
VLDB Journal, 4, 629-673 (1995), Stanley Y.W. Su, Editor 629
QVLDB

QuickStore: A High Performance Mapped Object Store

Seth J. White and David J. DeWitt

Received September 8, 1994; revised version received, March 23, 1995; accepted March
28, 1995.

Abstract. QuickStore is a memory-mapped storage system for persistent C+ +,
built on top of the EXODUS Storage Manager. QuickStore provides fast access
to in-memory objects by allowing application programs to access objects via nor-
mal virtual memory pointers. This article presents the results of a detailed perfor-
mance study using the 0 0 7 benchmark. The study compares the performance of
QuickStore with the latest implementation of the E programming language. The
QuickStore and E systems exemplify the two basic approaches (hardware and soft-
ware) that have been used to implement persistence in object-oriented database
systems. In addition, both systems use the same underlying storage manager and
compiler, allowing us to make a truly apples-to-apples comparison of the hardware
and software techniques.

Key Words. Pointer swizzling, memory-mapped, object-oriented, client-server,
benchmark, performance.

I . Introduction

This article presents QuickStore, a memory-mapped storage system for persistent
C + + , built on top of the EXODUS Storage Manager (ESM) (Carey et al., 1989).
QuickStore uses standard virtual memory hardware to trigger the transfer of persistent
objects from secondary storage into main memory (Wilson, 1990). The advantage
of this approach is that it supports a pointer swizzling technique that makes access
to in-memory persistent objects just as efficient as access to transient objects (i.e.,
application programs access objects by dereferencing normal virtual memory pointers,
with no overhead for software residency checks; Moss, 1992; Schuh et al., 1990;
White and DeWitt, 1992).

QuickStore is implemented as a C+ + class library that can be linked with
an application, requiring no special compiler support. QuickStore uses a modified

Seth J. White, Ph.D., is Technical Staffmember, Sun Microsystems, 2550 Garcia Avenue, Mountain View,
CA 94043, seth.white@eng.sun.com, and David J. DeWitt, Ph.D., is Professor, Computer Science Depart-
ment, University of Wisconsin, Madison, W153706, dewitt@cs.wisc.edu.

630

version of the GNU debugger (gdb) to obtain information describing the physical
layout of persistent objects. QuickStore uses the information provided by gdb
to automatically maintain database schemas. The memory-mapped architecture
of QuickStore supports persistence orthogonal to type, so that both transient and
persistent objects can be manipulated using the same compiled code. Because
QuickStore uses ESM to store persistent data on disk, it features a client-server
architecture with full support for transactions (concurrency control and recovery),
indexes, and large objects. QuickSt0re places no additional limits on the size of a
database, and the amount of data that can be accessed in the context of any single
transaction is limited by only the size of virtual memory.

This article also presents the results of a detailed performance study, in which
the 0 0 7 benchmark (Carey et al., 1993) is used to compare the performance
of QuickStore with the latest implementation of E (Richardson et al., 1993), a
persistent programming language developed at Wisconsin that is also based on
C++ . The comparison between QuickStore and E is interesting because each
system takes a radically different approach toward implementing pointer swizzling
and persistence. QuickStore employs a hardware faulting scheme that relies on
virtual memory support (as mentioned above), while E uses an interpretive approach
that is implemented in software. These systems (QuickStore and E) exemplify the
two basic approaches (hardware and software) that have been used to implement
pointer swizzling and persistence in object-oriented database systems. Moreover,
both systems use the same underlying storage manager (ESM) and compiler. This
allows us to make a truly apples-to-apples comparison of the hardware and software
swizzling schemes, something which has not been done previously.

The remainder of the article is organized as follows. Section 2 presents an
overview of pointer swizzling, while Section 3 discusses related work on hardware
and software-based pointer swizzling schemes. Section 4 describes the design of
QuickStore. Section 5 presents our experimental methodology, and Section 6
presents the results of the performance study. Section 7 contains some conclusions
and proposals for future work.

2. Overview of Pointer Swizzling

The number of different, possible pointer swizzling techniques is surprisingly large.
The first attempt at presenting a thorough taxonomy of swizzling techniques appeared
in Moss (1992). However, since that time, the number of criteria that have been
used to distinguish different swizzling schemes has grown considerably. This section
discusses the salient features that have been used to distinguish alternative pointer
swizzling techniques. Figure 1 illustrates the different dimensions of pointer swizzling
that are discussed.

2.1 Swizzling vs. No Swizzling

One obvious approach is to do no pointer swizzling at all. We note that 02
(Deux, 1991), which is a commercial system, performs no pointer swizzling. Under

VLDB Journal 4(4) White: QuickStore: High Performance Mapped Object Store 631

Figure 1. Dimensions of pointer swizzling

swizzling

software

copy

indirect

no uncaching

uncaching

full

eager

direct

in-place

hardware

no-swlzzling

this approach, the unique object identifier (OID; Khoshafian and Copeland, 1986)
contained in a pointer is used to lookup the actual memory location of the object
referenced by the pointer whenever the pointer is dereferenced. The lookup process
generally involves a relatively expensive search in an in-memory table. The goal of
pointer swizzling is to avoid the lookup cost by converting (i.e., swizzling) a pointer
from its OlD form to a memory address. In the simple case, the swizzled pointer
can then be used to directly access the object that it references.

2.2 Hardware vs. Software-Based Swizzling

Pointer swizzling schemes have traditionally used software checks to determine
if a pointer has been swizzled. More recently, hardware-based swizzling schemes
(Wilson, 1990; Lamb et al., 1991) that use virtual memory access protection violations
to detect accesses of non-resident objects have been proposed. The main advantage
of the hardware-based approach is that accessing memory-resident persistent objects
is just as efficient as accessing transient objects, because the hardware approach
avoids the overhead of residency checks incurred by software approaches.

A disadvantage of the hardware-based approach is that it makes providing some
useful kinds of database functionality, such as fine-grained locking, more difficult.
In addition, the hardware approach limits the amount of data that can be accessed
during a transaction to the size of virtual memory. This limitation can conceivably

632

be overcome by using some form of garbage collection to reclaim memory space, but
this would add additional overhead and complexity to the system. The hardware
approach has been used in several commercial and research systems, including
QuickStore (Section 4), ObjectStore (Lamb et al., 1991), Texas (Singh et al., 1992),
Cricket (Shekita and Zwilling, 1990), and Dali (Jagadish et al., 1994).

2.3 In-Place vs. Copy Swizzling

Copy and in-place strategies differ primarily in where they cache persistent objects
in main memory. In-place refers to an approach that allows applications to access
objects in the buffer pool of the underlying storage manager, while the copy approach
copies objects from the buffer pool into a separate area of memory, typically called
an object cache, and applications are only allowed to access objects in the object
cache. These techniques can be used regardless of whether swizzling is being done.
While the copy approach incurs some cost for copying objects, it has the potential
to make more efficient use of memory by only caching objects that are actually used
by the application. In addition, if pointer swizzling is being done, then the copy
approach can save in terms of unswizzling work since, in the worst case, only the
modified objects have to be unswizzled. Depending on the type of swizzling used,
an in-place scheme may have to unswizzle an entire page of objects in the buffer
pool whenever any object on the page is updated.

2.4 Uncaching vs. No Uncaching

The issue of uncaching vs. no uncaching separates systems that support the in-
cremental uncaching of objects during a transaction from those that do not. This
distinction was not made by Moss (1992), since none of the techniques described
there supported uncaching. The difficulty involved with allowing objects that are
referenced by swizzled pointers to leave main memory during a transaction arises
due to the fact that, once an object is no longer in memory, the swizzled pointers
that reference it become dangling references. Special care must be taken to deal
with swizzled pointers in this case.

2.5 Eager vs. Lazy Swizzling

Eager swizzling schemes perform very aggressive pointer swizzling. In fact, pure
eager swizzling (Moss, 1992) swizzles all of the pointers contained in a collection of
objects (i.e., a set of objects that reference one another either directly or transitively)
before an application begins accessing objects in the collection. The advantage of
this approach is that no checks are needed to distinguish swizzled and unswizzled
pointers.

Lazy swizzling schemes take a more incremental approach, with pointers being
swizzled as a side effect of the actions taken by the application program at run-
time. Lazy swizzling techniques have been categorized according to the granularity
at which swizzling occurs. For example, swizzling can be performed one page-

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 633

at-a-time (all pointers on a page are swizzled at once), one object-at-a-time (all
pointers in an object are swizzled together), or a pointer-at-a-time (pointers are
swizzled individually). Lazy swizzling techniques that swizzle individual pointers can
be categorized further by the set of basic pointer operations (dereference, compare,
fetch, and store) used to trigger swizzling (McAuliffe and Solomon, 1994).

We note here that the term eager swizzling has slightly different meanings. Moss
(1992) defined an eager technique as one that eliminates the need for pointer checks
by doing aggressive swizzling, while Kemper and Kossman (1993) and McAuliffe
and Solomon (1994) considered any swizzling technique that swizzles all of the
pointers in an object (or page) together to be an eager technique.

2.6 Direct vs. Indirect Swizzling

Direct swizzling techniques place the in-memory address of the referenced persistent
object directly in the swizzled pointer itself while, under indirect swizzling, a swizzled
pointer points to some intermediate data object (usually termed a fault block) which
itself points to the target object when it is in memory. Indirect swizzling has the
advantage of increased flexibility, which can improve performance. For example,
the indirect approach makes it easier to support the incremental uncaching of
objects when software swizzling is used since, instead of having to unswizzle all
of the pointers that reference an object when it is replaced, the pointer to the
object contained in its corresponding fault block can simply be set to null. The
disadvantages of indirect swizzling include the additional cost for the extra level of
indirection and the cost of managing fault blocks.

2.7 Partial vs. Full Swizzling

Systems that use partial swizzling only swizzle a subset of all possible pointers,
while systems that perform full swizzling may swizzle any pointer that references a
persistent object. Schuh et al. (1990) used partial swizzling to avoid the difficult
problem (mentioned above) of unswizzling swizzled pointers when the objects that
they reference leave main memory. This technique only swizzles pointers that are
local variables in functions. Variables of this type are maintained on a special pointer
stack that is separate from the usual procedure activation stack. This significantly
simplifies the task of locating swizzled pointers.

3. Survey of Related Work

A detailed proposal, advocating the use of virtual memory techniques to trigger
the transfer of persistent objects from disk into main memory and referred to as
hardware-based swizzling in Section 2, first appeared in Wilson (1990). The basic
approach described by Wilson was termed "pointer swizzling at page fault time"
since, under this scheme, all pointers on a page are converted from their disk format
to normal virtual memory pointers (i.e., swizzled) by a page-fault handling routine

634

before an application is given access to a newly resident page. In addition, pages of
virtual memory are allocated for non-resident pages one step ahead of their actual
use and access protected, so that references to these pages will cause a page-fault
to be signaled. Wilson's technique allows programs to access persistent objects by
dereferencing standard virtual memory pointers, eliminating the need for software
residency checks. (See Wilson and Kakkad, 1992, for an extended version of Wilson,
1990).

The basic ideas presented in Wilson (1990) were, at the same time, independently
used by the designers of ObjectStore (Object Design, Inc., 1990; Lamb et al., 1991),
a commercial OODBMS product. The implementation of ObjectStore, outlined
briefly in Object Design, Inc. (1990), differs in some interesting ways from the
scheme described in Wilson (1990), most notably in the way that pointer swizzling
is implemented, and in how pointers are represented on disk.

Under the approach outlined in Object Design, Inc. (1990), pointers between
persistent objects are stored on disk as virtual memory pointers instead of being
stored in a different disk format, as in Wilson (1990). In other words, pointer fields
in objects simply contain the value that they last were assigned when the page was
resident in main memory in ObjectStore. When a page containing persistent objects
is first referenced by an application program, ObjectStore attempts to assign the
page to the same virtual address as when the page was last memory resident. If all
of the pages accessed by an application can be assigned to their previous locations
in memory, then the pointers contained on the pages can retain their previous
values, and need not be "swizzled" (i.e., changed to reflect some new assignment
of pages to memory locations) as part of the faulting process. If any page cannot
be assigned to its previous address (because of a conflict with another page), then
pointers that reference objects on the page will need to be altered (i.e., swizzled)
to reflect the new location of the page.

This scheme requires that the system maintain some additional information
describing the previous assignment of disk pages to virtual memory addresses. The
hope is that processing this information will be less expensive, on average, than
swizzling the pointers on pages that are faulted into memory by the application
program. We note here that QuickStore is similar to ObjectStore in that QuickStore
also stores pointers on disk as virtual memory pointers. Section 4 contains a detailed
discussion of the implementation of QuickStore.

The Texas (Singhal et al., 1992) and Cricket (Shekita and Zwilling, 1990) storage
systems also use virtual memory techniques to implement persistence. Texas stores
pointers on disk as 8-byte file offsets, and swizzles pointers to virtual addresses at
fault time (as described in Wilson, 1990) at fault time. Currently, all data is stored
in a single file (implemented on a raw Unix disk partition) in Texas (Singhal et
al., 1992). Although QuickStore and Texas are different in their implementation
details, there are some similarities between the two systems. For example, both
systems are implemented as C+ + libraries that add persistence to C+ + programs
without the need for compiler support. Both systems also support the notion of

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 635

"persistence orthogonal to type." This allows the same compiled code to manipulate
both transient and persistent objects. Both systems also allow the database size to
be bigger than the size of virtual memory.

Texas, however, is currently a single user, single processor system, while Quick-
Store, since it is built on top of client-server EXODUS, features a client-server
architecture with full transaction support including concurrency control, recovery,
and support for distributed transactions. QuickStore is also different in that it
performs in-place swizzling, while Texas uses a copy-swizzling technique that doesn't
support the incremental uncaching of objects. Thus, the swizzling scheme used
in Texas limits the amount of data that currently can be accessed during a single
transaction to the size of the disk swap area backing the application process. Cricket,
on the other hand, uses the Mach external pager facility to map persistent data
into an application's address space (see Shekita and Zwilling, 1990) for details).

A recent related system is Dali (Jagadish et al., 1994), which is designed to be
a main-memory storage manager. Dali uses memory mapping techniques but, since
it is specifically designed to handle main memory databases, it differs substantially
from QuickStore. For example, Dali itself performs no pointer swizzling. In Dali,
the database is partitioned into units called database files, each of which is mapped
contiguously into a process's address space. Database pointers in Dali contain a
database file identifier and an offset. Dereferencing a database pointer usually
involves indexing into a fixed size array of open database files, and adding the
starting address of the database file (contained in the array) to the offset contained
in the pointer. If a large number of database files are being used (which is not
expected to happen often), then a search in an in-memory tree structure is required
to determine the starting address of the database file.

We next discuss previous performance studies of pointer swizzling and object
faulting techniques, and point out how the study presented here differs from them.
Moss (1992) contains a study of several software swizzling techniques and examines
various issues relevant to pointer swizzling. Among these are the benefits of swizzling
versus no swizzling, in-place versus copy swizzling, and eager versus lazy swizzling.
We do not consider copy swizzling approaches since White and DeWitt (1992)
showed that they do not perform well when the database size is larger than physical
memory. The study presented here also differs from Moss (1992) in that we allow
pages of objects to be replaced in the buffer pool, while Moss only considered small
data sets where no paging occurs. The systems we examine also include concurrency
control and recovery, while those examined in Moss did not.

The performance of several object faulting schemes implemented in the context
of persistent Smalltalk was examined in Hosking and Moss (1993). This study
included a scheme that uses virtual memory techniques to detect accesses to non-
resident objects. This approach allocated fault-blocks, special objects that stand in
for non-resident objects, in protected pages. When the application tries to access
an object through its corresponding fault block, an access violation is signaled.
The results showed this scheme to have very poor performance. It is not clear,

636

however, whether this is due to the overhead associated with using virtual memory
or to the extra work that must be performed during each object fault to locate and
eliminate any outstanding pointers to the fault block that caused the fault. This
work involves examining the pointer fields of all transient and persistent objects
that contain pointers to the fault block. Finally, we note that the effects of page
replacement in the buffer pool and updates also were not considered in Hosking
and Moss (1993).

Hosking et al. (1993) examined the performance of several alternative methods
for detecting and recording the occurrence of updates in a persistent programming
language that supports recovery from system failures (i.e., Smalltalk). The techniques
in this study use differencing to generate log records, as does QuickStore. Unlike
our study presented here, the goal of Hosking et al. (1993) was to compare different
techniques for detecting and recording updates in the context of a single underlying
language implementation. The goal of our study is to compare the performance
of software and hardware-based pointer swizzling. However, Hosking et al. did
examine one scheme that uses virtual memory page faults to detect the occurrence
of updates, so we briefly compare QuickStore to their approach. They used a
copy swizzling approach in which objects are copied out of the buffer pool of the
underlying object manager, and into a separate object cache located in memory,
before they can be accessed by the application program. Their hardware-based
detection scheme requires that the virtual memory page in the object cache that will
hold an object be unprotected, and then reprotected each time an object is copied
into the page--producing a substantial amount of overhead (up to 100transactions.
Under the approach used in QuickStore (in-place access, page-at-a-time swizzling),
a page's protection is manipulated only once: when the first object on the page
is updated. The technique used in QuickStore doesn't impact the performance of
read-only transactions, and we expect that detecting updates is much cheaper in
QuickStore than in the scheme studied in Hosking et al. (1993).

White and DeWitt (1992) compared the performance of several implementations
of the E language (Richardson et al., 1993; Schuh et al., 1990) and ObjectStore
(Object Design, Inc., 1990; Lamb et al., 1991), a commercial OODBMS. The results
presented in White and DeWitt (1992) were inconclusive, however, in providing
a true comparison of software and hardware-based schemes since the underlying
storage managers used by the systems were different, and because the systems used
different compilers. In our study presented here, all of the systems use the same
underlying storage manager and compiler, so any differences in performance are
due to the swizzling and faulting technique that was used. One additional difference
between the systems compared in White and DeWitt (1992) and those examined
here, is that the systems included in the current study all support the incremental
uncaching of objects during a transaction, and all manage paging of persistent data
explicitly. This differs from the approach used by EPVM 2.0 in White and DeWitt,
which limited the amount of data that could be accessed during a transaction to the
size of the disk swap area backing the process, and allowed objects to be swapped

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 637

to disk by the virtual memory subsystem when the size of the process exceeded the
size of physical memory.

4. QuickStore Design Concepts

As mentioned in Section 1, QuickStore uses ESM to store persistent objects on
disk. ESM features a page-shipping (DeWitt et al., 1990) architecture, in which
objects are transferred from the server to the client one page-at-a-time. Once a
page of objects has been read into the buffer pool of the ESM client, applications
that use QuickStore access objects on the page directly in the ESM client buffer
pool by dereferencing normal virtual memory pointers. We note that objects are
always accessed in the context of a transaction in QuickStore.

4.1 Overview of Memory-Mapped Architecture

This section describes the memory-mapping scheme used by QuickStore to give
application programs access to persistent objects. To understand the approach, it is
useful to view the virtual address space of the application process as being divided
into a contiguous sequence of frames of equal length. In our case, these frames are
8 K-bytes in size, the same size as pages on disk. The ESM cl~ent buffer pool can
also be viewed as a (much smaller) sequence of 8 K-byte frames. To coordinate
access to persistent objects, QuickStore maintains a physical mapping from virtual
memory frames to frames in the buffer pool. This physical mapping is dynamic,
since paging in the buffer pool requires that the same frame of virtual memory
be mapped to different frames in the buffer pool at different points in time. The
mapping can also be viewed as a logical mapping from virtual memory frames to disk
pages. When viewed this way, the mapping is static, since the same virtual frame
is always associated with the same disk page during the course of a transaction.

Figure 2 illustrates this mapping scheme in more detail. The buffer pool contains
7 frames (labeled from 1 to 7). Virtual memory frames are denoted using upper-case
letters, while disk pages are specified in lower-case. In the discussion that follows,
we sometimes refer to the virtual memory frame beginning at address A as frame
A.

Before a page is read from disk by QuickStore, the virtual memory frame
corresponding to the page is selected and access protected. When the application
first attempts to access an object on the page by dereferencing a pointer into its
frame, a page-fault is signaled, and a fault handling routine that is part of the
QuickStore runtime system is invoked. This fault handling routine is responsible
for reading the page from disk, updating various data structures, and enabling
access permission on the virtual frame that caused the fault so that execution of
the program can resume. For example, in Figure 2a, page a has been read from
disk into frame 4 of the buffer pool. Page a is "mapped" to virtual address A.
Read access has been enabled on frame A, so that the application can read the

638

Figure 2. Mapping virtual frames into the buffer pool

B

' |]
I
I m /

1,1,1 i , i , I

I | 1
A I ~ m I

I I I I C
I I i

,7.] ,A ii

a b

B

c d

objects contained on page a. We note that once the mapping from virtual address
A to page a has been established, the application can access objects on page a by
dereferencing pointers to f lame A at any time. Thus, the mapping f rom A to a
must remain valid until the end of the current transaction (or longer, if requested)
to preserve the semantics of any pointers that the application may have to objects
on page a. (This is not the case for the mapping of virtual f rame A to buffer f lame
4, however, as we will see in a moment.)

If the objects on page a contain pointers to objects on other non-resident pages,
then virtual frames are assigned to these pages when page a is faulted into memory
(if they haven' t been already). The mechanism for assigning virtual frames to disk
pages is covered in detail in Section 4.4, which discusses pointer swizzling. A f lame
for a non-resident page remains access protected until the program attempts to
deference a pointer into the frame, which then causes a page fault that results in
the page being read into the buffer pool. Figure 2 doesn' t explicitly show any of
the frames being referenced by pointers on page a, since they are not important to
the current discussion.

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 639

When the buffer pool becomes full, paging will occur, and page a may be
selected for replacement by the buffer manager. (See Section 4.5, which discusses
buffer pool management for details.) This is what has happened in Figure 2b.
Here, page b has been read from disk into frame 4 of the buffer pool, replacing
page a. Page b has been mapped to virtual address B, and read access on B has
been enabled. Note that, since we assume that the buffer pool is full in Figure 2b,
additional virtual frames (not shown) will also have been mapped to the remaining 6
frames in the buffer pool other than frame 4. If the application continues to access
additional pages of objects in the database, then the situation shown in Figure 2c
may result. In Figure 2c, page c has been read into memory, and has replaced page
b in frame 4 of the buffer pool. Page c has been mapped to virtual frame C, and
read access on C has been enabled. This illustrates that, in general, any number
of virtual frames may be associated with a particular frame of the buffer pool over
the course of a transaction.

At this point, the reader may be wondering what would happen in Figure 2b if
the application attempted to dereference pointers into virtual frame A after page a
has been replaced in the buffer pool by page b. Won't these pointers refer to data
on page b? This problem is avoided by disabling read access on frame A when
page a is not in memory. If the application again dereferences pointers into frame
A, a page-fault will be signaled, and the fault handling routine will be invoked.
The fault handling routine will call ESM to reread page a, map virtual frame A to
the frame in the buffer pool that now contains a, and enable read permission on
frame A once again. To illustrate this, Figure 2d shows what might result if page
a were immediately referenced after being replaced in Figure 2b. In this case, a
has been reread by ESM into frame 3 in the buffer pool and frame 3 has been
mapped to virtual memory address A. This further illustrates the dynamic nature
of the mapping from virtual memory frames to frames in the buffer pool as virtual
frame A is mapped to buffer frame 4 in Figure 2a and then remapped to buffer
frame 3 in Figure 2d. Note, however, that the mapping between virtual frames and
disk pages is static--virtual frame A is always mapped to disk page a.

4.2 Implementation Details

QuickStore uses the UNIX mmap system call to implement the physical mapping
from virtual memory frames to frames in the ESM client buffer pool, and to control
virtual frames' access protections. It was necessary to modify the ESM client software
slightly to accommodate the use of mmap, since mmap really just associates virtual
memory addresses with offsets in a file, while ESM normally calls the UNIX function
malloc to allocate space in memory for its client buffer pool. To make ESM and
mmap work together, the buffer pool allocation code was changed so that it first
would open a file (and resize it if necessary) equal in size to the size of the client
buffer pool. The buffer allocation code then calls rnmap to associate a range of
virtual memory with the entire file. The rest of the ESM client software uses this
range of memory to access the buffer pool just as though the memory had been

640

allocated using malloc.
The important thing to note is that the file serves as backing store for the

buffer pool. Swap space and actual physical memory are never allocated for the
virtual frames that are mapped into the file by mmap, so mapping a huge amount of
virtual memory into the buffer pool doesn't affect the size of the process, although
it may increase the size of page tables maintained by the operating system. One
should also note that the contiguous range of addresses used by the ESM client to
access the buffer pool is different from the 8 K-byte ranges of addresses that the
application program uses to access pages in the buffer pool. The former is used
simply to integrate an already existing storage manager (ESM) with the memory
mapped approach and, in general, would not be required by a memory-mapped
implementation.

We should point out that using mmap in the particular way that we did caused
some minor performance problems in the implementation. Because the workstation
used as the client machine in the benchmark experiments (a Sun ELC) had a
virtually mapped CPU cache, accessing the same page of physical memory in the
buffer pool via different virtual address ranges caused the CPU cache to be flushed
whenever the process switched between the address ranges. This increased the
number of rain faults, which are virtual memory page faults that do not require I/O
(in Unix terminology), experienced by the application. We note the effects of this
phenomena when discussing the performance results in Section 6.

4.3 In-Memory Data Structures

QuickStore maintains an in-memory table that keeps track of the current mapping
from virtual memory frames to disk pages. At a given point in time, the table
contains an entry for every page that has been faulted into memory, plus entries for
any additional pages that are referenced by pointers on these pages. We refer to a
page for which there is a table entry as being "in the current mapping." In essence,
any page containing persistent data to which the application program can deference
a pointer must be in the current mapping. Entries in the table are called page
descriptors, and are 60 bytes long. Figure 3 shows the format of a page descriptor.
Disk pages themselves come in two types: small object pages, which contain sets
of objects that are smaller than a disk page, and large object pages, which contain
individual pages of multi-page objects. Table entries for small object pages and
large object pages differ in some respects, so they are discussed separately.

A page descriptor for a small object page contains the range of virtual addresses
associated with the page, the physical address of the page on disk, and a pointer
to the page when it is pinned in the buffer pool. The physical address of the page,
in our implementation, is the OID of a special meta-object (24 bytes), located on
each small object page. Page descriptors also contain other fields, such as flags that
indicate what types of access are currently allowed on the frame associated with the
page (read, write, and none), whether an exclusive page lock has been obtained, and
whether or not the page has previously been read into memory during the current

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 641

Figure 3. Format of a page descriptor

virtual address range

physical disk address

flags

pointer to page in buffer pool

recovery heap pointer

other in-memory pointers

transaction. This last flag is useful since it is not necessary to do any swizzling work
for a page when it is reread during a transaction; the pointers on such pages are
guaranteed to be valid. The page descriptor also contains a heap pointer that is
used for recovery purposes.

The scheme used for large object pages is somewhat more complicated than
the scheme for small object pages. The virtual memory frames associated with a
multi-page object must be contiguous, so they are reserved all at once. To avoid
maintaining individual table entries for every page of a multi-page object, multi-page
objects that have not been accessed--but which are in the mapping--are represented
by a single entry in the mapping table. The range of virtual addresses in this entry is
the entire range of contiguous addresses associated with the object, and the physical
address field contains the OID of the object. When the first page of a multi-page
object is accessed by the application program, the table entry is split so that there
is one entry in the table for the page that has been accessed, and an entry for
each contiguous sub-sequence of unaccessed pages. Table entries for sub-sequences
of unaccessed pages of multi-page objects are split in turn when one of the pages
contained in the sub-sequence is accessed.

Figure 4 illustrates the splitting process for a large object descriptor. Figure
4a shows the descriptor for a large object that has not yet been accessed. The
object is 100 pages long, and has been mapped to virtual memory frames 1 through
100. The OID of the object is denoted by the letter a. Figure 4b shows what
happens when the eighth page of the object is accessed. In Figure 4b, a page
descriptor has been allocated for the recently accessed page. The virtual address
range in the descriptor records the fact that the descriptor is now only associated
with virtual memory frame 8, and that read access on frame 8 has been enabled.
The descriptor also contains a pointer (not shown) to the copy of the page that is
cached in the buffer pool. Figure 4b shows that two additional page descriptors are
used to represent the remaining pages of object a. One descriptor represents the
pages in object a that precede page 8, while the other represents the pages that

642

Figure 4. Splitting a large object descriptor

• '~'~"":1 -1 O0
,.,i,.~ ~,.,~.: a

~ : none

~r~. : 1 --7
,~,,,:t ~n~r: a

.~r~: none

v.'tual a,~ress: 8

,~.ct ~ , ~ a

.a~: read

v ~ , ~ m . 9_1 O01
objecz ~ra~er. a]

~ , : none]

b

follow page 8. We note that the offset (also not shown) of the first page of the
object that is represented by a descriptor is stored in the page descriptor as well,
so that the descriptor can be associated with the correct pages of the object.

The mapping table organizes page descriptors according to the range of virtual
memory addresses that they contain, using a height-balanced binary tree. One reason
for using a binary tree is that it makes the splitting operation associated with large
objects efficient. It is also helpful to keep the ranges of addresses currently allocated
to persistent data ordered. For example, our current scheme for allocating virtual
frames to disk pages uses a global counter (stored on disk) that is incremented by
the flame size each time that a frame is allocated to a disk page. This counter
needs to be persistent so that successive runs of a program don't reuse the same
virtual memory addresses unnecessarily when allocating new objects. If the database
becomes bigger than the size of virtual memory, then this counter will wrap around,
and it may become necessary to scan the in-memory binary tree to find a virtual
frame that is currently not in use.

Page descriptors are also hashed, based on their physical address (OID) and
inserted in a hash table. (For large objects only the entry containing the first page
of the object is inserted in the hash table.) The hash table implements a reverse
mapping from physical disk address to virtual memory address. The hash table is

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 643

Figure 5. Format of a pointer in QuickStore

I frame offset I

used by the fault handling routine as part of the pointer swizzling process (Section
4.4).

4.4 Pointer Swizzling in QuickStore

QuickStore stores pointers on disk as virtual memory addresses in exactly the same
format that they have when they are in memory. Figure 5 shows the format of a
pointer in QuickStore. The high order bits contained in a pointer can be viewed as
identifying a virtual memory frame, while the low order bits identify an offset into
the frame where the actual object referenced by the pointer is located. (Objects
are not allowed to move within pages, so the offset identifies a unique object or
portion of an object.) Since virtual memory pointers are only meaningful in the
context of an individual process, the system maintains some additional recta-data
that associates pointers on disk with the objects that they reference. We first describe
how this meta-data is stored in QuickStore, and then briefly touch on some possible
alternative implementation strategies.

QuickStore associates meta-data with individual disk pages. In the case of
small object pages, each page contains a direct pointer (OID) to a mapping object
containing the meta-data for the page. (Actually, the pointer is contained in the
meta-object located on the page.) The term mapping object is used, since the object
records the mapping between virtual frames referenced by pointers on the page and
disk pages that was in effect when the page was last memory resident. Mapping
objects are essentially just arrays of <virtual address range, disk address> pairs.
Mapping information is stored separately instead of on the disk pages containing
objects themselves, because the space required to store the mapping information for
a page can vary over time. For example, if the pointers on a page are updated, the
number of frames referenced by pointers on the page may change, thus changing
the number of entries in the mapping object. Multi-page objects are implemented
similarly to small object pages, except that there is an array of meta-objects appended
to the end of the large object containing one meta-object for each page of the large
object.

Each meta-object also contains a pointer (OID) to a bitmap object that records
the locations of pointers on the page so that they can be swizzled. QuickStore uses
a modified version of gdb to get the type information for objects that is used to
maintain the bitmaps associated with pages. The modified version of gdb outputs a
description of the layout of a type that is stored in the schema for an application

644

Figure 6. Pointer swizzling with no collisons

entry
pointer

buffer pool

I I I I l l l l

mapping table

A
a

pointer I . | I

i

I__~-~-~-ml

mapping object for page a

mapping table

on disk. When an application creates an object in a database, the information in
the application's schema is used to update the bitmap for the page containing the
object, and the schema for the database, if necessary.

Figure 6 illustrates the way that the structures described above are used to
ensure that all of the pointers seen by an application program are valid swizzled
pointers. In Figure 6a, disk page a is mapped to virtual frame A; however, page a
has not been accessed by the application program, so read access on frame A has
not been enabled. We now consider the actions that are taken by the QuickStore
fault-handling routine when page a is first accessed (Figure 6b).

In Figure 6b, the fault-handler has read both page a and the page containing
the mapping object (as well as other mapping objects) associated with page a into
main memory. The fault-handler then examines each entry in the mapping object,
and uses the disk address contained in the entry to look up the page descriptor
associated With that disk address in the in-memory table. If no entry is found
in the table, then one is created using the information contained in the mapping
object entry. In the example in Figure 6b, the mapping object indicates that page a
contains pointers that reference objects on three distinct disk pages. These include
page a itself and two other pages, page b and page c. When the fault handler looks

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 645

up pages b and c, it discovers that there is not a page descriptor entry for either
page in the mapping table, so two entries are created.

When a table entry is created, the disk page (or pages, in the case of a large
object) is assigned to its previous virtual frame (obtained from the mapping object
entry) if the virtual frame is unused; otherwise a new frame is selected. If an entry
for a disk page is found in the table, the system checks to see if the page is currently
mapped to the same virtual frame as the one contained in its mapping object entry.
If each disk page can be mapped to the virtual frame contained in its corresponding
entry, then the swizzling process terminates. In Figure 6b, page a is already mapped
to the frame A. In addition, pages b and c can be assigned to frames B and C,
which currently are not being used. Since all of the pages referenced by pointers
on page a are assigned to the same memory locations that they occupied the last
time page a was in memory, it isn't necessary to update (i.e., swizzle) any pointers
on page a, and the swizzling process terminates.

If some disk pages had been mapped to new locations in Figure 6b, then
additional swizzling work would have been required. For example, suppose that
page c couldn't have been assigned to frame C because another page already had
been assigned to that frame. In that case, the pointers on page a that reference
objects on page c would have been updated so that they referenced the new frame
associated with page c. When pointers need to be swizzled, the bitmap object
associated with the page is read from disk, and used to find and update any pointers
on the page that need to be changed. Although only a subset of the pointers
contained on a page may need to be changed, all of the pointers on the page must
be examined, since it is not known in advance which pointers actually need to be
updated. Note that, even though bitmap objects are fixed in size, they are stored
separately from their corresponding data page, since they should not have to be
used in most cases.

We now comment on some alternative ways of storing the mapping information
that is used to support pointer swizzling. Instead of storing information concerning
the mapping of virtual memory frames to disk pages on a per page basis, one
could also store it for groups of pages. For example, some object-oriented systems
group pages into units called segments or clusters. One could even store the
information at the level of the entire database or possibly a file. We chose not to
follow this approach, because it makes keeping the mapping information up to date
considerably more complex. For example, suppose that a database is composed of
a large number of clusters, each containing 10 pages, and that mapping tables are
maintained for individual clusters. If the database is bigger than virtual memory,
or it is distributed (the same virtual frame may have been associated with different
pages in the database in this case), then pages may need to be relocated when they
are brought into memory. Page relocations are a problem if only a few pages of a
cluster are accessed by an application, since, to keep the mapping information for
the cluster up to date, one must either read the rest of the pages in the cluster, and
update them so that they are consistent with the new mapping, or keep multiple

646

versions of the mapping information--one version for the pages whose mapping
has changed, and one for the pages that are still using the old mapping. If many
versions of the mapping information are stored, then this scheme could be much
worse than storing mapping information for individual pages.

4.5 Buffer Pool Management

In traditional database systems, buffer managers typically use an LRU algorithm
or a clock style algorithm that approximates an LRU page replacement policy. We
feel that a clock algorithm is the best choice for use in QuickStore. However,
implementing this type of scheme turned out to be more difficult in the context
of a memory-mapped system, where objects in the buffer pool are accessed by
dereferencing virtual memory pointers. The reason for this is that there is less
information available to the buffer manager to indicate which pages have been
accessed recently.

Recall that, in a traditional implementation of clock, a bit is usually kept for
each frame in the buffer pool to indicate whether or not the frame has been accessed
since the clock hand last swept over it. This bit is set by the database system each
time the page is accessed, and is reset by the clock algorithm. There is no way to
set such a flag, however, when dereferencing a pointer in QuickStore.

One solution to this problem is to have the clock algorithm access-protect the
virtual frame that corresponds to a buffer pool frame when the clock hand reaches
it. If the frame is subsequently reaccessed, a page-fault will occur, and the fault
handling routine can re-enable access to the page. This scheme replaces the usual
setting and unsetting of bits in a traditional clock algorithm with the enabling and
disabling of access permissions on virtual memory frames. We experimented with
this solution but found that the extra overhead of manipulating the page protections
and handling additional page-faults made this approach prohibitively expensive in
terms of performance.

To avoid the problem described above, QuickStore uses a simplified clock
algorithm. Under this scheme, the clock hand begins its sweep from wherever it
stopped during the previous invocation of the algorithm. As soon as the clock hand
reaches a page for which access is not enabled, the algorithm selects that page for
replacement. If the clock hand reaches the end of the buffer pool without finding
a candidate for replacement, however, then the entire virtual address space of the
process being used for persistent data is reprotected with a single call to mmap, and
the algorithm is restarted (i.e., the clock hand begins scanning, starting from the first
frame in the buffer pool). This scheme performed much better than the original
scheme in our experiments, and compared favorably with the more traditional clock
replacement algorithm used by E (Section 6).

4.6 Recovery

Implementing recovery for updates poses some special problems in the context of a
memory-mapped scheme as well. For example, since application programs are able

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 647

to update objects by dereferencing virtual memory pointers, it is difficult to know
what portions of objects have been modified and require logging. Furthermore, it
is desirable to batch the effects of updates together and log them all at once, if
possible, since some applications may update the same object many times during a
transaction.

Due to the considerations mentioned above, we decided to use a page diffing
scheme to generate log records for objects that have been updated in QuickStore.
Virtual memory frames that are mapped to pages in the database, and have not been
updated, do not have write access enabled, so the first attempt by the application
program to update an object on a page will cause a page-fault. When the fault-
handler detects that an access violation is due to a write attempt, it copies the
original values contained in the objects on the page into an in-memory area called
the recovery buffer. The fault-handler also obtains an exclusive lock on the page
from ESM, if needed, and enables write access on the virtual frame that caused
the fault before returning control to the application. The application program can
then update the objects on the page directly in the buffer pool.

At transaction commit time, if paging in the buffer pool occurs, or the recovery
buffer becomes full, the old values of objects contained in the heap and the
corresponding updated values of objects in the buffer pool are compared (diffed)
to determine if log records need to be generated. Log records are created and
managed using the normal recovery services provided by ESM (Franklin et al., 1992).
The processes of diffing and generating log records are interleaved in QuickStore.
To understand why this is so, consider the case where the first and last byte of a 1
K-byte object have been updated. In this case, QS minimizes the amount of data
written to the log by generating two log records, one for each modified byte, instead
of one big log record for the entire object. On the other hand, if the first, third,
and fifth bytes had been modified, QS would generate a single log record for the
first five bytes of the object. This is cheaper than generating multiple log records,
since each log record contains a relatively large (~ 50 byte) header area for storing
information needed by the ESM recovery scheme.

An algorithm that minimizes the amount of data written to the log by deciding
whether to generate log records for individual modified regions of an object, or to
combine the regions and log them as a single unit is fairly straightforward, and will
not be discussed in detail here. It takes into account things such as the number
of bytes separating modified regions of an object, and the size of log records that
would be generated to make its decision.

Care must also be taken when processing updates to the mapping tables that
are associated with each modified page. Recall that the mapping table for a page
keeps track of the set of pages that are referred to by pointers on the page. Updates
to objects on a page can change the pages that are members of this set, making
it necessary to update the mapping tables as well. Updating the mapping table
for a page requires that each pointer contained on the page be examined, and the
in-memory table consulted to determine which page in the database it references.

648

Table 1. 007 Benchmark database parameters

Parameter

NumAtomicPerComp

NumConnPerAtomic

DocumentSize (bytes)
ManualSize (bytes)

Num CompPerModule

NumAssmPerAssm

NumAssmLevels

Num CompPerAssm
NumModules

Small Medium

20 200

3 3

2,000 2,000

100K 1M

500 500

3 3

7 7

3 3

1 1

The bitmap for the page is used to locate the pointers that it contains and, from
these pointers, a new set of referenced pages is constructed. This new set is then
compared element by element with the old set to see if the set has changed. If
it has, then the mapping object for the page is updated to reflect the new set of
referenced pages.

5. Performance Experiments

This section describes the structure of the 0 0 7 benchmark database and the
benchmark operations that were included in the performance study. The hardware
and software systems included in the study are also discussed. We include a brief
description of the current implementation of the E programming language to aid
in understanding the performance results presented in Section 6.

5.1 The 0 0 7 Benchmark Database

The 0 0 7 database is intended to be suggestive of many different CAD/CAM/CASE
applications. There are two sizes of the 0 0 7 database: small and medium. Table
1 summarizes the parameters of the database.

A key component of the database is a set of composite parts. Each composite
part is intended to suggest a design primitive such as a register cell in a VLSI
CAD application. The number of composite parts per module is controlled by the
parameter NumCompPerModule, which was set to 500. Each composite part has a
number of attributes, including the integer attributes id and buildDate. Associated
with each composite part is a document object that models a small amount of
documentation associated with the composite part. Each document has an integer
attribute id, a small character attribute title, and a character string attribute text.
The length of the string attribute is controlled by the parameter DocumentSize.

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 649

Figure 7. A composite part and its associated document object

docld :345

title : "widget #27 docs"

" w i d e r #2~ does'n°t r e a l l y do
t e x t = very muc.~ bus ~ put one m t.~e

spec so here I t i s"

Id = 248590

type = "typeNumber3"

buildDate: 3587341
documentation

~ . . o ° ° o . o o ~ o ° . o o ° . o . . . o . . o ° o

i i

Each composite part also has an associated graph of atomic parts. Intuitively,
the atomic parts within a composite part are the units out of which the composite
part is constructed. One atomic part in each composite part's graph is designated
as the "root part." In the small database, each composite part's graph contains 20
atomic parts while, in the medium database, each composite part's graph contains
200 atomic parts.

Each atomic part has the integer attributes id, buildDate, x, y, and docld. The
buildDate values in atomic parts are randomly chosen in the range MinAtomicDate
to MaxAtomicDate, which is 1000 to 1999. Each atomic part is connected via a
bi-directional association to three other atomic parts according to the parameter
NumConnPerAtomic. The connections between atomic parts are implemented by
interposing an information-bearing connection object between each pair of connected
atomic parts. A connection object contains the integer field length and the short
character array type. Figure 7 depicts a composite part, its associated document
object, and its associated graph of atomic parts.

Additional structure is imposed on the set of composite parts by a structure
called the "assembly hierarchy." Each assembly is made up of either composite parts
(in which case it is a base assembly) or other assembly objects (in which case it is a
complex assembly). The first level of the assembly hierarchy consists of base assembly
objects. Base assembly objects have the integer attributes id and buildDate. Each
base assembly has a bi-directional association with three composite parts, which
are chosen at random from the set of all composite parts. Higher levels in the
assembly hierarchy are made up of complex assemblies. Each complex assembly

650

Figure 8. Design library of composite parts

complex
assemblies

b ~
assemblies

Module i

id

type

builddate

manual ~ - - ~ Manual text

deign_root

1 2 3 4
lmlwm

has a bi-directional association with three subassemblies, which either can be base
assemblies (if the complex assembly is at level two in the assembly hierarchy) or
other complex assemblies (if the complex assembly is higher in the hierarchy). There
are seven levels in the assembly hierarchy.

Each assembly hierarchy is called a module. Modules are intended to model the
largest subunits of the database application. Modules have several scalar attributes.
Each module also has an associated Manual object, which is a larger version of a
document. Manuals are included for use in testing the handling of very large (but
simple) objects. Figure 8 roughly depicts the full structure of the single user 0 0 7
Benchmark Database. The picture is somewhat misleading in terms of both shape
and scale; the actual assembly fanout used is 3, and there are only (37 - 1)/2 =
1093 assemblies in the small and medium databases, compared to 10,000 atomic
parts in the small database, and 100,000 atomic parts in the medium database.

5.2 007 Benchmark Operations

This section describes the 0 0 7 benchmark operations used in our study. Some
of the 0 0 7 operations were omitted because they didn't highlight any additional

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 651

differences among the systems being compared. The operations, which are referred
to by type and number, consist of a set of 10 tests, termed traversals, and another set
of 8 query tests. The queries were hand coded in C+ +, since neither QuickStore or
E provide a declarative query language. We comment on the implementation used
to execute the queries, although this is not part of the 0 0 7 specification (Carey et
al., 1993).

5.2.1 Traversals. The T1 traversal performs a depth-first traversal of the assembly
hierarchy. As each base assembly is visited, each of its composite parts is visited,
and a depth-first search on the graph of atomic parts is performed. The traversal
returns a count of the number of atomic parts visited but, otherwise, no additional
work is done during the traversal. The T6 traversal is similar to T1, except that,
instead of visiting the entire graph of atomic parts of each composite part, T6 just
visits the root atomic part and returns. T2 and T3 also are similar to T1, but
they include updates. Each T2 traversal increments the (x,y) attributes contained
in atomic parts as follows: 1

T2A Update the root atomic part of each composite part.
T2B Update all atomic parts of each composite part.
T2C Update all atomic parts of each composite part four times.

The T3 traversals are similar to T2, except that the buildDate field of atomic parts is
incremented. This field is indexed, so T3 highlights the cost of updates of indexed
fields. We also used three traversals that are not based on T1. T7 picks a random
atomic part, and traverses up to the root of the design hierarchy. T8 scans the
manual object associated with the module, and counts the occurrences of a specified
character, and T9 compares the first and last characters of the manual to see if
they are the same.

5.2.2 Queries. Query Q1 randomly retrieves 10 atomic parts. This is done by
using an index based on part id. Q2 selects the most recent 1% of atomic parts
based on buildDate, while Q3 looks up the most recent 10%. Both queries do an
index scan to find the parts. Query Q4 looks up 10 document objects at random,
using the index on their title field. It then visits all base assemblies that use the
composite part corresponding to each document. This is done by traversing pointers
from documents to composite parts, and then processing a collection of pointers
to base assemblies that is maintained as part of each composite part object. Q5 is
referred to as a single level make operation. Q5 finds all base assemblies that use
a composite part with a build date later than the build date of the base assembly.
Q5 is implemented as a nested loops pointer join between base assemblies and

1. Carey et al. (1993) specified that the (x,y) attributes should be swapped. We increment them instead so
that multiple updates of the same object change the object's value. This guarantees that the diffing scheme
used for recovery by QuickStore will always generate a log record.

652

composite parts (i.e., it iterates over the collection of base assemblies maintained for
the module and, as each base assembly object is visited, the references to composite
parts that it contains are traversed).

5.3 Hardware Used

As a test vehicle, we used a pair of Sun workstations on an isolated Ethernet. A
Sun IPX workstation configured with 48 megabytes of memory, two 424 megabyte
disk drives (model Sun0424) and one 1.3 gigabyte disk drive (model Sunl.3G) was
used as the server. One of the Sun 0424s was used to hold system software and
swap space. The Sun 1.3G drive was used by ESM to hold the database, and the
second Sun 0424 drive was used to hold the ESM transaction log. The data and
recovery disks were configured as raw disks. For the client, we used a Sun Sparc
ELC workstation (about 20MIPS) configured with 24 megabytes of memory, and
one 207 megabyte disk drive (model Sun0207). This disk drive was used to hold
system software and as a swap device.

5.4 Software Used

The systems examined in the study use ESM V3.0 to provide disk storage for
persistent objects. ESM provides files of untyped objects of arbitrary size, and
B-tree indexes. ESM uses a page-server architecture where client processes request
pages that they need from the server via TCP/IE If the server cannot satisfy the
request from its buffer pool, a disk I/O is initiated by invoking a disk process to
perform the actual I/O operation. After the disk process has read in the page, the
server process returns it to the requesting client process, and keeps a copy in its own
buffer pool. ESM also provides concurrency control and recovery services. Locking
is provided at the page and file levels with a special non-2PL protocol being used
for index pages. Recovery is based on logging the changed portions of objects.

ESM used a disk page size of 8 K-bytes (which is also the unit of transfer
between a client and the server). The client and server buffer pools were set to
1,536 pages (12 MBytes) and 4,608 pages (36 Mbytes) respectively. Release 4.1.3 of
SunOS was run on both of the workstations used in the experiments. QuickStore
was compiled using the GNU C+ + compiler V2.3.1. The E compiler is a modified
version of the GNU compiler.

5.5 Database Systems Tested

5.5.1 E. This section briefly describes the current implementation of the E language.
E and QuickStore both offer basically the same functionality; however, E implements
persistence using a software interpreter, EPVM 3.0. EPVM 3.0 has a functional
interface, so operations such as dereferencing an unswizzled pointer in E are
handled by calling an EPVM function of perform the dereference. As part of
handling a reference to a persistent object, EPVM may, in turn, call ESM if the
page containing an object is not in memory, and update its own internal data
structures before returning control to the application. In addition to calls of EPVM

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 653

functions, the code generated by the E compiler (a modified version of the gnu C+ +
compiler) contains in-line code sequences to handle certain basic operations. For
example, residency checks and dereferences of swizzled pointers are done in-line,
and do not require a function call, which improves performance.

Like QuickStore, EPVM 3.0 accesses memory-resident persistent objects directly
in the ESM client buffer pool. The interpreter maintains a hash table that contains
an entry for each page of objects that is currently in memory. The pointer swizzling
scheme used in EPVM 3.0 is similar to the scheme used in EPVM 1.0 (Schuh et al.,
1990), except that swizzled pointers point directly to objects in the buffer pool. This
scheme only swizzles pointers that are local variables in C+ + functions. Pointers
within persistent objects are not swizzled because this makes page replacement in
the buffer pool difficult (White and DeWitt, 1992).

Update operations on persistent objects are always handled by an interpreter
function in EPVM 3.0. The update scheme used copies the original values of objects
into a side buffer, and updates the objects in place in the buffer pool. Original
values of objects and updated values are used to generate log records at transaction
commit, or sooner if the side buffer or the buffer pool become full. However, no
diffing is performed as in QuickStore. EPVM 3.0 employs a scheme that breaks
large objects into 1K chunks for logging purposes. Objects that are smaller than
1K are logged in their entirety.

5.5.2 QuickStore. A detailed description of QuickStore was given in Section 4.
Although QuickStore and E offer nearly the same functionality, it is important
to point out one fundamental way in which the two systems differ. This has
to do with the degree to which the two systems support the notion of object
identity (Khoshafian and Copeland, 1986). Section 4 described the scheme used
by QuickStore to implement a mapping between virtual memory frames and disk
pages. This mapping is maintained for pages when they are in memory as well as
when they reside on disk. Because of this mapping, pointers to persistent objects
can be viewed as a <virtual frame, offset> pair, where the high order bits of the
pointer identify the virtual memory frame referenced by the pointer and the low
order bits specify an offset into the frame. Virtual memory frames are mapped to
disk pages, so pointers really just specify offsets or locations on pages.

To see why this scheme doesn't support object identity, consider what happens
when an object, for which there are outstanding references, is deleted. The page
that contained the object can be faulted into memory by subsequent program runs,
and mapped to some virtual memory frame. If the program then dereferences
dangling pointers to the deleted object, no error will be explicitly flagged. If a new
object occupies (or overlaps) the space on the page previously used by the deleted
object, then the dangling pointers will reference this object.

QuickStore doesn't fully support object identity or "checked references" to
objects, because the overhead would be prohibitive. For example, the meta-data that
would be required to associate every unique pointer on a page with its corresponding

654

Table 2. Database sizes (in megabytes)

Small Medium

QS 6.6 54.2

E 10.5 94.1

QS-B 11.5 98.5

OID would likely be an order of magnitude greater than the current scheme used
by QuickStore. Furthermore, we are aware of no commercial or research system
(including ObjectStore) that supports these types of references for normal pointers
in the context of a memory-mapped scheme. E, on the other hand, supports object
identity fully, including "checked references." E implements this by storing pointers
as full 16-byte OIDs within objects. This is a reasonable approach, but it does incur
certain costs. For example, since objects are larger in E than in QuickStore, the
database as a whole is larger, and E generally performs more I/O as a result. Also,
dereferencing big pointers is more expensive, even in terms of CPU requirements
than dereferencing regular virtual memory pointers.

Because of these differences, we included a third system in the performance
study. This system is identical to QuickStore, except that the size of each object has
been padded so that it is the same as the corresponding object in E. Comparing
the performance of this system to the performance of E in the experiments where
faults take place gives insight into the overhead of faulting for the memory-mapped
approach, while comparing it with QuickStore indicates the advantage gained by
QuickStore due to its smaller object size. In addition, one can think of this system
as approximating the performance of a hybrid memory-mapped scheme that allows
large pointers to be embedded within objects, thus supporting both checked and
unchecked references.

6. Performance Results

6.1 Database Sizes

The size of the 0 0 7 database is important to understanding the performance results.
Table 2 shows the database sizes for E, QuickStore (QS), and QuickStore with big
objects (QS-B). 2 The QS database is roughly 60% as big as the E database for both
the small and medium cases. This is because of the different schemes used by the
systems to store pointers. The QS-B database is slightly bigger than the E database
due to the overhead for storing bitmaps that indicate the locations of pointers

2. Objects in QS-B are padded to the same size as the corresponding objects in the E implementation.

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 655

on pages and mapping objects. Mapping objects accounted for approximately 3%
of the database size for QS and QS-B, while bitmaps generally accounted for an
additional 3%.

6.2 Small Cold Results

This section presents the cold results for the small database experiments. The cold
results were obtained by running the 0 0 7 benchmark operations when no data was
cached in memory at either the client or server machines. The times presented
represent the average of 10 runs of the benchmark operations, except where noted
otherwise. The times were computed by calling the Unix function getimeofday, which
had a granularity of several microseconds on the client machine.

Read-Only Results. Figure 9 and Table 3 list the cold response times and the number
of client I/O requests, respectively, for the read-only traversals. As Figure 9 shows,
QS is 37% faster than E during T1. 3 This difference in performance is due largely
to the smaller database size for QS, which causes it to read 53% fewer pages from
disk than E (Table 3). Almost all of the I/O activity during T1 resulted from reading
clusters 4 of composite parts. Each composite part cluster occupied a little less than
one page for QS, while two pages were required for E. This accounts for the roughly
2 to 1 ratio in the number of disk reads between the two systems. Comparing E
with QS-B, we see that QS-B is 15% slower than E during T1. QS-B always issues
slightly more I/O requests than E, since QS-B must read mapping objects to support
the memory-mapped scheme.

The performance of QS is only 4% better than E during T6. ~ Again, this
difference is due largely to the number of disk reads that each system performs.
Table 3 shows that the amount of I/O for QS is almost the same during T1 and
T6, while the number of disk reads for E decreases by 41% during T6. This is due
to the size difference of composite part clusters between the two systems. E does
noticeably fewer I/O operations during T6 because, unlike QS, it generally doesn't
read entire clusters. The performance of QS-B is 27% slower than E during T6. As
the detailed faulting times shown below illustrate, this difference in performance
is close to the actual percentage difference in individual page fault costs for the
systems, because the CPU cost of performing the traversal has less of an overall
impact on performance during T6 than during T1.

E has the best performance during T7. 6 QS is 26% slower than E because of
increased faulting costs relative to T1 and T6. One reason faults are more expensive

3. Ti: DFS of assembly hierarchy visiting all atomic parts.

4. The atomic part objects and connection objects associated with a composite part were clustered together
on disk, together with the composite part object itself in our implementation of 0 0 7 .

5. T6: DFS of assembly hierarchy visiting only the root atomic part.
6. T7: Traverse up the assembly hierarchy, starting from a randomly selected atomic part.

656

Figure 9. 007 Traversal cold times, small database

30

o ~

0

0
T1

- - - - 1.5

-B

1.0

0.5

0.0
T6 T7 '1"8 T9

Table 3. Client I /0 requests, traversals, small database

I I T1 T6 IT7 T81T91
QS 474 467 26 19 9

E 1018 600 25 18 7

QS-B 1047 639 31 19 9

for QS during T7 is that a large fraction of faults (86%) are due to reading pages
of base assembly objects. These pages have larger mapping tables because pointers
from base assembly objects to composite part objects are uniformly distributed
among all composite part objects in the database. This increases the average I/O
cost for reading the mapping tables and the number of table entries (139 on average
for T7 vs 20 on average for T1) that must be examined per fault. The relative
performance of QS also slows during T7 because, as in T6, objects are accessed in
an unclustered fashion. This increases the amount of I/O operations required to
read mapping objects, since mapping objects are clustered on disk in the order of
the pages to which they correspond. As Table 3 shows, QS actually performs more
I/O during T7 and E. Finally, we note that QS-B is 34% slower overall during T7
relative to E.

V L D B Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 657

Figure 10. 007 query cold times, small database

A . 20

.~ 15

0

~ 5

O QS
• E
l i QS-e

+ : + :.:: ,:,: .:.:

Q1 Q2 Q3 Q4 Q5

Table 4. Client I/0 requests, queries, small database

Q1 Q2 Q3 Q4 Q5

QS 31 109 413 62 467

E 26 104 641 59 558

QS-B 33 121 663 74 583

Turning to T8, 7 Figure 9 shows that E is roughly three times slower than QS.
This is because the E interpreter is invoked once for each character of the manual
that is examined by T8, while QS simply has to dereference a virtual memory pointer
to access the manual. By contrast, Figure 9 shows that E is nearly twice as fast as
QS on T9. 8 This difference is due almost entirely to faulting costs, since very little
work is done on the objects faulted in during T9. It is not surprising that faulting
costs for QS are relatively high in this case. T9, like T7, touches only a few pages
in the database and the pages that are accessed are not clustered. QS and QS-B
have similar performance during T8 and T9, since character data is the same size
for both systems.

The cold response time and client I/O requests for the queries are shown in
Figure 10 and Table 4, respectively. E is 24% faster than QS, and 26% faster than

7. T8: Scan the manual object counting occurrences of a specified character.

8. T9: Compare first and last characters of the manual to see if they are equal.

658

QS-B during Q1. 9 The memory mapped scheme is slower in this case because the
relatively small number of atomic part objects that are accessed during Q1 are
accessed randomly. This causes one fault to be performed by all of the systems
for each atomic part object that is accessed. In addition, Table 4 shows that QS
performs several additional I/O operations (16%) to read mapping objects. The
number of additional I/Os required to read mapping objects is relatively high during
Q1 because, as mentioned above, mapping objects are clustered according to the
disk pages to which they correspond, so when accesses to pages in the database are
unclustered, more pages containing mapping objects tend to be read.

E also has the best performance during Q2.1° As Table 4 shows, QS and QS-B
again do more I/O than E during Q2, which contributes to their worse performance.
The reasons for this are similar to those given for Q1. Since only a small fraction
of atomic part objects (1%) are accessed during Q2, the accesses are unclustered to
the point that roughly one fault is required per object accessed (and several faults
require additional I/O to read mapping objects for QS). When a larger percentage
of objects (10%) are accessed as in Q3,11 QS has the best performance. Figure
10 shows that QS is 27% faster than E during Q3. QS faults in fewer pages than
E in this case because object accesses are more highly clustered. E is 22% faster
than QS-B during Q3, again illustrating the effect on performance of differences in
faulting costs.

QS is 11% slower than E during O4.12 This is partly due to unclustered accesses
to document and composite part objects, which require roughly one fault per object
accessed in both systems. A second factor is that a large fraction of the objects
accessed by Q4 are base assembly objects, producing higher faulting costs due to
the relatively large amount of mapping information associated with them. QS and E
have basically the same overall performance during Q513 (Figure 10). QS performs
16% fewer I/O operations than E, but the higher per-fault cost for QS prevents it
from performing faster than E. Finally, we note that E is 36% and 19% faster than
QS-B during Q4 and Q5, respectively.

The results presented in Figures 9 and 10 for QS and E show that the memory-
mapped scheme of QS offers better performance when objects are accessed in a
clustered fashion. When objects are accessed in an unclustered fashion, however,
E has better performance. In this case, the smaller object size of QS doesn't
provide a noticeable savings in I/O, and QS actually performs slightly more total

9. QI : randomly retrieve 10 atomic parts.

10. Q2: retrieve most recent 1% of atomic parts.

11. Q3: retrieve most recent 10% of atomic parts.

12. Q4: lookup 10 document objects and find the base assemblies that use their associated composite part.

13. Q5: pointer join between base assemblies and composite parts.

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 659

I/O operations than E because of the need to read mapping objects. The results
presented in Figures 9 and 10 also demonstrate that the per page faulting cost for
the memory mapped approach is noticeably higher than for the software approach.
For example, except for T8 where other differences in CPU cost determined relative
performance, QS-B always has slower performance than E.

Detailed Faulting Results. We next examine the differences in faulting costs between
the systems in more detail. Table 5 shows the average cost per fault in milliseconds for
each of the systems during T1 and T6. These times were calculated by subtracting
the time required to execute a hot traversal from the time required for a cold
traversal, and then dividing the result by the number of page faults to get the
average per-fault cost. To make sure that the results obtained were accurate, the
numbers used to perform the calculation represented the average of 100 runs of
each traversal experiment.

According to Table 5, the faulting cost for QS-B is slightly higher than for
QS. We speculated that this was due to a larger number of pages that were being
referenced on average by outbound pointers for QS-B, since there are more pages
in the QS-B database. (An outbound pointer is a pointer that refers to an object
on a page other than the page containing the pointer.) This would increase the size
of the mapping tables for QS-B. However, this turned out not to be the case, since
the average number of outbound pointers per page in the small database was 16 for
QS, and only 12 for QS-B. The comparison between QS and E in Table 5 is more
interesting. It shows that individual page faults are roughly 20% more expensive
for QS during T1 and T6. The corresponding figure for QS-B and E averages 26%,
which correlates closely with the difference in response time between QS-B and E
during T6.

To better understand the additional faulting overhead of the memory-mapped
scheme, Table 6 shows a detailed breakdown of the average faulting time for QS.
As a check we present detailed numbers for both T1 and T6. One would expect
most of the costs for T1 and T6 to be similar, since they fault in many of the same
pages. The minfault entry in Table 6 is present due to the way our implementation
interacts with the virtually mapped CPU cache of the client machine (see Section
4.2). This effect increased the average fault time by 6% and 5% for T1 and T6,
respectively. The entry labeled page fault in Table 6 is the time that was required to
detect the illegal page access and invoke the fault handler. Page faults comprised
3% of average faulting time for T1, and 2% for T6. We note that it was not possible
to measure the times given for the min fault and page fault entries directly by
running the benchmark. These times were obtained instead by measuring a test
application that performed the operations several thousand times in a tight loop.

The remaining table entries break down the time spent in the fault handling
routine. The entry for misc. cpu overhead includes time for looking up the address
that caused the fault in the in-memory table, various residency and status checks to
determine the appropriate action to take in handling the fault, and other miscella-

660

Table 5. Average faulting cost

time (ms)

system T1 T6

QS 29.4 33.1

E 23.7 26.5

QS-B 3 1 . 6 34.5

Table 6. Detailed QS faulting times

description

min faults

page fault

misc. cpu overhead

data I/O

map I/O

swizzling

mmap

TOTAL

time (ms)

T1 T6

1.8 1.6

.8 .7

.5 .2

24.8 28.5

1.1 1.1

.4 .4

.8 .8

30.2 33.3

neous work. Data I/0 is the time needed to read the page of objects from disk and
update the buffer manager's data structures. This accounted for largest fraction of
faulting time, 82% for T1, and 85(mapI/O) was 3.5% for T1, and 3.2% for T6. The
swizzling entry gives the time needed to process the mapping table entries. Swizzling
costs were quite low, accounting for 1% to 2% of the faulting cost, on average.
Since all of the pages read were mapped to the locations in memory that they
occupied previously, the swizzling time doesn't include any overhead for updating
pointers on pages that are inconsistent with the current mapping. The final entry,
labeled mmap, gives the average time taken by the mmap system call to change the
access protections. This accounted for a modest 3% of the faulting time. Finally,
we note that the sums of the detailed times given in Table 6 correlate closely with
the total per-fault times given in Table 5.

Update Results. We next consider traversals T2 and T3, which include updates. Figure
11 shows the total response time for these traversals run as a single transaction. The
read requests for T2 were nearly identical to T1 (Table 3), while the T3 traversals
performed a few additional I/Os to read index pages. During T2A, which updates
the root atomic part of each composite part, QS is 4% faster than E (Figure 11).
This may seem surprising, given that QS was 37% faster than E during T1, which
does the same traversal as T2A, but without updates. The difference in performance
between QS and E diminishes during T2A because the page-at-a-time scheme for
handling updates of QS is more expensive than the object-at-a-time approach of E
when sparse updates are done.

Part of the increase in response time for QS is due to the fact that the number
of page access violations increases from 454 during T1 to 878 during T2A, nearly
doubling. The additional access violations occur when the first attempt is made to
update an object on a page during the transaction. When this happens, a fault-
handling routine is invoked to handle the access violation. As mentioned in Section

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 661

Figure 11. T2 and T3 response times

• QS-B

3OO

2OO

0
T2A T2B T2C T3A T3B T3C

4.6, this routine performs several functions. First, it copies the objects contained
on the page into the recovery buffer so that the original values contained in the
objects may be used to generate logging records for updates (by diffing) at a later
time. Next, it calls ESM, if necessary, to obtain an update (exclusive) lock on the
page and, finally, it changes the virtual memory protections on the page so that the
instruction that caused the exception can be restarted.

Our measurements showed that during T2A, a total of 5.198 seconds were
needed to carry out this work for QS, which amounted to roughly 12.3 ms for each
of the 423 pages updated. Of this, 7.3 ms was spent copying the objects on the
page, 2.8 ms was used to upgrade the lock on the page, and .9 ms on average was
spent calling mmap to change the page's protection to allow write access.

The response time of QS also increases relative to E during T2A because
transaction commit is more expensive for QS (Figure 12). The commit time for QS
can be broken down into the time required to perform three basic activities, plus a
small amount of additional time to perform minor functions (e.g., reinitializing data
structures). The first of the basic operations involves diffing objects on pages that
have been updated and calling ESM to generate log records when it is determined
that updates did occur. The diffing phase required a total of 3.035 seconds during
T2A, of which .182 seconds was spent calling ESM to generate the 491 log records
needed. Thus, the time needed on average to diff each of the 423 modified pages
(not counting time to generate log records) was 6.7 milliseconds.

The second major task performed during transaction commit is to update the
mapping object associated with each modified page. Our measurements showed that

662

Figure 12. T2 and T3 commit times

!

T2A T2B ~ C ~ A ~ B ~ C

3.084 seconds (7.2 ms per page) were required for this phase of commit processing.
The final step in committing a transaction is performed by ESM. This involves
writing all log records to disk at the server, and flushing all dirty pages back to
the server from the client. This phase of commit processing required 3.501 seconds
during T2A.

Turning to T2B and T2C (Figure 11), we see that QS is 17% and 20% faster
than E, respectively. As one would expect, QS does better relative to E during T2B
and T2C when updates are more dense, since QS copies and diffs fewer objects
unnecessarily. In fact, the absolute performance of QS degrades only slightly during
T2B relative to T2A. This is due almost entirely to increased time during commit
for diffing objects and generating log records. More precisely, 5.804 seconds was
required do the diffing during T2B (.280 seconds of this was for generating log
records). The average diffing cost per page was 12.9 ms during T2B (not counting
logging). We also note that the performance of QS was basically the same during
T2B and T2C, while the performance of E was 5% slower. This is because repeatedly
updating an object is very inexpensive in QS, as objects are accessed via normal
virtual memory pointers while updating an object under the approach used by E
requires a function call per update.

The performance difference between QS and E narrows further during T3,
relative to T2 and T1. QS has better performance than E in all cases, but nearly
similar overheads for index maintenance make this difference less noticeable. In
contrast to the relatively stable performance of the systems during T2, the response
times of the systems steadily increase when going from T3A to T3B to T3C. This is

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store

Figure 13. Traversal hot times

663

oo i llooOSl °°°1
0.05

0 0.00 0.000
TI T6 T7 T8

0.002

0.001

0.000
T9

because each update of an indexed attribute results in the immediate update and
logging of the update to the corresponding index. Although the schemes employed
by QS and E in using the ESM B-tree indexes differ slightly, their performance is
basically the same. Neither of the systems supports automatic index maintenance,
so the index updates are coded as C++ method invocations on a class variable
of type index. QS-B is always much slower than the other systems during T2 and
T3, especially during the B and C traversals. This is because the 4Mb area used
to hold recovery data wasn't big enough to hold all of the objects from modified
pages during these traversals for QS-B.

6.3 Small Hot Results

The hot results were obtained by re-running the 0 0 7 benchmark operations after
all of the data needed by each operation had been cached in the client's main
memory by the cold traversal. Figure 13 shows hot times for the traversals and
Figure 14 shows hot times for the queries run on the small database. The times
for QS-B are omitted since they were identical to those shown for QS.

As one would expect, the performance of QS is generally better than E. It is
somewhat surprising, however, that E is just 23% slower than QS during T1. To
determine the reasons for this relatively small difference, we used qpt (Ball and
Laurus, 1992) to profile the benchmark application. Table 7 presents the profiling
results for T1. The T1 hot traversal time has been broken down in Table 7 based

0.15

Figure 14. Query hot times

e~

° m

o
ga.

0.10

0.05

0.00
QI Q2

DQS
l i e

Q3 Q4 Q5

664

on the percentage of CPU time spent in several groups of functions. Table 7 shows
that E spent 33% of the time executing EPVM 3.0 interpreter functions. Most
of this time was spent dereferencing unswizzled pointers. Both QS and E spent
a considerable amount of time allocating and deallocating space in the transient
heap (see the entry for malloc). This is because an "iterator" object is allocated in
the heap for every node (assembly object, composite part, and atomic part) in the
object graph that is visited during the traversal. The "iterator" object establishes a
cursor over the collection of pointers to sub-objects so that the sub-objects can be
traversed.

The entry labeled part set in Table 7 gives the time spent executing functions
that lnaintain the set of atomic part ids that have been visited in each composite
part's subgraph of atomic parts. This set is needed so that the same atomic part
is not visited more than once. The amount of time spent in other functions that
implement the traversal, such as functions that iterate over collections of pointers to
sub-objects and that implement the recursive traversal, was 8% for QS, and 17% for
E. The higher percentage for E reflects the additional cost of dereferencing large
pointers in E. When each node in the object graph is visited, a simple function is
called that examines a field in the object to make sure that the object is faulted into
memory. The time spent in these functions was .7% for both systems. The detailed
numbers in Table 7 are surprising because the small amount of additional work
involving transient data structures that were needed to implement T1 accounts for
a such a large percentage of the overall cost. The results show how quickly a small

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 665

Table 7. T1 hot traversal detail

description

EPVM 3.0

malloc

part set

traverse

do nothing

misc.

TOTAL

% of time

QS E

-- 33.31

56.13 24.99

35.18 24.57

8.03 17.12

0.64 1 0.70

0.02 0.01

100.00 100.00

amount of additional computation can mask differences in the cost of accessing
persistent data between the systems.

E is 3.6 times slower than QS during T6. QS performs better relative to E
during T6 (the sparse traversal) than during T1 (the dense traversal) since there is
less overhead for maintaining transient data structures during T6. For example, the
sets of part ids are not maintained since only the root part is visited during T6. The
performance of the systems is very close during T7. T7 visits very few objects in
the database (10 to be precise) since it simply follows pointers from a single atomic
part up to the root of the module. Thus, differences in traversal cost are easily
diminished by other costs, such as the overhead to look the atomic part up in the
index, etc. Figure 13 shows that E is a factor of 32 slower than QS during T8. T8
scans the manual object, a large object spanning several pages on disk. In the case
of E, an EPVM 3.0 function call is performed for each character of the manual that
is scanned, while QS accesses each character of the manual via a virtual memory
pointer. E spent 91% of its time executing EPVM functions during T8. During T9
the systems have identical performance. T9 does very little work on persistent data
that involves pointers, so the time shown in Figure 13 largely reflects the similarity
in index lookup costs between the systems.

We now discuss the query hot times shown in Figure 14. QS and E have nearly
the same performance for all of the queries except Q5, where E was 3.6 times
slower than QS. QS is faster than E during Q5 because Q5 does a lot of pointer
dereferences as part of the pointer join between base assemblies and composite
parts. The times for Q1 and Q2 reflect the cost of index lookups, which are the
same between the systems. QS is actually a little slower then E during Q3, because
the index scan code for QS is slightly less efficient than for E. This was due to
coding differences, and not to any fundamental difference between the systems. Q4
also performs several index lookups, which make the performance of QS and E
similar.

666

Figure 15. Med ium databases, traversal cold t imes

,~ • QS-B 30

i 25 0.75
1

• =- 20

~ ' 0.25

5

0 - - 0.00
T1 T6 T7 T8

Table 8. Traversal cold I /Os

T1 T6 T7 T8

QS 1 3 2 1 6 610 27 130

E 35622 558 25 129

QS-B 36963 802 32 130

6.4 Medium Cold Results

This section presents the cold times for the 0 0 7 benchmark operations run on
the medium database. The results presented represent the average of 5 runs of
the benchmark experiments. Figure 15 presents the cold response times for the
traversal operations, and Table 8 gives the number of client I/O requests. In Figure
15, we see that, as in the case of the small database, QS has the best performance
during T1. QS is 41% faster than E during T1, while it performs 63% fewer I/Os.
E, on the other hand, is 36% faster than QS-B during T1. Comparing the relative
performance of E and QS-B during T1 when using the small database (Figure 9),
we see that the gap in performance between E and QS-B widens when the medium
database is used. This is because of the additional cost to QS-B for managing
paging in the client buffer pool.

E has better performance than QS during T6 and T7. QS is slower during T6,
because one page fault is required to read each composite part in all of the systems,

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 667

Figure 16. Medium database, query cold times

! mQs

• Qs-B

~ 0.5

0.o

45 4O0

40

35 300

5
200

100

'i 0
Q2 Q3 QZ Q4 Q5

Table 9. Query cold I/Os

Q1 Q2 Q3 Q4 Q5

QS 34 901 5997 68 595

E 26 919 8045 58 558

QS-B 35 1 0 9 5 10951 81 751

and QS has higher per fault costs. The times shown for T7 and T8 are similar to
the small database case. QS is slower due to higher per fault costs during T7. E
is slower than QS during T8 due to the overhead of calling EPVM to scan each
character of the manual. The results for T9 (not shown) were identical to the small
case.

Figure 16 and Table 9 show the cold response times and client I/O requests
for the queries run on the medium database. E always has the best performance
during the queries. During Q1 and Q2, E benefits because accesses of atomic parts
are very unclustered. The difference in performance between QS and E narrows
during Q3 because accesses are more clustered in this case. It is interesting that
QS is slower than E during Q3, since it performs significantly fewer I/O operations.
QS is slower because of the overhead for managing paging in the client buffer pool.
In Q4 and Q5, object accesses are again unclustered, resulting in a high number of
page-faults per object access, which causes QS to have slower performance than E.

668

Figure 17. Medium database, traversal cold times

ouuu- EilQS

"mE
_ • Q S - B

•

w

._~

~ -
. ~ ~ •

O

~ -
Ill •

T2A T2B T2C T3A T3B

Turning now to traversals T2 and T3 (Figure 17), which perform updates, we see
that QS outperforms E during the T2A and T3A traversals, which only update the
root atomic part of each composite part. This is understandable when one considers
that both QS and E have to do basically the same amount of work to process the
updates that they did in the small database case. This makes the cost difference
of doing the traversal itself the main factor effecting their relative performance.
The relative performance of QS worsens during T2B and T2C, causing QS and E
to have similar performance. Recovery is more expensive for QS during T2B and
T2C, since the buffer used for recovery is much smaller than the fraction of the
database that is updated. QS-B has much worse performance than both QS and E
in Figure 17. This is caused by the fact that, in addition to higher traversal costs,
QS-B has higher costs for recovery as well.

6.5 Effect of Collisions

QuickStore always tries to assign a disk page to the virtual memory location that it
last occupied when in memory. This section considers the effect on performance of
relocating pages at different memory addresses when they are faulted into memory.
This increases faulting costs, because pointers between persistent objects must be
updated to reflect the new assignment of disk pages to virtual memory addresses. We
consider two approaches to dealing with page relocations. The first approach updates
or swizzles pointers that need to be modified when pages are faulted into memory,
but these changes are not written back to the database. This implies that the changes
will have to be made again if the same data is accessed in subsequent transactions.

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 669

Figure 18. T1, vary % of relocations

10.

0 QS-CR
0 QS-OR ~

I I I I I
0 20 40 60 80 100

% page relocation

We refer to this system as QS-CR (QuickStore with continual relocation). The
second approach commits the changed mapping to the database. This approach
is more costly initially, but may be able to avoid further relocations in the future.
This approach also has the disadvantage that it can turn a read-only transaction
into an update transaction. We refer to this approach as QS-OR (QuickStore with
one-time relocation).

Figure 18 presents the results for T1 run on the small database when the
percentage of pages that are relocated in memory is varied from 0 to 100%. The
pages that were relocated in the experiment were picked at random. Figure 18 shows
that, when the number of relocations is small (5%), the performance of the systems
is not significantly affected. However, when the relocation percentage is 20%, QS-
OR is 25% slower than when no relocations occur. The difference in performance
between QS-OR and QS-CR at this point is also about 25%. The performance of
QS-CR slows by 7% and 38% when the percentage of relocated pages is 50% and
100%, respectively, while the corresponding decrease in performance for QS-OR is
67% and 116%, respectively. QS-OR is much slower than QS-CR when all pages
are relocated, since it must commit updates for all of the pages in the database.

7. Conclusions

This article compared the performance of QuickStore, which uses memory-mapping
techniques to implement persistence, to the performance of E, a persistent version

670

of C+ + that uses a software interpreter. The 0 0 7 benchmark was used as a basis
for comparing the performance of the two systems. The results of the study give a
clear and accurate picture of the tradeoffs between the two approaches, which we
summarize below.

The results of the cold traversal experiments showed that when object accesses
are clustered (T1), QuickStore has the best performance. This is because object
sizes in QuickStore are smaller than in E, due to the different schemes used by
the systems to represent pointers on disk. QuickStore's smaller object size allowed
it to perform significantly fewer disk I/O operations to read the same number of
objects when accesses were clustered. When object accesses were unclustered (e.g.,
in T6, Q1, Q2), the performance of QuickStore was comparable or worse than the
performance of E. The reason for this change, relative to the clustered case, was
that there was less difference between the systems in the number of pages faulted
into memory per object access during the unclustered experiments. This exposed the
fact that QuickStore has higher per fault costs than E. In addition, there were some
cases (T7 and T9) when QuickStore always had slower performance due to higher
faulting costs. The slower performance for QuickStore during T7 was influenced
by the cost of reading a relatively large amount of mapping information to support
the memory-mapping scheme that it uses.

The higher faulting costs for the memory-mapping scheme were also highlighted
by the performance of QS-B (QuickStore with big objects). Except during the
experiments that scanned large objects (T8), QS-B's performance was slower than
E's during the read-only cold experiments. The memory-mapped schemes had better
performance than E when large objects were accessed because large object accesses
require significantly more CPU work with the software approach. This additional
cost caused E to be slower even in the cold case.

For the traversals where faulting costs were examined in detail, it was shown that
the average cost per fault for QuickStore was roughly 20% higher than for E. The
largest component of the additional faulting cost for the memory mapping scheme
was the time required to read mapping information from disk. This comprised 4% of
the average cost per fault. The detailed cost analysis also showed that the overhead
for handling page protection faults and manipulating page access protections were
each 3%. The smallest component of the faulting cost for QuickStore was the CPU
cost for swizzling pointers. This was just 1% of the average cost per fault.

The performance of QuickStore was generally better than E when updates
were performed. The results of the update experiments showed, however, that
the page-based diffing scheme used by QuickStore to generate log records was
more expensive when updates were sparse and when the update activity was heavy
enough to cause log records to be generated before transaction commit. QuickStore
performed better relative to E when a higher percentage of objects were updated on
each page, because QuickStore copied and diffed fewer objects unnecessarily in this
case. The detailed times for the update experiments showed that the cost of diffing
was ranged from 7 to 12 milliseconds per page for the 0 0 7 update operations.

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 671

The hot results helped to quantify the performance advantage of the memory-
mapped scheme when working on in-memory objects. In some cases (T1) the
difference in performance between QuickStore and E was only 23%, while in others
(T6) QuickStore was over 3 times faster than E. This showed how quickly the
performance of the systems converged when a small amount of additional work was
performed. The results also showed that E was significantly slower than QuickStore
when doing in-memory work on large objects since this required all accesses to be
handled by the E interpreter.

This article also examined the performance of QuickStore when pages of ob-
jects must be relocated in memory, which increases the amount of swizzling work
performed by QuickStore. When the percentage of pages relocated was small, the
performance of the systems did not noticeably worsen. However, a high percentage
of relocations did have a noticeable effect on overall performance, particularly
when the new mapping tables were written back to the database. The best approach
overall appeared to be to avoid writing the changed mapping tables to disk and to
continually relocate pages in memory since the negative impact on performance of
this approach was small.

The results presented in this article show that neither the hardware-based nor
the software-based approach to pointer swizzling offers the best performance in all
cases. In fact, one of the more surprising results of this article is that the performance
of the two schemes is often quite similar, even when the objects that are accessed
are resident in main memory. Since the difference in performance between the two
approaches is often small, it is important for system implementors to consider other
factors in addition to performance when deciding on an implementation strategy.

One additional factor to consider when choosing a pointer swizzling strategy
is the flexibility that it offers in supporting useful kinds of database functionality;
such as, object-level locking, flexible buffer management policies, or referential
integrity. A major disadvantage of hardware-based pointer swizzling is that it is
generally less flexible than software-based schemes. For example, it is virtually
impossible to implement object-level locking when using a pure hardware-based
swizzling scheme. This is because the hardware approach is inherently page-based
(since virtual memory is page-based) so that once an application is able to access one
object on a page, it can access any object on the page without acquiring additional
locks.

The hardware-based approach also makes it difficult to support some advanced
features that will likely be incorporated into the next generation of object-oriented
database systems. Examples of such features include, support for hardware and
software heterogeneity and object security. Object security is difficult to support
for the same reason given above for object-level locking, once a page of objects has
been read into memory all of the objects on the page are accessible. The difficulty
with respect to heterogeneity arises from the fact that object sizes may change dy-
namically in a heterogeneous system, since they are accessed by applications running
on different hardware platforms and written in different persistent programming

672

languages. The hardware-based approach used in QuickStore has difficulty coping
with changing object sizes because pointers are swizzled before the objects that
they reference are physically cached in memory. Thus, the system needs to know
an object's size without actually accessing the object (e.g., by simply looking at a
pointer to the object).

Finally, the results presented in this article suggest that designers of object-
oriented database systems may need to choose a hybrid swizzling scheme to achieve
maximum performance. One possibility that is suggested by the results is to use
software-based swizzling for small sub-page objects, while using hardware swizzling
for large multi-page objects, since hardware-based swizzling was shown to offer a
substantial performance benefit when using large objects. A potential advantage of
a hybrid swizzling scheme is that, in addition to increased performance, it may also
offer increased flexibility in supporting the important database features mentioned
above.

Acknowledgments

This research is sponsored by the Advanced Research Project Agency, ARPA order
number 018 (formerly 8230), and monitored by the U.S. Army Research Laboratory
under contract DAAB07-91-C-Q518. A version of this article appeared in Pro-
ceedings of the ACM-SIGMOD Conference on the Management of Data, Minneapolis,
MN, May 1994.

References

Ball, T. and Larus, J. Optimally profiling and tracing programs,L POPL, 0(0):59-70,
1992.

Carey, M., DeWitt, D., Richardson, J., and Shekita, E. Storage management for
objects in EXODUS. In: Kim, W. and Lochovskky, E, eds. Object-Oriented
Concepts, Databases, and Applications, Reading, MA: Addison-Wesley, 1989.

Carey, M., DeWitt, D., and Naughton, J. The 0 0 7 benchmark. Proceedings of the
ACM SIGMOD International Conference on the Management of Data, Washington,
DC, May 1993.

Deux, O., et al. The 02 system. Communications oftheACM, 34(10):34-48, 1991.
DeWitt, D., Futtersack, E, Maier, D., and Velez, E A study of three alternative

workstation-server architectures for object-oriented database systems. Proceed-
ings of the Sixteenth International Conferece on Very Large Data Bases, Brisbane,
Australia, 1990.

Franklin, M., Zwilling, M., Tan, C., Carey, M., and DeWitt, D. Crash recovery in
client-Server EXODUS. Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, San Diego, CA, 1992.

Hosking, m., and Moss, J.E.B. Object fault handling for persistent programming
languages: A performance evaluation. Proceedings of the ACM Conference on
Object-Oriented Programming Systems and Applications, Washington, DC, 1993.

VLDB Journal 4 (4) White: QuickStore: High Performance Mapped Object Store 673

Hosking, A., Brown, E., and Moss, J.E.B. Update logging in persistent programming
languages: A comparative performance evaluation. Proceedings of the Nineteenth
International Conferece on Very Large Data Bases, Dublin, Ireland, 1993.

Jagadish, H., Lieuwen, D., Rastogi, R., and Silberschatz, A. Dali: A high perfor-
mance main memory storage manager. Proceedings of the Twentieth International
Conferece on Very Large Data Bases, Santiago, Chile, 1994.

Kemper, A. and Kossmann, D. Adaptable pointer swizzling strategies in object
bases. Proceedings of the International Conference on Data Engineering, Vienna,
Austria, 1993.

Khoshafian, S. and Copeland, G. Object identity. Proceedings oftheACMConference
on Object-Oriented Programming Systems and Applications, Portland, OR, 1986.

Lamb, C., Landis, G., Orenstein, J., and Weinreb, D. The ObjectStore Database
System. Communications oftheACM, 34(10):50-63, 1991.

McAuliffe, M. and Solomon, M. A trace-based simulation of pointer swizzling
techniques. Proceedings of the International Conference on Data Engineering, Taipei,
Taiwan, 1995.

Moss, J.E.B. Working with persistent objects: To swizzle or not to swizzle. IEEE
Transactions on Software Engineering, 18(8):657-673, 1992.

Object Design, Inc., ObjectStore User Guide, Release 1.0, October 1990.
Richardson, J., Carey, M., and Schuh, D. The design of the E programming language.

ACM Transactions on Programming Languages and Systems, 15(3):494-534, 1993.
Schuh, D., Carey, M., and Dewitt, D. Persistence in E revisited--Implementation

experiences. Proceedings of the Fourth International Workshop on Persistent Object
Systems, Martha's Vineyard, MA, 1990.

Shekita, E. and Zwilling, M. Cricket: A mapped persistent object store. Proceedings
of the Fourth International Workshop on Persistent Object Systems, Martha's Vine-
yard, MA, 1990.

Singhal, V., Kakkad, S., and Wilson, P. Texas: An efficient, portable persistent
store. Proceedings of the Fifth International Workshop on Persistent Object Systems,
San Miniato, Italy, 1992.

White, S. and DeWitt, D. A performance study of alternative object faulting and
pointer swizzling strategies. Proceedings of the Eighteenth International Conference
on Very Large Data Bases, Vancouver, British Columbia, 1992.

Wilson, P.R. Pointer swizzling at page fault time: Efficiently supporting huge address
spaces on standard hardware. Technical Report UIC-EECS-90-6, University of
Illinois at Chicago, December 1990.

Wilson, P.R. and Kakkad, S. Pointer swizzling at page fault time: Efficiently and
compatibly supporting huge address spaces on standard hardware. Proceedings
of the International Workshop on Object Orientation in Operating Systems, Paris,
France, 1992.

