
VLDB Journal, 4, 493-517 (1995), Malcolm Atkinson, Editor 493 
(~)VLDB 

Th6mis: A Database Programming Language Handling 
Integrity Constraints 

V6ronique Benzaken and Anne Doucet 

Received June, 1993; revised version received, June, 1994; accepted March, 1995. 

Abstract .  This article presents a database programming language, Th6mis, which 
supports subtyping and class hierarchies, and allows for the definition of integrity 
constraints in a global and declarative way. We first describe the salient features of 
the language: types, names, classes, integrity constraints (including methods), and 
transactions. The inclusion of methods into integrity constraints allows an increase 
of the declarative power of these constraints. Indeed, the information needed to 
define a constraint is not always stored in the database through attributes, but is 
sometimes computed or derived data. Then, we address the problem of efficiently 
checking constraints. More specifically, we consider two different problems: (1) 
statically reducing the number of constraints to be checked, and (2) generating an 
efficient run-time checker. Using simple strategies, one can significantly improve 
the efficiency of the verification. We show how to reduce the number of constraints 
to be checked by characterizing the portions of the database that are involved in 
both the constraints and in a transaction. We also show how to generate efficient 
algorithms for checking a large class of constraints. We show how all the techniques 
presented exploit the underlying type system, which provides significant help in 
solving (1) and (2). Last, the current status of the Th6mis prototype is presented. 

Key Words. Database programming languages, integrity constraints, program 
analysis. 

1. Introduction 

Research  in da tabase  p rog ramming  languages has been  devoted  mainly  to the 
definit ion of  e labora ted  type systems and persis tence mechan isms  for  those languages.  
T h e  p rob lems  of  po lymorphism,  static typing and inference,  and object  identi ty have 
been  the main  topics (Cardell i  1984, 1987, 1988; Cardell i  and Wegner,  1985; Atk inson  
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and Buneman, 1987; Hull et al., 1989; Castagna, 1995a, 1995b; Castagna et al., 
1995). 

In general, database programming languages are not able to express integrity 
constraints in a global and declarative way, although some interesting work has 
been done in the context of object-oriented databases (Martin, 1991). 

A first specification of a language able to express integrity constraints has been 
proposed (Benzaken et al., 1992; Benzaken and Doucet, 1993). However, the class 
of constraints expressible by this language is restricted to first-order logic, well-typed 
formulas. Some derived data (computed attributes such as the age of a person, 
given the birth date, or the computation of the incoming and outcoming degrees of a 
directed graph) cannot be defined by first-order logic.. In object-oriented languages, 
the only way to express derived data is by using a set of operations called methods 
(Section 3.1) To precisely capture the semantics of an application, some integrity 
constraints must consider derived data. Thus, it is necesary to introduce method 
calls in the language used to express constraints. 

Relational and extended relational systems take integrity constraints and views 
into consideration (Stonebraker, 1975; Gardarin and Melkanoff, 1979; Weber et al., 
1983; Sheard and Stemple, 1989). These systems pr~wide models in which relation 
attribute domains are not necessarily atomic, but cart be constructed using abstract 
types. The associated query language also can be extended to manipulate these user 
defined types instances. However, extended relational systems are not integrated 
in the sense of database programming languages. In these systems, relations are a 
very special kind of data type that cannot be used orthogonally to the others. In 
most systems, sets cannot be constructed independently of relations, and the query 
languages are not integrated within the language used to define the new attributes 
domains. 

A second approach assumes transactions to be provided with the atomicity 
property, and consists of restricting the constraints to be enforced and of avoiding 
a retest of the portion of the database that is known to be consistent after the 
execution of the transaction (Nicolas, 1979; Hsu and Imielinski, 1985). 

In the deductive database field, the problem of integrity constraint checking 
has been fully investigated (Bry and Manthey, 1986; Kowalski et al., 1987; Bry et 
al., 1988). Most of the techniques proposed are based on the Linear resolution 
with function Selection on Definite clauses with Negation as Failure (SLD/SLDNF 
resolutions) and theorem proving. 

The work described by Sheard and Stemple (1989) consists of proving at compile 
time that database transactions respect integrity constraints, to reduce the overhead 
of unnecessary runtime tests. Their framework is the relational model. Transactions 
are complex updates of multiple relations, and constraints can be functional depen- 
dencies, inclusion dependencies, aggregate constraints, intersection dependencies, 
and inter-relational redundancies. Sheard and Stemple (1989) used the axiomatic se- 
mantics method, in which properties about language constructs are defined. These 
properties are found by using axioms and inference rules. Inference rules are 
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re-write rules on functional expressions of theorems, which allow the reduction 
of these expressions to true by using axioms, function definitions, and previously 
proven theorems. This leads to a formal proof of the property. The system uses a 
mechanical theorem prover in higher order computational logic to build a formal 
theory about database systems. That theory is extended to a specific database by 
generating specific knowledge from the structures and constraints contained in the 
schema. It is finally used by a transaction safety verifier. 

We first describe the salient features of the Th6mis language: types, names, 
classes, integrity constraints (including methods), and transactions. Then, we con- 
sider two different problems: (1) statically reducing the number of constraints to be 
checked, and (2) generating an efficient run time checker. Of course, in the general 
case, the problem is very complicated, and finding an optimal solution to (1), for 
instance, is undecidable. What we want to show is that, using simple strategies, 
we can significantly improve the efficiency of the verification. In this article, we 
suppose that transactions can be neither nested nor call other transactions. The 
general case will be the topic of a forthcoming study. 

Our main goal is to fully exploit the type information to simplify constraint 
violation detection, and to speed up constraint checking. Not only are classes partially 
ordered according to an inheritance hierarchy, but we also have to face the problem 
of constraint checking in an environment that allows updates to be propagated 
among several distinct paths among objects. A first part of the article consists of 
using simple compilation techniques to statically determine which constraints might 
be violated by a transaction. The originality of this static analysis is that it captures 
the notion of inheritance and subtyping, and of late binding. 

A second contribution consists of generating a checking algorithm from a 
transaction and a (restricted) constraint, which will operate on  the smallest portion 
of the database involved by the transaction. We show how to significantly reduce the 
number of checking operations to be performed, relying on the underlying typing 
information. 

This article is organized as follows. In Section 2, we summarize the main 
techniques that have been developed in the domain. In Section 3, we describe the 
salient features of the Th6mis language: types, names, classes, integrity constraints 
(including methods), and transactions. We also present a detailed example to moti- 
vate and illustrate our language and checking techniques. Then, we consider the two 
steps of the verification process. In Section 4, we use simple compilation techniques 
to statically determine which constraints might be violated by a transaction, thus 
reducing the number of constraints to be checked. In Section 5, we propose the 
generation of constraint checking algorithms for a special class of constraints (uni- 
versally quantified formulas). These algorithms are shown to significantly improve 
naive checking methods. In Section 6, we describe the current implementation of 
the Th6mis prototype, which allows us to validate our work. Section 7 contains 
some concluding remarks. 
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2. Related Work 

Relational and extended relational systems generally handle integrity by means of 
triggers. Triggers allow a user-defined procedure to be executed when a predicate 
is satisfied. Integrity constraints can be seen as ru]tes, but they do not perform 
database updates. They simply return an error condition when an attribute is 
incorrectly modified. Although rules (or triggers) allow integrity constraints to be 
specified in a declarative way, it is the responsibility of the application programmer 
to code the procedures that will guarantee database safety. In our approach, we 
propose that these checking procedures be automatically generated, thus relieving 
the programmer of such a task, and therefore enhancing his/her productivity. To 
ensure database integrity, the user only describes the; constraints. 

Hsu and Imielinski (1985) proposed another solution, which extends Blaustein's 
work (1981). The constraints they considered are closed formulas of tuple calculus 
in prenex normal form. Here, the simplification method consists of transforming 
a constraint into an AND-OR tree of constraints, which is simpler to evaluate 
(simpler means that the checking space is reduced). Indeed, instead of testing the 
constraint on all the data, they only consider the data that might affect the database 
consistency with respect to both constraints and transactions. Interesting data are 
either inserted tuples or deleted tuples (updates consisting of deletions followed 
insertions). 

Constraint simplification is performed in three steps. The constraint is first 
transformed into an updated form, involving the updated data. The second step 
consists of applying decomposition rules to the prefix of the updated constraint. 
These rules, which take into account only some prefix patterns, are recursively 
applied to the constraint, and produce either a conjunction or a disjunction of new 
formulas. The third step consists of eliminating the subformulas that are known to 
be true. 

Our work adapts and extends these techniques to the object-oriented framework. 
More precisely, we use a similar technique in the second phase of our checking 
process, namely the generation of checking algorithms. 

The deductive framework is well suited to integrity constraint management (Bry 
and Manthey, 1986; Kowalski et al., 1987; Bry et al., 1988). Deductive databases are 
a set of facts associated with a set of rules, which represent derived data. Integrity 
constraints can be expressed in this formalism as rules. Such rules, of course, do not 
perform updates or generate new facts. In this context, two problems are addressed: 
satisfaction and satisfiability. Two kinds of updates are considered for the problem 
of satisfaction, which are the addition of a new fact and the deletion of an existing 
one. According to the update, a first step consists of detecting which integrity 
constraint might be affected. Then, the checking process operates on the facts 
contained in the database. Both steps are achieved using SLD/SLDNF resolution. 

For the second problem, namely satisfiability, the update considered is the addi- 
tion of a new constraint. To detect whether the constraint is consistent with respect 
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to the existing ones, the method aims at generating a finite model, independent of 
the existing instance. The method has been shown to be semi-decidable. In both 
cases, only a restricted set of integrity constraints is handled, all of which are either 
universally quantified or existentially quantified constraints. 

3. Basic Concepts of the Th~mis Language 

In this section, we present the basic concepts of the Th~mis language. These 
concepts are illustrated by detailed examples (Section 3.5). Th6mis is a strongly and 
statically typed object-oriented database language. In Th6mis, a schema is defined 
using abstract and concrete types, classes, integrity constraints, and transactions. 

3.1 Types 

We consider a framework in which all database manipulations are strongly and 
statically typed. Let us suppose the existence of the set 79 of atomic types containing 
integer, string, and boolean. Types can either be concrete types or abstract types. 

3.1.1 Concrete Types. The set of expressions of concrete types, denoted Tc,  is 
built by induction in the following way: 

• Basic types: 79 

• If tl, ..., tn E ~C and al, ..., an E ,,4 (ai 5~ aj for i;] E..n, i 7A] and n > 1) 
then [al: tl, ..., a n :  tn] E ~C, {tl} E ~C, and (tl) 6 ~C 

where [ ], { }, and ( ) denote the constructors tuple, set, and list, respectively, 
and ,,4 denotes the set of attribute names. 

Concrete type equivalence is structural. Subtyping of concrete types is structural 
and inferred, following the classical rules of Cardelli (1984). For instance, we have: 

[num: integer, label: string] -4 [num: integer] 

Concrete type instances are non shared, non mumble values. 

3.1.2 Abstract Types. Abstract types have names. An abstract type is composed of a 
structural part and a behavioral part. The structural part is similar to concrete types. 
The behavioral part is described by a set of operations, called methods. Methods are 
defined in the following section. Instances of abstract types are objects, and have an 
identi~ which is independent of their value. These instances are mutable and may 
be shared values. Equality of instances of abstract types is identity. Equivalence 
of abstract types is name equivalence. Subtyping of abstract types is explicit. The 
subtyping relation is declared in the definition of the abstract type. 

3.1.3 Methods. Methods describe the behavior of the objects. They are composed 
of a signature and an implementation (the body of the method). Methods are not 
considered here as first class objects, and thus cannot be passed as parameters of 
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other methods. Let m be a method defined for the abstract type T We denote its 
signature by m@T(~-l,  ..., ' m - l )  : 7"n, where "rl, ..., %~-1 represents its pa ramete r  
types, and where Tn represents the result type. 

Passing a message is denoted by o ~-- m (Xl, ..., xn-1).  This means that the 
method m is sent to the object o, called the receiver of the message. The  xi's 
denote the actual parameters  of method m. We denote o ~-- m 0 when the method 
m has no parameters.  

Message passing can be more complex and may consist of the passing of several 
messages. This is denoted by: o ~-- m l  (x~, ..., xlnl) ~--- ... ~ mk (Xl k, ..., xknk). When 
a method is redefined in a subtype hierarchy, the corresponding signatures are 
constrained to be covariant. 

3.2 Classes 

Types are used to describe the components of a database. The database can be 
seen as a graph of interconnected objects and value,,;. The persistent roots of  this 
graph are classes. Persistence is achieved through reachability. 

A class gathers the set of objects having the same characteristics and the same 
behavior. The notion of class is an extensional notion. It  represents a collection of 
objects of one type (abstract or not) and is characterized by a name and the type 
of its elements. 

Classes are organized in a subclass hierarchy. The semantics of  the inheritance 
relation is inclusion. 

3.3 Integrity Constraints 

In our framework, integrity constraints are well-typed boolean expressions, built 
using the names and classes of the schema and general operators.  More  formally, 
terms are defined as follows: 

• Constants (e.g., true, false, nil) are terms. 

• Each variable x is a term. 

• Let  t be a term, let a be an attribute (and not an operation),  t.a is a te rm 
(provided that t is a tuple-structured term with attribute a). 

• Let t be a term, xb ..., xn be variables; let m be a method,  t ~-- m (Xl, ..., xn) 
is a term. 

• Let tl and t2 be two terms; let/9 be an arithmetical operator  ( + ,  - - ,  *, q-), 
tlO t2 is a term. 

An integrity constraint, A, is an expression of the form: 

A = Qxl C $1, ..., Qxk C Sk M(xl ,  ..., xk) 

where Q E {V, 3}, Sj is a set-structured expression, and M(xl ,  ..., xk) is a quantifier- 
free formula. Expression Qxl C $1, ..., Qxk E Sk is usually referred to as the 
constraint prefix, while M denotes the matrix of the constraint. More  precisely, 
formulas M are defined as follows: 
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• Let  0 be a comparator ( = ,  7~, < ,  > ,  < ,  > ) ,  let x and y be two terms, x Oy 

is an atomic formula, 

• Each atomic formula is a formula, 

• Let  F and F t be two formulas, F A F ~, F V F ~, --1 F and (F) are also then 
formulas. 

The equality operator  can be applied to values of any type. The other comparators 
can be applied to numbers and sets. 

3.3.1 Remarks and Restrictions. The  introduction of methods into integrity con- 
straints allows us to increase the declarative power of these constraints. Indeed, 
the information needed in the definition of a constraint is not always stored in 
the database through attributes, but is sometimes computed or derived data. This 
happens for information requiring important computations, or for derived data 
structures that cannot be defined with the first-order logic (e.g., transitive closure). 

To keep the declarative aspect of a constraint, a method cannot modify the 
data stored in the database, but it must be allowed to define virtual data (methods 
allowed in the definition of constraints are overloaded queries). This virtual data 
represents the intensional structures of the database. 

A method can appear in both the prefix and the matrix of a constraint. The 
signature of a method appearing in the prefix of the constraint must return a 
set structured result. However, in a constraint, all quantified variables denote 
persistent data. Therefore,  to keep this property, a method appearing in the prefix 
of a constraint must return a set of persistent data. Hence, the body of this method 
can only contain a set of selections over the classes. 

3.4 Transactions 

Transactions are provided with the atomicity property: a transaction is either com- 
pletely executed, or not executed at all. This mechanism allows us to overcome 
some errors, and to provide consistent executions. For the sake of simplicity, in this 
article, we consider only simple "fiat" transactions (a transaction that does not call 
other transactions). A transaction is syntactically defined as follows: T = trans (~-1, 
..., T~)F where T i E { ~C U 'TA} 1 and F represents the set of all elementary 
statements of a transaction. This set is recursively defined as follows: 

• assignment 

el := e2 E r 
el.a := ez E F if (a E ,,4) 
where e2 represents any expression 

• method call 

o ~ m ( x l , . . . , X n )  E F 

1. 7.4 denotes the set of abstract types. 
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• sequencement 
V sl, s2 E F 
Sl; S 2 E F 

• conditional test 
V sl, s2 C F 
if (b) then sl else s2 E F 
where b denotes a boolean expression 

• iteration loop 
V s E F  
f o r ( o i n x )  s E F  
where x denotes a set expression, and o an element of x 

• set operations 
insert o into x C F 
drop o from x E F 
where x denotes a set expression, and o an element ofx for the drop instruction 

3.5 Example 

To illustrate the concepts of Th6mis, we give an example, which will be used in the 
remainder of this article. Let us consider the types given in Figure 1. The type 
Person has five attributes (name, age, b i r thday ,  spouse, and chi ldren) ,  and 
three methods. The method descendants () computes the graph representing all 
the descendants of a given person. The method ances tor ( )  computes the graph 
representing the ancestors of a given person. The method genealogy() computes 
both the ancestors and the descendants of a person.. 

A graph is represented by a pair < V; E >,  where V is a finite set of vertices, 
and E is a finite set of edges, each edge being a pair of vertices. 

The type Matrix is used as an alternative representation of a graph which 
simplifies the implementation of some algorithms. The type Matrix is a list of lists 
of booleans. The closure  () operation returns a matrix representing the set of all 
possible paths in the graph. The connected() operation indicates if the graph is 
strongly connected or not. Finally, the non_c i rcu i t  () operation determines if the 
graph has a circuit or not. 

For this schema, we define the classes and constraints described in Figure 2. 
Constraint A1 expresses that the descendants of a given person are represented by 
a directed acyclic graph, while constraint A2 expresses that the genealogy of a given 
person is a strongly connected graph. Constraint A3 states that the age of a person 
ranges between 0 and 130. Constraint A4 expresses that every person is either the 
spouse of his/her spouse or is not married, and constraint As expresses that every 
child must be younger than his (her) parents. Finally, constraint A~ expresses that 
every Ferrari is owned by an instance of Persons older than 40. In our schema, we 
define the transactions given in Figure 3. 
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Figure 1. A Th~mis schema 

type Person is abstract [ 
name : string, 
age : integer, 
b i r t h d a y  : integer, 
spouse:  Person, 
c h i l d r e n :  set {Person}] 
d e s c e n d a n t s ( )  : Graph, 
a n c e s t o r s ( )  : Graph, 
genea logy( )  : Graph 

end 
type Graph is abstract [edges: Edge, v e r t i c e s :  Vertex] 

add_edge (Vl, v2: Vertex), 
delete_edge (e: Edge), 
ma t r i x ( )  : Matrix 

end 
type Matrix is abstract ((boolean)) 

c l o s u r e ( )  : Matrix, 
connec ted( )  : boolean, 
n o n _ c i r c u i t  () : boolean 

end 
type Vertex is abstract [num: integer, id :  Person] 

incoming_degree (g: Graph): integer, 
ou tgo ing_degree(g :  Graph): integer 

end 
type Edge is abstract [ver tex1 : Vertex, ve r t ex2  : Vertex, weight  : integer] 
end 
type Vehicle is abstract [name: string, owner: Person] 
end 

4. Static Analysis of a Thdmis Schema 

To avoid checking unnecessary constraints, we want to be able to statically characterize 
the integrity constraints that may be violated by a given transaction. Because 
the problem of determining if a transaction definitely will violate a constraint is 
undecidable, we are only looking for the set of constraints that might be violated. 
To characterize this superset of constraints, for a given transaction, we consider 
the parts of the database that are dealt with in a given constraint, and/or involved 
in a given transaction. A syntactic analysis of the constraints and the transactions 
has been defined (Benzaken et al., 1992; Benzaken and Doucet, 1993). Such an 
analysis consists, informally, of a set of paths in the database, gathering the set of 
classes and attributes used in the constraints and the transactions. 
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Figure 2. Classes and Integrity Constraints 

class Persons of type Person 
class Vehicles of type Vehicle 

(A1) V p 6 Persons, p ~-- descendants() ~--matrix() ~-- closure() +- 

non_circuit () ; 

(A2) Vp C Persons,p ~-genealogy () ~--matrix () 4- closure () ~-- connected() ; 

(A3) V p 6 Persons, p.age < 130 A p.age >_ 0; 
(A4) V p 6 Persons, p .spouse .spouse  = p  Vp.spouse = nil; 
(As) V p C Persons, V c E p.chi ldren,  p.age > c.age 
(A6) V p 6 Persons, V v 6 Vehicles, (v.name # "Ferrari" V v.owner ~ p) V 

p.age >_ 40 

Figure 3. Transactions 

T1 = trans(pl, p2: Person) { 

insert p2 in pl.children } 

/* this transaction adds a new child to a person */ 

T2 = trans(pl, p2: Person) { 

pl.spouse := p2; 

p2.spouse := pl } 

/* this transaction performs a marriage between two persons */ 

T3 = trans() { 

for p in Persons when (today = p.birthday) { 

print(C'Happy Birthday'', p.name); 

p.age := p.age + i } } 

/* this transaction updates the age of all Persons born on the current day */  

The analysis proposed by Benzaken et al. (1992) and Benzaken and Doucet 
(1993) only considers the structure of the database, but does not take methods 
into consideration. The introduction of methods makes the situation much more 
complex. Indeed, the data structures they manipulate are not always explicitly 
present in the database, but can be defined only for computing purposes. Thus, a 
syntactic analysis of the methods will retrieve the set of "paths" that create these 
"temporary structures." 

In this section, we propose a structural and behavioral syntactic analysis of the 
constraints and transactions. 

4.1 Syntactic Analysis of the Constraints 

4.1.1 Structure. The structural analysis of the constraints is recursively defined as 
follows: 

T (expt 0 exp2) = T (expl) U T  (exp2), where 0 denotes any comparator; 
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T (C) = Uc~<_c { c i }  (the set of all subclasses of C, including itself). 
T (exp .a )  = Ut<type(exp) { t . a }  u T  (exp), if t ype (exp)  is an abstract type 

( type  () is a function which, given an expression, returns its corresponding 
type); 

= T (exp) otherwise. 
T (x) = T (s), 
where x represents a quantified variable in the constraint ranging over the set 

expression S; 
T (F A F') = T (F) U (F'), where F and F'  are two quantifier-free formulas; 
T (F V F') = T (F) t_l (F'), where F and F' are two quantifier-free formulas; 
T (-~ F) = T (F), where F is a quantifier-free formula; 
T ((F)) = T (F), where F is a quantifier-free formula. 

4.1.2 Behavior. The syntactic analysis of a method requires more details. A method 
m of signature m@T(7 l ,  ..., T~-i):Tn is applied to an object o of abstract type T in 
the following way: o ~ m (xl, ..., Xn -1 ) .  The syntactic analysis ff of the operations 
1[I m performed in m is defined as follows: 

• Assignment: The  syntactic analysis of an assignment "el := e2" is the union 
of the syntactic analysis of the two expressions el and e2. 

(el := e2) = ~ (el) U • (e2) 

Indeed, in an assignment "el := e2," the left part (el) cannot represent a 
persistent variable (a  variable attached to a persistent root). However, the 
expression el can be built from a constructor using persistent parameters; 
therefore, we have to analyse the expression e2. 

• FieM extraction: • (exp. a) = T (exp. a) if exp is a variable attached to a 
persistent root. 
While analyzing exp. a, we do not take into account temporary variables 
(non-persistent variables), which appear in the bodies of the methods for 
computing purposes, nor instances of concrete types, because they are non- 
mutable, non-shared. In the case where exp is represented by the key word 
sel:~, which refers to the receiver of the method, type ( s e l f )  is equal to the 
abstract type of the receiver. 

• Sequencement: The syntactic analysis of a sequence of elementary statements 
is the union of the syntactic analysis of all these statements. 
tI) (SI~S2) = (I) (Sl) U (I) (Sn) 

• Iteration loop: The syntactic analysis of an iteration loop is the union of the 
syntactic analysis of all the statements performed in the loop, and of the set 
on which the iteration holds. 
ffP (for(o in x) s) = q5 (x) t2 ~ (s) 

• Conditional test: The syntactic analysis of a conditional test is the union of 
the syntactic analysis of the boolean expression b, and of  the statements Sl 
and s2, which might be performed. 
gP (if(b) sl else s2 ) = ~ (b) t..J ~ (s1) U (I) ($2) 



504 

It is necessary to consider the syntactic analysis of the boolean expression 
(b) for the same reasons as those given above, concerning the iteration set 
in the case of the syntactic analysis of a conditional test. 

• Set operations: 
(insert 0 in x) = • (0) U • (x). 

if2 (drop 0 from x) = • (0) U ffP (x). 

allows the body of the methods invoked in the constraints to be analyzed. The 
methods to execute are dynamically linked to the selector (the name of the method), 
according to the abstract type of the receiver. For a given selector, it happens that 
there are several methods belonging to different abstract types, corresponding to 
different implementations. It is not always possible to determine at compile time 
which method to link. Thus, the same message passing may have different results, 
depending on the abstract type of the receiver. 

To analyze a message passing 0 e - m ,  it is necessary to take into account the 
set of all methods that might be executed, according to the abstract type of the 
receiver. It is sufficient to consider, for each message passing 0 ~-- m, the set of all 
methods m declared in the subtypes Ti of the receiver To. 

The syntactic analysis of a method call in a constraint corresponds to the syntactic 
analysis (~)  of the operations invoked in this method: 

T(o~- - -m(x l , . . . , xn ) )  = U ~(Nm@~') 

The syntactic analysis of multiple calls is defined by: 

T (0 ~ ml  (x~, 1 (Xl 2, 2 mk (Xl k, k ...~ ...~ X n 2 _ l )  ~ +.--- ...~ = Xnl_l)  ~-- m2 ... Xnk--1)) 

U u U u ... u U 
Ti~To Ti~TTnl 1 Ti~_Tnkk_ 1 

UTi ~'Tnkk--1 (I) (Hmk ~Ti) represents the union of the syntactic analysis of the operations 

appearing in the methods mk declared in the type 'r k (abstract type of the result 
T~ k -- 1 

of the previous method mk- i )  and in the subtypes of 7 k n k _ l  • 

4. 7.3 Example. Table 1 represents the results yielded by T 0 for the constraints 
defined in Figure 2. We detail the syntactic analysis of A1. 

(A1) V p E Persons, p e -  descendants()  ~ matr ix( )  e-- c lo su re ( )  e-- 
n o n - c i r c u i t ( ) .  We have to analyze the following: 

T ( p  ~ descendants() ~-- matrix() ~ closure() ~ non-circuit()) 

which is: 

U (~1 (l~IdescendantsO @~-i) U ~ (I-Im~t~ix()¢~') 
' ri < P e r s o n  7"i < G r a p h  
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Table 1. Syntactic analysis of constraints 

Constraint Syntactic Analysis T (A) 

Zl 

A2 
A3 
A4 
A5 

A6 

Persons Person, Person.children 

Persons Person, Person.children 

Persons Person.age 

Persons Person.spouse 

Persons Person.children, Person.age 

Persons Vehicles, Person.age, Vehicle.owner, Vehicle.name 

Figure 4. Implementation of method descendants () 

{ Graph g; 

Person x ; 

g = new (Graph); 

for(x in self.children) { 

insert x ~-- descendants() in g; 

insert [vertex1: self, vertex2: x] in g.edges } 

insert self in g.vertices; 

return(g) } 

U ~ (I~cl°sure0@~'~) U ~ (I~n°n-circuit()@Ti) 

T i _<Matrix Ti --<Matrix 

which yields: 

(H descendantsOQPers°n) U ~ (I~ matrixO@GraPh) U 

(H cl°sure0@satrix) t3 ~ (11 n°n-circuit0@Matrix) 

Let us assume that method descendants () is implemented as shown in Figure 4. 
The analysis of the loop leads to W (self. children), which is Person. children. 
The analysis of the code in the loop reduces to the analysis of g.edges, which 
is empty since g is a temporary variable, and of [vertexl: self, vertex2: x] 
which is Person. The analysis of the last assignment is again Person. 

Furthermore, 

~) (H matrix0QGraph) U • (I~ cl°sure0QMatrix) LJ (~ (II n°n-circuit0QMatrix) -- 

0 

because no persistent variable (no variable that might be attached to a persistent 
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root) appears in these methods. 
The syntactic analysis T (A1) of the constraint A1 is thus: 

{Persons, Person, Person.children}. 

4.2 Syntactic Analysis of Transactions 

The syntactic analysis of a transaction Tyields the set q~ (T) of all paths involved in T. 
This set again represents "paths" in the database, that is, those paths corresponding 
to data that might be modified by a transaction. 

The syntactic analysis of transactions containing no methods is recursively built 
as follows : 

~/($1;  $2) = (I) (S1) [-J (I)(s2) 

(if(b) Sl else s2) = ff (if(b) Sl else s2) 

(for(o in x) s) = 6p (s) 

(exp. a) = W (exp. a)  

In the analysis of • (exp. a), we do not take into 

account non-persistent temporary variables that appear 

in the body of the methods for computing purposes. 

(e I : =  e2) = W (el) 
In an assignment "el := e2," the left part 

(el) can represent a variable attached to a persistent root. 
(insert 0 in x) = • (x) 

(drop 0 from x) = • (x) 
k~ (0 ~-- ml(x~, 1 m2(x~, 2 mk(xl  k, k Xnl_l) ~ ..., ...~ ...~ Xr~2_l) 4--- 4--- • .. X . k _ D )  

¢~ (0 ~ m l  (X~, 1 m2(x12, 2 = .., X n l _ l )  ~ ..., Xn2_ l )  
~-- ... ~-- mk(x~, k • .., X n k _ l ) )  

4.2.7 Example. The analysis of transactions T1, T2, and T3 yields the results given 
in Table 2. 

4.3 Safety Detection 

While analyzing transactions and constraints, we detected the set of "paths" used 
in a constraint or invoked by a transaction. This set of paths gathers the various 
structures that are manipulated by the transactions and the constraints. Intuitively, 
a transaction T might violate a constraint A, if T and A manipulate the same "data 
structures." This property (Benzaken et al., 1992; Benzaken and Doucet, 1993) is 
still valid in this context. It can be expressed the following way: 

Property 1. Given a transaction T and a constraint ,4, transaction T might violate 
constraint A if and only if T (A) U if2 (T) 5& O. 
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Table 2. Syntactic analysis of transactions 

Transaction Syntactic Ana~sis ( ~  (T)) 

T1 Person, Person.children 

T 2 Person, Person.spouse 

T 3 Persons, Person, Person.age 

Table 3. Constraints hit by transactions 

Transaction Constraints 

T1 ! A1, A2, A5 

T2 A4 
T3 ~ A31 A4, A~, A6 

Table 3 gathers the set of the constraints that might be violated by a given 
transaction. Note that Ta is detected as a transaction that might (potentially) 
violate the constraint A6, even if this will never happen, since this transaction only 
increments the attribute age of a Person instance. This is, indeed, one limitation 
of this approach. Such a problem will be solved using more powerful techniques, 
namely, abstract interpretation of programming languages (Cousot and Cousot, 
1976). 

5. Generation of Enforcement Tests 

5.1 Restrictions 

The problem addressed in this section is to generate, given a constraint, a checking 
algorithm that guarantees that either the constraint is satisfied at the end of the 
transaction or the transaction is aborted. In a first approach, we restrict our 
constraints to constraints without methods. We also impose some restrictions on 
the constraint prefixes allowed. 

Indeed, incremental checking is not possible for every constraint. Existential 
quantifiers, for example, cannot be simply incrementally checked as illustrated by 
the following example: 

3 x in aSet, M(x) 

If a transaction removes an element ce from aSet, and M(o  0 is true, then there is no 
simple and cheap way to ensure that there is still another element that satisfies the 
predicate. In the remainder of this section, we consider only universally quantified 
constraints. 
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Figure 5. Integrity constraints 

(A3) V p E Persons, p.age < 130 A p.age _> 0; 

(A4) V p C Persons, p.spouse.spouse = p  V p.spouse = nil; 

(As) Vp E Persons, V c C p.ch±ldrenp.age > c.age; 

(A6) V p E Persons, V v C Vehicles, (v.name ~ "Ferrari" V v.owner ~-p) V 

p.age _> 40 

5.2 Constraint checking 

The problem of efficiently checking a constraint at the end of a transaction consists 
of finding the minimal set of objects involved in the process of checking. Then, the 
constraint will be checked only on this set, which guarantees that data consistency 
is ensured at the end of checking. However, this set, unfortunately, is not always 
reachable at run time. To illustrate this, we use the following four constraints A3, 
A4, A5, and A6, together with transactions T1, T2, and T3 as shown in Figure 5. 

If we consider T3 for the first constraint, we just have to collect the identifiers of 
every person whose age is modified. The objects collected by this process correspond 
to the ideal relevant set of objects on which A3 has to be checked. 

For the second constraint, when executing transaction T2, the ideal relevant 
set is not so easy to obtain. This set consists of the identifiers of Pl and P2, as 
well as the identifiers of pl.spouse and p2.spouse before the assignment. Indeed, 
we need to know the former spouses o fp l  and P2, because the constraint A4 will 
certainly be violated for them. Of course, collecting those identifiers requires that 
the constraint checking manager be provided with some kind of "intelligence." This 
problem is addressed in Benzaken et al. (1995), and relies on abstract interpretation 
techniques. 

For the third constraint, when executing T3, we have no means to collect the 
parents of a child whose age has been modified, because we don't have backward 
pointers or indexes. 

As a consequence, we do not attempt to obtain the ideal set of relevant objects. 
At the same time, we do not assume the existence of special access structures like 
indexes or backward pointers. Instead, we address the problem of finding an efficient 
checking algorithm that can be applied to all constraints. For constraints such asZ3, 
the algorithm will operate on the ideal relevant set of objects; for other constraints, 
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we show that the checking algorithm improves the trivial approach, which consists 
of performing a whole scan on the populations involved in the constraints. 

Let Tbe a transaction and letA be a constraint. We are looking for an algorithm 
that satisfies the following properties: 

• The evaluation of this algorithm at the end of the transaction ensures that 
the constraint A is still satisfied. 

• The evaluation of this algorithm is more efficient than the direct evaluation 
of A. 

At execution time, the only objects that can be collected are those instances of 
abstract data types whose attributes, relevant with respect to the constraints, have 
been modified. It may be the case that such a set of objects exactly matches the 
ideal relevant set, as for constraintA3. But, in general, the set obtained at execution 
time only intersects the relevant set, as for constraint A4. Therefore, we propose 
that checking algorithms be generated, which allows us to test the constraint on the 
whole set of relevant objects, thus ensuring database consistency. As a consequence, 
we have to perform some additional work to get these objects. 

To define these algorithms, let us introduce the following definitions. 

Definition 1: ZX C 
Given a class C, we posit ~ c  the set of instances of class C that have been created 
(and inserted in C) by a transaction. 

Definition 2: F a r(z) 

Given an iteration variable x of type 7- (x), and an attribute a of x, we posit Pa r (z) 
the set of instances of the abstract type 7- (x), in which attribute a has been modified 
by a given transaction. 

This set represents information on the updates that a transaction has made on 
the database. The constraints considered here have the following generic form: 

VX 1 E C1, Vx1,1 ~xl .Pl ,1 ,  .-., VXl,nl ~ xl .Pl,nl ,  
V X 2 ~ C2, V x2,1 ~ x2.P2,1 , ..., V x2,n2 ~ x2.P2,n2, ..., 

Vxk E Ck, ..., V Xk,nk C xk.Pk,nk, M(Xl, Xl,1, ..., Xk, ..., Xk,nk)  

where Pi,j denotes prefix paths. 
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Figure 6. Generic checking algorithm 

For each class Ci,  we generate the following enforcement test: 
V x  E A c~ 

check [ V xl E C1, ..., VXi+i E C i + l ,  ..., 

M ( x l ,  ..., x, ..., xi+l, ...)] 
For each path x-a1 ... ak (either in the prefix or in the matrix), we generate the 
following enforcement test: 

VxECi 
V y  EW(z) i f y = x ,  
check [ V Xl E C1, ..., V x i+ l  E C i + l ,  ..., 

M ( X l ,  ..., x~ ..., Xi+l, ...)] 
. o .  

V y E F r(x 'al" ' 'ak-1) i fy  = x . . . a k - i ,  
a k 

check [ V xx E Ci, ..., V x i + i  E Ci+i, ..., 
M ( x l ,  ..., x, ..., x i + l ,  ...)] 

For each path y+bl. . .bt  in the matrix (where Yi ranges in x.pl ) ,  

we generate V x E Ci 
V y E x.pi  

V z E F~ (v), if z = y, 
check [ VXx I E C1, ..., V Xi+l E C i+l ,  ..., 

M (xl, ..., x, ..., y, ..., Xi+l ,  -..)] 
oo .  

V z  E F~ (y ' ' 'bl- j ,  i f z  Y.. .bl-1,  

check [ ~ x l  E C1, ..., ~/ E Ci+l,  Xi+l  ..., 

M (Xl, ..., x, .... y, ..., Xi+l ,  ...)] 

Let x be a variable ranging over class Ci, and let Yl .... , Yn be  variables ranging, 
respectively, over x.pl ,  ..., x .pn,  where Pi  denotes a prefix path leading to a set 
structured component of x. In Figure 6, we show how to generate generic checking 
algorithms. 

For a given constraint A, the enforcement test generation consists of generating 
the above tests for each class Ci involved in the constraint prefix. Let us illustrate 
this on the constraints, A3,  A4 ,  A s ,  and A6. For the constraint A3, 

(A3) k /p  E Persons, p.age <_ 130 A p.age > 0; 

and the checking algorithm is shown in Figure 7. 
Fl'erson actually This can be rewritten as shown in Figure 8. In this case, the set -age 

represents the relevant set of objects on which the constraint has to be checked. 
pPerson testing Indeed, this algorithm leads to a check of the constraint on the set -age , 

if each element belongs to the class Persons. Thus, we perform as many check 
operations as the minimal algorithm does. Note that the trivial algorithm would 
have performed as many checks as the number of elements in the class Persons. 
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Figure 7. Algorithm for A3 

V x 6 ~X Psrs°ns, check (A3 (x)) 

V x 6 Persons 
~Person 

Vy 6 --age , 

if y = x, check (As (x)) 

For the constraint .a4 

(A4) V p E Persons, p .spouse.spouse = p Vp.spouse = nil; 

the checking algorithm is described in FigUre 9. For this algorithm, we have to scan 
the whole class Persons and test whether an element t,t/. spouse -~  r~Person corresponds with 
either an instance of class Persons, or to the spouse attribute of a given instance 
of Persons. 

For the constraint A5 

(As) V p 6 Persons, V c 6 p.children, p.age > c,age 

the checkitig algorithm is shown in Figure 10. 
-- r ~ P e r a o n  ~ r ~ P e r s o n  For This algorithm iterates over three setS: rersons, lag e , ano J" children" 

each element x of Persons whose age has been modified, we have to check the 
constraint. For each element x of Persons, if the age of one of his/her children has 
been modified, we have to check whether the constraint is still valid. Last, for each 
element of Persons whose set of children has been modified, we also have to check 
the constraint. 

Finally, for the constraint A6, 

(As) k/p 6 Persons, V v 6 Vehicles, (v.name ~ "Ferrari" V v.owner ~ p) V 
p.age _> 40 

The checking algorithm is illustrated by Figure 11. This algorithm can be rewritten 
as shown in Figure 12. 

This last example deserves some comments: checking As means that we check 
As with respect to all the elements in either Vehicles or Persons. Therefore, some 
tests are redundant. When checking the set of Persons whose age has been modified, 
we consider all Vehicles, particularly those Vehicles whose name or owner attribute 
has been updated. In the second phase of the algorithm, we test the constraint 
for all updated Vehicles with respect to all Persons, including those whose age 
has been modified. To avoid such redundant tests, we refine this algorithm in the 
following way. In the previous examples (for the constraintsA3 andAs), the checking 
algorithms could be rewritten in an optimized form. Such an optimization can take 
place only for the algorithms containing no navigation in the type structures. For 
example, it is not possible to optimize in the way the algorithm was generated for 
constraint As, because y has to range over x.children. 
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Figure 8. Optimized algorithm for A3 

V x E A Pers°ns, check (A3 (x)) 

n r  Pe~s°n check (A3 (x)) V x E Persons ' ' - age  ' 

Figure 9. Checking algorithm for A4 

V X E L~k Pers°ns, check (A 4 (x)) 

V x E Persons 
~Person 

V y E -spouse' 
if y = x, check (A4 (y)) 

~Person 
V y E --spouse' 

if y = x.spouse, check (A4 (y)) 

Figure 10. Checking algorithm for As 

V x G 2X Pets°as, check (As (x)) 

V x G Persons 
~Person 

V y E -age , 
if y = x, check (A 5 (y)) 

]-~Person 
Y E ~children, 

if y = x, check (A 5 (x,y)) 
V y E x.children 

~Person V Z E --age ' 

if z = y, check (A 5 (x,y)) 

We now give a general optimized version of this class of algorithms (Figure 
13). The union of Fi denotes the set of all instances of an abstract type whose 
attributes relevant to a given constraint have been updated. Such an optirrlized 
version prevents us from testing the same constraint on the same objects more than 
one time. 

6. Implementation 

Th6mis is implemented on top of the 02 system, using a preprocessing approach. 
The 02 integrity preprocessor takes a schema written in Thrmis, and produces an 
02 schema and a set of 02 executable programs, which allows us to instantiate 
the constraints while preserving the inclusion semantics. 02 integrity is written in 
C ++, and uses lex and yacc. 
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Figure 

Vx 
Vx  

V x  
Vx 

11. Checking algorithm for A6 
C A Pers°ns, check (A 6 (x)) 
C Persons 

~Person V y E --age ' 
if y = x, check (A 6 (y)) 

E A vehiclee, check (A6 (x)) 
E Vehicles 
V y E pVehicle 

--name 

if y = x, check (A6 (y)) 
V y E pVehicle 

--owner 

if y = x, check (A6 Cv)) 

Figure 12. Optimized checking algorithm for A6 

V x E Z2~ pers°ns, check (A6 (x)) 
Parson ~ A "pPerson 

V x E check (A6 (~I 
= ~  ~ H h a e 

V x C &Vehicles, check (A6 (x)) 
V x C Vehicles f'l F veh±cle tlFVehicle~ --name ~--owner / 

check (A6 (x)) 

Figure 13. Optimized algorithms 

V x E c l n  (uF1) 
check [ V x2 E C2, ..., V xk E Ck, ..., 

M(x,  ..., x2, ..., xk, ...)] 

V x c c~n (uF~) 
check [ V x l  E Cl - -  (C1N ( U F 1 ) ) ,  ..., 

: V Xi_ 1 E C i - 1 - -  ( C i - 1  N (UFi-1)),- .- ,  
: Vxi+ 1 ~ C i + l ,  ..., 

M ( X l  . . . .  , x2 . . . . .  x, ..., Xk, ...)] 

V x E Ckn (UFk) 
check [ V Xl E e l - -  (Clf-] ( U F 1 ) ) ,  ..., 

: V xi E Ci- -  (CiN (UFi)),  ..., 
: V Xk_  1 E C k - 1 - -  (Ck- lN (UFk-1)) ,  
M ( X l ,  ..., x2, ..., x, ...,)] 
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6.1 Mapping Between Thdmis and 02 

In this section, we describe the mapping between the Thdmis language and 02. 

6.1.1 Atomic Types 

Thdmis 

int 

string 

boolean 

02 

integer 

string 

boolean 

real 

bits 

6.1.2 Type Constructors. In the 02 language, it is possible to define complex objects 
and values by using various constructors, as in Thdmis. 

Thrmis 02 

[al : tl,.., an : t'n] tuple(al : tl,.., an:  tn) 
{tl } set(t1) 
(tl) list(tt) 

6.1.3 Types and Classes. In the 02 language, the instances of a type are values, 
and the instances of a class are objects. These properties are offered in Thdmis 
through concrete and abstract types. 

Thdmis O2 

Concrete type type 
Abstract type class 

Classes named values 

6.1.4 Subtyping and Inheritance. 02 and Thdmis follow the same subtyping rules: 
• An explicit subtyping for abstract types (Thrmis) and the classes (02). 
• An implicit subtyping for concrete types (Thdmis) and types (02). 

6.2 Constraints and Transactions 

The constraints defined in Thrmis are instances of a predefined class "Constraint" in 
02. The transactions are translated into 02 transactions, and compiled by the O2C 
compiler. Each time a transaction is compiled, the 02 Integrity preprocessor updates 
a global table describing which constraints might be violated by the transaction. 
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Meanwhile, the corresponding checking algorithms are generated at the end of the 
transaction. 

The user can visualize the set of constraints defined on the schema, and the 
global table showing the constraints that will be checked for a given transaction. 
Each time a constraint is actually violated by the execution of a transaction, the 
user is warned and the transaction is aborted. 

7. Conclusion 

This work proposes a specification of a database programming language allowing 
for the definition of integrity constraints in a global and declarative way. The 
characteristics of the object-oriented data model, in particular, inheritance and 
subtyping, are taken into account. The language used to express the integrity 
constraints is not limited to first-order logic formulas, but also includes method 
calls. This allows an increased declarative power of the constraints. 

To detect which constraints may be violated by a given transaction, we define a 
syntactic analysis of both the constraints and the transactions. This analysis takes 
into consideration the specificities of the object-oriented model, such as inheritance, 
subtyping, late binding, and the persistent nature of the data. It allows us to obtain a 
necessary and sufficient condition to determine at compile time if a transaction might 
violate a constraint. A second part of this work concerns the automatic generation 
of constraint checking algorithms at the end of transactions. Those algorithms are 
generated for a sub-class of formulas: universally quantified formulas. 

A first prototype of the Th6mis language has been implemented. This prototype 
allows the proposed analysis to be validated. We propose that our work be extended 
in the following directions: 

The analysis proposed detects transactions as being (potentially) unsafe when 
they are actually safe. More generally, we would like to refine our static analysis 
by using abstract interpretation techniques. 

To be able to generate an efficient constraints checker, we extend our checking 
algorithms to constraints including methods and existential quantifiers. 

Finally, our last aim is to build a complete compiler for the Th6mis language. 
Such a compiler should be implemented on a persistent object manager (e.g., 02 
Engine, Napier88 Store). 
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