
VLDB Journal, 4, 703-726 (1995), Stanley Y.W. Su, Editor

@VLDB

703

Historical Queries Along Multiple Lines of Time
Evolution

Gad M. Landau, Jeanette R Schmidt, and Vassilis J. Tsotras

Received August 5, 1992; revised version received, May 27, 1994; accepted October 6,
1994.

Abstract. Traditional approaches to addressing historical queries assume a sin-
gle line of time evolution; that is, a system (database, relation) evolves over time
through a sequence of transactions. Each transaction always applies to the unique,
current state of the system, resulting in a new current state. There are, however,
complex applications where the system's state evolves into multiple lines of evo-
lution. In general, this creates a tree (hierarchy) of evolution lines, where each
tree node represents the time evolution of a particular subsystem. Multiple lines
create novel historical queries, such as vertical or horizontal historical queries. The
key characteristic of these problems is that portions of the history are shared; an-
swering historical queries should not necessitate duplication of shared histories as
this could increase the storage requirements dramatically. Both the vertical and
horizontal historical queries have two parts: a "search" part, where the time of
interest is located together with the appropriate subsystem, and a reconstruction
part, where the subsystem's state is reconstructed for that time. This article focuses
on the search part; several reconstruction methods, designed for single evolution
lines can be applied once the appropriate time of interest is located. For both
the vertical and the horizontal historical queries, we present algorithms that work
without duplicating shared histories. Combinations of the vertical and horizon-
tal queries are possible, and enable searching in both dimensions of the tree of
evolutions.

Key Words. Rollback databases, CAD databases, access methods, data-structures.

1. Introduction

Conven t iona l da tabases dea l with one evolving logical state; the evolu t ion f rom one
cons is ten t s ta te to the next is achieved using t ransac t ions and, when a t r ansac t ion

Gad M. Landau, Ph.D., is Associate Professor, landau@pucs2.poly.edu, Jeanette E Schmidt, Ph.D.,
is Associate Professor, jps@pucs4.poly.edu, and Vassilis J. Tsotras, Ph.D., is Assistant Professor, tso-
tras@aegean.poly.edu, Department of Computer Science, Polytechnic University, Six Metrotech Center,
Brooklyn, NY 11201.

704

commits, the previous state is discarded. There are many database applications,
however, where it is important to capture the history of the database's evolution
over time. A rollback or transaction-time database (Snodgrass and Alan, 1986),
for example, can "rollback" the database state to some past time of interest, thus
providing the ability to make historical queries.

Previous approaches to historical queries assume a single line of time evolution.
As an example, consider an evolving system such as a company. The company's
state at time t is the set of employees that are working in the company at time t. This
"real-world" system state evolves over time by the application of a set of operations;
these operations represent the company's hiring policy, and include additions of
new employees, deletions of existing ones, or modifications to attributes of existing
employees (e.g., salary increases). The addition, deletion, or attribute modification
of an employee is considered one change in the state of the company. Assume
that a rollback database is used to capture this evolution, It is implicitly assumed
that whenever a change occurs in the "real-world," a transaction will update the
rollback database at the same time; 1 thus, this change Will be timestamped with the
commit time of the transaction. In the rest of this article, the (commit) timestamp
of a transaction that updates the database concerning some change will be used
interchangeably with the time that the change actually occurred. In addition, we
assume that transactions are always applied to the most current database state.
Using transaction timestamps, a rollback database can support historical queries
about past database states, such as: "find all employees working in the company
on January 1st, 1990."

For the purposes of this article, time is assumed to be discrete, described by
a succession of nonnegative integers. A "log" of an evolution is defined to be
the sequence of the evolution changes indexed by the time instant at which they
occurred. The log contains the minimal information needed to reconstruct any past
state of an evolving system.

There are complex applications, however, where the system's state evolves in a
way that results in multiple lines of evolution. In our example, consider the case
where, at some time instant, the company itself is split into a number of subsidiary
companies. The employees working in the initial company are divided among the
subsidiaries, and may even work in a number of them. The important issue is
that, after the split, each subsidiary is evolving on its own (i.e., changes occur
independently in each subsidiary). A subsidiary may later split into a number of
new subsidiaries, and so on. Such an approach creates parallel, independent lines
of time evolution that actually resemble a tree of evolutions in which each subsidiary
has a number of ancestor subsidiaries.

There are two novel categories of historical queries that we address in this

1. In this article, we concentrate only on "transaction" time. An additional time axis ("valid" time) has been
proposed in literature to represent reality more accurately (Snodgrass and Ahn, 1986).

VLDB Journal 4 (4) Landau: Historical Queries Along Multiple Lines of Evolution 705

article: the Vertical Query and the Horizontal Query. An example of a Vertical Query
is: "find the employees that were working for a given subsidiary C or one of its
ancestors, on January 1st, 1990." Suppose that C is a currently existing subsidiary,
and consider the path in the tree of evolutions that leads to C; the above query
finds which subsidiary in this path existed on January 1st, 1990, and reconstructs
its state (i.e., its employees at that time). For example, if C did not yet exist at
that time, but the ancestor A of C did, the answer to the query contains employees
from A.

The Vertical Query is an extension of the single-line historical queries to the case
of multiple lines of evolution. The state of the evolving system and the notion of a
state change can be defined in various ways, depending on the application. In the
example above, the state is defined as a collection of objects (employees) satisfying
a predicate (work in the company). Instead one could ask for the (stored) value of
a variable that changes over time, such as the number of full-time employees in a
subsidiary; the state in this application is the value of the variable. Thus, another
example of a Vertical Query is: "find the number of full-time employees for a given
subsidiary C or one of its ancestors, on January 1st, 1990." The number of full-time
employees may change many times inside a subsidiary and between subsidiaries. For
the variable's evolution, the only change is a new variable value that is recorded,
along with the time the change occurred. Again, the subsidiary in C's path that
existed on January 1st, 1990 has to be located, but the answer to the vertical query
is now a single value.

One could incorporate the changes in these two evolutions in a single data
structure. However, for simplicity, we will consider the evolution of a general
system, whose state is described either as a set of objects or as the value of a single
variable. We have distinguished among these two ways of representing an evolving
system because, in the case of a set evolution, after the time of interest has been
located, some state reconstruction process is also required.

For vertical queries, it may well be that the subsidiary that existed at the time
specified in the query currently does not exist; the recorded information about this
subsidiary still might be useful to successor subsidiaries for different reasons. Some
of the employees of past subsidiaries still may be employed in new subsidiaries
created after splits and past information could be used for employee benefits, salary
evolution statistics, retirement plans, tax purposes, etc.

The multiple-line evolution also creates a second category of historical queries,
the Horizontal Queries, which did not apply to a single line of evolution. Consider
the following example: given a subsidiary D that existed on January 1st, 1990, and an
ancestor subsidiary B of D, "find all the employees which were employed on January
1st, 1990, by subsidiaries which were descendents of B." This query finds the state as
of January 1st, 1990 for "relevant" subsidiaries (i.e., subsidiaries that were created
under some common subsidiary company). It can be visualized as a horizontal
"snapshot" of relevant subsidiaries (hence, the term horizontal query). As before,
provided that the evolution of a variable indicating the number of employees of each

706

subsidiary has been kept, one could ask a simplified Horizontal Query, returning
the number of employees of "relevant" subsidiaries as of some time of interest.

Both query categories addressed in this article are considered basic in the sense
that, with their combination, we can search histories efficiently along both dimensions
of multiple lines of evolutions. For example, first one could use the vertical query
to access a past state of a given subsidiary, and then use the horizontal query to
access concurrent (past) states of relevant subsidiaries. Conversely, one could start
with the horizontal query at a current sul-,sidiary, and apply some vertical query to
each relevant subsidiary found.

In general, each query category has two distinct parts: a search part that locates
the time of interest in a past subsidiary and a reconstruction part that reconstructs
the answer. If the whole collection of employees is required, the reconstruction
part involves running an algorithm inside the "log" of the subsidiary returned by
the query to get the active employees at the time of interest. Standard approaches
for the state reconstruction part can be used (e.g., Elmasri et al., 1990; Tsotras et
al., 1995). If the query simply requests a past value of an evolving variable, the
reconstruction part is simplified to accessing the appropriate entry in the variable's
"log." This article concentrates on the search part and provides efficient algorithms
for locating a time of interest, with respect to both queries. We return to the
reconstruction part in Section 3.

Even though we refer to the "company" example throughout this article for
its simplicity, the algorithms presented can be used in other applications. The
basic problem of multiple lines of evolution appears in the context of editors for
document databases (Xerox Corp.; Marshall, 1991). In general, in large software
development projects, parts of programs are written by different programmers, and
access to previous designs is needed to allow the designs to be modified in different
ways for different purposes. Each part is timestamped and queries made are with
respect to these timestamps. Another application appears in design environments
(CAD systems).

The problems we address here differ from traditional versioning (see Katz, 1990,
who defined the [similar] notion of a "version tree"). The main difference is that,
in traditional versioning, each version is identified by a unique version identifier: to
access a version, its identifier must be known. Thus, there is no explicit notion of
time. In our setting, we do not use version numbers, rather we deal with "parallel"
time, where a time instant could be applicable in a number of branches, hence a
timestamp is not unique. This allows us to relate events that happened at the same
time in different lines of evolution. For example, consider the design of a project
that is split among different teams, each team working on a part of the project
independently from the others with all changes being timestamped. As the evolution
proceeds each sub-design can be split among more teams and so on, creating a tree
of evolutions that needs to be accessed by time both vertically and horizontally (i.e.,
sub-designs are related vertically and horizontally by time).

The rest of this article is organized as follows: Section 2 presents previous

VLDB Journal 4 (4) Landau: Historical Queries Along Multiple Lines of Evolution 707

approaches to historical queries; such approaches could be used to organize the
history of a particular subsidiary. The tree of evolutions leads to a basic underlying
data-structure that is described in Section 3; in the same section we also discuss the
reconstruction part of both query categories. The solution for the search part of the
vertical query problem appears in Section 4; in Section 5 we provide the solution
to the search part of the horizontal query problem; Section 6 contains conclusions
and open problems.

2. Previous Work on Historical Queries

Any access method that addresses a history reconstruction problem is characterized
by the following costs: the space used by the method's data structure to keep
the historical data, the update processing to process the changes occurring in the
evolution and update the method's data structure, and the query time to reconstruct
the required past state. We regard the number of changes nn as a good measure
of the space requirements for a historical access method since it contains the
minimal information needed to reconstruct any past state. Similarly, the update
processing is measured as the processing per change. Another choice for measuring
the performance could be the number of transactions. In practice, however, a
transaction may result in a number of updates (changes), all of which share the
same transaction commit timestamp. The query time is a function of the number
of changes and the answer size.

Since the historical information to be stored keeps increasing as time proceeds,
a good solution to a history management problem should use space efficiently. On
the other hand, it should also facilitate fast reconstruction of a past state, so that
using the stored history is efficient.

All previous approaches to answering historical queries address the problem on
a single line of time evolution; changes are always applied on the current state of
the evolving system. Various methods have been proposed in recent years (Ahn and
Snodgrass, 1986; Kolovson and Stonebraker, 1989, 1991; Lomet and Salzberg, 1989,
1990, 1993; Segev and Gunadhi, 1989, 1993; Elmasri et al., 1990; Manolopoulos and
Kapetanakis, 1990; Tsotras and Gopinath, 1990, 1992; Jensen et al., 1991; Becker et
al., 1993; Kolovson, 1993; Leung and Muntz, 1993; Tsotras and Kangelaris, 1995).
A detailed review of these methods appears in Salzberg and Tsotras (1994).

Most methods can be categorized according to the single-line historical query
that they were designed to address more efficiently. Early methods (Lum et al.,
1984; Ahn and Snodgrass, 1986) propose the use of "reverse chaining" (i.e., all
past values of a given key are clustered together and linked in reverse time order).
Such approaches can efficiently address queries of the form: "find the salary of
employee A on January 1st, 1990." Pure-snapshot methods (Segev and Gunadhi,
1989, 1993; Elmasri et al., 1990; Tsotras and Gopinath, 1990, 1992; Tsotras et al.,
1995) efficiently address snapshot queries of the form: "find the employees of the
company at January 1st, 1990." In such methods, some form of a "log" usually keeps

708

the (timestamped) changes; this approach provides for constant update processing
per change, as a new change is appended at the end of the log. Range-snapshot
methods (Kolovson and Stonebraker, 1989, 1991; Lomet and Salzberg, 1989, 1990,
1993; Manolopoulos and Kapetanakis, 1990; Becker et al., 1993; Kolovson, 1993)
efficiently answer queries of the form: "find the employees of the company on
January 1st, 1990 whose names are in range [X, Y]." Since keys have to be kept in
order, these methods use some form of a balanced-tree (B-trees, R-trees) as their
main data structure, which leads to logarithmic update processing per change.

Efficient methods dealing with versioned data structures appeared in Driscoll et
al., 1989, Lanka and Mays, 1991). A new version can be created from any previous
version (i.e., full persistence) and gets a new, unique, version identifier. Driscoll et
al. (1989) examined the problem of persistence of linked data structures (i.e., when
the state of the evolving system is represented by a linked data structure), while
Lanka and Mays (1991) (which is based on ideas from Driscoll et al.) provided
efficient ways to store and access versioned B+-trees. The notion of a tree of
evolutions used here is similar to the version tree defined in Driscoll et al. A
version tree differs in that it has no explicit notion of time; rather every node in
the tree uses a version number as a unique identifier. This does not allow users to
relate parallel concurrent versions by giving them the same time stamp. Indeed, the
structure of the version tree was not intended to model concurrent time evolution
of a system into several subsystems.

3. Basic Data-Structure

In this section, we present the underlying data structure of our algorithms, and
show how it relates to the problem of keeping multiple lines of history. We address
this more general history problem under the constraint that the space used should
remain linear at all times in the number of changes in the time evolution.

After a subsidiary is created and before it is first split, the changes occurring in
its evolution are stored in an array; each entry of this array is in general of the form
<time, change>, where time is the (commit) time of the transaction that updated
this subsidiary about a change. Inside a given array, transaction times are stored in
increasing order. We say that an array A overlaps time t on path p if t E [tF, t~]
where tF denotes the first timestamp recorded in array A and t~ denotes the first
timestamp recorded in the array following A on path p, if any. Arrays are created
at splits: after a split, a new array is created for each new subsidiary. Hence, the
tree of evolutions is transformed into an equivalent tree of arrays, where each node
of that tree is an array. In the simplest case, a subsidiary ceases to exist at the first
split time, and its evolution is thus recorded in a single array. However, a parent
subsidiary could continue its existence after a split (i.e., it "survives" the split); all
new changes occurring to this subsidiary are then kept in a new array that is linked
to its previous array. Each additional subsidiary created from the parent subsidiary
gets a new array. The whole evolution of a given subsidiary is, in general, stored

VLDB Journal 4 (4) Landau: Historical Queries Along Multiple Lines of Evolution 709

in a list of arrays. This list of arrays implements the subsidiary's "log" of changes
and, therefore, contains all the information needed to reconstruct any past state of
the subsidiary; in this sense a subsidiary is called "historically autonomous."

Note that timestamps are increasing within the list of arrays of any subsidiary;
this order is also preserved among the arrays on any given path in the tree of arrays.
If a transaction results in a number of changes for a given subsidiary, we assume
that each change is recorded in a separate entry of the subsidiary's current array,
together with this transaction's timestamp. Thus, the number of entries can also
serve as the basic performance measure on our algorithms.

Since each array stores (a part of) the evolution of a separate, independently
evolving subsidiary, the same timestamp can be recorded in various arrays, written
by different transactions that committed at the same time. A timestamp is therefore
not unique in our structure.

An example of a tree of arrays is shown in Figure 1: Co represents a company
that was split at time ts into three new subsidiaries, namely, C1, C2, and C3. The
changes that occurred in the evolution of Co until time ts are stored in array A0,
in increasing order of (transaction) timestamps. If the database keeps the history
of employees, a typical entry in array A0 is a tuple of the form: <ti,(op, emp)>
that represents the fact that change (op, emp) occurred at the time instant ti (i.e.,
operation op was applied on employee emp of company Co). If the database stores
the evolution of some variable, such as the number of employees, a typical entry
would be of the form: <ti,val> representing the fact that at some time tl the
variable changed its value to val (for simplicity we assume that a subsidiary records
its state and variable histories separately).

According to Figure 1, company Co ceases to exist after the split instance ts,
recording its evolution in a single array. Company C4, however, "survived" a split;
thus, its evolution has been recorded in arrays A4 and A5. In the same figure, the
list of arrays of a given subsidiary is shown surrounded schematically by a cluster.
A path in the tree of arrays will normally contain nodes from various subsidiaries.
At a macro level, the tree of evolutions can be extracted from the tree of arrays if
each cluster of nodes is viewed as a "macro node" for the tree of evolutions.

Formally, a tree of arrays T is a tree in which each node vi contains an arrayAi
with ui entries. Let m denote the number of nodes in the tree of arrays (i=l,...,m),
let u be the maximum number of entries in any array (ui < u), and let s(p) denote
the number of nodes on path p. For simplicity of notation, the argument p will be
omitted if it is clear from the context. No assumption is made on the maximum
outdegree of a node. In addition, let n denote the total number of entries (changes)
in the tree; obviously n is bounded by mu while s(p) is at most m.

A split on a given subsidiary is described by: (1) the time ts at which it occurred,
(2) the names of the new subsidiaries, and (3) the distribution of the employees
existing at ts to the parent subsidiary among the newly created subsidiaries (and
maybe itself, if this subsidiary "survives" the split). It remains to describe how the
information in (3) is represented in accordance with our measure, the number of

710

Figure 1. Example of tree of arrays

Rectangles represent arrays, while clusters represent the list of arrays of a given subsidiary.

changes. Suppose that a subsidiary C with x employees is split into two subsidiaries
with Xl and x2 employees, where Xl < x2. The distribution of the employees among
the two subsidiaries is equivalent to O(xa) changes if X l+ x2 = x ("seen" by the
smaller subsidiary as a batch addition of the Xl employees that constitute its initial
state, and by the larger subsidiary as a batch deletion of the same employees).
Usually, xl + x2 = x, however, at split time the same employee could also end up
in more than one subsidiary, in which case xl + x2 > x, or some employee could
not appear in either, resulting in Xl+ x2 < x. This latter case requires max(x1, x
- -x2) changes. Since each subsidiary evolves independently from the others, this
employee may later be deleted from some subsidiaries, while still working in others.

One of the basic queries that our data structure supports is the vertical query:
"find the employees that were working for a given subsidiary C or one of its ancestors,
on January 1st, 1990." Let Co,..., Ci,..., Cs-1 = C be the subsidiaries in the path
leading to subsidiary C. To answer the above query, we must find the first subsidiary
Ci on the path to the root which was in existence on "January 1st, 1990." We

VLDB Journal 4 (4) Landau: Historical Queries Along Multiple Lines of Evolution 711

identify this subsidiary Ci by locating the (unique) array A* (if any) on the path
to the root that overlaps "January 1st, 1990." If the "log" of Ci is implemented
as a list of subsequent arrays Ail,..., Ail, then A* C{Ail,..., All}. The "log" of Ci
contains the initial state of Ci and all the changes in this subsidiary's evolution.
Obviously, if "January 1st, 1990" is overlapped by arrayAij (1 < j <_ l), then entries
with timestamps higher than "January 1st, 1990" are of no interest to the query;
therefore, within array Aij one must find the entry with the largest timestamp that
is less than or equal to "January 1st, 1990." We call that entry the "starting point"
of the vertical query. We present an algorithm that finds the overlapping array in
time O(log s). An additional binary search inside this array will find the starting
point in O(log u) time.

The second type of basic query is the horizontal query: given a subsidiary D
which existed on January 1st, 1990, and an ancestor subsidiary B of D, "find all
the employees which were employed on January 1st, 1990, by subsidiaries which
were descendents of B." We first need to locate the time "January 1st, 1990" in the
"logs" of all the relevant subsidiaries (i.e., those subsidiaries that overlap "January
1st, 1990" and are descendents of B). These starting points create the concurrency
line of subsidiary D on "January 1st, 1990" with respect to B. Figure 1 shows the
concurrency line of time t in C3, with respect to the ancestor Co of C3. All the
arrays that are "cut" by this line are descendants of Co, as required. The starting
points of a concurrency line t provide the latest transactions recorded at all relevant
subsidiaries on or before time t. In general, such a line need not "cut" all relevant
subsidiaries; for example, the concurrency line of time t I in subsidiary Cs, with
respect to ancestor subsidiary C3, does not go through any array of C3's "log"
since subsidiary C3 ceased to exist before t I. Our horizontal query algorithm avoids
checking such logically non-existing relevant subsidiaries. If k is the number of
relevant subsidiaries existing at some time t, we present an algorithm that locates
the starting points in all these relevant subsidiaries in time O(k).

We now turn to the "reconstruction part" of a multiple-evolution historical
query. The "search part" of the query will return some entry in the "log" of a
subsidiary that represents the largest transaction (commit) time recorded in this
subsidiary that is less than or equal to the time specified by the query.

In the simplest case, where the historical query asks for the value of a predefined
variable, such as the number of full-time employees at a time of interest, the
"reconstruction part" simply reads the value recorded in the entry provided by the
"search part."

If the historical query requests the reconstruction of a subsidiary's set of em-
ployees at a given past time, various state reconstruction algorithms may be used
after the "starting point" has been found in some subsidiary Ci. A simple but
obviously inefficient algorithm could just follow upwards all the changes in the path
fromAij untilAil (as any subsidiary is historically autonomous). Another algorithm
could use the Snapshot Index (Tsotras and Kangelaris, 1995), which has an optimal
reconstruction time; indeed, if a employees satisfy the query predicate, it will find

712

them in only 2a steps. This approach uses more complex data structures in addition
to the "log" of changes, but the total space is still linear in the number of changes
in subsidiary Ci, and the update processing is constant per change. Hence, the
combination of the Snapshot Index and the search algorithms presented in this
article can solve the Vertical Query in time O(log n + a) and the Horizontal Query
in time O(k + a), where a denotes the answer size (number of employees satisfying
the predicate) of each query. The whole space remains linear in the number of
changes. The update processing is amortized constant per change, that is, the total
time to perform an arbitrary sequence of n changes is O(n); the time for a single
change, however, might not be constant. Other approaches, such as a modification
of the method of Elmasri et al. (1990) are also possible. By concentrating on the
problem of finding the "starting points" for the vertical and horizontal queries, our
results can be used in a number of reconstruction strategies. Obviously, the time
for the reconstruction must be accounted appropriately, depending on the scheme
used.

From the above discussion, it should be clear that it is not efficient simply to
use an existing single-line of evolution temporal access method (e.g., the Snapshot
Index; the Time Index, Elmasri et al., 1990; the SR-tree, Kolovson and Stonebraker,
1991; and the ST-Index, Segev and Gunadhi, 1993) for multi-line evolution temporal
queries. Consider first the Vertical Query. Conceptually, the changes of a single
subsidiary could have been indexed by some form of a traditional temporal index.
However, in a multi-line evolution environment, parts of history are shared. If
a separate access method was used on each path of the tree of evolutions, a
large space and update overhead would result. The Horizontal Query is novel;
traditional temporal access methods do not address this problem. Here, we propose
data structures that support both multi-line queries using linear space and constant
updating per change (in the amortized sense). In addition, our approach provides
logarithmic query time. Thus, histories over multiple lines of evolution are supported
with performance that is similar to the single-line evolution history.

4. The Vertical Search Problem

In this section, we present an efficient algorithm, Algorithm VS, for finding the
starting point of a Vertical Query, which we call the Vertical Search problem. To
facilitate the search, a number of pointers are installed in the tree of arrays from a
node (array) to some of its ancestor nodes, skipping a varying number of ancestors
at a time. These pointers will enable us to mimic a binary search on the path to the
root during the processing of the query; the pointers are installed as the tree grows
in a way to make them readily accessible at the query time. Roughly, pointers point
to ancestors at distances that form a geometrical progression (powers of 2) until
the root is reached. We will show that our scheme leads to efficient performance
by using O(m) additional space for the pointer structure.

VLDB Journal 4 (4) Landau: Historical Queries Along Multiple Lines of Evolution 713

The parameters of the vertical query are: (1) a tree of arrays T, (2) a node v
in T, and (3) a time t. Node v corresponds to the array of the subsidiary where the
search is initiated (subsidiary C in the example of the vertical query). The vertical
search problem consists of finding the array on the path of v that overlaps t and
inside this array the LAST entry e whose timestamp E is less than or equal to t.
Timestamp E corresponds to the commit time of the latest transaction recorded
before or at t.

Algorithm VS has two stages. In the first stage, the array w is identified on the
path from v to the root that overlaps t. In the second stage, the entry e is found
by performing a binary search on array w. The second stage is straightforward. We
elaborate below on the first stage, which requires adding additional information to
the tree of arrays.

A modified binaly search will be performed on a given branch of the tree. Each
array in the tree has a representative corresponding to the first timestamp recorded
in this array. Since the next array on the path was created by a split (i.e., by a later
transaction, the representatives in any given path of the tree are strictly increasing).
Thus, a path with s arrays can be viewed as a (backward) linked list L = 11,..., ls of
elements sorted in increasing order where a list element corresponds to a node's
representative (ll is the representative of the root and so on; ls is the representative
of node v).

We wish to maintain a data structure that will enable us to answer queries of
the form "find the largest element li in L for which li < t" in logarithmic time in
the length of the list. Our data structure supports the addition of new elements at
the end of the list, but no element may be inserted in the middle. This requirement
emanates from the time evolution: new tree nodes would be added only at the end
of a path (after some split) but no node can be inserted in the middle of a path,
as history is unchangeable. Hence, we may assume that each element li knows its
index i in the list, which does not change.

We first indicate how to perform a modified binary search on a static linked list
with s elements, which was preprocessed to contain s additional pointers (Algorithm
1). (The added pointers are similar to those used by van Emde Boas et al., 1977.)

There are two differences between the problem solved by our preliminary
Algorithm 1 and the vertical search problem: (1) in a tree, each node is typically
contained in many paths; thus, its representative is contained in many linked lists,
and (2) leaves are added to the trees, and the data structure has to be updated
on-line, while maintaining linear space.

The first difference does not cause any difficulty, since a node has the same
representative and the same index in all the lists. We show that our data structure
can be updated on-line in O(1) time per added element, without compromising the
space restrictions and while still allowing the answer to queries in logarithmic time
in the length of the path.

714

Figure 2. Example of pointers added in a static list with s = 32

elements.

o * o ~
17 21 25 29 32

Numbers indicate list indexes.

4.1 Algorithm 1: Search on Static Linked List With Exactly s Elements

Algorithm 1 has two steps. Suppose that the binary representation of s (the index
k

of the representative ls of node v) has l 's in positions bl,..., bk, that is, s = ~ 2 bj .
j= l

In the first step to locate li, the sublist L = l jx ,,, lj2 of length 2 br (br C {hi,...,
r--1 r

bk }) is identified for which ~ 2 bj--k 1 < i < ~ 2 bj. In the second step, the
j = l j = l

desired element, li is found by a binary search on this sublist. To answer all queries
efficiently, O(s) pointers are added in a preprocessing step to a list of length s.

Algorithm 1: Preprocessing--Computing O(s) Pointers

Let ~ = Llog sJ. An e lement / j , for which j = q2 d (for some integers q, 1 < q and

d, 1 < d < ~) has a pointer to the element lh, h = (q -- 1) 2d+ 1. In addition,
an element lj, for which j is odd, has its original list pointer to l j-1. Note that:
(1) for j = q21 {i.e., even for j), the original list pointer to l j -1 , satisfies j -- 1 =

(q -- 1)21+ 1, and (2) every element has at least one pointer (its original) and at
most ~ pointers. Since there are 2 ~-d elements whose list index is a multiple of

~ - 1

2 d, the list contains a total of: S + E 2X-d < 3s/2 pointers {Figure 2).
d=2

The computation of the pointers is done in less than ~ iterations. In the first
iteration, all elements point to their previous element in the list. In the dth (d > 2)
iteration, all elements whose index in the list is a non-trivial multiple of 2 d compute
{conceptually in parallel) the pointer to the element which is 2 d - 1 elements away.
Consider any element lj.

1. Compute the maximum d such that j = q2 ~ for some integer q > 1.
2. Add the following d pointers,

VLDB Journal 4 (4) Landau: Historical Queries Along Multiple Lines of Evolution 715

for d = 2 to d do: add a pointer from lj t o / j - 2 a + l .

I f j is a multiple of 2 d, then b o t h j and j -- 2 d-1 are multiples of 2 d-1. In the (d-
1)st iteration, pointers were added from lj to lj_2d+l and from lj_2a-1 to / j_2d+l ;
therefore, lj_2d+l is found in three pointer accesses (via l j_2d-l+l to lj_2d-~ to
lj-2a+x).

Algorithm 1, Step i
k

Recall that the index of the representative ls of v, satisfies s = E 2bj" The sublist
j=l

= lj~.., lj2 of length 2 b", which contains the desired element and for which Jl

= (q -- 1)2b~+ 1 and J2 = q 2b~ (for some b~.) is identified. Formally, the list is
identified by the following procedure:

j2:=s
j l : = l

While J2-- j l ~ 2a-- 1, for some integer d do
Let lja be the endpoint of the "longest" pointer from lj2

{Hence j2 = q2 ~ for some odd q > 1, (since d is maximal), andj2-- j3 = 2 ~ - 1.}
if t < lja then lj2 = lja_ 1
else {t > lj, } lj, ljz

od

= l j l . . . l j 2

It is easy to verify that step 1 guarantees that: (1) lj~ _< t, and t < lj2+1, and

(2) E contains 2 b~ elements and lj2 is the q2 b~ th element in the original list L, (for
some q > 1). To see that Step 1 takes at most log s iterations, we observe that the
values d computed in "while loop" form an increasing sequence of integers, (and
clearly d < [log s]). Indeed, it is not hard to verify that the successive values of
d correspond to the successive values bl, b2,..., in the binary representation of s.
When the sought for value br is identified, the "else" statement is executed and
the loop terminates.

Algorithm 1, Step 2
The sublist identified in Step 1 has the property that all pointers to all (recursive)
midpoints of sublists are available in O(1) accesses. Hence, we essentially mimic
the basic recursive step of a binary search on a random access data structure (cf.
array), which is to return the first element that is less than or equal to the value
sought.

Basic Binary Search: Given two indexes j l and j2, and a key t >_ ljl, i f j l = J2 then
return j l , else let J3 = [0 1 + j2)/2]. If lja < t perform the basic recursive step on
the pair (J3,j2), otherwise, lja > t perform the basic recursive step on the pair (jl,
j3--1).

716

On an array with 2 A elements, our basic binary search satisfies the invariant:
j2 - J3 = 2d-- l , for some integer d, and J2 = q 2a for some integer q > 1. Our
linked list has a pointer from each such lj2 to the corresponding lj3, which will
provide the required access.

Complexity of Algorithm 1

Space Complexity: For a list with s elements (nodes), we add O(s) pointers for a
total of O(s) space.

Time :Eor computing the p o i n t e r s : Each pointer computation requires O(1) time
for a total of O(s) operations for preprocessing.

Time Complexity: Both step 1 and step 2 run in O(log s) time.
We now return to the description of the two stages of Algorithm VS.

4.2 Algorithm VSmStage One

Since each path in the tree T is viewed as a linked list, every node in T can be
part of many linked lists but has the same list index in all of them (as all indexes
start from the root of the tree). Algorithm VS uses Algorithm 1. As described in
Algorithm 1, pointers are added in a static list to allow for efficient search. There
are two difficulties that have to be addressed when going from the static list to the
tree T.

1. New leaves can be added to the tree.

2. The pointers as defined in Algorithm 1 may result in O(m log m) space in the
tree (recall that m is the number of nodes in 7)). Consider, for example, the
following scenario: the tree is essentially one long branch with m/2 nodes,
where the last node has m/2 children. Each of these children may require
O(log m) pointers, which would result in a structure with m nodes and at
least O(m log m) pointers.

To solve these problems, we are obliged to sometimes delay adding pointers to
newly added leaves. Each node will keep a special pointer, denoted by/-pointer , to
the nearest node on its path to the root, whose pointer structure is not complete.
If there is more than one incomplete node on the path, this node will have an
/-pointer to the next node with incomplete pointer structure, resulting in a linked
list of /-pointers . When a new leaf is added to the tree, it will contribute up to 2
pointers to the pointer structure. All nodes with indexes j, which are not divisible
by 4, have only one (list) pointer. Those nodes access the i r / -pointer and complete
the pointer structure of a previous node on their path. If the pointer structure of
the accessed node is completed the node is deleted from the / -po in te r list and the
new leaf is pointing to the next incomplete node (if any). Note that the pointer
structure of nodes is completed in a last-come first-served fashion. The following
claim shows that the pointer structures of all nodes are completed in a timely
fashion, nevertheless.

VLDB Journal 4 (4) Landau: Historical Queries Along Multiple Lines of Evolution 717

Claim: At any time, the maximum number of nodes with incomplete pointer structure
on a given path of length s is at most 21ogs.

Proof: Consider a path L in the tree T. Suppose that v, with index qT, for some
odd q, is the node with least index on L, which has an incomplete pointer structure.
Consider the node w with index (q + 1) 2 i on L. Let Vbe the list of nodes between
v and w (V:<v = vo, vl,..., v2~ = w>). All the pointers of nodes in vbv2,..., v2~_1
are directed towards nodes in V (i.e., they don't go beyond v = v0). Hence, for 1
< # < T, the total number of pointers that will have to be added to nodes vl, v2,...,

is # + [~ J + [-~J~ + ... < (3 / 2) # . The number of pointers that have to be V/.z

added to v is at most i. If every node computes 2 pointers, after # nodes have
been added to the path, 2# pointers can be computed. The pointer structures of
v therefore will be complete by the time (1/2) # > i and, hence, when # reaches
2i. It also clearly follows from our procedure that when the pointer structure of
v is complet.ed, no other node on this path has an incomplete pointer structure.
Since 2i < T, for i > 1, the pointer structures, in any case, will be complete before
node w is added. Since i is bounded by logs we conclude that: (1) the nodes with
incomplete pointer structures are among the last 2logs nodes on the path, and (2)
the total number of "missing" pointers, at any given time on a path of length s, is
also bounded by O (logs). []

We note that, since linked lists overlap, an/-pointer of a node may point to a
node whose pointer structure has been completed in the meantime. In this case,
the/-pointer is simply updated to point to the next node. In any case, this can only
speed up the computation.

Since the number of nodes with incomplete pointer structure on any given path
of length s is at most O (logs), we may search all the nodes with incomplete pointer
structure sequentially. If the desired node is not among those nodes we proceed
as in Algorithm 1.

Complexity o f Algorithm VS Stage One

Space Complexity: Since each node computes at most 2 pointers, the number of
pointers added in the entire tree is O (m).

Update Process ing: Each pointer is computed in O(1) time; thus, the update
processing is constant per new node added to the tree (and, therefore, is constant
per change).

Time complexity: For a path with s nodes, the time complexity of the algorithm
is O (logs), since both steps 1 and 2 of run in O (logs) time.

Recall that Algorithm VS consists of 2 stages. The first stage, described above,
identifies an arrayA that overlaps t. In the second stage, the entry e whose timestamp
E is less than or equal to t is found by a binary search of array A; for an array

718

with u entries this takes O (log u) time. The size of a tree path is bounded by the
number of tree nodes m which, in turn, is bounded by the total number of changes
n. Similarly, u is bounded by n. Hence, algorithm VS uses linear space in the
number of changes, constant update processing per change, and finds the starting
point for the vertical query in O (logn) time.

In the case of a single-line evolution, all n changes would be stored in timestamp
order on a single array structure, resulting in O (n) space and constant update
processing per change (by appending each change at the end of the array). Under
these constraints, the starting point of a vertical search is found in O(logn) time
(with a binary search on an ordered array) and this is asymptotically optimal (in a
comparison based model). The VS algorithm provides the same optimal performance
in the more complicated case of the multiple-lines of evolution.

Implementation Concerns: The actual complexity of the vertical search obviously
depends on the length of the path we are searching. In a tree with m nodes a
typical path will usually be of size O (logm), with some paths being much longer.
If we were to divide T into pages in a straightforward manner with each page of
size B, the number of page faults incurred when searching along a path of length
s would be about s/logB, (assuming that a page holds a subtree of height logB).
One could argue that a single, very long path of length s = O (m) in the best
case could be paginated using indexing to reduce the number of page faults to
about logm/logB, however, it is not clear how to do that when several such paths
have considerable overlap. On the other hand, a typical path of length logm, in
a balanced part of the tree, would again incur about logm/logB page faults using
straightforward (subtree) pagination. Therefore, we compare the number of page
faults incurred by our algorithm to logm/logB, even though it is not clear that this
bound actually can be achieved using simple paging schemes.

Our algorithm does not offer much improvement for searching a path of size
O (m). It is likely, though, that many paths will have O (logm) nodes. In this case,
our algorithm accesses O (loglogm) nodes so that, even if each of these nodes were
on a different page, this would still result in considerably fewer page faults, than
log m/log B.

5. The Horizontal Search Problem

This section presents an efficient algorithm (Algorithm HS) for the search part of the
Horizontal Query, which we call the Horizontal Search problem. In the context of
the horizontal search, we also use a pointer structure, but pointers are now between
entries of arrays (and not between arrays as in the vertical query). Starting from
a given entry with timestamp t, these pointers will enable the fast location of t (or
the largest to < t) in other horizontally "related" arrays. The space required by
these additional pointers is still linear in the number of changes. We also show that
the update processing cost per change remains O (1) in the amortized sense. This

VLDB Journal 4 (4) Landau: Historical Queries Along Multiple Lines of Evolution 719

means that the addition of some entries (changes) could require more than 0 (1)
update processing to update the horizontal pointer structure but, for any sequence
of n changes, no more than a total of 0 (n) time will be required. Our approach
uses the creation of "ghost" entries and a threshold-based "backward updating"
technique.

The Timestamp Properties. Before we proceed, we establish the following properties
of timestamps. Let v be an arbitrary node in the tree of arrays, and denote the
children of v by Vl,...,vk. (1) All of the first entries of the arrays of vl,...,vle have the
same timestamp (as they are created by the same split operation). (2) We assume
one general clock that provides timestamps. Hence, given two time stamps tl, t2
such that tl < t2, a node with time stamp t2 was added after a node with time
stamp tl.

The input to algorithm HS consists of (1) a tree of arrays T with the timestamp
properties, (2) an arbitrary entry e with timestamp t (within some node v of the
tree T), and (3) an ancestor node w of v. The horizontal search consists of finding
all entries ej that belong to nodes in the subtree of w, and whose timestamp Ej
is the last one (in their subtree) for which Ej < t. The horizontal search problem
produces as an answer the concurrency line of ej with respect to w. In the example
of the Horizontal historical query, node v corresponds to some array of subsidiary
D, while node w is the first array of the ancestor subsidiary B.

There is one obvious solution to the horizontal search problem. One could start
from the ancestor node and travel in a depth-first search manner through its subtree,
in an attempt to locate the required entry in each relevant branch. Suppose it was
determined that the required entries are located in R arrays: Ail,...,Ain (within

R

nodes vil,...,vin). Locating the correct entries in these arrays requires E loguij,
j = l

which could be as much as O (R log u).

5.1 Algorithm HS

We proceed by first describing the data structure used by the Historical Search
algorithm. We then introduce the use of "ghost" entries and the "backward updating"
technique, and discuss their effect in the algorithm's performance.

The Basic Data-Structure. To speed up the search, we maintain two horizontal linked
lists, a right list (to be traversed from right to left), and a left list (to be traversed
from left to right), which connect related entries. Since the maintenance and
construction of the two lists is completely symmetric, we only describe the right
horizontal lists. The main problem in maintaining horizontal lists that enable us to
answer our query is demonstrated by the following example.

Imagine a tree whose root has three children Vl, v2, v3, (in left to right order)
with arrays A1, A2, and A3, respectively. A1 and A3 are very active, and a new

720

Figure 3. Example of backward updating technique.

Ai

1~ tT)[

A2 A3

@ ®,

;@ @,

@ ®,

®

Arrays A1, A2, and A 3 form the list after split t ime t s and before A 1 is split. Circles represent

real entries, and rectangles represent artificial ones (ghosts). For this example ~ = 2.

entry is added to each of them at every timestamp. Array A 2 is very inactive and
entries are rarely added to it. A horizontal query to an entry with timestamp t in
A1 should return the entry with the largest timestamp to _< t in A3. Many entries
in A1 would return THE SAME entry to in A2. On the other hand, to avoid an
explosion of space it is desirable to have entries in A 1 point only to entries in A 2.

To overcome the above difficulty, we use a variation of "backward updating"
(Cole, 1986), which adds "ghost" entries to neighboring nodes to make up for such
discrepancies.

Sumrnary of Backward Updating. For every 6 entry added to an array 05 >_ 2), an
artificial entry is added to its left neighboring array, (with current timestamp). Any
newly added entry (real or artificial) sets its horizontal (right) pointer to point to
the last entry of its right neighbor (Figure 3). Any artificial entry also keeps an
(upward) pointer to the currently last real entry within its array. (If the timestamp
of an artificial entry coincides with the one of a real entry recorded at the same
array, no artificial entry is added.)

VLDB Journal 4 (4) Landau: Historical Queries Along Multiple Lines of Evolution 721

Space Requirement of Horizontal Lists. Although backward updating obviously can
result in a cascade of updates (in the worst case a single update may cause as many
updates as the current size of the horizontal list), this happens very infrequently.
More precisely, for every 6 entry one ghost entry is added to the left neighbor, and
every 62 entry will add a ghost to a neighbor of the neighbor. Basically every entry
is responsible for adding 1/6 k ghost entries to its kth neighbor to the left, at a total
average cost of 1/6 + 1/62+ 1 / (6- 1) per entry. Thus, the total number of
ghosts added is 6-~" The additional space required by ghost entries and by the
(two) pointers per entry is linear in the number of real entries (changes).

Cost of Maintaining Horizontal Lists. Each added real entry creates a number of
ghosts. The total number of ghost entries added during the first n entries is O (n).

Given the horizontal lists described above, an entry ej with timestamp t, within
node v and an ancestor w of v, we wish to answer the horizontal search for ej with
respect to w. We start traversing the horizontal pointer, which emanates from ej
and leads to (say) el. Entry ei is the last entry added to this array prior to time t.
If el is an artificial entry, the last real entry preceding it is reported, otherwise el
itself is the desired entry. In general, the time stamp of el will be smaller than that
of ej, so caution must be exerted when proceeding. The horizontal search from
el leads to entry e~ within node v2. Up to 6 entries may have been added to v2
between the time el was added and our actual target timestamp E. Therefore, we

!
examine up to 6 entries below e2, to find e2, the last one whose timestamp is below
E. We then proceed in exactly the same manner as before.

The only remaining problem is to identify where the horizontal traversal is to
stop (i.e., the last node in the subtree of w). There are many solutions to this
problem. One solution is given by the following labeling scheme.

Labeling Scheme. Each node (array) in the tree has a right and a left label. When
children nodes are added to a node, the rightmost child inherits the right label of
the parent and the leftmost child inherits the left label of the parent. All other
labels are new and are taken from a pool of unused labels (Figure 4). The key
property of this scheme is that the right labels along any extreme right path (or left
labels along any extreme left path) are identical. The traversal of a horizontal list
(from right to left) is to stop at the entry, whose node (array) has a left label that
is the same as w's left label.

Complexity of Algorithm HS

Space Complexity: Since the only extra structures are the horizontal lists, the total
space used remains O (n).

Update Process ing: The extra cost for maintaining the horizontal lists is amortized
O (1) per change. The labeling scheme is O (1) per new node in the tree (and,
hence, O (1) per change).

Ll

Figure 4. Example of labeling scheme in tree of arrays.

L

L2 R4

Ri

722

Rl

Time Complexity: Each step in the traversal has a cost of 6 + O (1). If the traversal
outputs k relevant entries the complexity of answering a horizontal search query
is O(k(6+ O(1))). Note the trade-off in the choice of 6. The space requirement
decreases with 6, while the horizontal search time increases with 6.

5.2 Generalization of Algorithm HS

We now address a generalization of the above scheme, in which we allow nodes to
logically die at a time that is different than a split time (consider the case where, in
our company example, a subsidiary can close without spliting into new subsidiaries).
If a node (array) dies at time t, the last entry in it is labeled "dead" and has
timestamp t. In this case, we would like to skip over that node in a horizontal query
with time target greater than t.

Maintaining adequate horizontal lists when nodes can die does not cause any
difficulty. When a node v, with last entry e, dies at time t, an artificial entry e' (with
same timestamp t) is created at its right neighbor vl. The horizontal left pointer
of e' simply skips v and points to the last entry of its left neighbor v2, which is
henceforth considered the left neighbor of vl. The only difficulty that arises is to
determine the rightmost live descendent of a node w and, hence, the node at which
a horizontal traversal with respect to w is to stop. This problem is the generic
descendent query: Given two nodes w and v in the tree determine whether v is a
descendent of w. The obvious solution: use a vertical search algorithm to answer
the question in O (logs) time, where node v is in a path of length s. The descendent
query takes O (logm) since, in the worst case, a path is O (m).

VLDB Journal 4 (4) Landau: Historical Queries Along Multiple Lines of Evolution 723

Given an entry e in a descendent v of w, to determine the last node on the
horizontal list of e, which is a descendent of w, we must perform a vertical search
for each node accessed in the horizontal list of e. Thus, the obvious solution results
in O (Qk), where k is the number of nodes on the horizontal list, which are live
descendants of w, and Q is the time to answer the generic descendent query (Q <
O (logm)).

The problem can be solved, however, in time O (Q loglogm + k) as following:
Instead of performing a vertical search at each step of the horizontal traversal, we
will do so every logm-th step, and stop at the first node that is outside our scope.
The cost so far is at most O (k + logm). We are left with logm nodes and need
to determine the first one that is outside the scope. We may place these nodes
in a temporary array, and determine the target by doing a binary search on these
nodes. The required time is O(Qloglogm) as predicted.

Since Q < O (logm), we have shown that, even in the case where nodes die, we
can answer horizontal queries quickly. The obvious question is whether the time
complexity of the horizontal search can be reduced to O (k), which clearly would
be optimal. It turns out that by maintaining an auxiliary data structure we are able
to achieve this.

Using the labels created by our label list, we maintain two label lists, (one for
right and one for left labels). The left (right) label list consists of a linked list
of all the left (right) labels that are in use. The linked lists will be kept "in the
natural order" (e.g., when 3 children are added to a node with left label L, the two
new left labels created for the second and third child are added to the linked list
immediately preceding L). The label list has the following nice properties:

1. Given a sequence of left labels L1, L2,...,Lq on the nodes traversed on any
partial horizontal list, L1, L2,...,Lq occur in the same order in the left label
list (although usually not consecutively).

2. Given nodes v and w with left labels Lv and Lw and right labels Rv and
Rw, v is a descendent of w iff Lv precedes Lw on the left label list, and Rv
precedes R~ on the right label list.

We may now rephrase the generic descendent query as follows: Given two
nodes w and v in the tree with left label Lw and Lv determine whetheroLv precedes
Lw in the left label list.

A solution to this problem was given by Dietz and Sleator (1987). It is based on
assigning integer labels to the elements of the linked list, which increase from left
to right. When a new element is inserted, it gets an integer label, which is between
the two values. When no integer is available the elements in the neighborhood
are relabeled. Dietz and Sleator (1987) exhibited such a relabeling scheme, which
takes O (1) amortized time. Order queries can be answered in O (1) time per query.
Inserting a new node into the auxiliary data structure takes O (1) amortized time.

As a result, the general case of the horizontal search, where nodes are allowed
to die, can also be answered in O (k) time (where k is the cardinality of the answer,

724

i.e., the number of live nodes satisfying the horizontal query). The space used by
the label lists is constant per node and the time needed to maintain the label lists
is amortized O (1) per change; thus the general HS algorithm uses O (n) space and
amortized O (1) update processing.

Implementation Concerns: When implementing the horizontal query, we note that
the auxiliary data structure becomes quite important. In the most straightforward
partition of our tree into pages, it is likely that most nodes on the horizontal path
will be on one page. Their common ancestor, though, probably is not. Therefore,
avoiding the ancestor query when deciding where a horizontal traversal is to stop,
using the labeling scheme, is very important.

6. Conclusions

Historical queries are an important part of many database systems (e.g., rollback
databases and design databases). Previous approaches to history reconstruction
problems deal with only a single line of time evolution. There are, however,
complex applications where the database's state evolves in a way that results in
multiple lines of evolution. The key characteristic of these multiple-lines of evolution
problems is that portions of the history are shared; answering historical queries
should not necessitate duplication of shared histories, as this could increase the
storage requirements dramatically. In this article, we provide a general framework
for solving multiple-line history queries. We address two novel historical queries
in this environment: the vertical query and the horizontal query. The vertical
query enables searching by time on the shared path of an evolution, while the
horizontal query facilitates searching at concurrent times in the past of evolutions
that share the same ancestor. Combinations of these basic queries enable searching
both dimensions of the multiple lines of evolution. We are currently extending our
results for the case where evolutions can "merge." The problem becomes more
complicated as the tree of evolution lines becomes a graph of evolutions.

Acknowledgments

This research was partially supported by NSF grants CCR-8908286, CCR-9110255,
IRI-9111271, and by the New York State Science and Technology Foundation as
part of its Center for Advanced Technology program. The authors would like to
thank R. Snodgrass and I. Munro for many helpful discussions; B. Salzberg for
comments on an early version of this article, and S. Marshall from Xerox Labs for
bringing the problem of multiple lines of time evolution to our attention.

VLDB Journal 4 (4) Landau: Historical Queries Along Multiple Lines of Evolution 725

References

Ahn, I. and Snodgrass, R. Performance evaluation of a temporal database manage-
ment system. Proceedings of the ACM SIGMOD Conference on the Management of
Data, Washington, DC, 1986.

Becker, B., Gschwind, S., Ohler, T., Seeger, B., and Widmayer, E On optimal multi-
version access structures. Workshop on Advances in Spatial Databases, Singapore,
1993.

Cole, R. Searching and storing similar lists. Journal of Algorithms, 7:202-220, 1986.
Dietz, E and Sleator, D.D. Two algorithms for maintaining order in a list. Proceedings

of the ACM Symposium on the Theory of Computers, New York, NY, 1987.
Driscoll, J.R., Samak, N., Sleator, D.D., and Tarjan, R.E. Making data structures

persistent. Journal of Computer and System Sciences, 38:86-124, 1989.
van Emde Boas, P., Kaas, R., and Zijlstra, E. Design and implementation of an

efficient priority queue. Mathematical Systems Theory, 10:99-127, 1977.
Elmasri, R., Wuu, G., and Kim, Y. The time index: An access structure for temporal

data. Proceedings of the Sixteenth Conference on ~ry Large Data Bases, Brisbane,
Australia, 1990.

Jensen, C.S., Mark, L., and Roussopoulos, N. Incremental implementation model
for relational databases with transaction time. IEEE Transactions on Knowledge
and Data Engineering, 3(4):461-473, 1991.

Katz, R.H. Toward a unified framework for version modeling in engineering data-
bases. ACM Computing Surveys, 22(4):375-408, 1990.

Kolovson, C. Indexing for historical databases. In: Tansel, A., Clifford, J., Gadia,
S.K., Jajodia, S., Segev, A., and Snodgrass, R., eds. TemporalDatabases: Theory,
Design, and Implementation, Redwood City, CA: Benjamin/Cummings, 1993, pp
418-432.

Kolovson, C. and Stonebraker, M. Indexing techniques for historical databases.
Proceedings of the Fifth 1EEE International Conference on Data Engineering, Los
Angeles, CA, 1989.

Kolovson, C. and Stonebraker, M. Segment indexes: Dynamic indexing techniques
for multi-dimensional interval data. Proceedings of the ACM SIGMOD Conference
on the Management of Data, Denver, CO, 1991.

Lanka, S. and Mays, E. Fully persistent B+ trees. Proceedings oftheACM SIGMOD
Conference on the Management of Data, Denver, CO, 1991.

Leung, T.Y.C. and Muntz, R.R. Stream processing: Temporal query processing and
optimization. In: Tansel, A., Clifford, J., Gadia, S.K., Jajodia, S., Segev, A.,
and Snodgrass, R., eds. Temporal Databases: Theory, Design, and lmplementation,
Redwood City, CA: Benjamin/Cummings, 1993, pp. 329-355.

726

Lomet, D. and Salzberg, B. Access methods for multiversion data. Proceedings of
the ACM SIGMOD Conference on the Management of Data, Portland, OR, 1989.

Lomet, D. and Salzberg, B. The performance of a multiversion access method.
Proceedings of the ACM SIGMOD Conference on the Management of Data, Portland,
OR, 1990.

Lomet, D. and Salzberg, B. Transaction-time databases. In: Tansel, A., Clifford, J.,
Gadia, S.K., Jajodia, S., Segev, A., and Snodgrass, R., eds. Temporal Databases:
Theory, Design, and Implementation, Redwood City, CA: Benjamin/Cummings,
1993, pp. 388-417.

Lum, V., Dadam, E, Erbe, R., Guenauer, J., Pistor, E, Walch, G., Werner, H., and
Woodfill, J. Designing DBMS support for the temporal database. Proceedings
of the ACM SIGMOD Conference on the Management of Data, Boston, MA, 1984.

Manolopoulos, Y. and Kapetanakis, G. Overlapping B+ trees for temporal data.
Proceedings of the Fifth JCIT Conference, Jerusalem, 1990.

Marshall, S. Xerox Webster Research Center, private communication, 1991.
Salzberg, B. and Tsotras, V.J. A comparison of access methods for time-evolving

data. Technical report CATT-TR-94-81, Polytechnic University, or technical
report NU-CCS-94-21, Northeastern University, 1994.

Segev, A. and Gunadhi, H. Event-join optimization in temporal relational databases.
Proceedings of the Fifteenth Conference on Very Large Data Bases, 1989.

Segev, A. and Gunadhi, H. Efficient indexing methods for temporal relations. IEEE
Transactions on Knowledge and Data Engineering; 5(3):496-509, 1993.

Snodgrass, R. and Ahn, I. Temporal databases. IEEE Computer, 19(9):35-42, 1986.
Tsotras, V.J. and Gopinath, B. Efficient algorithms managing the history of evolving

databases. Proceedings of the Third International Conference on Database Theo~
Paris, 1990.

Tsotras, V.J. and Gopinath, B. Optimal versioning of objects. Proceedings of the
Eighth IEEE International Conference on Data Engineering, Phoenix, AZ, 1992.

Tsotras, V.J., Gopinath, B., and Hart, G.W. Efficient management of time-evolving
databases. IEEE Transactions on Knowledge and Data Engineering, 7(4), 1994.

Tsotras, V.J. and Kangelaris, N. The snapshot index, an I/O-optimal access method
for snapshot queries. CATT-Tech. Information Systems, 20(3):237-260, 1994.

