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Abstract. Traditional approaches to addressing historical queries assume a sin- 
gle line of time evolution; that is, a system (database, relation) evolves over time 
through a sequence of transactions. Each transaction always applies to the unique, 
current state of the system, resulting in a new current state. There are, however, 
complex applications where the system's state evolves into multiple lines of evo- 
lution. In general, this creates a tree (hierarchy) of evolution lines, where each 
tree node represents the time evolution of a particular subsystem. Multiple lines 
create novel historical queries, such as vertical or horizontal historical queries. The 
key characteristic of these problems is that portions of the history are shared; an- 
swering historical queries should not necessitate duplication of shared histories as 
this could increase the storage requirements dramatically. Both the vertical and 
horizontal historical queries have two parts: a "search" part, where the time of 
interest is located together with the appropriate subsystem, and a reconstruction 
part, where the subsystem's state is reconstructed for that time. This article focuses 
on the search part; several reconstruction methods, designed for single evolution 
lines can be applied once the appropriate time of interest is located. For both 
the vertical and the horizontal historical queries, we present algorithms that work 
without duplicating shared histories. Combinations of the vertical and horizon- 
tal queries are possible, and enable searching in both dimensions of the tree of 
evolutions. 

Key Words. Rollback databases, CAD databases, access methods, data-structures. 

1. Introduction 

Conven t iona l  da tabases  dea l  with one  evolving logical  state;  the  evolu t ion  f rom one  
cons is ten t  s ta te  to the  next is achieved using t ransac t ions  and,  when  a t r ansac t ion  
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commits, the previous state is discarded. There are many database applications, 
however, where it is important to capture the history of the database's evolution 
over time. A rollback or transaction-time database (Snodgrass and Alan, 1986), 
for example, can "rollback" the database state to some past time of interest, thus 
providing the ability to make historical queries. 

Previous approaches to historical queries assume a single line of time evolution. 
As an example, consider an evolving system such as a company. The company's 
state at time t is the set of employees that are working in the company at time t. This 
"real-world" system state evolves over time by the application of a set of operations; 
these operations represent the company's hiring policy, and include additions of 
new employees, deletions of existing ones, or modifications to attributes of existing 
employees (e.g., salary increases). The addition, deletion, or attribute modification 
of an employee is considered one change in the state of the company. Assume 
that a rollback database is used to capture this evolution, It is implicitly assumed 
that whenever a change occurs in the "real-world," a transaction will update the 
rollback database at the same time; 1 thus, this change Will be timestamped with the 
commit time of the transaction. In the rest of this article, the (commit) timestamp 
of a transaction that updates the database concerning some change will be used 
interchangeably with the time that the change actually occurred. In addition, we 
assume that transactions are always applied to the most current database state. 
Using transaction timestamps, a rollback database can support historical queries 
about past database states, such as: "find all employees working in the company 
on January 1st, 1990." 

For the purposes of this article, time is assumed to be discrete, described by 
a succession of nonnegative integers. A "log" of an evolution is defined to be 
the sequence of the evolution changes indexed by the time instant at which they 
occurred. The log contains the minimal information needed to reconstruct any past 
state of an evolving system. 

There are complex applications, however, where the system's state evolves in a 
way that results in multiple lines of evolution. In our example, consider the case 
where, at some time instant, the company itself is split into a number of subsidiary 
companies. The employees working in the initial company are divided among the 
subsidiaries, and may even work in a number of them. The important issue is 
that, after the split, each subsidiary is evolving on its own (i.e., changes occur 
independently in each subsidiary). A subsidiary may later split into a number of 
new subsidiaries, and so on. Such an approach creates parallel, independent lines 
of time evolution that actually resemble a tree of evolutions in which each subsidiary 
has a number of ancestor subsidiaries. 

There are two novel categories of historical queries that we address in this 

1. In this article, we concentrate only on "transaction" time. An additional time axis ("valid" time) has been 
proposed in literature to represent reality more accurately (Snodgrass and Ahn, 1986). 
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article: the Vertical Query and the Horizontal Query. An example of a Vertical Query 
is: "find the employees that were working for a given subsidiary C or one of its 
ancestors, on January 1st, 1990." Suppose that C is a currently existing subsidiary, 
and consider the path in the tree of evolutions that leads to C; the above query 
finds which subsidiary in this path existed on January 1st, 1990, and reconstructs 
its state (i.e., its employees at that time). For example, if C did not yet exist at 
that time, but the ancestor A of C did, the answer to the query contains employees 
from A. 

The Vertical Query is an extension of the single-line historical queries to the case 
of multiple lines of evolution. The state of the evolving system and the notion of a 
state change can be defined in various ways, depending on the application. In the 
example above, the state is defined as a collection of objects (employees) satisfying 
a predicate (work in the company). Instead one could ask for the (stored) value of 
a variable that changes over time, such as the number of full-time employees in a 
subsidiary; the state in this application is the value of the variable. Thus, another 
example of a Vertical Query is: "find the number of full-time employees for a given 
subsidiary C or one of its ancestors, on January 1st, 1990." The number of full-time 
employees may change many times inside a subsidiary and between subsidiaries. For 
the variable's evolution, the only change is a new variable value that is recorded, 
along with the time the change occurred. Again, the subsidiary in C's path that 
existed on January 1st, 1990 has to be located, but the answer to the vertical query 
is now a single value. 

One could incorporate the changes in these two evolutions in a single data 
structure. However, for simplicity, we will consider the evolution of a general 
system, whose state is described either as a set of objects or as the value of a single 
variable. We have distinguished among these two ways of representing an evolving 
system because, in the case of a set evolution, after the time of interest has been 
located, some state reconstruction process is also required. 

For vertical queries, it may well be that the subsidiary that existed at the time 
specified in the query currently does not exist; the recorded information about this 
subsidiary still might be useful to successor subsidiaries for different reasons. Some 
of the employees of past subsidiaries still may be employed in new subsidiaries 
created after splits and past information could be used for employee benefits, salary 
evolution statistics, retirement plans, tax purposes, etc. 

The multiple-line evolution also creates a second category of historical queries, 
the Horizontal Queries, which did not apply to a single line of evolution. Consider 
the following example: given a subsidiary D that existed on January 1st, 1990, and an 
ancestor subsidiary B of D, "find all the employees which were employed on January 
1st, 1990, by subsidiaries which were descendents of B." This query finds the state as 
of January 1st, 1990 for "relevant" subsidiaries (i.e., subsidiaries that were created 
under some common subsidiary company). It can be visualized as a horizontal 
"snapshot" of relevant subsidiaries (hence, the term horizontal query). As before, 
provided that the evolution of a variable indicating the number of employees of each 
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subsidiary has been kept, one could ask a simplified Horizontal Query, returning 
the number of employees of "relevant" subsidiaries as of some time of interest. 

Both query categories addressed in this article are considered basic in the sense 
that, with their combination, we can search histories efficiently along both dimensions 
of multiple lines of evolutions. For example, first one could use the vertical query 
to access a past state of a given subsidiary, and then use the horizontal query to 
access concurrent (past) states of relevant subsidiaries. Conversely, one could start 
with the horizontal query at a current sul-,sidiary, and apply some vertical query to 
each relevant subsidiary found. 

In general, each query category has two distinct parts: a search part that locates 
the time of interest in a past subsidiary and a reconstruction part that reconstructs 
the answer. If the whole collection of employees is required, the reconstruction 
part involves running an algorithm inside the "log" of the subsidiary returned by 
the query to get the active employees at the time of interest. Standard approaches 
for the state reconstruction part can be used (e.g., Elmasri et al., 1990; Tsotras et 
al., 1995). If the query simply requests a past value of an evolving variable, the 
reconstruction part is simplified to accessing the appropriate entry in the variable's 
"log." This article concentrates on the search part and provides efficient algorithms 
for locating a time of interest, with respect to both queries. We return to the 
reconstruction part in Section 3. 

Even though we refer to the "company" example throughout this article for 
its simplicity, the algorithms presented can be used in other applications. The 
basic problem of multiple lines of evolution appears in the context of editors for 
document databases (Xerox Corp.; Marshall, 1991). In general, in large software 
development projects, parts of programs are written by different programmers, and 
access to previous designs is needed to allow the designs to be modified in different 
ways for different purposes. Each part is timestamped and queries made are with 
respect to these timestamps. Another application appears in design environments 
(CAD systems). 

The problems we address here differ from traditional versioning (see Katz, 1990, 
who defined the [similar] notion of a "version tree"). The main difference is that, 
in traditional versioning, each version is identified by a unique version identifier: to 
access a version, its identifier must be known. Thus, there is no explicit notion of 
time. In our setting, we do not use version numbers, rather we deal with "parallel" 
time, where a time instant could be applicable in a number of branches, hence a 
timestamp is not unique. This allows us to relate events that happened at the same 
time in different lines of evolution. For example, consider the design of a project 
that is split among different teams, each team working on a part of the project 
independently from the others with all changes being timestamped. As the evolution 
proceeds each sub-design can be split among more teams and so on, creating a tree 
of evolutions that needs to be accessed by time both vertically and horizontally (i.e., 
sub-designs are related vertically and horizontally by time). 

The rest of this article is organized as follows: Section 2 presents previous 
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approaches to historical queries; such approaches could be used to organize the 
history of a particular subsidiary. The tree of evolutions leads to a basic underlying 
data-structure that is described in Section 3; in the same section we also discuss the 
reconstruction part of both query categories. The solution for the search part of the 
vertical query problem appears in Section 4; in Section 5 we provide the solution 
to the search part of the horizontal query problem; Section 6 contains conclusions 
and open problems. 

2. Previous Work on Historical Queries 

Any access method that addresses a history reconstruction problem is characterized 
by the following costs: the space used by the method's data structure to keep 
the historical data, the update processing to process the changes occurring in the 
evolution and update the method's data structure, and the query time to reconstruct 
the required past state. We regard the number of changes nn as a good measure 
of the space requirements for a historical access method since it contains the 
minimal information needed to reconstruct any past state. Similarly, the update 
processing is measured as the processing per change. Another choice for measuring 
the performance could be the number of transactions. In practice, however, a 
transaction may result in a number of updates (changes), all of which share the 
same transaction commit timestamp. The query time is a function of the number 
of changes and the answer size. 

Since the historical information to be stored keeps increasing as time proceeds, 
a good solution to a history management problem should use space efficiently. On 
the other hand, it should also facilitate fast reconstruction of a past state, so that 
using the stored history is efficient. 

All previous approaches to answering historical queries address the problem on 
a single line of time evolution; changes are always applied on the current state of 
the evolving system. Various methods have been proposed in recent years (Ahn and 
Snodgrass, 1986; Kolovson and Stonebraker, 1989, 1991; Lomet and Salzberg, 1989, 
1990, 1993; Segev and Gunadhi, 1989, 1993; Elmasri et al., 1990; Manolopoulos and 
Kapetanakis, 1990; Tsotras and Gopinath, 1990, 1992; Jensen et al., 1991; Becker et 
al., 1993; Kolovson, 1993; Leung and Muntz, 1993; Tsotras and Kangelaris, 1995). 
A detailed review of these methods appears in Salzberg and Tsotras (1994). 

Most methods can be categorized according to the single-line historical query 
that they were designed to address more efficiently. Early methods (Lum et al., 
1984; Ahn and Snodgrass, 1986) propose the use of "reverse chaining" (i.e., all 
past values of a given key are clustered together and linked in reverse time order). 
Such approaches can efficiently address queries of the form: "find the salary of 
employee A on January 1st, 1990." Pure-snapshot methods (Segev and Gunadhi, 
1989, 1993; Elmasri et al., 1990; Tsotras and Gopinath, 1990, 1992; Tsotras et al., 
1995) efficiently address snapshot queries of the form: "find the employees of the 
company at January 1st, 1990." In such methods, some form of a "log" usually keeps 
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the (timestamped) changes; this approach provides for constant update processing 
per change, as a new change is appended at the end of the log. Range-snapshot 
methods (Kolovson and Stonebraker, 1989, 1991; Lomet and Salzberg, 1989, 1990, 
1993; Manolopoulos and Kapetanakis, 1990; Becker et al., 1993; Kolovson, 1993) 
efficiently answer queries of the form: "find the employees of the company on 
January 1st, 1990 whose names are in range [X, Y]." Since keys have to be kept in 
order, these methods use some form of a balanced-tree (B-trees, R-trees) as their 
main data structure, which leads to logarithmic update processing per change. 

Efficient methods dealing with versioned data structures appeared in Driscoll et 
al., 1989, Lanka and Mays, 1991). A new version can be created from any previous 
version (i.e., full persistence) and gets a new, unique, version identifier. Driscoll et 
al. (1989) examined the problem of persistence of linked data structures (i.e., when 
the state of the evolving system is represented by a linked data structure), while 
Lanka and Mays (1991) (which is based on ideas from Driscoll et al.) provided 
efficient ways to store and access versioned B+-trees. The notion of a tree of 
evolutions used here is similar to the version tree defined in Driscoll et al. A 
version tree differs in that it has no explicit notion of time; rather every node in 
the tree uses a version number as a unique identifier. This does not allow users to 
relate parallel concurrent versions by giving them the same time stamp. Indeed, the 
structure of the version tree was not intended to model concurrent time evolution 
of a system into several subsystems. 

3. Basic Data-Structure 

In this section, we present the underlying data structure of our algorithms, and 
show how it relates to the problem of keeping multiple lines of history. We address 
this more general history problem under the constraint that the space used should 
remain linear at all times in the number of changes in the time evolution. 

After a subsidiary is created and before it is first split, the changes occurring in 
its evolution are stored in an array; each entry of this array is in general of the form 
<time, change>, where time is the (commit) time of the transaction that updated 
this subsidiary about a change. Inside a given array, transaction times are stored in 
increasing order. We say that an array A overlaps time t on path p if t E [tF, t~] 
where tF denotes the first timestamp recorded in array A and t~ denotes the first 
timestamp recorded in the array following A on path p, if any. Arrays are created 
at splits: after a split, a new array is created for each new subsidiary. Hence, the 
tree of evolutions is transformed into an equivalent tree of arrays, where each node 
of that tree is an array. In the simplest case, a subsidiary ceases to exist at the first 
split time, and its evolution is thus recorded in a single array. However, a parent 
subsidiary could continue its existence after a split (i.e., it "survives" the split); all 
new changes occurring to this subsidiary are then kept in a new array that is linked 
to its previous array. Each additional subsidiary created from the parent subsidiary 
gets a new array. The whole evolution of a given subsidiary is, in general, stored 
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in a list of arrays. This list of arrays implements the subsidiary's "log" of changes 
and, therefore, contains all the information needed to reconstruct any past state of 
the subsidiary; in this sense a subsidiary is called "historically autonomous." 

Note that timestamps are increasing within the list of arrays of any subsidiary; 
this order is also preserved among the arrays on any given path in the tree of arrays. 
If a transaction results in a number of changes for a given subsidiary, we assume 
that each change is recorded in a separate entry of the subsidiary's current array, 
together with this transaction's timestamp. Thus, the number of entries can also 
serve as the basic performance measure on our algorithms. 

Since each array stores (a part of) the evolution of a separate, independently 
evolving subsidiary, the same timestamp can be recorded in various arrays, written 
by different transactions that committed at the same time. A timestamp is therefore 
not unique in our structure. 

An example of a tree of arrays is shown in Figure 1: Co represents a company 
that was split at time ts into three new subsidiaries, namely, C1, C2, and C3. The 
changes that occurred in the evolution of Co until time ts are stored in array A0, 
in increasing order of (transaction) timestamps. If the database keeps the history 
of employees, a typical entry in array A0 is a tuple of the form: <ti,(op, emp)> 
that represents the fact that change (op, emp) occurred at the time instant ti (i.e., 
operation op was applied on employee emp of company Co). If the database stores 
the evolution of some variable, such as the number of employees, a typical entry 
would be of the form: <ti,val> representing the fact that at some time tl the 
variable changed its value to val (for simplicity we assume that a subsidiary records 
its state and variable histories separately). 

According to Figure 1, company Co ceases to exist after the split instance ts, 
recording its evolution in a single array. Company C4, however, "survived" a split; 
thus, its evolution has been recorded in arrays A4 and A5. In the same figure, the 
list of arrays of a given subsidiary is shown surrounded schematically by a cluster. 
A path in the tree of arrays will normally contain nodes from various subsidiaries. 
At a macro level, the tree of evolutions can be extracted from the tree of arrays if 
each cluster of nodes is viewed as a "macro node" for the tree of evolutions. 

Formally, a tree of arrays T is a tree in which each node vi contains an arrayAi 
with ui entries. Let m denote the number of nodes in the tree of arrays (i=l,...,m), 
let u be the maximum number of entries in any array (ui < u), and let s(p) denote 
the number of nodes on path p. For simplicity of notation, the argument p will be 
omitted if it is clear from the context. No assumption is made on the maximum 
outdegree of a node. In addition, let n denote the total number of entries (changes) 
in the tree; obviously n is bounded by mu while s(p) is at most m. 

A split on a given subsidiary is described by: (1) the time ts at which it occurred, 
(2) the names of the new subsidiaries, and (3) the distribution of the employees 
existing at ts to the parent subsidiary among the newly created subsidiaries (and 
maybe itself, if this subsidiary "survives" the split). It remains to describe how the 
information in (3) is represented in accordance with our measure, the number of 
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Figure 1. Example of tree of arrays 

Rectangles represent arrays, while clusters represent the list of arrays of a given subsidiary. 

changes. Suppose that a subsidiary C with x employees is split into two subsidiaries 
with Xl and x2 employees, where Xl < x2. The distribution of the employees among 
the two subsidiaries is equivalent to O(xa) changes if X l+  x2 = x ("seen" by the 
smaller subsidiary as a batch addition of the Xl employees that constitute its initial 
state, and by the larger subsidiary as a batch deletion of the same employees). 
Usually, xl + x2 = x, however, at split time the same employee could also end up 
in more than one subsidiary, in which case xl + x2 > x, or some employee could 
not appear in either, resulting in Xl+  x2 < x. This latter case requires max(x1, x 
- -x2)  changes. Since each subsidiary evolves independently from the others, this 
employee may later be deleted from some subsidiaries, while still working in others. 

One of the basic queries that our data structure supports is the vertical query: 
"find the employees that were working for a given subsidiary C or one of its ancestors, 
on January 1st, 1990." Let Co,..., Ci,..., Cs-1 = C be the subsidiaries in the path 
leading to subsidiary C. To answer the above query, we must find the first subsidiary 
Ci on the path to the root which was in existence on "January 1st, 1990." We 
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identify this subsidiary Ci by locating the (unique) array A* (if any) on the path 
to the root that overlaps "January 1st, 1990." If the "log" of Ci is implemented 
as a list of subsequent arrays Ail,..., Ail, then A* C{Ail,..., All}. The "log" of Ci 
contains the initial state of Ci and all the changes in this subsidiary's evolution. 
Obviously, if "January 1st, 1990" is overlapped by arrayAij (1 < j <_ l), then entries 
with timestamps higher than "January 1st, 1990" are of no interest to the query; 
therefore, within array Aij one must find the entry with the largest timestamp that 
is less than or equal to "January 1st, 1990." We call that entry the "starting point" 
of the vertical query. We present an algorithm that finds the overlapping array in 
time O(log s). An additional binary search inside this array will find the starting 
point in O(log u) time. 

The second type of basic query is the horizontal query: given a subsidiary D 
which existed on January 1st, 1990, and an ancestor subsidiary B of D, "find all 
the employees which were employed on January 1st, 1990, by subsidiaries which 
were descendents of B." We first need to locate the time "January 1st, 1990" in the 
"logs" of all the relevant subsidiaries (i.e., those subsidiaries that overlap "January 
1st, 1990" and are descendents of B). These starting points create the concurrency 
line of subsidiary D on "January 1st, 1990" with respect to B. Figure 1 shows the 
concurrency line of time t in C3, with respect to the ancestor Co of C3. All the 
arrays that are "cut" by this line are descendants of Co, as required. The starting 
points of a concurrency line t provide the latest transactions recorded at all relevant 
subsidiaries on or before time t. In general, such a line need not "cut" all relevant 
subsidiaries; for example, the concurrency line of time t I in subsidiary Cs, with 
respect to ancestor subsidiary C3, does not go through any array of C3's "log" 
since subsidiary C3 ceased to exist before t I. Our horizontal query algorithm avoids 
checking such logically non-existing relevant subsidiaries. If k is the number of 
relevant subsidiaries existing at some time t, we present an algorithm that locates 
the starting points in all these relevant subsidiaries in time O(k). 

We now turn to the "reconstruction part" of a multiple-evolution historical 
query. The "search part" of the query will return some entry in the "log" of a 
subsidiary that represents the largest transaction (commit) time recorded in this 
subsidiary that is less than or equal to the time specified by the query. 

In the simplest case, where the historical query asks for the value of a predefined 
variable, such as the number of full-time employees at a time of interest, the 
"reconstruction part" simply reads the value recorded in the entry provided by the 
"search part." 

If the historical query requests the reconstruction of a subsidiary's set of em- 
ployees at a given past time, various state reconstruction algorithms may be used 
after the "starting point" has been found in some subsidiary Ci. A simple but 
obviously inefficient algorithm could just follow upwards all the changes in the path 
fromAij untilAil (as any subsidiary is historically autonomous). Another algorithm 
could use the Snapshot Index (Tsotras and Kangelaris, 1995), which has an optimal 
reconstruction time; indeed, if a employees satisfy the query predicate, it will find 
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them in only 2a steps. This approach uses more complex data structures in addition 
to the "log" of changes, but the total space is still linear in the number of changes 
in subsidiary Ci, and the update processing is constant per change. Hence, the 
combination of the Snapshot Index and the search algorithms presented in this 
article can solve the Vertical Query in time O(log n + a) and the Horizontal Query 
in time O(k + a), where a denotes the answer size (number of employees satisfying 
the predicate) of each query. The whole space remains linear in the number of 
changes. The update processing is amortized constant per change, that is, the total 
time to perform an arbitrary sequence of n changes is O(n); the time for a single 
change, however, might not be constant. Other approaches, such as a modification 
of the method of Elmasri et al. (1990) are also possible. By concentrating on the 
problem of finding the "starting points" for the vertical and horizontal queries, our 
results can be used in a number of reconstruction strategies. Obviously, the time 
for the reconstruction must be accounted appropriately, depending on the scheme 
used. 

From the above discussion, it should be clear that it is not efficient simply to 
use an existing single-line of evolution temporal access method (e.g., the Snapshot 
Index; the Time Index, Elmasri et al., 1990; the SR-tree, Kolovson and Stonebraker, 
1991; and the ST-Index, Segev and Gunadhi, 1993) for multi-line evolution temporal 
queries. Consider first the Vertical Query. Conceptually, the changes of a single 
subsidiary could have been indexed by some form of a traditional temporal index. 
However, in a multi-line evolution environment, parts of history are shared. If 
a separate access method was used on each path of the tree of evolutions, a 
large space and update overhead would result. The Horizontal Query is novel; 
traditional temporal access methods do not address this problem. Here, we propose 
data structures that support both multi-line queries using linear space and constant 
updating per change (in the amortized sense). In addition, our approach provides 
logarithmic query time. Thus, histories over multiple lines of evolution are supported 
with performance that is similar to the single-line evolution history. 

4. The Vertical Search Problem 

In this section, we present an efficient algorithm, Algorithm VS, for finding the 
starting point of a Vertical Query, which we call the Vertical Search problem. To 
facilitate the search, a number of pointers are installed in the tree of arrays from a 
node (array) to some of its ancestor nodes, skipping a varying number of ancestors 
at a time. These pointers will enable us to mimic a binary search on the path to the 
root during the processing of the query; the pointers are installed as the tree grows 
in a way to make them readily accessible at the query time. Roughly, pointers point 
to ancestors at distances that form a geometrical progression (powers of 2) until 
the root is reached. We will show that our scheme leads to efficient performance 
by using O(m) additional space for the pointer structure. 
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The parameters of the vertical query are: (1) a tree of arrays T, (2) a node v 
in T, and (3) a time t. Node v corresponds to the array of the subsidiary where the 
search is initiated (subsidiary C in the example of the vertical query). The vertical 
search problem consists of finding the array on the path of v that overlaps t and 
inside this array the LAST entry e whose timestamp E is less than or equal to t. 
Timestamp E corresponds to the commit time of the latest transaction recorded 
before or at t. 

Algorithm VS has two stages. In the first stage, the array w is identified on the 
path from v to the root that overlaps t. In the second stage, the entry e is found 
by performing a binary search on array w. The second stage is straightforward. We 
elaborate below on the first stage, which requires adding additional information to 
the tree of arrays. 

A modified binaly search will be performed on a given branch of the tree. Each 
array in the tree has a representative corresponding to the first timestamp recorded 
in this array. Since the next array on the path was created by a split (i.e., by a later 
transaction, the representatives in any given path of the tree are strictly increasing). 
Thus, a path with s arrays can be viewed as a (backward) linked list L = 11,..., ls of 
elements sorted in increasing order where a list element corresponds to a node's 
representative (ll is the representative of the root and so on; ls is the representative 
of node v). 

We wish to maintain a data structure that will enable us to answer queries of 
the form "find the largest element li in L for which li < t" in logarithmic time in 
the length of the list. Our data structure supports the addition of new elements at 
the end of the list, but no element may be inserted in the middle. This requirement 
emanates from the time evolution: new tree nodes would be added only at the end 
of a path (after some split) but no node can be inserted in the middle of a path, 
as history is unchangeable. Hence, we may assume that each element li knows its 
index i in the list, which does not change. 

We first indicate how to perform a modified binary search on a static linked list 
with s elements, which was preprocessed to contain s additional pointers (Algorithm 
1). (The added pointers are similar to those used by van Emde Boas et al., 1977.) 

There are two differences between the problem solved by our preliminary 
Algorithm 1 and the vertical search problem: (1) in a tree, each node is typically 
contained in many paths; thus, its representative is contained in many linked lists, 
and (2) leaves are added to the trees, and the data structure has to be updated 
on-line, while maintaining linear space. 

The first difference does not cause any difficulty, since a node has the same 
representative and the same index in all the lists. We show that our data structure 
can be updated on-line in O(1) time per added element, without compromising the 
space restrictions and while still allowing the answer to queries in logarithmic time 
in the length of the path. 
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Figure 2. Example of pointers added in a static list with s = 32 

elements. 

o * o ~  
17 21 25 29 32 

Numbers indicate list indexes. 

4.1 Algorithm 1: Search on Static Linked List With Exactly s Elements 

Algorithm 1 has two steps. Suppose that the binary representation of s (the index 
k 

of the representative ls of node v) has l 's in positions bl,..., bk, that is, s = ~ 2 bj . 
j= l  

In the first step to locate li, the sublist L = l jx ,,, lj2 of length 2 br (br C {hi,..., 
r--1 r 

bk }) is identified for which ~ 2 bj--k 1 < i < ~ 2 bj. In the second step, the 
j = l  j = l  

desired element, li is found by a binary search on this sublist. To answer all queries 
efficiently, O(s) pointers are added in a preprocessing step to a list of length s. 

Algorithm 1: Preprocessing--Computing O(s) Pointers 

Let ~ = Llog sJ. An e lement / j ,  for which j = q2 d (for some integers q, 1 < q and 

d, 1 < d < ~) has a pointer to the element lh, h = (q -- 1) 2d+  1. In addition, 
an element lj, for which j is odd, has its original list pointer to l j-1.  Note that: 
(1) for j = q21 {i.e., even for j), the original list pointer to l j -1 ,  satisfies j -- 1 = 

(q -- 1 )21+  1, and (2) every element has at least one pointer (its original) and at 
most ~ pointers. Since there are 2 ~-d elements whose list index is a multiple of 

~ - 1  

2 d, the list contains a total of: S + E 2X-d < 3s/2 pointers {Figure 2). 
d=2 

The computation of the pointers is done in less than ~ iterations. In the first 
iteration, all elements point to their previous element in the list. In the dth (d > 2) 
iteration, all elements whose index in the list is a non-trivial multiple of 2 d compute 
{conceptually in parallel) the pointer to the element which is 2 d -  1 elements away. 
Consider any element lj. 

1. Compute the maximum d such that j = q2 ~ for some integer q > 1. 
2. Add the following d pointers, 
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for d = 2 to d do: add a pointer from lj t o / j - 2 a + l .  

I f j  is a multiple of 2 d, then b o t h j  and j  -- 2 d-1 are multiples of 2 d-1. In the (d- 
1)st iteration, pointers were added from lj to lj_2d+l and from lj_2a-1 to / j_2d+l ;  
therefore, lj_2d+l is found in three pointer accesses (via l j_2d-l+l to lj_2d-~ to 
lj-2a+x). 

Algorithm 1, Step i 
k 

Recall that the index of the representative ls of v, satisfies s = E 2bj" The sublist 
j=l  

= lj~.., lj2 of length 2 b", which contains the desired element and for which Jl 

= (q -- 1)2b~+ 1 and J2 = q 2b~ (for some b~.) is identified. Formally, the list is 
identified by the following procedure: 

j2:=s 
j l : = l  

While J2-- j l  ~ 2a-- 1, for some integer d do 
Let lja be the endpoint of the "longest" pointer from lj2 

{Hence j2 = q2 ~ for some odd q > 1, (since d is maximal), andj2-- j3  = 2 ~ -  1.} 
if t < lja then lj2 = lja_ 1 
else {t > lj, } lj, ljz 

od 

= l j l . . . l j 2  

It is easy to verify that step 1 guarantees that: (1) lj~ _< t, and t < lj2+1, and 

(2) E contains 2 b~ elements and lj2 is the q2 b~ th element in the original list L, (for 
some q > 1). To see that Step 1 takes at most log s iterations, we observe that the 
values d computed in "while loop" form an increasing sequence of integers, (and 
clearly d < [log s]). Indeed, it is not hard to verify that the successive values of 
d correspond to the successive values bl, b2,..., in the binary representation of s. 
When the sought for value br is identified, the "else" statement is executed and 
the loop terminates. 

Algorithm 1, Step 2 
The sublist identified in Step 1 has the property that all pointers to all (recursive) 
midpoints of sublists are available in O(1) accesses. Hence, we essentially mimic 
the basic recursive step of a binary search on a random access data structure (cf. 
array), which is to return the first element that is less than or equal to the value 
sought. 

Basic Binary Search: Given two indexes j l  and j2, and a key t >_ ljl, i f j l  = J2 then 
return j l ,  else let J3 = [ 0 1 +  j2)/2]. If lja < t perform the basic recursive step on 
the pair (J3,j2), otherwise, lja > t perform the basic recursive step on the pair (jl, 
j3--1).  
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On an array with 2 A elements, our basic binary search satisfies the invariant: 
j2 -  J3 = 2d-- l ,  for some integer d, and J2 = q 2a for some integer q > 1. Our 
linked list has a pointer from each such lj2 to the corresponding lj3, which will 
provide the required access. 

Complexity of Algorithm 1 

Space Complexity:  For a list with s elements (nodes), we add O(s) pointers for a 
total of O(s) space. 

Time :Eor computing the  p o i n t e r s :  Each pointer computation requires O(1) time 
for a total of O(s) operations for preprocessing. 

Time Complexity:  Both step 1 and step 2 run in O(log s) time. 
We now return to the description of the two stages of Algorithm VS. 

4.2 Algorithm VSmStage One 

Since each path in the tree T is viewed as a linked list, every node in T can be 
part of many linked lists but has the same list index in all of them (as all indexes 
start from the root of the tree). Algorithm VS uses Algorithm 1. As described in 
Algorithm 1, pointers are added in a static list to allow for efficient search. There 
are two difficulties that have to be addressed when going from the static list to the 
tree T. 

1. New leaves can be added to the tree. 

2. The pointers as defined in Algorithm 1 may result in O(m log m) space in the 
tree (recall that m is the number of nodes in 7)). Consider, for example, the 
following scenario: the tree is essentially one long branch with m/2 nodes, 
where the last node has m/2 children. Each of these children may require 
O(log m) pointers, which would result in a structure with m nodes and at 
least O(m log m) pointers. 

To solve these problems, we are obliged to sometimes delay adding pointers to 
newly added leaves. Each node will keep a special pointer, denoted by/-pointer ,  to 
the nearest node on its path to the root, whose pointer structure is not complete. 
If there is more than one incomplete node on the path, this node will have an 
/-pointer to the next node with incomplete pointer structure, resulting in a linked 
list of /-pointers .  When a new leaf is added to the tree, it will contribute up to 2 
pointers to the pointer structure. All nodes with indexes j, which are not divisible 
by 4, have only one (list) pointer. Those nodes access the i r / -pointer  and complete 
the pointer structure of a previous node on their path. If the pointer structure of 
the accessed node is completed the node is deleted from the / -po in te r  list and the 
new leaf is pointing to the next incomplete node (if any). Note that the pointer 
structure of nodes is completed in a last-come first-served fashion. The following 
claim shows that the pointer structures of all nodes are completed in a timely 
fashion, nevertheless. 



VLDB Journal 4 (4) Landau: Historical Queries Along Multiple Lines of Evolution 717 

Claim: At any time, the maximum number of nodes with incomplete pointer structure 
on a given path of length s is at most 21ogs. 

Proof: Consider a path L in the tree T. Suppose that v, with index qT, for some 
odd q, is the node with least index on L, which has an incomplete pointer structure. 
Consider the node w with index (q + 1) 2 i on L. Let Vbe the list of nodes between 
v and w (V:<v = vo, vl,..., v2~ = w>). All the pointers of nodes in vbv2,..., v2~_1 
are directed towards nodes in V (i.e., they don't go beyond v = v0). Hence, for 1 
< # < T,  the total number of pointers that will have to be added to nodes vl, v2,..., 

is # + [ ~ J  + [-~J~ + ... < ( 3 / 2 ) # .  The number of pointers that have to be V/.z 

added to v is at most i. If every node computes 2 pointers, after # nodes have 
been added to the path, 2# pointers can be computed. The pointer structures of 
v therefore will be complete by the time (1/2) # > i and, hence, when # reaches 
2i. It also clearly follows from our procedure that when the pointer structure of 
v is complet.ed, no other node on this path has an incomplete pointer structure. 
Since 2i < T, for i > 1, the pointer structures, in any case, will be complete before 
node w is added. Since i is bounded by logs we conclude that: (1) the nodes with 
incomplete pointer structures are among the last 2logs nodes on the path, and (2) 
the total number of "missing" pointers, at any given time on a path of length s, is 
also bounded by O (logs). [] 

We note that, since linked lists overlap, an/-pointer  of a node may point to a 
node whose pointer structure has been completed in the meantime. In this case, 
the/-pointer  is simply updated to point to the next node. In any case, this can only 
speed up the computation. 

Since the number of nodes with incomplete pointer structure on any given path 
of length s is at most O (logs), we may search all the nodes with incomplete pointer 
structure sequentially. If the desired node is not among those nodes we proceed 
as in Algorithm 1. 

Complexity o f  Algorithm VS Stage One 

Space Complexity: Since each node computes at most 2 pointers, the number of 
pointers added in the entire tree is O (m). 

Update Process ing:  Each pointer is computed in O(1) time; thus, the update 
processing is constant per new node added to the tree (and, therefore, is constant 
per change). 

Time complexity:  For a path with s nodes, the time complexity of the algorithm 
is O (logs), since both steps 1 and 2 of run in O (logs) time. 

Recall that Algorithm VS consists of 2 stages. The first stage, described above, 
identifies an arrayA that overlaps t. In the second stage, the entry e whose timestamp 
E is less than or equal to t is found by a binary search of array A; for an array 
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with u entries this takes O (log u) time. The size of a tree path is bounded by the 
number of tree nodes m which, in turn, is bounded by the total number of changes 
n. Similarly, u is bounded by n. Hence, algorithm VS uses linear space in the 
number of changes, constant update processing per change, and finds the starting 
point for the vertical query in O (logn) time. 

In the case of a single-line evolution, all n changes would be stored in timestamp 
order on a single array structure, resulting in O (n) space and constant update 
processing per change (by appending each change at the end of the array). Under 
these constraints, the starting point of a vertical search is found in O(logn) time 
(with a binary search on an ordered array) and this is asymptotically optimal (in a 
comparison based model). The VS algorithm provides the same optimal performance 
in the more complicated case of the multiple-lines of evolution. 

Implementation Concerns: The actual complexity of the vertical search obviously 
depends on the length of the path we are searching. In a tree with m nodes a 
typical path will usually be of size O (logm), with some paths being much longer. 
If we were to divide T into pages in a straightforward manner with each page of 
size B, the number of page faults incurred when searching along a path of length 
s would be about s/logB, (assuming that a page holds a subtree of height logB). 
One could argue that a single, very long path of length s = O (m) in the best 
case could be paginated using indexing to reduce the number of page faults to 
about logm/logB, however, it is not clear how to do that when several such paths 
have considerable overlap. On the other hand, a typical path of length logm, in 
a balanced part of the tree, would again incur about logm/logB page faults using 
straightforward (subtree) pagination. Therefore, we compare the number of page 
faults incurred by our algorithm to logm/logB, even though it is not clear that this 
bound actually can be achieved using simple paging schemes. 

Our algorithm does not offer much improvement for searching a path of size 
O (m). It is likely, though, that many paths will have O (logm) nodes. In this case, 
our algorithm accesses O (loglogm) nodes so that, even if each of these nodes were 
on a different page, this would still result in considerably fewer page faults, than 
log m/log B. 

5. The Horizontal Search Problem 

This section presents an efficient algorithm (Algorithm HS) for the search part of the 
Horizontal Query, which we call the Horizontal Search problem. In the context of 
the horizontal search, we also use a pointer structure, but pointers are now between 
entries of arrays (and not between arrays as in the vertical query). Starting from 
a given entry with timestamp t, these pointers will enable the fast location of t (or 
the largest to < t) in other horizontally "related" arrays. The space required by 
these additional pointers is still linear in the number of changes. We also show that 
the update processing cost per change remains O (1) in the amortized sense. This 
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means that the addition of some entries (changes) could require more than 0 (1) 
update processing to update the horizontal pointer structure but, for any sequence 
of n changes, no more than a total of 0 (n) time will be required. Our approach 
uses the creation of "ghost" entries and a threshold-based "backward updating" 
technique. 

The Timestamp Properties. Before we proceed, we establish the following properties 
of timestamps. Let v be an arbitrary node in the tree of arrays, and denote the 
children of v by Vl,...,vk. (1) All of the first entries of the arrays of vl,...,vle have the 
same timestamp (as they are created by the same split operation). (2) We assume 
one general clock that provides timestamps. Hence, given two time stamps tl, t2 
such that tl < t2, a node with time stamp t2 was added after a node with time 
stamp tl. 

The input to algorithm HS consists of (1) a tree of arrays T with the timestamp 
properties, (2) an arbitrary entry e with timestamp t (within some node v of the 
tree T), and (3) an ancestor node w of v. The horizontal search consists of finding 
all entries ej that belong to nodes in the subtree of w, and whose timestamp Ej 
is the last one (in their subtree) for which Ej < t. The horizontal search problem 
produces as an answer the concurrency line of ej with respect to w. In the example 
of the Horizontal historical query, node v corresponds to some array of subsidiary 
D, while node w is the first array of the ancestor subsidiary B. 

There is one obvious solution to the horizontal search problem. One could start 
from the ancestor node and travel in a depth-first search manner through its subtree, 
in an attempt to locate the required entry in each relevant branch. Suppose it was 
determined that the required entries are located in R arrays: Ail,...,Ain (within 

R 

nodes vil,...,vin). Locating the correct entries in these arrays requires E loguij,  
j = l  

which could be as much as O (R log u). 

5.1 Algorithm HS 

We proceed by first describing the data structure used by the Historical Search 
algorithm. We then introduce the use of "ghost" entries and the "backward updating" 
technique, and discuss their effect in the algorithm's performance. 

The Basic Data-Structure. To speed up the search, we maintain two horizontal linked 
lists, a right list (to be traversed from right to left), and a left list (to be traversed 
from left to right), which connect related entries. Since the maintenance and 
construction of the two lists is completely symmetric, we only describe the right 
horizontal lists. The main problem in maintaining horizontal lists that enable us to 
answer our query is demonstrated by the following example. 

Imagine a tree whose root has three children Vl, v2, v3, (in left to right order) 
with arrays A1, A2, and A3, respectively. A1 and A3 are very active, and a new 
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Figure 3. Example of backward updating technique. 
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Arrays A1, A2, and A 3 form the list after split t ime t s and before A 1 is split. Circles represent 

real entries, and rectangles represent artificial ones (ghosts). For this example ~ = 2. 

entry is added to each of them at every timestamp. Array A 2 is very inactive and 
entries are rarely added to it. A horizontal query to an entry with timestamp t in 
A1 should return the entry with the largest timestamp to _< t in A3. Many entries 
in A1 would return THE SAME entry to in A2. On the other hand, to avoid an 
explosion of space it is desirable to have entries in A 1 point only to entries in A 2. 

To overcome the above difficulty, we use a variation of "backward updating" 
(Cole, 1986), which adds "ghost" entries to neighboring nodes to make up for such 
discrepancies. 

Sumrnary of Backward Updating. For every 6 entry added to an array 05 >_ 2), an 
artificial entry is added to its left neighboring array, (with current timestamp). Any 
newly added entry (real or artificial) sets its horizontal (right) pointer to point to 
the last entry of its right neighbor (Figure 3). Any artificial entry also keeps an 
(upward) pointer to the currently last real entry within its array. (If the timestamp 
of an artificial entry coincides with the one of a real entry recorded at the same 
array, no artificial entry is added.) 
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Space Requirement of Horizontal Lists. Although backward updating obviously can 
result in a cascade of updates (in the worst case a single update may cause as many 
updates as the current size of the horizontal list), this happens very infrequently. 
More precisely, for every 6 entry one ghost entry is added to the left neighbor, and 
every 62 entry will add a ghost to a neighbor of the neighbor. Basically every entry 
is responsible for adding 1/6 k ghost entries to its kth neighbor to the left, at a total 
average cost of 1/6 + 1/62+ . . . .  1 / (6-  1) per entry. Thus, the total number of 
ghosts added is 6-~" The additional space required by ghost entries and by the 
(two) pointers per entry is linear in the number of real entries (changes). 

Cost of Maintaining Horizontal Lists. Each added real entry creates a number of 
ghosts. The total number of ghost entries added during the first n entries is O (n). 

Given the horizontal lists described above, an entry ej with timestamp t, within 
node v and an ancestor w of v, we wish to answer the horizontal search for ej with 
respect to w. We start traversing the horizontal pointer, which emanates from ej 
and leads to (say) el. Entry ei is the last entry added to this array prior to time t. 
If el is an artificial entry, the last real entry preceding it is reported, otherwise el 
itself is the desired entry. In general, the time stamp of el will be smaller than that 
of ej, so caution must be exerted when proceeding. The horizontal search from 
el leads to entry e~ within node v2. Up to 6 entries may have been added to v2 
between the time el was added and our actual target timestamp E. Therefore, we 

! 
examine up to 6 entries below e2, to find e2, the last one whose timestamp is below 
E. We then proceed in exactly the same manner as before. 

The only remaining problem is to identify where the horizontal traversal is to 
stop (i.e., the last node in the subtree of w). There are many solutions to this 
problem. One solution is given by the following labeling scheme. 

Labeling Scheme. Each node (array) in the tree has a right and a left label. When 
children nodes are added to a node, the rightmost child inherits the right label of 
the parent and the leftmost child inherits the left label of the parent. All other 
labels are new and are taken from a pool of unused labels (Figure 4). The key 
property of this scheme is that the right labels along any extreme right path (or left 
labels along any extreme left path) are identical. The traversal of a horizontal list 
(from right to left) is to stop at the entry, whose node (array) has a left label that 
is the same as w's left label. 

Complexity of Algorithm HS 

Space Complexity: Since the only extra structures are the horizontal lists, the total 
space used remains O (n). 

Update Process ing:  The extra cost for maintaining the horizontal lists is amortized 
O (1) per change. The labeling scheme is O (1) per new node in the tree (and, 
hence, O (1) per change). 
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Figure 4. Example of labeling scheme in tree of arrays. 
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Time Complexity: Each step in the traversal has a cost of 6 +  O (1). If the traversal 
outputs k relevant entries the complexity of answering a horizontal search query 
is O(k(6+ O(1))).  Note the trade-off in the choice of 6. The space requirement 
decreases with 6, while the horizontal search time increases with 6. 

5.2 Generalization of Algorithm HS 

We now address a generalization of the above scheme, in which we allow nodes to 
logically die at a time that is different than a split time (consider the case where, in 
our company example, a subsidiary can close without spliting into new subsidiaries). 
If a node (array) dies at time t, the last entry in it is labeled "dead" and has 
timestamp t. In this case, we would like to skip over that node in a horizontal query 
with time target greater than t. 

Maintaining adequate horizontal lists when nodes can die does not cause any 
difficulty. When a node v, with last entry e, dies at time t, an artificial entry e' (with 
same timestamp t) is created at its right neighbor vl. The horizontal left pointer 
of e' simply skips v and points to the last entry of its left neighbor v2, which is 
henceforth considered the left neighbor of vl. The only difficulty that arises is to 
determine the rightmost live descendent of a node w and, hence, the node at which 
a horizontal traversal with respect to w is to stop. This problem is the generic 
descendent query: Given two nodes w and v in the tree determine whether v is a 
descendent of w. The obvious solution: use a vertical search algorithm to answer 
the question in O (logs) time, where node v is in a path of length s. The descendent 
query takes O (logm) since, in the worst case, a path is O (m). 
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Given an entry e in a descendent v of w, to determine the last node on the 
horizontal list of e, which is a descendent of w, we must perform a vertical search 
for each node accessed in the horizontal list of e. Thus, the obvious solution results 
in O (Qk), where k is the number of nodes on the horizontal list, which are live 
descendants of w, and Q is the time to answer the generic descendent query (Q < 
O (logm)). 

The problem can be solved, however, in time O (Q loglogm + k) as following: 
Instead of performing a vertical search at each step of the horizontal traversal, we 
will do so every logm-th step, and stop at the first node that is outside our scope. 
The cost so far is at most O (k + logm). We are left with logm nodes and need 
to determine the first one that is outside the scope. We may place these nodes 
in a temporary array, and determine the target by doing a binary search on these 
nodes. The required time is O(Qloglogm) as predicted. 

Since Q < O (logm), we have shown that, even in the case where nodes die, we 
can answer horizontal queries quickly. The obvious question is whether the time 
complexity of the horizontal search can be reduced to O (k), which clearly would 
be optimal. It turns out that by maintaining an auxiliary data structure we are able 
to achieve this. 

Using the labels created by our label list, we maintain two label lists, (one for 
right and one for left labels). The left (right) label list consists of a linked list 
of all the left (right) labels that are in use. The linked lists will be kept "in the 
natural order" (e.g., when 3 children are added to a node with left label L, the two 
new left labels created for the second and third child are added to the linked list 
immediately preceding L). The label list has the following nice properties: 

1. Given a sequence of left labels L1, L2,...,Lq on the nodes traversed on any 
partial horizontal list, L1, L2,...,Lq occur in the same order in the left label 
list (although usually not consecutively). 

2. Given nodes v and w with left labels Lv and Lw and right labels Rv and 
Rw, v is a descendent of w iff Lv precedes Lw on the left label list, and Rv 
precedes R~ on the right label list. 

We may now rephrase the generic descendent query as follows: Given two 
nodes w and v in the tree with left label Lw and Lv determine whetheroLv precedes 
Lw in the left label list. 

A solution to this problem was given by Dietz and Sleator (1987). It is based on 
assigning integer labels to the elements of the linked list, which increase from left 
to right. When a new element is inserted, it gets an integer label, which is between 
the two values. When no integer is available the elements in the neighborhood 
are relabeled. Dietz and Sleator (1987) exhibited such a relabeling scheme, which 
takes O (1) amortized time. Order queries can be answered in O (1) time per query. 
Inserting a new node into the auxiliary data structure takes O (1) amortized time. 

As a result, the general case of the horizontal search, where nodes are allowed 
to die, can also be answered in O (k) time (where k is the cardinality of the answer, 
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i.e., the number of live nodes satisfying the horizontal query). The space used by 
the label lists is constant per node and the time needed to maintain the label lists 
is amortized O (1) per change; thus the general HS algorithm uses O (n) space and 
amortized O (1) update processing. 

Implementation Concerns: When implementing the horizontal query, we note that 
the auxiliary data structure becomes quite important. In the most straightforward 
partition of our tree into pages, it is likely that most nodes on the horizontal path 
will be on one page. Their common ancestor, though, probably is not. Therefore, 
avoiding the ancestor query when deciding where a horizontal traversal is to stop, 
using the labeling scheme, is very important. 

6. Conclusions 

Historical queries are an important part of many database systems (e.g., rollback 
databases and design databases). Previous approaches to history reconstruction 
problems deal with only a single line of time evolution. There are, however, 
complex applications where the database's state evolves in a way that results in 
multiple lines of evolution. The key characteristic of these multiple-lines of evolution 
problems is that portions of the history are shared; answering historical queries 
should not necessitate duplication of shared histories, as this could increase the 
storage requirements dramatically. In this article, we provide a general framework 
for solving multiple-line history queries. We address two novel historical queries 
in this environment: the vertical query and the horizontal query. The vertical 
query enables searching by time on the shared path of an evolution, while the 
horizontal query facilitates searching at concurrent times in the past of evolutions 
that share the same ancestor. Combinations of these basic queries enable searching 
both dimensions of the multiple lines of evolution. We are currently extending our 
results for the case where evolutions can "merge." The problem becomes more 
complicated as the tree of evolution lines becomes a graph of evolutions. 
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