single zipfean alone) for a small amount
of time just sufficient to hit all those cases where the task
can be accomplished quickly. If during this time no process
completion is encountered, then we have to guess and con-
tinue only one process that we think has a lower cost. The
trick here is that this second phase, being costly, is entered
only on those occasions when the cheap and highly proba-
ble first phase fails. This advantage offsets the expense of a
redundant first-phase process run, given enough skewness of
the cost hyperbolic distribution. Competition also stabilizes
the system behavior because the number of the mistakenly
chosen long processes becomes reduced. Now, consider once
again two different index retrieval strategies suitable for the
“fast first” delivery request. Index scan with immediate row
fetches has a hyperbolic cost probability distribution because
cost is proportional to the number of requested rows, which
we assume, has a hyperbolic distribution. Index scan that
sorts all selected row IDs before row fetches and delivery
has a very substantial initial cost of a complete index scan
and row ID sort, so its cost distribution is not a zero-peak
hyperbola. In the Leaf strategy, we use the following com-
petition arrangement of these two basic strategies. First, we
scan, fetch, and deliver data until the row count hits some
threshold – this is a first competition phase exercising a sin-
gle zipfean process. Then, if the threshold is reached, we
switch to the bulk row ID accumulation, sort, and final row
fetches. With this arrangement, we might lose on multiple
data page reading during the first phase, but simultaneously,
we avoid the large expense of the second phase, when in
fact only a few rows are requested. It often happens that
two or more indexes are available for conjunctive retrieval.
In such cases, the Leaf strategy collects the row ID lists
from the indexes and intersects them following the basic
idea of Babb’s arrays [Babb79]. What is unique to our in-
tersection technique is that we scan simultaneously the two
indexes estimated as most selective and collect row IDs into
two in-memory buffers while there is sufficient space avail-
able. This way we often discover a shorter index quickly,
even if our original estimates where incorrect, and then do
further row ID list intersections faster because the consec-
utive intersections can become only smaller. Compared to
the “fast first” competition, the conjunctive two-index com-
petition runs two scan processes during its first phase, not
one.

When resolving zipfean uncertainties, a more efficient
competition can be arranged if, during the first phase, a run-
ning process can also deliver a reliable estimate of the cost
of some other activities to be performed in the future. In the
Leaf node, an index scan collects (and also intersects on the

fly) a row ID list. With each new row ID, an almost precise
estimate of the number of reads necessary for the final row
fetches is calculated. This I/O estimate is compared against
the cost of the currently best strategy for the entire table
retrieval. If the projected final fetch cost closely approaches
or exceeds the cost of the best available strategy, the dy-
namic optimizer abandons this index scan as unproductive
and starts another scan if more indexes are available. Here,
competition takes place not on the basis of the process com-
pletion, but between the two projected costs. Given that the
index scan cost might often be a mere fraction of the final
fetch cost (one index page might contain a hundred row IDs),
the first phase extra scan overhead is reduced accordingly.

In addition to the three competition types described
above, several other types of competition take place and in-
teract in the Leaf strategy, covering major combinations of
(1) whether row fetches via a given index are needed or not;
(2) whether a particular order is expected to be delivered or
not, and (3) whether the fast first row delivery is requested
or not. To further improve the competition efficiency, a se-
quence of index involvement is revised at each retrieval start
by quick probing into the index [Ant93a]. In the future, we
plan to achieve more precise estimation via index sampling
(the efficient sampling techniques and stop rules are avail-
able in [OlRo89], [Ant92], [LiNS90], [HaSw92]).

Improving estimation efficiency done at the table re-
trieval start will certainly transform some of the hyperbolic
cost distributions into more certain bell-shape functions. This
will eliminate the need for running some of the competitions.
At the same time, the estimator itself will absorb many of
the potentials for simultaneous exploration of the least ex-
pensive retrieval arrangements. One simply cannot afford
to get engaged into sampling from one index when a sin-
gle descent into a leaf B-tree node of the other index can
uncover a single result row or emptiness of the result, es-
pecially when fetching singletons constitutes the bulk of a
workload. We see competition being a major contributor to
efficient estimation. And, apart from estimation, some hy-
perbolic uncertainties like those encountered in the presence
of the “fast first” request will never go away.

As for the past, before the dynamic optimizer introduc-
tion in 1990, we performed the ANDed multi-index retrieval
by scanning the indexes and sort-merging their RID lists.
This strategy, being efficient when the optimal subset of
useful indexes is selected correctly, caused us a lot of trou-
ble because a reliable optimal subset selection was impos-
sible to achieve at compile time. The mistakes of selecting
the wrong index subset dropped the performance by a few
decimal orders and literally forced us to shift the selection
decision into the run time.

The dynamic optimization approach we have chosen is
geared to deal with high uncertainties at execution time by
using parallel runs and by using an entirely dynamic cost
model. This contrasts the Leaf retrieval strategy with a ta-
ble retrieval approach in [MHWC90] that also switches the
strategies, but relies on the statically calculated thresholds
for making the switching decisions. Compared to the mul-
tiple precalculated plan approach [GrWa89], [INSS92], we
tend to assume that the dynamic removal of high uncertain-
ties would open a much larger space for the execution plan
rework than it is possible to exhaust by the limited num-



236

ber of precalculated alternatives. Also, dynamic plans are
as vulnerable to estimation uncertainties as the static opti-
mizer. Thus, we see it to be more advantageous if the full
scale query and execution plan transformation is performed
at execution time.

7 Advanced features

Following customer requests, a number of advanced features
were designed into the product. From the very beginning,
starting with its first release, Oracle Rdb supported BLOBs
that can be stored as chains of manageable byte sequences
called segmented strings. Segmented strings are used for
storing text, multimedia and other objects of arbitrary size,
and are updated on a per-segment basis. Special provisions
are made to enable an efficient storage of BLOBs on the
WORM devices [Ren92].

Oracle Rdb also supports integrity constraints and trig-
gers. Several types of triggers are supported, such as AF-
TER INSERT, BEFORE UPDATE, AFTER UPDATE, and
BEFORE DELETE. A trigger can nest other triggers as
long as recursion does not take place. Special-purpose con-
straints such as primary key, foreign key, NOT NULL, and
UNIQUE constraints are supported in addition to general-
purpose CHECK constraints. Special-purpose constraints are
optimized so that they are evaluated only when it is neces-
sary, depending on the update action. For example, primary
key, NOT NULL, and UNIQUE constraints need not be eval-
uated when a row is deleted from a table. Likewise, a foreign
key constraint need not be evaluated when a row is deleted
from a foreign key table. To further improve the constraint
enforcement efficiency, the user has been given an option
to evaluate the constraints either upon operating on a row
or at the transaction commit time. It makes sense to use the
latter option for a bulk integrity check when the expectation
of a constraint violation is low. In the bulk check case, the
constraint optimizer collects a RID list of rows to be veri-
fied, thus reducing the check set size from an entire table to
a much smaller set of rows.

Two important features implemented in Oracle Rdb in re-
sponse to customer requests are stored procedures and user-
defined functions. The abstract data types are targeted for
the near future. Stored procedures are part of the client-
server architecture that aims at reducing the message traf-
fic. User-defined functions and data types open the way for
a much deeper integration of various applications into the
database engine. Other advanced features include the sup-
port for distributed transaction update capability using a two-
phase commit protocol, and the internationalization support
using different collating sequences and character sets.

8 Conclusion

Today’s requirements on database management systems,
which are rooted in the information explosion phenomenon,
can be condensed into a single statement: various entities
should be pushed to their extremes. Among the extremes
are (1) storing and processing very large data collections,

(2) manipulating large objects of a diverse nature, (3) inte-
grated support of a huge number of users, (4) high processing
speed, and (5) support of growing query complexity.

To fulfill these requirements for query processing and
optimization, we channel our major effort into a few main
directions. We deliver support for the new extended func-
tionality, following closely the evolving SQL3 standard. We
also work on incorporation of different types of parallelism
and, as a part of the performance increase effort, we migrate
a number of boolean transformations from the compiler into
the run time, with the net effect of a larger key skip at
index scan and significant optimizer simplification. To effi-
ciently store and process large tables and indexes, we made
inroads into new areas of data compression. This includes (1)
bitmap compression with fast set operations [Ant95] and (2)
order-preserving “dictionary” compression [ALM94], which
matches the existing order-indifferent “dictionary” compres-
sions in speed and compression rate.

References

[ALM94] Antoshenkov G, Lomet D, Murray J (1994) Order-preserving
key compression. Technical report. DEC Cambridge Research
Laboratory, Cambridge, July

[Ant91] Antoshenkov G (1991) Dynamic optimization of a single ta-
ble access. Technical report DBS-TR-5, DEC-TR-765. DEC
data base systems group, Cambridge, July

[Ant92] Antoshenkov G (1992) Random sampling from pseudo-
ranked B+ Trees. In: Proc 18th VLDB Conf, August, Van-
couver, Canada

[Ant93a] Antoshenkov G (1993) Dynamic query optimization in
Rdb/VMS, In: Proc 9th Int Conference on Data Engineer-
ing, April, Vienna, Austria

[Ant93b] Antoshenkov G (1993) Query processing in DEC Rdb: major
issues and future challenges. IEEE Bull the Techn Comm
Data Eng 16: 42–52

[Ant95] Antoshenkov G (1995) Byte-aligned bitmap compression
(poster abstract). In: IEEE Data Compression Conf, March,
Snowbird, Utah

[Babb79] Babb E (1979) Implementing a relational database by means
of specialized hardware. ACM Trans Database Syst 4: 1–29

[BaUn77] Bayer R, Unterauer K (1977) Prefix B-trees. ACM Trans
Database Syst 2: 11–26

[CHHI91] Cheng J, Haderle D, Hedges R, Iyer B, Messinger T, Mohan
C, Wang Y (1991) An efficient hybrid join algorithm: a DB2
prototype. In: Proc 7th Int Conf Data Engineering, Kobe,
April

[DaNg82] Daniels D, Ng P (1982) Query compilation in R∗. IEEE
Database Eng 5: 15–18

[Gra94] Graefe G (1994) Sort merge-join: an idea whose time has
passed? In: Proc Int Conf Data Engineering, Houston, Texas

[Gray93] Gray G (ed) (1993) The benchmark handbook, 2nd edn. Mor-
gan Kaufmann, San Mateo, California

[GrWa89] Graefe G, Ward K (1989) Dynamic query execution plans.
In: Proc ACM SIGMOD Conf, May, Portland, Oregon

[HaSw92] Haas P, Swami A (1992) Sequential sampling procedures for
query size estimation. Proc ACM SIGMOD Conf, June, San
Diego, California

[HoEn95] Hobbs L, England K (1995) Rdb: a comprehensive guide.
Digital Press, Boston, Massachusetts, pp 157–174

[INSS92] Ioannidis YE, Ng RT, Shim K, Sellis TK (1992) Paramet-
ric query optimization. In: Proc 18th VLDB Conf, August,
Vancouver, Canada

[IoCh91] Ioannidis Y, Christodoulakis S (1991) On the propagation of
errors in the size of join results. In: Proc ACM SIGMOD
Conf, June, Denver, Colorado



237

[LiNS90] Lipton R, Naughton J, Schneider D (1990) Practical selec-
tivity estimation through adaptive sampling. In: Proc ACM
SIGMOD Conf, June, Atlantic City, New Jersey

[MHWC90] Mohan C, Haderle D, Wang Y, Cheng J (1990) Single ta-
ble access using multiple indexes: optimization, execution,
and concurrency control techniques. Advances in Database
Technology EDBT’90, Venice, Italy, pp 29–43

[OlRo89] Olken F, Rotem D (1989) Random sampling from B+ Trees.
In: Proc 15th VLDB Conf, Amsterdam, The Netherlands

[Ren92] Rengarajan TK (1992) Rdb/VMS support for multi-media
databases, (foils only). In: Proc ACM SIGMOD Conf, San
Diego, May

[Roy91] Roy S (1991) Adaptive methods in parallel databases. PhD
Dissertation, Department of Computer Science, Stanford Uni-
versity, California

[SACL79] Selinger P, Astrahan M, Chamberlin D, Lorie R, Price T
(1979) Access path selection in a relational database manage-
ment system. In: Proc ACM SIGMOD Conf, Boston, June

[Zipf49] Zipf GK (1949) Human behavior and the principle of least
effort. Addison-Wesley, Reading, Massachusetts


