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Abstract. We describe the TIGUKAT objectbase management system, which is 
under development at the Laboratory for Database Systems Research at the Uni- 
versity of Alberta. TIGUKAT has a novel object model, whose identifying charac- 
teristics include a purely behavioral semantics and a uniform approach to objects. 
Everything in the system, including types, classes, collections, behaviors, and func- 
tions, as well as meta-information, is a first-class object with well-defined behavior. 
In this way, the model abstracts everything, including traditional structural notions 
such as instance variables, method implementation, and schema definition, into 
a uniform semantics of behaviors on objects. Our emphasis in this article is on 
the object model, its implementation, the persistence model, and the query lan- 
guage. We also (briefly) present other database management functions that are 
under development such as the query optimizer, the version control system, and 
the transaction manager. 

Key Words. Objectbase management, database management, reflective system, 
persistent storage system. 

1. Introduction 

The penetration of data management  technology into new application areas with 
more  demanding requirements than business data processing has generated a search 
for appropriate  data models and system architectures to support these requirements. 
Some examples of these application areas are engineering design systems, knowledge 
base system applications, office information systems, and multimedia systems. It is 
now commonly accepted that relational database management  systems (DBMSs), 
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with their flat representation of data, do not have sufficient power to fulfill these 
requirements. The fundamental difficulty relates to the recognized semantic mis- 
match between the entities that are commonly encountered in these application 
domains and the representation provided by the underlying DBMS. 

Object-oriented technology is the topic of intense study as the major candidate to 
successfully meet the requirements of advanced applications that use data manage- 
ment services. At the Laboratory for Database Systems Research at the University of 
Alberta, we are engaged in the design and development of an objectbase management 
system (OBMS) 1 called TIGUKAT, 2 which follows object-oriented methodology in 
its own design. Consequently, all database functionality is incorporated within an 
extensible object model. In this article, we provide a general overview of TIGUKAT 
with special emphasis on its object model, its implementation, and the persistence 
model. Some of the novel features of TIGUKAT are the following: 

1. It has a purely behavioral object model where the user (a person or an 
application program) interacts with the system only by applying behaviors 
to objects. In this way, full abstraction of modeled entities is accomplished, 
since the users do not have to differentiate between attributes and methods. 

2. Its object model is uniform. Everything in the system, including types, classes, 
collections, behaviors, functions, and meta-information, is a first-class object 
with well-defined behavior. Thus, there is no separation between objects and 
values, so the schema information is a natural part of the database that can 
be queried just like other objects. 

3. This uniformity extends to other system entities (e.g., queries, transactions, 
views) which are treated as objects that can be created, stored, manipulated, 
and queried like any other object, 

Two different approaches have been followed in the development of OBMSs. The 
first is to adopt the type system of an object-oriented programming language as 
the object model of the OBMS. For example, ObjectStore (Lamb et al., 1991) 
adopts the type system of C+ + (Stroustrup, 1986), while Gemstone (Butterworth 
et al., 1991) follows the type system of Smalltalk (Goldberg and Robson, 1983). 
The second alternative is what is known as language-independent or generic object 
models where the OBMS defines its own object model, and appropriate mappings 
are provided from languages to this object model. TIGUKAT follows the second 

1. We prefer to use the terms "objectbase" and "objectbase management system," rather than the more 
popular "object-oriented database" and "object-oriented database management system," since not only 
data in the traditional sense are managed, but objects in general, which includes things like code in addition 
to data. 
2. TIGUKAT (tee-goo-kat) is a term in the language of the Canadian Inuit people meaning "objects." The 
Canadian Inuits, commonly known as Eskimos, are native to Canada with an ancestry originating in the 
Arctic regions of the country. 
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Figure 1. TIGUKAT System Architecture 
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approach as does, for example, 02 (Deux et al., 1991). A database programming 
language is being designed, which is tightly integrated with the TIGUKAT object 
model. In addition, mappings will be provided from other programming languages. 

TIGUKAT is an experimental system that is under constant development and 
revision. We have, therefore, chosen to follow an extensible system design approach. 
The uniformity of the model, which treats all system entities as objects, is the basis 
of TIGUKAT's extensibility. The general architecture of the system is depicted 
in Figure 1. To date, most of the development and implementation work has 
concentrated on the object model, the query model, and the implementation of 
query languages. The architectural framework of the query optimizer also has 
been developed (Mufioz, 1993); the details of the optimizer (e.g., the full set of 
transformation rules, and the detailed cost functions) have yet to be implemented, 
however. 

The organization of this article is as follows. Section 2 provides an overview 
of the TIGUKAT object model, presenting the primitive type system. We include 
an example database application design to demonstrate the features of TIGUKAT. 
Section 3 describes some of the more important implementation design decisions and 
the approach we have taken. This is followed, in Section 4, with a description of the 
persistence model of TIGUKAT. Section 5 presents the query model with emphasis 
on the user-level languages. (A more detailed description of the object and query 
models are given in Peters et al., 1993a, Peters, 1994.) In Section 6, we provide a brief. 
overview of our approach to providing the common database management functions 
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such as query optimization, version management and transaction management. In 
Section 7, we end with a discussion of our future research directions. 

2. Object Model 

The TIGUKAT object model is defined behaviorally with a uniform object semantics. 
The model is behavioral in the sense that all access and manipulation of objects 
occurs through the application of behaviors (operations) on objects. The model is 
uniform in that every concept within the model has the status of a first-class object. 

Uniformity in TIGUKAT is similar to the approaches of DAPLEX (Shipman, 
1981) and its object-oriented counterpart OODAPLEX (Dayal, 1989). However, 
our definition of uniformity is complete in that it unconditionally extends over 
all forms of information, including the system components such as the schema, 
meta-information, query model, query optimizer, view manager, and transaction 
manager. We adopt another significant aspect of these models: their functional 
approach to defining behaviors. TIGUKAT enhances this approach by providing a 
separation of behavior, which is a semantic notion, from function, which is a means 
of implementing behavioral semantics. 

The TIGUKAT model defines a number of primitive objects that include: atomic 
entities (e.g., reals, integers, strings); types for defining common features of objects; 
behaviors for specifying the semantics of the operations that may be performed on 
objects; functions for specifying the implementations of behaviors over various types; 3 
classes for the automatic classification of objects based on their type; 4 collections for 
supporting general, heterogeneous, user-definable groupings of objects; and higher- 
level constructs to uniformly represent meta-information (i.e., schema) as objects 
with well-defined behavior. This last feature gives the system reflective capabilities 
(Peters and t)zsu, 1993). 

The primitive type system of TIGUKAT is shown in Figure 2 with the type 
T_object as the root of the lattice, and type T_null as the base. The type T_null 
defines objects that can be returned by behaviors when no other result is known 
(e.g., null, undefined). These are necessary because the result of every behavior 
application in TIGUKAT must be a reference to an object. There are no dangling 
references in TIGUKAT. 

As a notational convenience, the prefix T_ refers to a type, C_ refers to a class, L_ 
refers to a collection, B_ refers to a behavior, and F_ refers to a function. Each prefix 
also has its own font variation for the string following it. For example, T_c i ty  is a 
type reference, C_eity is a class reference, L_historieSites is a collection reference, 
B_population is a behavior reference, F_calcPopulation is a function reference, and a 

3. Ass•ciati•nsbetweenbehavi•rsandfuncti•nsf•rmthesupp•rtmechanismf•r•ver••adingandlatebind- 
ing of behaviors. 

4. Types and classes are separate constructs in TIGUKAT. 
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Figure 2. Primitive type system of TIGUKAT 
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reference such as Edmonton without any prefix represents some other application- 
specific object reference. 

2.1 Behaviors and Functions 

The access and manipulation of objects occurs exclusively through the application 
of behaviors. This is similar to the message-based approach of Smalltalk (Goldberg 
and Robson, 1983) and OODAPLEX (Dayal, 1989). Appendix A lists the signatures 
for the native behaviors defined by the primitive types of Figure 2. 

We separate the definition of a behavior from its possible implementations, 
which are represented by TIGUKAT functions (corresponding to methods in other 
models). The benefit of this approach is that common behaviors over different types 
can have a different implementation in each of the types (known as overloading 
the behavior). This gives the model the ability to dynamically bind behaviors to 
implementations at run time (known as late-binding). 

There are two kinds of implementations for behaviors. One is a computed 
function, which consists of runtime calls to executable code, and the other is a 
stored function, which is a reference to an existing object in the objectbase. Stored 
functions eliminate the need for instance variables, which limit reuse (Wirfs-Brock 
and Wilkerson, 1989b). The uniformity of TIGUKAT conceptually transforms each 
behavioral application into the invocation of a function, regardless of whether the 
function is stored or computed. This allows designers to concentrate on semantic 
responsibilities rather than on data attributes (Wirfs-Brock and Wilkerson, 1989a). 
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For example, the type designer is free to develop a purely behavioral specification of 
a type while the type implementor decides whether the behaviors are implemented 
by stored or computed functions. 

The semantic definition of a behavior has many forms. A simple approach, 
common in other models, is a signature expression, consisting of a behavior name, 
parameter types, and a return type. Signatures are useful and necessary for describing 
the semantics of behaviors, but they are inadequate for characterizing the full 
semantics. For now, we assume that a proper semantic specification mechanism 
exists. In the current model design, a behavior is specified only by its signature. 
However, the extensibility of the model makes it easy to incorporate a more complete 
semantic specification when one is developed. The only extension required is to 
modify the implementation of the B_semantics behavior on T_behavior to correspond 
to the new, more complete semantics. We currently are investigating specification 
techniques and denotational semantics as a complete semantic description mechanism 
for behaviors. 

Behaviors are applied to objects. The application of a behavior, say B_population, 
to an object, say Edmonton, using some arguments, say al, ... ,an, can be denoted 
by (B_population(Edmonton))(al .... ,an) or by use of the dot notation Edmon- 
ton.B_population (al, .,. ,an). In either case, the object Edmonton is called the 
receiver of the behavior. 

Behaviors are instances of the type T_behavior and functions are instances of 
the type T_function. We use an arrow "--~" in function type specifications, and we 
curry multiple argument functions. A function type is of the form A ~ Tg where 
A represents the argument type expression of the function, and 7~ represents the 
result type. In general, the argument and result types may be any type specification, 
including a function type. Then, by currying, multiple argument functions may be 
specified. 

As defined in more detail in Section 2.3, types are related to each other via 
subtyping (also referred to as behavioral inheritance). A behavior defined on a type 
T_x is inherited in the type if and only if the behavior is defined in a supertype 
of T_x. A behavior defined on a type T_x is native in the type if and only if the 
behavior is not defined in any supertype of T_x. 

Inherited behaviors do not necessarily borrow their implementation from their 
supertypes (although this can be set as the system default). Therefore, we define 
a separate reuse mechanism for implementations called implementation inheritance. 
An implementation of a behavior in a type T_x is inherited if and only if the 
behavior is inherited and the function implementing the behavior in T x is the same 
as a function implementing the behavior in a supertype of T_x. Otherwise, the 
implementation of the behavior is redefined (or oven,idden) in T_x. 

TIGUKAT supports multiple subtyping. However, the separation of behaviors 
from functions introduces the need for separating: behavioral inheritance from 
functional inheritance, and for defining separate conflict resolution schemes for 
both. Implementation inheritance conflicts are resolved using an approach similar 
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to the one used in Modular Smalltalk (Wirfs-Brock and Wilkerson, 1988). Specifically, 
it is an error for a type to inherit two different implementations (i.e., two instances 
of T_function) for the same inherited behavior. The error is resolved by explicitly 
redefining 5 the T_function for that behavior. Note that one choice for redefinition 
is one of the two conflicting T funct ions.  No separate mechanism is required to 
solve inheritance conflicts between instance variables, because there are no instance 
variables. Stored function conflicts are resolved in the same uniform manner as 
computed function conflicts. Furthermore, in the context of a complete behavioral 
semantics, there are no behavioral inheritance conflicts. That is, the inherited 
behavior in the multiple supertypes will be semantically equivalent or not. When 
they are equal, only one behavior is defined in the subtype. When they are not 
equal, multiple behaviors are defined in the subtype. 

2.2 Objects 

An object is a fundamental primitive in TIGUKAT because the conceptual level 
of the model deals uniformly with objects. Objects are defined as unique (identi~ 
state) pairs where identity represents a unique, immutable system-managed object 
identity (or OID), and state represents the information carried by the object. There 
are system defined mappings OID(o) and state(o) that accept an object o and return 
the OID or state of o, respectively. These are internal mappings used only by 
the system, and are not visible to the user. The existence of unique OIDs does 
not preclude application environments such as object programming languages from 
having many references (or denotations) to objects, which need not necessarily be 
unique and may even change, depending on the scoping rules of the application. 

In TIGUKAT, every object can be viewed as a composite object, meaning that 
every object has references/relationships (not necessarily implemented as pointers) 
to other objects. These other objects are returned as results of behavior applications, 
but it does not matter whether the behaviors are implemented by stored or computed 
functions. For example, even integers are composite objects since they have behaviors 
that return objects. 

Object existence, access, and manipulation in TIGUKAT is based on the notions 
of reference, scope, and lifetime. This is similar to other model proposals (e.g., 
Kent, 1990; Snyder, 1990; Fong et al., 1991) in that the only user-expressible 
representation of an object is a reference within a particular scope. A scope defines 
the visibility, access paths, and lifetime of object references. The lifetime of an 
object is independent of the lifetime of a reference to that object within a particular 
scope. That is, when a reference to an object disappears at the end of a scope, 
the object being referenced does not necessarily disappear along with it. This can 
depend on the definition of the scope, and the persistence of the object. From the 
database perspective, there is also the issue of explicit deletions and the dangling 

5. Redefinition may be the explicit writing of a new function or simply choosing an existing function. 
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reference problem that follows. That is, when an object is explicitly deleted, all 
references to that object should no longer point to the object and somehow be 
invalidated. In TIGUKAT, every behavior application is a reference to an object. 
Thus, we do not invalidate references, but rather biind them to an object whose 
type is T_null. That is, when an object is explicitly deleted, the object is changed 
to an instance of type T_null (called undefined), so that all references to it remain 
valid. Garbage collection is used to reclaim the storage of deleted objects. The 
deletion semantics is explained in more detail in Section 4 since a similar approach 
is used when a persistent object is made transient. The similarity stems from the fact 
that subsequent programs will not see the persistent object that was made transient 
and it will appear as though the Object was deleted. Another condition for object 
deletion and storage reclamation is if an object no longer has references through 
its class. 

Operations on objects are performed through behaviors, and object access is 
specified through references. Therefore, an operation on an object reference in a 
particular scope represents the application of a behavior to the actual object that 
is referenced. We define several behaviors on the type T_obj act  that are inherited 
by all types and, therefore, are applicable to every object. A mechanism is required 
to determine if two object references refer to the same object. This requirement is 
met by the behavior B_equal. For any two object references Ri and Rj, the result 
of (B_equal(Ri))(Rj) is true if and only if OID(Ri) and OID(Rj) map to the same 
object identity. The above operation is more commonly specified as Ri = Rj. 

This is the only kind of equality that the primitive model defines. It is quite 
strong in that the only way two object references are equal is if they refer to the 
same object (with the same identity). Our notion of object equality is the same 
as "identity equal," defined in Khoshafian and Copeland (1986), or "0-equality" 
defined in Lecluse et al. (1988). We do not define, at this level, any notions of 
shallow or deep equality found in other models (Khoshafian and Copeland, 1986; 
Lecluse et al., 1988; Osborn, 1988) or in their extended versions, which determine 
equality at various levels (Shaw and Zdonik, 1990). These notions can be defined as 
equivalence relationships on the behavioral characteristics of objects and, therefore, 
should be left to customized interpretations at the behavioral level, rather than being 
part of the primitive model definition. For example, one may define person equality 
based on the equality of their social insurance numbers. The implementation of 
B_equal in a type T_person can be overridden to implement this semantics. 

Objects in the model are strongly-typed 6 in the sense that each object is associated 
with a single type. A type defines all the behaviors applicable to the objects of the 
type. The B_rnapsto behavior, when applied to object o, returns the type of that 
object. It is important in type-checking and query processing to know the type of 

6. Note that this differs from another common meaning of strong typing, which refers to static type- 

checking. 
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an object (Straube and Ozsu, 1990b). 
Another behavior defined on T obj ect  is the identity mapping behavior B_self, 

which maps every object to itself. That is, for any object o, B_self(o) = o. There 
are additional behaviors whose presentation depends on other primitive concepts. 
We introduce them as these concepts are defined. 

2.3 Types 

A type defines behaviors and encapsulates hidden behavioral implementations (in- 
cluding state) for objects created using the type as a template. The behaviors defined 
by a type describe the interface for the objects of that type. Types are organized into 
a lattice structure, using the notion of subtyping, which promotes software reuse and 
incremental type development. Since TIGUKAT supports multiple subtyping, the 
type structure is potentially a directed acyclic graph (DAG). However, this DAG 
is transformed to a lattice by rooting it at T_obj oct and hfting with the primitive 
type T_null. 

The uniformity of TIGUKAT implies that types also are objects with their own 
state and identity along with their own type. The type that describes all type objects 
is T type, and it is accessible in the same manner as any object. Thus, in addition to 
serving as descriptions of objects, types are objects themselves, and the type T type 
serves as a description for all other types, including itself. This is known as the 
type:type property (Cardelli, 1986) in programming languages. The state of a type 
object consists of a structural specification of its instances (a template), references 
to the encapsulated behaviors it defines, references to its subtypes and supertypes, 
and a reference to its associated class. 

Two relationships on types have been identified (Ozsu et al., 1994). One is the 
concept of a type specializing another type in a manner similar to what was described 
in Maier et al. (1989). The other is the more popular, and stronger, notion of 
explicitly creating a type to be a subtype of another type (Cardelli, 1984). A type 
T_i specializes a type T_2 if T i defines all the behaviors of T_2 (and possibly 
more). A type T i is explicitly created as a subtype of a type T2, which means 
T_i specializes T_2, and all the instances of T i are also instances of T_2. Thus, 
subtyping implies, specializes, and defines a subset inclusion relationship on type 
extents. Conversely, specializes does not imply subtyping. Furthermore, subtyping 
supports IS-A relationships between types whose consequence is substitutability (Shaw 
and Zdonik, 1990). Accordingly, an object of type T x can be used (substituted) in 
any context specifying a supertype of T x. Specialize on its own does not support 
substitutability. Specialize is a semantic property derived from the behaviors defined 
on types, while subtyping is an explicit use of this property to define a partial order 
on types and a subset inclusion relationship on their extents. 

A behavior is required on types that determines the class of a given type. To 
create objects of a particular type, there must be a class associated with the type to 
manage its instances. However, types do not require an associated class if there are 
no instances of that type (e.g., abstract types). T~ype defines behavior B_classof for 
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accessing the unique class (if it exists) associated with a particular type. Primitive 
types such as T_ in teger  and T_real  also have associated classes (we refer to Peters, 
1994, for a discussion of these classes). 

2.4 Classes and Collections 

A class ties together the notions of type and object h,stances. The entire group of 
objects of a particular type, including its subtypes, is known as the extent of the 
type, and is managed by its class. We refer to this as the deep extent, and introduce 
a shallow extent that refers only to those objects created from the given type without 
considering its subtypes. The deep extent imposes a subset inclusion relationship on 
classes. We refer to this as subclassing, which has a direct relationship to subtyping 
on types. That is, a class C_x is a subclass of a class C_y; that is, the deep extent 
of C_x is a subset of the deep extent of C_y, if and only if the type associated with 
C_x is a subtype of the type associated with C_y. 

Objects of a particular type cannot exist without an associated class and every 
class is uniquely associated with a single type. Another feature of classes is that 
object creation occurs only through a class using its associated type as a template for 
the creation. Thus, a fundamental notion of TIGUKAT is that objects imply classes, 
which imply types. Defining object, type, and class in this manner introduces a clear 
separation of these concepts. This separation is important in schema evolution, 
which manipulates type objects into new subtype relationships and need not be 
concerned with the overhead of classes. Furthermore, many object-oriented systems 
include abstract types, whose sole purpose is to serve as placeholders for common 
behaviors of subtypes and are never intended to have any instance objects. In these 
cases, there is no reason to manage classes for abstract types, because there are no 
instances of these types. 

We define a collection as a general user-definable grouping construct (other 
constructs include bags for maintaining duplicates, posets for partially ordered col- 
lections, and lists that encompass both properties). A collection is similar to a class 
in that it groups objects, but it differs in the following respects. First, object creation 
may not occur through a collection; object creation occurs only through classes. 
This means that collections only form user-defined groupings of existing objects. 
Second, an object may exist in any number of collections, but is a member of the 
shallow extent of only one class. Third, the management of classes is implicit in 
that the system automatically maintains classes based on the type lattice, whereas 
the management of collections is explicit, meaning that the user is responsible for 
their extents. Finally, a class groups the entire extension of a single type (shallow 
extent), along with the extensions of its subtypes (deep extent). Therefore, the 
elements of a class are homogeneous up to inclusion polymorphism. A collection 
is heterogeneous in the sense that it can contain objects of types unrelated by 
subtyping. Furthermore, there is no distinction between shallow and deep extents 
for collections. 
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Figure 3. Three-tiered instance structure of TIGUKAT objects 
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In TIGUKAT, we define T_class as a subtype ofT_collection, which introduces 
a clean semantics between the two, and allows the model to use them in a uniform 
way. For example, the targets and results of queries are typed collections of objects 
and, since classes are a subtype of collection, they may be used in queries as well. 
This approach provides flexibility and expressiveness in formulating queries and 
gives closure to the query model, which often is regarded as an important feature 
(Blakeley, 1991; Yu and Osborn, 1991). 

2.5 Higher Level Constructs and Reflection 

The types T_class-class, T_type-class, and T_collection-class in Figure 2 
make up the meta type system. Their placement within the type lattice directly 
supports the extensibility of the model. The meta-model uniformly represents meta- 
information as first-class objects with well-defined behavior, and it maintains the 
behavior application abstraction on these constructs. This means that all properties 
of the model apply to this higher-level information uniformly. This property has 
been referred to as reflection (Peters and Ozsu, 1993). 

The higher-level objects are called meta-objects because they provide support 
for other objects. For example, T type  provides support for types, and C_class 
manages the class objects in the system. These meta-objects are uniformly managed 
by means of the primitives. This is possible through the introduction of higher level 
constructs called meta-meta-objects. Our model defines a three-tiered structure for 
managing objects, as depicted in Figure 3. Each box in the figure represents a 
class and the text within the box is the common reference name of that class. The 
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dashed arrows represent instance relationships with the head of the arrow being 
the instance and the tail being the class to which it belongs. 

The lowest level of our instance structure consists of the "normal" objects 
that depict real world entities, such as integers, dwellings, maps, and behaviors. 
Type and collection objects also reside at this level, which illustrates the uniformity 
in TIGUKAT. We define this level as m ° and classify its objects as m°-objects. 
The second level defines the class objects whose associated types maintain schema 
information for the objects below it. These include C_type, C_coilection, and most 
other classes in the system. This level is denoted as m 1, and its objects are m 1- 
objects. At this level, classes maintain the objects of the system (objects cannot 
exist without classes), and they are associated with types that define the schema 
information of their instances (classes cannot exist without types). Thus, classes 
represent the binding management between objects, and the operations that can 
be performed on them as defined by their type. ~ e  upper-most level consists 
of the meta-meta-information (labeled m2), which defines the functionality of the 
ml-objects and is used to give definitional properties to these objects. The structure 
is closed off at this level because the m2-class C_clas, s-class is an instance of itself, 
as illustrated by the looped instance edge. 

In the following discussion, we show the interactions among the various levels 
of the structure, and how they contribute to the uniformity of TIGUKAT, which in 
turn forms the foundation for reflection. We refer the reader to the primitive type 
lattice in Figure 2, and to a portion of its companion primitive class lattice shown 
in Figure 4. Each C_x class in Figure 4 is associated with the corresponding T_x 
type in Figure 2. 

Figure 4 illustrates the subset inclusion and instance structure of some of the 
m °, m 1, and m2-objects in relation to one another. Starting from the left-side of 
the lattice structure, we explain the relationships between these classes and their 
instances. The class C_object is an ml-object that maintains all the objects in the 
objectbase (i.e., every object is in the deep extent of class C_object). Two other 
ml-objects in the figure are subclasses of C_object, namely, C_type and C_conection. 
These two classes maintain the instances of types and collections, respectively. Class 
C_collection is further subclassed by the m2-object C_class, because every object 
that is a class is also a collection of objects. For example, the class C_city is an 
instance of the class C_class, as well as a collection of city objects. The deep 
extent of C_class manages all classes in the system, such as C_object, C_type, and 
C_city. Finally, C_class is subclassed by m2-objects C_type-class, C_class-class, and 
C_collection-dass. Intuitively, C_type-class is a class whose instances are classes 
that manage type objects. Similarly, C_class-class is a class whose instances are 
classes that manage class objects and C_collection-class is a class whose instances 
are classes that manage collection objects. 

This meta-architecture is sufficient for managing all objects, including meta- 
information, in a uniform way. This provides the foundation for reflective capabilities 
such as the support for class behaviors and reflective queries. To support class 
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Figure 4. Subclass and instance structure of m 1 and m 2 objects 
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behaviors, each class can be made an instance of its own meta-class, instead of the 
common meta-class C_class. For example, to define a class behavior B_averageAge on 
C_person that computes the average age of the persons, we can uniformly extend the 
meta-model by creating a type T_person-class  as a subtype of T_class,  defining 
the behavior B.averageAge on T_person-class,  creating an m2-class C_person-class 
as the associated class of T_person-class,  and creating C_person as an instance 
of C_person-class. Now, we can create person instances of C_person in the usual 
way, and B_averageeAge is applicable to C_person and returns the average age of all 
persons in C_person. We can define many other class behaviors on T_person-class ,  
including various object creation and initialization behaviors. This approach is in 
contrast to the usual way of making C_person a direct instance of C_class. If this 
is done, it is difficult to define class behaviors for C_person since C_class typically 
has many class instances and any class behavior defined on T_class would apply 
to all class objects. Our approach is superior to an approach that defined an extra 
rn2-class for every class (e.g., Smalltalk), since it has smaller space overhead. 

More powerful extensions also are possible. For example, although C_person- 
class is a separate m 2-class for C_person, it can be used to group other related classes, 
such as C_student and C_employee, simply by creating them as instances of this class. 
Behavior B_averageAge would then be applicable to all these additional classes. Our 
approach provides a good balance between the flexibility of defining class behaviors 
and the efficiency of grouping common classes under a single m2-class. 

Reflective queries can be expressed naturally in TIGUKAT without any meta-level 
extensions to the query languages. The reason is that the query model incorporates 
the behavioral paradigm of the object model and, since the meta-system is uniformly 
represented by objects with well-defined behaviors, the meta-objects can be used 
in queries just like any other objects. For example, it is natural (through behavior 
applications) to express a query that returns the types that define a behavior B_age 
with the same implementation as one of its supertypes. Additional examples include 
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a query that returns a collection of all types with no associated classes (i.e., all 
abstract types), a query that returns types that define a certain implementation for a 
certain behavior, and a query that returns the classes that have a greater cardinality 
than all other collections in the system. Moreover, we can use reflection to infer 
the result type of a query during its execution. An example reflective query is given 
in Section 5. 

Our meta-class structure is similar to ObjVlisp (Cointe, 1987) and is a generali- 
zation of the one-to-one class/meta-class architecture of Smalltalk (Goldberg and 
Robson, 1989). The generalization of Smalltalk stems from the fact that we do not 
necessarily define an m2-class for every class, which is required in Smalltalk. We 
can group several classes under a common m2-class. Full details of the reflective 
features of TIGUKAT and its comparison with other meta-models were presented 
in Peters and Ozsu (1993). 

The introduction of the m2-objects adds a level of abstraction to the model that 
encapsulates the schema as first-class objects. The benefit of this approach is that 
the entire model is consistently and uniformly defined within itself. Every object 
has well-defined behavior and, therefore, we can uniformly apply behaviors to the 
higher-level objects. 

2.6 Temporality 

Temporality is introduced into TIGUKAT through an extensible set of primitive 
time types. A rich set of behaviors is defined on these types to model the various 
notions of time elegantly (Goralwalla and Ozsu, 1993). 

We use the concept of a timeline to represent an axis over which time can be 
specified. A timeline comprises a collection of time references. A time reference is 
a means by which time can be specified (e.g., 5 seconds, t3, July 31, [1967,1968], 3 
years, 9:17:54:20). We have identified three basic types of time references: a time 
instant (e.g., moment, chronon), a time span (duration), and a time interval. These 
are used to construct instant, span, and interval timelines. 

We can model different kinds of timelines depending on (1) their domain 
(discrete, dense, or continuous), (2) their boundedne, ss (bound or infinite), and (3) 
their ordering (linear or branching). Any combination of these three features is 
possible in forming a timeline. This gives applications built on TIGUKAT substantial 
flexibility in choosing timelines to suit their needs. 

Behavior histories are used to manage the properties of objects over time. A 
subtype of T_behavior is introduced to specialize behaviors with temporal qualities 
for managing histories. Instances of this subtype are called temporal behaviors. 
Temporal behaviors specialize non-temporal behaviors and, thus, encompass all the 
functionality of non-temporal behaviors. This introduces temporal transparency in 
the sense that a temporal behavior can be used anywhere a non-temporal behavior 
is expected. In other words, a user unconcerned with temporality can use temporal 
behaviors as though they were non-temporal. This has the benefit of integrating 
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Figure 5. Type lattice for a simple geographic information system 
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temporal applications smoothly into an existing system. 
Temporal behaviors can manage independently valid time histories (when a value 

for the behavior is valid) and transaction time histories (when a value for a behavior 
is committed to the objectbase). Our approach adheres to the Well-recognized 
orthogonal nature of the these two times (Snodgrass and Ahn, 1985), and allows 
us to support valid time, transaction time, and bitemporal models. 

2.7 Example System Design 

In this section, we present the design of a simplified geographic information system 
(GIS). This example is used throughout this article to demonstrate various features 
of TIGUKAT The GIS example is selected because it usually is listed among the 
application domains, which require the advanced features offered by object-oriented 
technology. 

A type lattice for a simplified GIS is given in Figure 5. The example includes the 
root types of the various sub-lattices from the primitive type system, which illustrates 
their relative position in an extended application lattice. The GIS example defines 
abstract types that represent information on people and their dwellings. These 
include the types T_person, T_dwelling, and T house. Geographic types that 
store information about the locations of dwellings and their surrounding areas are 
defined. These include the type T_location, the type T_zone, along with its subtypes 
that categorize the various zones of a geographic area, and the type T_map, which 
defines a collection of zones suitable for displaying in a window. Displayable types 
that present information on a graphical device are defined. These include the types 
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T_display0bj  ect  and T_window, which are application-independent, along with the 
type T_map, which is the only GIS application-specific object that can be displayed. 
Finally, the type T_geometricShape defines the geometric shape of the regions 
representing the various zones. For our purposes we only use this general type but, 
in more practical applications, this type would be further specialized into subtypes 
representing, for example, polygons, polygons with holes, rectangles, squares, and 
splines. Table 1 lists the signatures of the behaviors defined on GIS-specific types. 

3. Implementation Considerations 

The persistence issues related to the implementation of TIGUKAT are discussed in 
the next section. In this section, we discuss some of tile other issues that arise in the 
implementation of a uniform and generic object model such as TIGUKAT. There 
are three issues that we discuss: the implementation of the primitive type system, 
behavior application, and the implementation of behavioral and implementation 
inheritance. For more details, see Irani (1993). 

3.1 Implementation of Primitive Type System 

TIGUKAT is implemented in g++,  which is GNU's implementation of C + + .  
However, since TIGUKAT has a generic object model, there is no one-to-one 
mapping between TIGUKAT types and C+ + classes (i.e., we do not create a C+ + 
class for each TIGUKAT type that is defined). Instead, there is a single foundation 
C+ + class, Tg0bj ect,  which is the principal template for instantiating all TIGUKAT 
objects. That is, every TIGUKAT object (type, class, behavior, collection, function, 
instance, atomic, and other primitive or user-defined objects) is an instance of this 
fundamental C+ + class. This approach ensures the uniform representation of all 
objects in the system, since they may each be treated as an instance of Tg0bject.  
The TIGUKAT semantics is embedded within the Tg0bject  structure. Following 
this approach, the TIGUKAT model is implemented within itself. 

From the structural viewpoint, every instance of Tg0bj ec t  comprises an array 
of records (Figure 6). These can be thought of as the attributes (data fields) of that 
particular instance. Tg0bject is a dynamic array where each element is either an 
integer, a character, or Tg0bj ect.  Integers, reals, and characters are stored directly, 
while all other objects, including the atomic objects such as sets, strings, bags, lists, 
and posets, have only their references stored in the slots (this ensures efficient use 
of memory). For any object, the first slot always contains a pointer to that object's 
type, which was the template used for its creation. Thus, in line with the model, 
every object carries knowledge about its type. 

To implement uniform treatment of everything as first-class objects, we have 
implemented different kinds of C + +  object instances in the system (viz., type, 
class, object, behavior, function, collection, and atomic objects). Although these 
template instances are all Tg0bjects ,  they differ in their structural contents. For 
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Table 1. Behavior signatures pertaining to example specific types 
of Figure 5 

Type Signatures 

T_locat ion B_latitude: T_real 

B_longitude: T_real 

T_display0bj  oct  B_display: T_display0bj ec t  

T_window B_resize: T_window 

B_drag: T_window 

T_geometricShape 

T_zone B_title: T_string 

B_origin: T_location 

B_region: T_geometricShape 

B_area: T_real 

B.proximity: T_zone --+ T_real 

T_map B_resolution: T_real 

B_orientation: T_real 

B_zones: T_collection<T_zone> 

T_land B_Pollutants: T_collection<T_string> 

T_water B_volume: T_real 

B..Pollutants: T_collection<T_string> 

T_transport B..efficiency: T_real 

T_altitude B_Iow: T_integer 

B_high: T_integer 

T_person B_name: T_str ing 

B_birthDate: T_date 

B.age: T_natural  

B_residence: T_dwelling 

B_spouse: T_person 

B_children: T_person --+ T_collection<T_person> 

T_dwelling B_address: T_str ing 

B_inZone: T_land 

T_house B_inZone: T_developed* 

B_mortgage: T_real 

*Behavior was refined from supertype T_dwelling. 
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Figure 6. Representation of generic TgObj ec:t structure 
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example, a type object has a fixed number of slots dedicated for maintaining its 
information, such as its corresponding class (implemented as a reference to another 
C + +  instance that is a class object), its subtypes set (reference to a C + +  set 
instance), and its supertypes. We do not discuss the detailed data structures of each 
of these objects; we only discuss the structure of type objects, since this information 
is relevant to the subsequent discussion on behavior application and inheritance 
implementation. 

3.2 Behavior Application 

Dispatching is the process by which the application of a behavior on an object (message 
sending) is bound to a particular function (implementation of that behavior). In the 
event that the applied behavior's implementation is not clearly evident (as a result 
of subtyping), the right function associated with that applied behavior for the type 
of the receiver object must be invoked. This requires what is called dynamic binding. 
Thus, behavior application involves the retrieval and application of an appropriate 
piece of binary code that is contingent on the receiver's type and the selector for 
that behavior. 

Dispatching may be considered a special case of what is called resolution (Zdonik 
and Maier, 1990). Resolution has been defined as a runtime interpretation process 
that selects a particular value from a possibly ambiguous set of values. Method 
dispatch (behavior application), hence, seeks to select an appropriate function object 
(method) whose code needs to be executed, from a set of function objects, each of 
which implement the same named behavior object over different types. To correctly 
make this decision, some additional information (actual type of the receiver and 
the method selector) relevant to the context is required. 

Since behavior application is such a fundamental operation in TIGUKAT, it 
is important to have an efficient dispatch implementation. We have opted for a 
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Figure 7. Type object's structure 
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relatively simple but fast mechanism at the cost of bearing the consequential memory 
overhead. The system maintains a dispatch cache, which consists of a slot for each 
behavior-type pair that exists in the system. This cache is a statically allocated 
volatile structure that needs to be reinitialized on program startup. The size of 
this lookup table is proportional to the total number of unique behaviors in the 
system, and to the total number of types in existence. We sacrifice memory usage 
for quick response time during execution (Andr6 and Royer, 1992; Dixon et al., 
1989), but an incremental coloring algorithm could be used to drastically reduce 
memory consumption. We have not implemented this optimization in the current 
version of TIGUKAT. 

Each entry in the dispatch cache is a function pointer to some executable code, 
which implements that behavior (column) for the concerned type (row). Every 
unique behavior has a unique integer mapping associated with it. This integer 
mapping, the method selector, provides access to the appropriate column of the 
cache. That column is said to "belong" to the behavior. The addresses stored in 
the slots of this column may be different or identical, depending on which of the 
subtypes have inherited the same implementation of that behavior, and which have 
had that behavior redefined, overridden, or reassociated (associated with a different 
function). The process of filling the cache row with appropriate values during the 
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Figure 8. Behavior application process 
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creation of a new type has been termed implementation inheritance, and our system 
handles it automatically up to a certain degree of complexity as discussed in the 
next subsection. 

Behaviors may be reassociated with functions at any time (redefinitiOn of behav- 
iors), which makes it imperative that we support the., dynamic binding of behaviors 
and perform dispatch on thefly. Although it is evident that static (compile time) dis- 
patching is more efficient (Cattell, 1991), this seldom will be possible in our system. 
The reference to an object of a particular type may potentially be referencing an 
object of any of this type's subtypes. The ambiguity about which function should be 
invoked can only be resolved at runtime when knowledge becomes available about 
which type's instance is being referenced. Thus, the actual type of a receiver object 
needs to be identified prior to function execution. We note that, although dynamic 
binding might render static type checking difficult, it does not entirely preclude it. 

The behavior application process for computed functions in TIGUKAT involves 
the following procedure. With reference to Figure 8, given an object, say recObj, 
as the receiver of a particular message, we extract its type, say recType, which is 
readily available since every object knows its type. All types have knowledge of 
their unique cache row (Figure 7). From the applied behavior object we extract 
the methodSelector This integer value indexes into a unique column in the dispatch 
cache. The slot in the determined row and column contains the address of the 
function code to be executed. The list of arguments passed to the behavior is 
supplied to the function after relevant type checking is done. Behavior application 
is conveniently reduced to the execution of a single line of code: 
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JMP (recObj ~ recType ---> dispatchCache [methodSelector]) 

where recObj is a pointer to the object on which the behavior is to be applied 
(receiver object reference), recType is the receiver object's type, dispatchCache is the 
matrix of executable addresses, and methodSelector gives access to the appropriate 
column in the dispatch cache. Therefore, the two basic requisites for binding an 
executable piece of code to the applied behavior at runtime are the type of the 
receiver object and the method selector for the behavior. 

3.3 Behavioral and Implementation Inheritance 

As indicated in Section 2.1, two kinds of inheritance are supported by TIGUKAT: 
behavioral and implementation inheritance. The implementation strategy for behav- 
ioral inheritance (subtyping) involves taking the union of the interface sets of all 
the types declared as immediate supertypes of the new type being created. This set 
forms the contents of the new type's inherited set, and comprises the minimum set of 
behaviors to which all objects of this type should conform. The nature of the func- 
tions with which these behaviors have been associated is of no consequence to the 
behavioral inheritance mechanism. The implemented algorithm iterates through the 
relevant interfaces, and selects all the behaviors with unique signatures as candidates 
for insertion into the new type's inherited set. This is a relatively straightforward 
technique. 

Implementation inheritance facilitates code reuse by ensuring that all code is 
at a level where the maximum number of types can share it (Atkinson et al., 1989). 
If only single inheritance is present, the inherited set of the new type is precisely 
the contents of the interface set of its sole supertype. No conflict resolution is 
necessary, and all entries in the dispatch cache and the supplementary cache are 
merely duplicated in the row allocated for the new type for the complete set of 
inherited behaviors. This implies that all implementations (function addresses) for 
the inherited set of behaviors are inherited, too. However, the type implementor 7 
has the liberty to reassociate any or all of these inherited behaviors. 

With multiple inheritance, the situation is more complex, because conflict 
resolution has to take place. Figure 9 depicts an inheritance graph with multiple 
subtyping. The arrows indicate a subtyping relationship from the tail to the head, 
and the dotted arrow indicates an instance of the type. The dashed boxes contain 
the interface sets of the corresponding types, while the matrices DC and SC are 
the dispatch cache and the auxiliary cache, respectively. The auxiliary cache SC is 
a bit cache that records whether a function is stored or computed. Execution of 

7. We identify three classes of users: The type specifier is the person who designs the inheritance hierarchy 
for the user application. The type implementor is the one who actually implements this required hierarchy 
using TDL. The end user refers to the person or application program that may query the existing system and 
instantiate new objects, but may not be authorized to modify the existing type structure. 
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Figure 9. Implementation inheritance requiring conflict resolution 
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the stored function simply sets or gets the contents of one of the receiver's slots 
without executing any code. In this case, the slot number, rather than the function 
address, is stored in DC. 

Consider the GIS example that we introduced earlier. We create a new 
type T_marsh as a subtype of T_land and T_water, with the native behaviors 
B_drainageRate (to calculate the rate of water leaving or entering the marsh) and 
B_DuckPop (to store the population of ducks in the marsh). This inheritance struc- 
ture has a clash in behaviors that the system is unable to resolve automatically, and 
requires the type implementor's intervention. The conflict resolution policy fails 
because the behaviors B_setPollutants and B_getPollutants are defined in the interfaces 
of both the direct supertypes (T land and T_water are immediate supertypes of 
T_marsh, and have conflicting implementations associated in each of these types, 
being computed in T_water but stored in T_land, as depicted in auxiliary cacheSC). 
We have assumed that the type implementor opted for the stored implementations 
to be inherited and therefore each instance of T_marsh requires a total of three slots: 
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slot 0 holds the reference to the type, slot 1 holds the reference to the collection 
of pollutants, and slot 2 holds the value of the duck population. 

We iterate over each of the behavior objects in the inherited interface of T_marsh 
generated during behavioral inheritance. If a behavior exists in only one supertype's 
interface, this signifies a conflict-free condition; thus, no conflict resolution is 
required. The implementation for that behavior may be safely inherited together 
with its associated function (stored or computed). The appropriate entry in the 
supplementary cache, indicating a stored or computed association, is inserted. If 
the association is with a computed function, then the address of that function is 
also inserted into the dispatch cache. All the stored functions will possess a NULL 
entry in the dispatch cache until class creation time. At that time, slots will be 
assigned to all the stored functions, one slot per pair of set-get accessors. This may 
require a reallocation of slots to behaviors, which is entirely system managed. 

For each conflicting behavior, the conflict resolution policy has to be applied. 
The supplementary cache values for that behavior are examined. If they happen 
to indicate a computed function for all the conflicting supertypes, the values of 
the addresses of the functions from the dispatch cache are examined. If these are 
identical for each of the types in the set of conflicting supertypes, then this behavior's 
implementation is safely inherited and the corresponding address is inserted into 
the dispatch cache. A computed indication is placed in the supplementary cache. 

If the conflicting behavior is implemented by a stored function in all the supertype 
entries, the corresponding value of T_function is examined for each type. If these 
match, then a stored indicator is placed in the supplementary cache, and a NULL 
is entered into the dispatch cache. Recall that, for all the stored functions, the 
dispatch cache will hold the corresponding slot number to access (an identical value 
for each paired set-get) instead of the address of the executable code. These slot 
numbers will be inferred and allocated during class creation only, at which time it 
will be possible to determine the total number of all the associated stored functions. 

In the event that an inherited behavior is associated with a stored function in 
one of the supertypes, and a computed function in another, or if there is mismatch in 
the values of function pointers, then no conflict resolution is possible by the system, 
and a NULL is entered in both caches. It is the type implementor's responsibility 
to associate this behavior with an appropriate implementation of his choice, or to 
specify which of the supertype's implementations is to be inherited. A message- 
requesting intervention will be displayed. The cache values for this behavior must 
be inserted (i.e., each behavior must be associated with some function) before class 
creation so that the newly established type is considered functionally complete. 

4. Persistence Modgl 

A fundamental decision governing OBMS implementation is the strategy employed 
for managing persistent objects. Persistence is defined as the ability of an object 
to survive across multiple application program executions, and a persistent object is 
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one that has this property. The persistence model of TIGUKAT adheres to the 
following principles: 

1. Persistence is transparent to the user. TIGUKAT Query Language (TQL) and 
TIGUKAT Control Language (TCL) provide a declarative specification for 
indicating that an object is persistent. Users do not perform any explicit 
input/output operations, and they do not open and close files. TIGUKAT 
coordinates with the low-level storage manager to provide persistence trans- 
parently. 

2. Persistence is orthogonal to the type of an object (Atkinson and Buneman, 1987). 
A type can be made persistent or transient. The instances of a type can be 
either persistent or transient. The only dependency is that, if an object is 
made persistent, then its type must also be made persistent because an object 
cannot exist without a type. These are described as persistence side-effects 
(PSEs) below. 

3. Persistence is independent of the query model (Atkinson and Buneman, 1987). 
Queries do not differentiate between transient and persistent objects. Both are 
queried in a uniform way, using the same language constructs. This principle 
is followed in the development of a programming language interface to 
TIGUKAT. 

Five basic approaches to persistence have been identified (Zdonik and Maier, 
1990). The first strategy requires that a decision about persistence be made prior to 
object creation. Depending on whether a persistent or transient object is needed, 
an appropriate object creation routine is invoked on the object. Thus, there are 
separate routines for creating transient and persistent objects. 

The second approach is called reachability-based persistence. This methodology, 
pioneered in PS-Algol (Atkinson et al., 1983) and incorporated by 02 (Bancilhon et 
al., 1992), requires that persistent objects hang off a persistent root via a direct or 
indirect reference. When an object o is made persistent, all objects in the transitive 
closure (i.e., reachable from o) are made persistent. Object o becomes a root for 
persistence. In this scheme, every object reachable from a root is made persistent 
or transient when the root is made persistent or transient. 

The third approach is allocation-based persistence. This approach restricts 
the persistence of an object by requiring it to be allocated within a persistent 
container (collection) during object creation. This requires the existence of a 
persistent storage space with variables naming locations within that space. Objects 
written into persistent variables are guaranteed to be persistent as long as they 
are maintained in the persistent variable. ObjectStore (Lamb et al., 1991) takes 
this approach, although it renders garbage collection difficult due to the dangling 
references problem. 

The fourth approach is type-based persistence where some types are declared 
to be persistent, and an object is persistent if it is an instance of a persistent type. 
The E language (Richardson and Carey, 1989; Richardson et al., 1989; Schuh et 
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al., 1990) uses a similar approach, and maintains a parallel hierarchy of persistent 
and corresponding non-persistent types. 

The fifth approach (which we follow) associates persistence with individual ob- 
jects, and requires explicit declaration of persistence, which may occur anytime during 
an object's existence. We define primitive behaviors B_persistent and B_transient on 
T objec% which are applicable to all objects in the system. These behaviors coerce 
the receiver object to be persistent or transient, respectively. The TIGUKAT user 
languages provide declarative constructs for making individual objects or collections 
of objects persistent or transient. The system translates these requests to applications 
of B.persistent or B_transient on the affected objects. 

We opted for object-based persistence because it best maintains the uniformity 
of object access, and does not restrict the use of types for persistent or non- 
persistent purposes. Any object created during a session (either a query session 
or an application program execution session encapsulated as a transaction) can be 
explicitly made persistent (or transient) at any time during the session. Thus, all 
TIGUKAT objects are potentially persistent. 

The support for persistence is a behavioral extension to the model. Behaviors 
B.persistent and B_transient are added to the type T_obj ec t  and, thus, are applicable 
to any object. This clarifies the fact that all objects are potentially persistent (or 
transient) in TIGUKAT. The language constructs for persistence in TQL and TCL 
invoke these behaviors. 

TIGUKAT queries operate on collections and return collections as results: Since 
collections are objects, we permit the existence of persistent as well as transient 
collections, which can contain a mixture of both transient and persistent member 
objects. The transient members of a collection must cease to exist at the end 
of a particular session, even if the collection is persistent. On the other hand, 
the persistent members of a collection must continue to exist in their respective 
class extents after a particular session ends. This is true even if the collection is 
transient and ceases to exist at the end of a session. This does not cause a problem, 
because the persistent objects in a transient collection reside in the (persistent) 
class associated with the type of these objects. Thus, these objects are available 
following the session even if the collection is not. All collections generated as a 
result of query execution are initially transient. The semantics of handling each case 
of transience and persistence of objects, collections, classes, and types are described 
by implementations for the B.persistent and B_transient behaviors, which we discuss 
below. 

Coercing an object to be persistent could result in persistence side-effects (PSEs), 
which propagates persistence to type and class objects related to the original object. 
The persistence matrix (Figure 10) depicts the various alternative strategies involved 
in making a TIGUKAT object persistent. Reading across rows, a "-b" entry indicates 
a PSE, while a . . . . .  entry indicates PSE-free persistence (the diagonal entries are 
not a concern and, therefore, are PSE-free). Making a type persistent is PSE-free. 
Its corresponding class and instances, if they exist, are not required to be persistent. 
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Figure 10. The persistence matrix 
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Class -k- x -- 

Inst + + x 

If a class object is made persistent, a PSE occurs, which makes its corresponding 
type persistent as well. However, the instances of this class do not need to be made 
persistent. The final case is when a particular instance object is made persistent. 
This causes PSEs that make both its class and its corresponding type persistent. 
This protects against the object being stored as a persistent instance of a transient 
type and, sometime later, being erroneously accessed as an instance of a non- 
existent type (if its transient type disappears in the meantime). The primitive types, 
classes, behaviors, and functions are, by default, perpetually persistent and cannot 
be deleted. This is necessary for the integrity of the system. 

The complement of the persistence matrix is the transience matrix (not shown). 
This matrix is derived from the repercussions of making persistent objects transient 
(by applying a behavior B_transient defined on T obj ec t  for example). The effects 
are precisely the opposite of those described in the persistence matrix (i.e., making 
an instance transient will not affect its type or class; making a class transient does not 
affect its corresponding type, but all its instances will be made transient; and making 
a type transient will make its corresponding class and all its instances transient). 

This model of persistence is fairly low-level, and the referential integrity among 
objects is a problem to consider. In particular, when a transient object disappears, 
how are dangling references to this object handled? 

One approach is to offload the responsibility onto the application programmer, 
who must update references to transient objects before the end of a session. This 
approach is unacceptable for obvious reasons. Another approach is to use reachability 
persistence, which disallows persistent objects to reference transient ones, since, 
when an object is made persistent, the transitive closure of all objects reachable 
from that object are made persistent as well. Reachability-based persistence is not 
useful in a uniform model like TIGUKAT because, conceptually, all objects in the 
entire objectbase are reachable from any object. Consider an arbitrary object. Since 
every object knows its type, the type of the object is reachable, and must be made 
persistent. Every type knows its class and, therefore, the class is reachable, and 
should be made persistent. Every class knows its instances, and all instances of 
that class are made persistent. Every type knows it supertypes and subtypes and, 
thus, the class/instance persistence propagates over the entire lattice and makes all 
objects persistent. 

The approach that we use has the net effect of transforming transient objects 
into perpetually persistent undefined objects at the end of a session (or transaction). 
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This always is safe because undefined is an instance of T_null, which is a subtype 
of all types. The substitutability property allows us to use undefined anywhere an 
instance of a supertype is used. 

Operations on a TIGUKAT objectbase occur within a given user session (which 
will be modeled as a transaction when the programming language is developed). A 
session defines a scope for the transience of objects. There are save (commit) and 
quit (abort) statements that can be used in a session. In this sense, a session serves 
as a simple, fiat transaction model. At the end of a session, all transient objects 
are logically replaced by the perpetually persistent undefined object. This can be 
efficiently implemented by pointer swizzling. That is, we modify the OID mapping 
so that it appears as though the transient object was written to stable storage at the 
location where the persistent undefined object exists. Then, all persistent objects 
that referenced the transient object will now reference the persistent undefined 
object and there will be no dangling references. 

In this approach, there is the potential for wasted stable storage when a persistent 
object is made transient. The transformation to the persistent undefined object 
occurs as usual, but we must somehow reclaim the storage occupied by the object 
when it was persistent. With a central OID to disk address mapping we can simply 
update this mapping, and reclaim the storage immediately. If, however, objects 
hold the disk addresses directly, then there may be other persistent objects that 
reference the old disk address and we cannot simply reclaim the space without 
updating these references. In this case, a garbage collector can be used to manage 
reference counts and reclaim the storage after all references have been updated. 
In the meantime, the storage must be transformed into a persistent undefined 
object so that objects referencing it will not see the old persistent object, but rather 
the undefined object. This transformation easily is implemented by encoding the 
information in the header of the old object on disk. 

Our approach to single-object persistence and the maintenance of the PSEs are 
described in the F_makePersistent and F_makeTransient functions below that serve as 
implementations for the B_persistent and Biransient behaviors defined on T_obj ect.  

F_makePersistent (o) 
This is the implementation of the B_persistent behavior defined on T_object. 
INPUT: An object o to be made persistent. 
if object o is transient then 

Call storage manager to write o to stable storage and update log 
Apply B_persistent to the type and class of o: 

o. B_mapsto. B_persistent 
o. B_mapsto. B_classof B_persistent 

if object o is a class then 
Apply B_persistent to the associated type of the class: 

o. B_typeof B_persistent 
endif  

endif  
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The recursion of the F.makePersistent implementation is ended by making prim- 
itive T type and primitive classes C_type and C_class-class perpetually persistent. 
T type  and C_type represent the end of the type chain, while C_class-class repre- 
sents the end of the meta-class chain. Note that these are the minimal primitive 
persistent objects. In practice, the recursion is ended much sooner, because many 
more primitive objects are perpetually persistent (like C_class, for example). 

At commit time (or the end of a session), the transaction management facility 
ensures that persistent objects are written out to st~,ble storage. No changes are 
made to persistent objects with respect to references to transient objects. Dangling 
references are avoided by the transformation described above. 

The implementation for the B_transient behavior is as follows: 

F_make Transient (o) 

This is the implementation of the B_transient behavior defined o n  T_obj ect .  

INPUT: An object o to be made transient. 

if object o is persistent then 
Call the storage manager to mark object o transient and update log 
if object o is a class then 

Apply B_transient to every member in the shallow extent of the class 
endif 
if object o is a type then 

Apply B_transient to the associated class of the type: 
o. B_classof B_transient 

endif 
endif 

At commit time, all transient objects are replaced by the persistent undefined 
object. This ensures that there will be no dangling references to the transient objects, 
because persistent objects that reference the transient object will now reference the 
persistent undefined object. 

The explicit deletion semantics for persistent and transient objects are closely 
related to the F_makeTransient implementation and the transient-to-undefined object 
transformation. The reason is that, when an object is explicitly deleted, there is 
still the problem of dangling references to consider. The B_drop behavior defined 
o n  T_object  can be used to explicitly delete an object. The deletion semantics is 
related to schema evolution when the object to be dropped is part of the schema 
(i.e., a type, class, collection, behavior, or function). Schema evolution is beyond 
the scope of this article, but is addressed in Peters (1994). 

The only difference in the transient object and deleted object semantics is the 
timing of events. When an object is deleted (whether it be transient or persistent), 
it is immediately replaced by the persistent undefined object, rather than at the 
end of a session, as is the case for transient objects.. A simplified implementation 
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of the B_drop behavior for deleting objects is defined as follows and the similarities 
to F_makeTransient are apparent: 

F_deleteObject (0) 

A simplified implementation of the B_drop behavior defined on T_object. 

INPUT: An object o to be deleted. 

Call the storage manager to mark object o as deleted and update log 
if  object o is a class then 

Apply B_drop to every member in the shallow extent of the class 
endif  
if object o is a type then 

Apply B_drop to the associated class of the type: 
o. B_classof. B_drop 

endif  
Perform schema evolution operations if o is a schema object 

The single-object persistence approach can be transitively applied to all objects 
referenced by the object being made persistent. This can proceed to any number of 
levels until the transitive closure is reached. Thus, we can identify the boundaries 
for the transitive application of persistence. The lower bound is when only a single 
object is made persistent (our approach). The upper bound is when all objects 
in the transitive closure are made persistent (reachability persistence). In a finite 
objectbase, there are a finite number of levels between these two boundaries. We 
call the lower limit O-persistence, the upper limit n-persistence, and any level between 
these two i-persistence. For example, the persistent all construct of TQL and TCL 
performs 1-persistence on a collection argument. That is, the collection and all of 
its members (1 level of reference) are made persistent. We show that, in a uniform 
model like TIGUKAT, the transitive closure from any object is the entire objectbase 
and, so, n-persistence is not useful. 

5. Query Model and Language 

An identifying characteristic of the TIGUKAT query model is that it is a direct 
extension to the object model. In other words, it is defined by type and behavior 
extensions to the primitive model. We define a type T_query as a subtype of 
T_function in the primitive type system. This means that queries have the status 
of first-class objects, and they inherit all the behaviors and semantics of objects. 
Moreover, queries are functions and can be used as implementations of behaviors, 
they can be compiled, and they can be executed. 

Incorporating queries as a specialization of functions is a natural and uniform 
way of extending the object model to include declarative query capabilities. The 
major benefits of this approach are as follows: 
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1. Queries are first-class objects, meaning they support the uniform semantics of 
objects, they are maintained within the objectbase as another kind of object, 
and they are accessible through the behavioral paradigm of the object model. 

2. Since queries are objects, they can be queried, and can be operated on by 
other behaviors. This is useful in generating statistics about the performance 
of queries, and in defining a uniform extensible query optimizer. 

3. Queries are uniformly integrated with the operational semantics of the model 
and, thus, queries can be used as implementations of behaviors (i.e., the result 
of applying a behavior to an object can trigger the execution of a query). 

4. The query model can be extended by subtyping T_query. This can be used to 
specialize the notion of queries into additional types that can be incrementally 
introduced and developed as new kinds of queries are discovered. For example, 
we subtype T_query into T_adhocQuery and T_productionQuery and then 
define different evaluation strategies for both in the query optimizer. Ad hoc 
queries may be interpreted without incurring high compile-time optimization 
strategies while production queries are compiled once and executed many 
times. 

The languages for the query model include a complete object calculus, an 
equivalent object algebra, and an SQL3-1ike user language. The TIGUKAT object 
calculus is a first-order predicate language. Predicates of the calculus are defined on 
collections (essentially sets) of objects, and a calculus expression returns a collection 
of objects as a result. This gives the language closure. The calculus includes a function 
symbol for behavior evaluation to incorporate the behavioral paradigm of the object 
model. This allows the specification of path expressions (or implicit joins) in calculus 
formulas. The calculus is object-creating, and supports a controlled creation and 
integration of new collections, classes, types, and objects into the existing schema. 

The safety of the calculus is based on the evaluable class of queries (Gelder 
and Topor, 1991), which is arguably the largest decidable subclass of the domain 
independent class (Makowsky, 1981). We extend this class by making use of 
equivalence (=)  and membership (C) operators in queries for object generation. 
This alleviates the need for explicit range specifications for those variables that can 
be generated from the given operators. 

The TIGUKAT object algebra has a behavioral/functional basis as opposed to 
the logical foundation of the calculus. Algebraic operators are modeled as behaviors 
on the primitive type T_collection. Like the calculus, the algebra is closed in that 
every algebraic operator works on collections and returns a collection as a result. 

The operators of the algebra include typical set operations, a collapse operator 
for flattening nested collections, a select for returning objects that satisfy a predicate, 
an operator for applying a series of behaviors to a collection of objects, an operator 
to project behaviors, an operator for unconditionally combining objects, a join for 
combining objects based on a join predicate, a generating join for producing objects 
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from other objects and joining the generated objects with the ones from which they 
were generated, and a reduction operator for separating joined objects into their 
original components. 

The first-order expressiveness of the calculus, its safety, as well as the equivalence 
of the calculus and algebra were proven elsewhere (Peters, 1994; Peters et al., 1993b). 
In this context, a calculus expression is considered safe if it can be evaluated in 
finite time, and produces finite output (Ozsoyoglu and Wang, 1989; Peters, 1994). 
The remainder of this section describes the user language of TIGUKAT, with a 
focus on its constructs for managing persistence and querying the objectbase. 

The main function of the TIGUKAT language is to support the definition, 
manipulation, and retrieval of persistent (and transient) objects in an objectbase. The 
language consists of three parts: the TIGUKAT Definition Language (TDL), which 
supports the definition of meta-objects (i.e., types, collections, classes, behaviors, 
and functions), the TQL, which is used to manipulate and retrieve objects, and 
the TCL, which supports the session specific operations (e.g., open, close, save). 
We focus on TQL and TCL in this article (the complete specification of all three 
languages was given in Peters et al., 1993b; Lipka, 1993). 

TQL has a syntax based on the SQL3 select-from-where structure, and a formal 
semantics dictated by the TIGUKAT object calculus. Thus, TQL combines the 
power of declarative query languages with object-oriented features in the form of 
the international data-speak of SQL. The broad acceptance of SQL as a standard 
query language in relational databases, together with the current efforts on SQL3 
to extend the syntax and semantics with object-oriented features (Gallagher, 1992) 
are the main motivations for our SQL basis. 

The semantics of TQL is defined in terms of the object calculus. In fact, there 
is a complete reduction from TQL to the object calculus (Lipka, 1993). In addition, 
TQL accepts path expressions (implicit joins; Kim et al., 1989) in the select, from, 
and where clauses. Object equality is defined on the primitive type T_obj oct, thus 
explicit joins are also supported by TQL. The results of queries can be queried, 
since queries operate on collections, and always return a finite collection as a 
result. Queries can be used in the from and where clauses of other queries (i.e., 
nested queries). Objects can be queried regardless of whether they are persistent 
or transient. 

Note that the syntax for the application of aggregate functions is not explicitly 
supported in the current implementation of TQL. However, because the under- 
lying model is purely behavioral, these functions are defined as behaviors on the 
T_col lec t ion  primitiv e type, and can be applied to any collection including those 
returned as a result of a query. 

TQL consists of the four basic operations: select, insert, delete, and update, 
along with three binary operations: union, minus, and intersect. In this article, we 
only discuss the select, union, minus, and intersect statements. 
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The basic query statement of T Q L  is the select statement,  which has the following 
syntax. 8 

<select statement >:  select <object variable list > 

[into [persistent [all]] <collection name > ]  

from <range variable list > 

[where <boolean formula > ]  

The select clause in this statement identifies objects to be returned in a new collection. 
There  can be one or more object variables of different formats (constant, variables, 
path expressions, or index variables) in this clause. They correspond to the free 
variables in an object calculus formula. The into clause declares a reference to a 
new collection that will hold the result. This collection optionally can be made 
persistent by specifying the persistent keyword. This does not make the members  
of the collection persistent; to do this, the all keyword must be specified as well. 
If  the into clause is not specified, a new transient collection is created. There  is no 
reference to this collection, and it disappears at the', end of a query. In this case, 
the result cannot be retained for later use by another  query. It  can be printed only 
to the screen, for example. The from clause declares the ranges of object variables 
in the select and where clauses. Every object variable can range over an existing 
collection or a collection returned as the result of a subquery. A subquery is a 
nested select-from-where clause that can be given explicitly or specified as a reference 
to an existing query object. A range variable statement in the f rom clause is as 
follows: 

<range variable > : <identifier list > in <collection reference> [--]  

<collection reference >:  <term > [ ( <quely statement >) 

The collection reference in the range variable definition can be followed by a minus 
-- ,  which refers to the shallow extent of a class, which is a collection of objects 9 
The default is the deep extent for classes. The term in the collection reference 
definition is either a constant reference, a variable reference, or a path expression. 

The where clause defines a boolean formula that must be  satisfied by the objects 
returned by a query. Boolean formulas have the following syntax: 

8. The notation used throughout this section is as follows: all bold words and characters correspond to 
terminal symbols of the language (e.g., keywords, special characters). Nonterminal symbols are enclosed 
between < and > .  Vertical bar [ separates alternatives. The square brackets [ ] enclose optional material 
which consists of one or more items separated by vertical bars. 

9. In earlier articles, we used the plus -Jr- sign for the shallow extent. However, it was pointed out to us by 
the referees that this was counter-intuitive, because the shallow extent actually reduces the cardinality of 
the range. We have, therefore, changed the symbol to --. 
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<boolean formula >: <atom> 
not <boolean formula > 

<boolean formula > and <boolean formula > 

<boolean formula > or <boolean formula > 
(<boolean formula >) 

<exists predicate > 
<forAll predicate > 
<boolean path expression > 

where an atom is defined as follows: 
<atom >: <term > = <term > ]<identifier > E <term > 

and a term is either a variable reference, a constant reference, or a path expression. 
Two special predicates are added to TQL boolean formulas to represent exis- 

tential and universal quantification. The existential quantifier is expressed by the 
exists predicate of the form: 

<exists predicate >: exists <collection reference > 

The exists predicate is true if the referenced collection is not empty. The universal 
quantifier is expressed by the forAllpredicate, which has the following structure: 

<forAll predicate >: forAll <range variable list > <boolean formula> 

The syntax of the range variable list is the same as in the from clause of the select 
statement. It defines variables that range over specified collections. The boolean 
formula is evaluated for every possible binding of the variables in this list. Thus, the 
entire forAllpredicate is true if, for every element in every collection in the range 
variable list, the boolean formula is satisfied. 

The last component of the boolean formula definition is the boolean path 
expression defined simply as: 

<path expression ~> = TRUE/FALSE 

To avoid such an artificial construct, we include a boolean path expression in the 
definition of a TQL formula under two conditions. First, all invoked functions are 
assumed to be side-effect-free (which is a common assumption in many object query 
models) and, second, the result type of the entire path expression must be a boolean 
type. 

There is a sizeable literature on object query models and languages. This 
continues to be an active area of research with many language and query model 
definitions. We do not provide a detailed comparison of our model and language 
with others. We refer the interested reader to Mitchell et al. (1993) for an overview 
of these languages and models. 

The following queries on the GIS example objectbase illustrate the expressive 
constructs of TQL and how the persistence of results are specified. 
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Example 1. Return the zones that are part of some map, and are within 10 units from 
water. Project the result over B_title and B_area. Place the result into a persistent 
collection called L_floodZones and make all members persistent. 

select o [B_title, B_area ] 
into persistent all L_floodZones 
from p in C_map, o in p. B_zones O, q in C_water 
where o. B_proximity (q)  < 10 

Example 2. Return pair's consisting of a person and tile title of a map such that the 
person's dwelling is in the map. The result is a transient collection that disappears 
at the completion of the query. 

select p, q. B_title 0 
fromp in C_person, q in C_map 
where p. B_residence O. B_inZone 0 E q. B_zones 0 

The following is an example of a reflective query and illustrates that no new 
constructs are needed in the language to query the :schema. 

Example 3. Return the types that define the behavior B_age with the same imple- 
mentation as one of its supertypes. Place the result into a persistent collection 
called L_inheritedAgeTypes, but do not make the members persistent. 

select t 
into persistent L_inheritedAgeTypes 
from t in C_type, r in t. B.supertypes 0 
where B_age C t. B_interface 0 and B_age C r. B dnterface 0 

and B_age. B_implementation (t) = B_age. B_implementation (r) 

T Q L  also supports three binary operations: union, minus, and intersect. The 
syntax of these statements is specified below. The <.'collection reference> field can 
be specified as a subquery or as a reference to an existing (transient or persistent) 
collection. 

<collection reference > union <collection reference > 
<collection reference > minus <collection reference > 
<collection reference > intersect <collection reference > 

T Q L  has a proven equivalence to the formal languages, making it easy to perform 
logical transformations and argue about its safety. The theorems and proofs of 
equivalence were given in Lipka (1993). 

The TIGUKAT control language (TCL) defines statements for controlling op- 
erations within an objectbase session. In the absence of a computationally complete 
programming language, TCL serves to provide a scope for execution and interaction 
with a TIGUKAT objectbase. 

Since everything in TIGUKAT is treated as a first-class object, sessions are 
also represented by objects. Specifically, session objects are instances of T _ s e s s i o n  
type, which is a direct subtype of T_objec'e. Every TIGUKAT user has at least 
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one instance of T_session, which is referred to as a root session. Other sessions 
can be opened and manipulated from this session by issuing session-specific TCL 
operations: open, close, save (commit), and quit (abort). TCL also provides an 
assignment statement for creating object references, as well as two forms of a 
persistent operation whose syntax is as follows: 

1. persistent <object reference list > 
2. persistent all <collection reference > 

The semantics of the first form is to  make every object in the given object 
reference list persistent according to the rules defined in Section 4. The second 
form requires the argument to be a collection. The semantics is to make the 
collection persistent and all of its members persistent as well. 

The inverse operations of the persistent statements are the transient statements 
whose syntax is as follows: 

1. transient <object reference list> 
2. transient all <collection reference> 

6. Other DBMS Functionalities 

In addition to the powerful object and query models that TIGUKAT provides, 
the system is enhanced by a number of other functions commonly associated with 
DBMSs. In this section, we provide a brief overview of three functions that have been 
under development: query optimizer, the versioning scheme, and the transaction 
manager. 

6.1 Query Optimizer 

The goal of query optimization is the choice of the "optimum" execution plan for 
a query from a set of equivalent execution plans specified as algebraic expressions. 
The set of equivalent execution plans are obtained by the application of algebraic 
transformation rules and the optimum strategy is the one with the lowest cost 
according to a cost function. Thus, to characterize a query optimizer, three things 
need to be specified: 

1. The transformation rules that generate the alternative query expressions, 
which constitute the search space; 

2. A search algorithm that allows one to move from one state (i.e., execution 
plan) to another in the search space; and 

3. The cost function that is applied to each state. 

The TIGUKAT query optimizer (Mufioz, 1993) follows the philosophy of representing 
system concepts as objects, and is along the lines of Lanzelotte and Valduriez (1991). 
The search space, the search strategy, and the cost function are modeled as objects 
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Figure 11. Optimizer as part of type system 
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(Figure 11). The incorporation of these components of the optimizer into the type 
system provide extensibility via the basic object-oriented principle of subtyping and 
specialization. 

The states in the search space are modeled as processing trees (PT) whose 
leaf nodes are references to collections, and whose non-leaf nodes denote behavior 
applications whose results are other objects. Those nodes that correspond to 
algebraic operator behaviors return temporary collections as result. 

Algebraic operators (e.g., B_Select, B.Join) are defined as behaviors of the 
T_collecZion type. They are modeled as instances (shown as  dashed boxes in 
Figure 11) of type T_algebra, which is a subtype', of type T_behavior. The 
implementation (execution) algorithms for these algebraic operators are modeled 
as function objects (e.g., F_HasMoin, F_ScanSelect). These implementation functions 
cannot be used as nodes of a PT, since these nodes should represent execution 
functions all of whose arguments have been marshalled. Therefore, T Alg0p is 
defined as a type whose instances are functions with marshalled arguments, and 
represent nodes of a PT. In this fashion, each node of a PT represents a specific 
execution algorithm for an algebra expression. 

Search strategies are similarly modeled as objects, but separate from the search 
space. T_SearchSZrat is defined as a subtype of type T_funct ion and it can, in turn, 
be specialized. Figure l l  shows the specialization of T_SearchStral; into enumerated 
search strategies T_EnumSS and randomized search strategies T_RandoraSS. The 
algebraic transformation rules that control the movement of the search strategy 
through the search space are implemented as instances of T_AlgEqRule, which is 
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a subtype of T_Rule. 
Cost functions (instances of T_CostFunc) are defined as special types of functions, 

making them first-class objects. Each function is associated a cost through the 
behavior B_costFunction. Application of this behavior to a function object f (i.e., 
f.B_costFunction) returns another function object g of type T_CostFunc, which 
implements the computation of the cost of executing functionf. This allows definition 
of parameterized cost functions, whose values are dependent upon a number of 
factors. 

Modeling the building blocks of a cost-based optimizer as objects provides the 
query optimizer with the extensibility inherent in object models. The optimizer 
basically implements a control strategy that associates a search strategy and a cost 
function to each query. 

6.2 Versioning 

Traditionally, a version of a particular modeled entity (e.g., object, type, schema, 
objectbase) is perceived as a state of that entity as it existed at a particular time 
during its evolution. Version control is the ability to effectively and selectively 
manage versions of entities. For example, engineering design applications may 
track versions of components that have been put into production, stock market, and 
taxation analysis applications, and may use versions of a futures model to evaluate 
"what if" scenarios, and to provide alternate futures scenarios. Collaborative systems 
may have different design teams working on different versions of an overall design, 
and a system may even version the schema as it evolves, so that old and new objects 
can coexist in the system without having to perform conversions on the instances 
of the schema (Skarra and Zdonik, 1986). Some researchers have separated user- 
level versions from system-level versions, and then limited the version model to 
encompass user-level versions only (Sciore, 1994). With uniform object models such 
as TIGUKAT, both user-level and system-level versions can seamlessly coexist, and 
a single version model suffices to support both. The version model developed for 
TIGUKAT (Peters et al., 1995) uniformly supports both user-level and system-level 
versions. 

Temporal behaviors and branching time (i.e., branching behavior histories) are 
the framework for version support in TIGUKAT A behavior can be temporal or 
non-temporal. The non-temporal behaviors maintain the most recent (i.e., snapshot) 
results, while the temporal behaviors maintain a history of results as the behavior 
changed over time. This history may be represented by a linear time-model or a 
branching time-model. We propose to use the latter where each branch represents 
an alternate future (or version) of the behavior history. The unique aspects and 
advantages of our approach are the following: 

1. The model is general in that it can be applied to any history tracking system 
that incorporates branching time. For example, it can be used on both valid 
time and transaction time as long as (1) they are modeled as histories, and (2) 
branching time is supported. Other systems support valid and transaction time 
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histories (Rose and Segev, 1991; Dayal and Wu, 1992), however, branching 
time is not directly supported in these systems (branching time is supportable 
in the model discussed in Dayal and Wu, 1992), but the burden of developing 
a branching model is left up to the user). 

2. A portion of a behavior history (called a version slice) can be defined by 
specifying a start time and an end time on the history timeline. A version 
slice denotes the initial history of a temporal behavior for a given version, 
and only that portion of the original behavior hJistory is visible in the version. 
This is useful for excluding parts of the behavior history from the version. 
Version slicing is unique in that other temporal versioning models define a 
version based on the entire behavior history up to a certain end time. 

3. Each version slice can spawn an independent branch on the timeline after the 
end of a slice. This is useful since it allows the behavior to temporally evolve 
along this branch, independent of any other versions. We are unaware of 
any other model that allows version slices and versions to temporally evolve 
independent of other versions in this manner. 

4. A version slice can mirror or copy the portion of the history on which it is 
defined. A mirrored slice reflects all changes to the slice in both the original 
and the version (i.e., updates to the version or the original within the slice are 
visible to both). A copied slice is a separate, independent copy of the original 
behavior history that becomes part of the new version (i.e., the original and 
the version have their own copy of the slice, and updates to the version or 
the original within the slice are not visible in the other). 

5. The version model is general and, when incorporated into a uniform object 
model like TIGUKAT, system-level versions such as versions of schema and 
versions of the entire objectbase can be modeled in addition to user-level 
versions without the need for extensions. This unifies user-level versions and 
system-level versions within a single framework. 

We have completed the design of the branching time version model, defined a 
uniform behavioral representation of this model within TIGUKAT, and developed 
user language support for managing versions. The versioning approach has been 
mapped to other approaches such as versions of types, versions of schema, and 
versions of the entire objectbase, which are useful for schema evolution. This 
signifies the uniform feature of the version model as an underlying framework 
to support all types of versioning approaches. We are currently undertaking the 
implementation of the version model. 

6.3 Transactions 

Conventional transaction management involves the synchronization of simple read/ 
write access to a shared database in an environment that is not failure-free. Both 
the transaction models and the synchronization principles that are used in these 
environments are simple compared to those that are needed in OBMSs. The 
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complexity of the application domains that the OBMS technology is expected to 
serve is reflected in the type of transaction management support that they require. In 
these systems, there is a recognized need for more general and powerful transaction 
models (Elmagarmid, 1992). An overview of transaction management concerns in 
OBMSs was given in Ozsu (1994). 

One important characteristic of the relational data model which is the basis 
of most current commercial systems--is its lack of a clear update semantics. The 
model, as it was originally defined, clearly spells out how the data in a relational 
database are to be retrieved (by means of the relational algebra operators), but it 
does not specify what it really means to update the database. The consequence 
is that the consistency definitions and the transaction management techniques are 
orthogonal to the data model. It is possible--and indeed it is common--to apply the 
same techniques to non-relational DBMSs or even to non-DBMS storage systems. 

The independence of the developed techniques from the data model may be 
considered an advantage, since the effort can be amortized over a number of different 
applications. Indeed, the existing transaction management work on OBMSs have 
exploited this independence by porting the well-known techniques to the new system 
structures. During this porting process, the peculiarities of OBMSs such as class 
(type) lattice structures, composite objects, and object groupings (class extents) are 
accommodated, but the techniques are essentially the same. 

In TIGUKAT, we are taking a different approach. It is our claim that, in 
OBMSs, it is not only desirable to model update semantics within the object model, 
but it is indeed essential for the correct operation of these systems. The arguments 
are as follows: 

1. In OBMSs, both data and operations on data (which are called methods, 
behaviors, or operations in various object models) are stored. Queries that 
access an object-oriented database refer to these operations as part of their 
predicates. In other words, the execution of these queries invokes various 
operations defined on the classes (types). To guarantee the safety of the query 
expressions, existing query processing approaches restrict these operations to 
be side-effect free, in effect disallowing them to update the database. This 
is a severe restriction that should be relaxed by the incorporation of update 
semantics into the query safety definitions. 

2. Transactions in OBMSs affect the type (class) lattices. Thus, there is a direct 
relationship between dynamic schema evolution and transaction management. 
Many of the conventional techniques employ locking on this lattice to ac- 
commodate these changes. However, locks (even multi-granularity locks) 
severely restrict concurrency. The definition of what it means to update an 
objectbase, and the definition of conflicts based on this definition of update 
semantics would allow more concurrency. 

It is interesting to note again the relationship between changes to the type 
(class) lattice and query processing. In the absence of a clear definition of 
update semantics and its incorporation into the query processing methodology, 
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most of the current query processors assume that the database schema (i.e., 
the type (class) lattice) is static during the execution of a query (Staube and 
Ozsu, 1990a). 

3. Since TIGUKAT treats all system entities, including the database schema 
(i.e., meta-objects) and queries, as objects that can themselves be queried, it 
is only natural to model transactions as objects. However, since transactions 
are basically constructs that change the state of the database, their effects 
on the database need to be clearly specified. 

Within this context, it should also be noted thai: the application domains that 
require the services of OBMSs tend to have somewhat different transaction 
management requirements, both in terms of transaction models and in terms 
of consistency constraints. Modeling transactions as objects enables the 
application of the well-known object-oriented techniques of specialization 
and subtyping to create various different types of transaction managers. This 
gives the system extensibility. 

4. Some of the requirements require rule support and active database capabilities. 
Rules themselves execute as transactions, which may spawn other transactions. 
It has been argued that rules should be modeled as objects (Dayal et al., 
1988), but if that is the case then, certainly, transactions should be modeled 
as objects too. 

Consequently, we are now working to define the update semantics of the TIGUKAT 
object model, and are investigating a powerful transaction model (which may better be 
called a workflow, following more current terminology) that meets the requirements 
of the application domains that OBMSs are likely to serve, and is modeled in the 
system as objects. The concurrency control algorithms that are appropriate for 
these models exploit the semantics of operations and provide flexibility to the type 
implementors in defining the concurrent execution semantics. Our work in this area 
is relatively recent and more concrete results will be reported in future articles. 

7. Conclusions and Future Directions 

In this article, we provide an overview of the TIGUKAT objectbase management 
system under development at the Laboratory for Database Systems Research at the 
University of Alberta. TIGUKAT has a uniform behavioral object model where 
everything is a first-class object, and the only means of accessing the objectbase is 
through behavior application. 

We have defined a query model for the system, complete with an object calculus, 
an object algebra, and a user language. The user-language consists of a definition 
language, a session language, and an SOL-based query language. The interpreters 
for the first two, and the compiler for the last one, have been implemented. An 
extensible query optimizer has been defined, and a type system to support this 
architecture has been implemented. The optimizer is being developed as a uniform 
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extension to the object model and, therefore, will be integrated with the model just 
like the query model has been. 

Current work on the system is progressing along five lines: (1) the incorporation 
of time into the object and query models, (2) the definition of the update semantics 
for the model, (3) the development of a view manager, (4) the development of 
storage structures to support query optimization (i.e., indexing and clustering issues), 
and (5) the definition of a transaction model and its incorporation into the model. 
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Appendix A: Primitive Type System 

The following tables show the signatures of the behaviors for the non-atomic types 
(except the container types), the signatures of the behaviors for the container types, 
and the signatures of the behaviors for the atomic types. The receiver type of 
a behavior is excluded, because the receiver must be an object of a type that is 
compatible with the type defining the behavior. The notation T_collection<T> is 
used to define a collection type whose members are of type T. The type specifications 
for the behaviors are the most general types. Types for some of the behaviors are 
revised in the subtypes. For example, the result type B_self is always the type of 
the receiver object and the result type B_new is always the membership type of the 
receiver class. 
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Table 2. Behavior signatures of non-atomic types of primitive type 
system 

J Type 

T_obJ ect  

T_type 

Signatures 
B_self" T_obj ect 

B_mapsto: T_type 
B_conformsTo: T_type --~ T_boolean 

B.equal: T_object ~ T_boolean 

B.notequal: T_object ~ T_boolean 

B_persistent: T_obj ect 

B_transient: T_obj ect 

B_newproe£" T_list<T_objecZ> .-+ 
T_list<T_set<T_behavior>> --~ T_object 

B_interface: 
B.native: 

B.inheritea~" 
B .specialize: 

B.subtype: 
B .subtypes: 

B.superfypes: 
B_sub-lattice: 

B_super-lattice: 
B_classof" 

B_tmeet: 
B_tjoin: 

B_tpmduct: 

T_set<T_behavior> 

T_set<T_behavior> 

T_set<T_behavior> 

T_type --~ T_boolean 

T_type --~ T_boolean 

T_set<T_type> 

T_set<T_type> 

T_poset <T_type> 

T_poset <T_type> 

T_class 

T_set<T_type> -~ T_type 

T_set<T_type> --~ T_type 

T_list<T_type> --~ T_type 

T_product B_compTypes: T_list<T_type> 
T_behavior 

T_function 

B_ndme: 

B_argTypes: 
B_resultType: 
B_semantics: 
B_associate: 

B.implementation: 
B ~primitiveApp~: 

B _apply: 
B_defines: 

T_str ing 
T_list<T_type> 
T_type --+ T_type 
T_obj ect 

T_type --~ T_function --~ T_behavior 

T_type --~ T_function 

T_object --~ T_object 

T_object --~ T_lis¢ --~ T_objec¢ 

T_set<T_type> 

B.argTypes: T_list<T_type> 

B.resultType: T_type 

B.source: T_object 

B.pdmitiveErecute: T_object --~ T_object 

B.basicErecute: T_list --+ T_object 

B_execute: T_l isz  --+ T_objec¢ 
B_compile: T_objec¢ 

B_ex~utable: T_object 
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Table 3. Behavior signatures of container types of primitive type 
system 

Type Signatures 

T_collection 

T_baE 

T_poset 

T _ l i s t  

B.memberType: T_type 

B.union: 
B.ai~.. 

B.intersect: 
B _collapse: 

B_select: 

B.project: 
B .map: 

B.product: 

B.join: 

B.genjoin: 

B.setEquak 
B_containedBy: 

B.cardinality: 
B_elementOfl 

B_insert: 
B .delete: 

T_collection-~T_collection 

T_collection--+T_collection 

T_collection-~T_collection 

T_collection 

T_string--+T_list<T_collection> --+ 

T_collection 

T_set<T_behavior>--~T_collection 

T_string-~T_list<T_collection>--÷ 

T_collection 

T_set<T_collection>--~ 

T_collection 

T_string--~T_list<T_collection>--* 

T_collection 

T_string-~T_list<T_collection>--+ 

T_collection 

T_collection--~T_boolean 

T_collection--*T_boolean 

T_natural 

T_object--~T_boolean 

T_object--~T_collection 

T_object--*T_collection 

B~ccun~nces: T_objec¢ ~ T_natural  
B.count T_natural 

Inherited behaviors refined to preserve duplicates 

B.ordered: T_object ~ T_object ~ T_boolean 

B.ordering: T_behavior 
Inherited behaviors refined to preserve ordering 

B_first: T_object 
B_last: T_object 
B_next: T_obj ect  

B.previous: T_obj ect  
Inherited Behaviors refined to preserve duplicates and ordering 

T_class B ~ e e p ~ n t  T_col lec t ion  
B ~ , :  T_object 

T_c la s s -c l a s s  BJI~v: T_type ~ T_class 

T_type-class B_new: T_set<T_type> --~ T_set<T_behavior> 

--~ T_type 

T_collection-class B.~4~: T_type --* T_collection 

T_product-class  B.tWw: T_list<T_object> ~ T_objec¢ 
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Table 4. Behavior signatures of atomic types; of primitive type 
system 

Type Signatures 

T_atomic 

T_boolean B_not: 

B_or: 

n f.. 
B_and: 

B_xor: 

T_boolean 

T_boolean.--~T_boolean 

T_object -+ T_object--+T_object 

T_boolean--÷T_boolean 

T_boolean--÷T_boolean 

T_character Bmrd: T_natural 

T_string Bmar T_character 

Bmdr: T_string 

BLoncat T_string -+ T_string 

T_real B_succ: 

B_pred: 

B_add: 

B_subtract: 

B_multiply: 

B _divide: 

B_trunc: 

B_round: 

B_less Than: 

B Jess ThanE Q : 

B.greater Than: 

B_greater ThanEQ: 

T_real 

T_real 

T_real--+T_real 

T_real --+T_real 

T_real--+T_real 

T_real--~T_real 

T_integer 

T_integer 

T_real--+T_boolean 

T_real--~T_boolean 

T_real--+T_boolean 

T_real--+T_boolean 

T_in teger  Behaviors from T_real refined to work on integers 

T_natura ls  Behaviors from T_integer refined to work on naturals 


