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Abstract. We propose locking protocols for real-time databases. Our approach 
has two main motivations: First, locking protocols are widely accepted and used 
in most database systems. Second, in real-time databases it has been shown that 
the blocking behavior of transactions in locking protocols results in performance 
degradation. We use a new relationship between locks called ordered sharing to 
eliminate blocking that arises in the traditional locking protocols. Ordered sharing 
eliminates blocking of read and write operations but may result in delayed termi- 
nation. Since timeliness and not response time is the crucial factor in real-time 
databases, our protocols exploit this delay to allow transactions to execute within 
the slacks of delayed transactions. We compare the performance of the proposed 
protocols with the two-phase locking protocol for real-time databases. Our exper- 
iments indicate that the proposed protocols significantly reduce the percentage of 
missed deadlines in the system for a variety of workloads. 

Key Words. Concurrency control, transaction management, time-critical schedul- 
ing. 

1. Introduction 

Databases are being used increasingly for a wide spectrum of applications, and 
many of these applications impose different and often conflicting demands on 
the underlying system. One such example involves using databases for real-time 
applications, referred to as real-time database systems. Some of the applications 
that require real-time response include military tracking, medical monitoring, and 
stock arbitrage systems. Such systems must process requests within definite time 
bounds, and it is the inclusion of timing constraints that characterizes real-time 
database systems. In general, a constraint is expressed in the form of a deadline, 
which indicates that a transaction must be completed before some specific t ime 
in the future. In contrast to traditional databases, where the primary goal is to 
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minimize the response time of user transactions and maximize throughput, the main 
objective of real-time databases is to ensure that transactions meet their deadlines 
and to minimize the percentage of transactions that miss deadlines in the system. 

Real-time systems can be divided into two main types: those with hard deadlines 
and those with soft deadlines (Abbott and Garcia-Molina, 1988). Hard real-time 
systems have deadlines that always must be met by transactions, while soft real-time 
systems have deadlines that may be missed at some; cost to the system. Usually 
there is an associated value function with each transaction, which decreases after 
the expiration of the deadline. In addition, the term .firm real-time systems is used 
to describe systems that derive no benefit from completing tardy transactions. As 
a result, tardy transactions are aborted as soon as they are detected. We choose to 
investigate this latter type of system. If tardy transactions do provide a benefit to 
the system, the analysis and judgement of a protocors performance is complicated 
by the weighting of the values assigned to each transaction (termed a transaction's 
criticalness; Huang et al., 1989). In databases, there are two aspects to scheduling 
transactions: concurrency control for the execution of transactions that maintain 
database consistency, and CPU and I/O scheduling for the execution of read and write 
operations. In this article, we concentrate on the transaction scheduling aspects 
for concurrency control in real-time databases. The issue of physical resource 
(CPU and I/O) scheduling has been dealt with extensively elsewhere (Abbott and 
Garcia-Molina, 1988, 1989, 1990; Buchmann et al., 1989; Huang et al., 1989). 

Most commercial database systems use the two-phase locking protocol (Eswaran 
et al., 1976) for concurrency control. The two-phase locking protocol is preferred 
over other methods for concurrency control (Reed, 1978; Kung and Robinson, 1981; 
Bernstein and Goodman, 1981) due to its simplicity and ease of implementation. 
Unfortunately, the blocking behavior of locking protocols can greatly degrade the 
performance of real-time database systems due to a phenomenon called priority 
inversions (Sha et al., 1990). Recent performance studies (Haritsa et al., 1990a, 
1990b) have shown that some variants of the optimistic protocol (Kung and Robinson, 
1981) outperform two-phase locking in real-time databases where transactions have 
firm deadlines. The authors point out that transaction blocking in the two-phase 
locking protocol results in unpredictable delays, causing transactions to miss their 
deadlines. 

The research presented in this article is motivated by the following two facts: the 
popularity of the locking approach in most database systems, and the potential of 
attaining superior performance with optimistic or non-blocking concurrency control 
protocols in real-time databases. Optimistic protocols have failed to migrate to 
commercial database environments. We propose a new variant of the locking 
approach, referred to as ordered sharing (Agrawal and E1 Abbadi, 1990), in real- 
time databases with firm deadlines. Ordered sharing can be used to eliminate 
blocking of read and write operations. However, transactions may be subject to 
delay at commitment. In traditional databases, this delay potentially could result 
in poor response time for transactions. However, in real-time databases, timeliness 
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in meeting a transaction's deadline, and not response time, is the crucial factor. 
We can exploit the slack of a delayed transaction to complete the execution of any 
transactions causing the delay. To terminate, a delayed transaction that reaches its 
deadline may either have to abort itself or abort a lower priority transaction that 
has not yet completed. To summarize, our approach is to eliminate blocking of read 
and write operations, and to exploit any available slack in a transaction to improve 
the overall performance of the system by decreasing the number of transactions 
that miss their deadlines. 

In this article, we start by reviewing some of the protocols that have been 
proposed for real-time database systems. We then introduce the locking primitive 
that extends standard locking, and describe several locking protocols for real-time 
databases. These protocols address different failure and recovery aspects of database 
systems. The issue of recovery has not been fully addressed by previous real-time 
database designs, especially those that use the optimistic approach for concurrency 
control. The rest of the article presents a simulation model based on Carey (1983) 
and on simulation results that demonstrate the superiority of our approach over the 
two-phase locking protocol used in real-time databases. We also analyze different 
aspects of the proposed protocols under various workloads. 

2. Real-time Databases 

A database is a collection of objects. Users interact with the database by invoking 
transactions. A transaction is a sequence of read and write operations that are 
executed atomically on the objects. The execution of a transaction must be atomic 
(i.e., a transaction either commits or aborts). Finally, a transaction is guaranteed to 
be correct (i.e., it maps the database from one consistent state to another consistent 
state). The execution of a set of transactions is modeled by a structure called a history. 
A history is correct if it is serializable (Bernstein et al., 1979; Papadimitriou, 1979). 
All protocols considered in this article ensure serializability. To ensure that aborting 
a transaction does not influence previously committed transactions, we must require 
that for every transaction T that commits, its commit operation follows the commit 
of every other transaction from which T reads. Such executions are called recoverable 
(RC; Hadzilacos, 1988). Recoverability, however, does not guarantee freedom from 
cascading aborts. Cascading aborts occur when a transaction reads from another 
uncommitted transaction that later aborts, forcing the former transaction to abort 
as well. Cascading aborts can be prevented by requiring transactions to read only 
committed values. Executions that satisfy this requirement are said to avoid cascading 
aborts (ACA; Hadzilacos, 1988). Finally, if the database uses in-place updating, it 
is convenient to implement the abort mechanism by restoring the before-images of 
all aborted writes (Verhofstad, 1978; Hfirder and Reuter, 1983; Bernstein et al., 
1987). To use before-images to eliminate the effects of aborted transactions, read 
and write operations on a data object x must be executed only on committed values. 
Executions with this property are called strict (ST; Hadzilacos, 1988). 
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Many widely used concurrency control protocols use locking as a basic primitive 
for synchronization. Traditionally, there are two types of relationships between 
locks: shared and non-shared. For example, read locks can be shared but a write 
lock cannot be shared with any other lock. Transactions in real-time databases 
have deadlines associated with them, which can be used to assign priorities to 
transactions (priorities can be assigned based on other criteria, e.g., criticalness; 
Buchmann et al., 1989; Huang et al., 1989). In this article, we study concurrency 
control protocols for real-time databases with firm deadlines and a transaction with 
an earlier deadline is considered to have a higher pr.iority over a transaction with a 
later deadline. Litwin and Shan (1991) proposed a concurrency control mechanism 
for heterogeneous databases based on value dates that are similar to deadlines. 
Transactions are assigned value dates that are used for concurrency control and 
transaction termination. The value dates-based protocol has some similarities with 
real-time concurrency control protocols. We now discuss some real-time concurrency 
control protocols that are related to our work. 

Strict two-phase locking (Eswaran et al., 1976) is the most widely accepted 
concurrency control protocol. One especially undesirable property of strict two- 
phase locking in real-time databases is that a low priority transaction may block 
a high priority transaction; this phenomenon is called priority inversion (Sha et al., 
1990). Therefore, in real-time databases, this protocol is augmented with a high 
priority conflict resolution scheme to ensure that high priority transactions are not 
blocked by low priority transactions, thus avoiding priority inversions. This two- 
phase locking protocol is referred to as 2PL-HP (Abbott and Garcia-Molina, 1988) 
and can be summarized as follows: 

1. A transaction T must obtain read (write) locks before executing read (write) 
operations. If T's lock has a non-shared relationship with locks held by any 
transaction, and if all such transactions have a lower priority than T, then 
they are aborted and T can acquire its lock. Otherwise, T is blocked until 
the locks are released by the higher priority transactions. 

2. Transactions release all their locks at commitment. 

When locks with two types of relationships (shared and non-shared) are used, there 
are three types of blocking that can occur in the system: read-write blocking occurs 
when a transaction holds a read lock on an object and a lower priority transaction 
requests a write lock on the same object; write-read blocking and write-write blocking 
can be defined similarly. In 2PL-HP, a blocked transaction has to wait until all higher 
priority transactions holding conflicting locks commit. Furthermore, this protocol 
may suffer from wasted restarts (i.e., when a high priority transaction aborts a lower 
priority one and is itself later aborted). Note that deadlocks may also contribute 
towards wasted restarts. In this article, however, we only consider wasted restarts 
that are not due to deadlocks. Sha et al. (1991) proposed a locking-based protocol 
that avoids the blocking of high priority transactions (and thus priority inversions) 
for at most the duration of a single embedded transaction. 
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Haritsa et al. (1990a) proposed a variant of the optimistic protocol (Kung and 
Robinson, 1981) for real-time database. The proposed protocol is referred to as the 
optimistic protocol with broadcast commit (OPT-BC; Menasce and Nakanishi, 1982), 
and is shown to have better performance in real-time databases than the 2PL-HP 
protocol. The protocol can be summarized as follows. Transactions are allowed to 
execute without any synchronization until they reach their commit point, at which 
time they enter a validation phase. At this point, the validating transaction broadcasts 
a request that forces the abort of other uncommitted running transactions with which 
it conflicts. This implies that a validating transaction always commits. Furthermore, 
this protocol does not suffer from any wasted restarts, since a transaction that forces 
the restart of another transaction is guaranteed to commit. 

In OPT-BC, the relative priorities of transactions are not taken into account 
when a transaction forces the abort of another transaction. Hence, it is possible 
for a lower priority transaction to abort a higher priority transaction if the former 
reaches its validation phase first. The optimistic wait protocol (OPT-WAIT; Haritsa 
et al., 1990b) was designed to overcome this problem by delaying a validating 
transaction from committing if a higher priority transaction is in the current set of 
uncommitted transactions with which it conflicts. Once there are no such transactions 
executing, the transaction aborts any lower priority uncommitted transactions with 
which it conflicts. An extension of OPT-WAIT is the OPT-WAIT-50 protocol, 
where a validating transaction waits only if > 50% of the currently uncommitted 
transactions have higher priority. The main purpose of this waiting is to detect 
when waiting is beneficial, in terms of giving preference to high priority transactions, 
versus no waiting, and its advantages in terms of avoiding late restarts for low priority 
transactions and a possible increase in the number of conflicts. Haritsa et al. (1990a) 
analyzed these variants of the optimistic approach and presented simulation results 
indicating that, under conditions of low data contention, delaying the validation 
of low priority transactions results in improved performance. On the other hand, 
under conditions of high data contention, OPT-WAIT-50 provides the best overall 
improvement in performance. 

Huang et al. (1991) developed a locking variant of the optimistic concurrency 
control protocol and compared its performance with the class of two-phase locking 
protocols for real-time databases. Some of their results do not completely agree 
with the simulation results of Haritsa et al. (1990a, 1990b), which may be due to the 
differences in the simulation models and in the physical implementation schemes. 
However, both studies indicate that transaction blocking is the main disadvantage 
in adapting two-phase locking to real-time databases. 

Lin and Son (1990) described a concurrency control protocol that uses a mixture 
of the locking and optimistic protocols. A transaction executes in three phases: a 
read phase, a wait phase, and a write phase. During the read phase, a transaction 
obtains read and write locks, and executes read operations, but performs write 
operations in its private space. Low priority transactions are blocked if a higher 
priority transaction holds a conflicting lock (except in the case of write operations 
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where write locks do not conflict, since no write operations are performed during 
this phase). A high priority transaction requesting a write lock aborts a lower priority 
transaction with a read lock on the object. However, if the higher priority transaction 
requests a read lock, on which a lower priority transaction has a write lock, both 
transactions are allowed to hold locks. During the 'wait phase, a transaction must 
wait for all higher priority transactions to commit. After committing, a transaction 
performs all its write operations, and write operations are executed in accordance 
with the serialization order between transactions (a timestamp for this purpose is 
assigned during the commit phase). In general, the protocol dynamically adjusts 
the serialization order between transactions in favor of higher priority transactions. 
This flexibility is achieved due to the deferred update approach, which allows high 
priority read operations to be serialized before lower priority write operations that 
may have already been executed. 

Kim and Srivastava (1991) proposed an alternative approach, which uses mul- 
tiversion concurrency control to reduce the number of rejected transactions and, 
thus, improve the overall performance of real-time database systems. Two ap- 
proaches were proposed, one based on the two-version two-phase locking protocol 
(2V2PL) (Bayer et al., 1980; Stearns and Rosenkrantz, 1981), and another based 
on the multi-version two-phase locking protocol (MV2PL; Chan et al., 1982). The 
main advantage of these protocols is that priority inversion due to blocking can 
be eliminated. In particular, the read operation of a high priority transaction can 
always read the committed version of the object. A write operation creates a new 
version of the object and, thus, write operations in the MV2PL protocol never 
block each other. As in the optimistic approach, before committing, transactions 
must validate that no concurrent uncommitted transactions have executed write 
operations. A simulation study was performed and :it demonstrated that the use of 
multiple versions can improve the performance of the concurrency control protocols 
in real-time databases. 

Sha et al. (1991) proposed a real-time locking protocol to deal with the priority 
inversions problem that arises in real-time databases. The protocol employs the 
notion of priority inheritance, in which a lower priority transaction blocking a higher 
priority transaction inherits the priority of the latter to avoid priority inversions (Sha 
et al., 1990). In addition, they proposed a priority ceiling protocol by associating 
three attributes with each object in the database: write_priority, absolute priority, and 
r/wpriority ceilings. Based on these parameters, they imposed certain restrictions on 
transactions when they attempted to access these objects. Although the proposed 
protocol is free from deadlocks, it has significant overheads for making scheduling 
decisions. In particular, a transaction cannot read/write lock a data object unless its 
priority is higher than the r/w priority of all data objects locked by other transactions. 
This rule is referred to as the ceiling rule. In summary, the proposed protocol has 
desirable features (i.e., no priority inversions and absence of deadlocks), but its 
applicability is limited to databases with a small number of objects. For large 
real-time databases, the above protocol is not very practical since it tags three extra 
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attributes with each object, and it requires a global search to enforce the ceiling 
rule. 

3. Locking Protocols with Ordered Sharing 

Agrawal and E1 Abbadi (1990) introduced a new locking primitive that allows a new 
relationship, referred to as ordered sharing, between locks. The new relationship 
provides mutual exclusion during operation execution but, unlike the traditional 
locking approaches, it does not require mutual exclusion after an operation has been 
executed. Instead of exclusion, the new relationship between locks captures the 
relative order of operations executed by concurrent transactions. Ordered sharing 
can be used with two-phase locking to eliminate the three types of blocking: read- 
write, write-write, and write-read blocking. For example, to eliminate read-write 
blocking, a transaction Tj can be granted a write lock on an object even if another 
transaction Ti holds a read lock on the same object. We say that there is an ordered 
shared relationship from Ti's read lock to Tj's write lock. Similarly, write-read 
blocking can be avoided by granting read locks with an ordered shared relationship 
with respect to write locks. Finally, write-write blocking can be eliminated by 
granting write locks with an ordered shared relationship from the previous write 
locks on the same object. To ensure serializability, protocols with ordered sharing 
must observe the following rule: 

Ordered Sharing Rule: If Tj acquires a lock with an ordered shared relationship 
with respect to a lock held by another transaction Ti, the corresponding 
operation of Tj must be executed after that of Ti. Furthermore, Tj cannot 
commit until Ti terminates (i.e., commits or aborts). 

The ordered shared relationship can be interpreted as allowing the constrained 
sharing of locks in the following manner. If two operations acquire locks with 
an ordered shared relationship between them, the first lock excludes the second 
operation from executing until the first operation has been executed. Once the 
operation has been executed, the second operation is executed and the order of 
operation execution is the same as the order of lock acquisition. In this sense, 
mutual exclusion between operations is for a short duration only, instead of for 
longer periods as is necessary when non-shared relationships are used by locking 
protocols for executing conflicting operations. If ordered sharing is used to eliminate 
blocking, transactions may be delayed at commit. However, this delay does not 
block other transactions from executing read and write operations. 

We now describe the two-phase locking protocol with ordered sharing (2PL- 
OS) adapted for real-time databases. In particular, we assume that we have shared 
relationships between read locks and ordered shared relationships between the 
remaining three types of conflicts between locks. Also, the update-in-place policy 
(Gray et al., 1981; Harder and Reuter, 1983) is used to execute operations. The 
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protocol can be summarized as follows: 

1. Transactions acquire locks before executing operations, and release all their 
locks at commit (abort) as in strict two-phase locking. 

2. When a transaction T is ready to commit, it waits until either the ordered 
sharing rule is satisfied or it reaches its deadline. In the former case it 
commits whereas, in the latter case, it tries to commit by aborting all preceding 
transactions with which it has an ordered shared relationship. 1 

3. When a transaction Z aborts, it releases all its locks and causes the abort of all 
transactions which read values written by T. (Therefore, when a transaction 
decides to commit at its deadline, it may have to abort if it had read 
uncommitted data.) 

This protocol is useful for real-time databases since', it does not block any read and 
write operations from executing. There is a possibility of delay when transactions 
commit, but this does not result in performance degradation since, in real-time 
databases, timeliness of transactions is of greater value than the response time of 
transactions. Furthermore, this delay can be exploited to execute other transactions 
within a delayed transaction's slack. Unfortunately, 2PL-OS suffers from the unde- 
sirable phenomenon of cascading aborts which, in turn, may result in wasted restarts. 
We have argued elsewhere that locking protocols that suffer from cascading aborts 
have poor performance (Agrawal et al., 1992; 1994). In the following, we develop 
several variants of 2PL-OS that do not suffer from the problem of cascading aborts. 

In the first variant, cascading aborts are avoided by retaining write-read blocking 
(i.e., ordered sharing is not allowed from write locks to read locks). Hence, a non- 
shared relationship from write locks to read locks is used in this protocol, which 
is referred to as ACA 2PL-OS (avoid cascading aborts 2PL-OS). ACA 2PL-OS 
is a hybrid of 2PL-HP, when locks with non-shared relationships are used, and 
2PL-OS, when locks with ordered shared relationships are used. In particular, when 
a transaction tries to acquire a read lock on an object, and all writers have lower 
priorities, they are aborted and the transaction can acquire a read lock; otherwise, 
the transaction is blocked. For the other two types of conflicts (i.e., read-write 
and write-write) locks with ordered sharing are used and transactions must adhere 
to the ordered sharing rule. Since write locks are held until commit, transactions 
cannot read uncommitted data. Hence, all executions resulting from this protocol 
avoid cascading aborts and, therefore, can be used for real-time databases. 

The second variant avoids cascading aborts in 2PL-OS by exploiting the before- 
images of objects and is referred to as the two-phase locking protocol with ordered 
sharing and before-images, 2PL-OS/BI (Agrawal et al., 1992). Our approach is 
similar to the one used by the multi-version two-phase locking protocols (Bayer et 

1. Later in the article, we investigate the impact of aborting the delayed transaction itself. 
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al., 1980; Stearns and Rosenkrantz, 1981). When a transaction T executes a write 
operation on an object x, it creates a new (uncommitted) value for x. The original 
(committed) value of x is referred to as the before-image of x. When T commits, 
the before-image is discarded and the new value becomes the committed value of 
x. If T aborts, the before-image of x is used to restore x to its prior state. Since 
the protocol allows multiple writers to execute concurrently, the state of the object 
is represented by a single committed version and several uncommitted versions 
corresponding to the different values written by each uncommitted transaction. 
When a transaction reads an object, instead of reading the value written by an 
uncommitted transaction, it always reads the current committed version of the 
object, thus avoiding the possibility of cascading aborts. Hence, there is a reversal 
of the ordered shared relationship between the two transactions. In particular, 
write-read blocking is eliminated by allowing the reader to read committed data and 
requiring an ordered shared relationship from the read lock to the write lock. Hence, 
the reader must commit before the writer as mandated by the ordered sharing rule. 
This non-restrictive 2PL-OS protocol uses ordered sharing to eliminate write-read 
blocking and uses before-images to avoid cascading aborts. 2PL-OS/BI has all the 
desirable properties of 2PL-OS, especially the property of allowing other transactions 
to execute within the slack of a committing transaction. Deadlines of transactions 
are used only to force termination if transactions have reached their deadlines and 
are delayed due to the ordered sharing rule. 

2PL-OS/BI does not suffer from the problems of either wasted or mutual restarts 
(Haritsa et al., 1990b). A wasted restart occurs when an executing transaction is 
aborted by another transaction that later misses its deadline. Since only committing 
transactions can cause restarts of other transactions in 2PL-OS/BI, all restarts are 
useful. ACA 2PL-OS, on the other hand, may suffer from wasted restarts since a 
reader may abort a lower priority writer, and later the reader itself aborts. Since 
priorities are assigned when transactions are created and do not change during their 
lifetimes, our protocols do not suffer from the problem of mutual restarts. 

Both ACA 2PL-OS and 2PL-OS/BI result in executions that avoid cascading 
aborts but are not strict. For this class of executions, the recovery scheme based on 
value-logging and restoring before-images of aborted transactions can give rise to 
inconsistencies. We discussed a recovery implementation for such protocols (Agrawal 
and E1 Abbadi, 1991; Alonso et al., 1994), which is a simple variation of the standard 
log-based recovery (Harder and Reuter, 1983; Mohan et al., 1992). To continue 
using the standard recovery scheme based on before-images and value-logging, 2PL- 
OS/BI can be restricted so that it accepts strict histories (Hadzilacos, 1988). In strict 
histories, at most one uncommitted version of a data object exists at any time. This 
variant, referred to as ST 2PL-OS/BI, does not permit ordered sharing between 
concurrent writers. Instead, a non-shared relationship is used between conflicting 
write locks of different transactions. In particular, when a transaction tries to obtain 
a write lock on an object, and another transaction with a lower priority has a write 
lock on the same object, then the latter is aborted and the former is granted the 
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lock. Otherwise, the requesting transaction is blocked. For other types of lock 
conflicts the rules of 2PL-OS/BI are used. The advantage of ST 2PL-OS/BI is that 
it does not require any modifications to the underlying recovery architecture. 

4. Illustrative Examples 

In this section, we illustrate the advantages and tradeoffs between the two-phase 
locking protocols with ordered sharing, and various other protocols that have been 
proposed for real-time database systems. The purpose of this section is to highlight 
the main features of our protocols, in comparison with the other protocols. 

Consider two transactions T5 and TT, where both transactions update objects 
x and y. For simplicity, we assume that each transaction needs 4 time units to 
execute, and that T5 has a firm deadline at time 5, while T7 has a firm deadline at 
time 7 (i.e., T5 has a higher priority than TT). We start by showing the execution 
of these two transactions, assuming a standard strict two-phase locking protocol. 
If transaction T7 starts at time 0 by locking x and y, and T5 starts at time 1, then 
the higher priority transaction T0 is blocked because T7 holds conflicting locks on 
objects x and y. When transaction T7 terminates at time 4, it is already too late for 
T0 to execute (it needs 4 time units, but its deadline is at time 7). Thus, the higher 
priority transaction does not make its deadline. The 2PL-HP protocol (Abbott 
and Garcia-Molina, 1988) overcomes this problem by aborting the lower priority 
transaction TT, when T5 requests its locks on x. However, when T5 commits at time 
5, it is too late for T7 to execute; thus, the lower priority transaction can not make 
its deadline. 

The OPT-BC protocol (Menasce and Nakanishi, 1982; Haritsa et al., 1990a) 
executes operations without requiring them to obtain locks. Hence, in the above 
scenario, transaction T7 starts executing at time 0, and transaction Ts, which arrives 
at time 1, is allowed to execute concurrently with TT. When Tz reaches its validation 
phase, it forces the abort of Ts, since T0 conflicts with T7 on x and y. Hence, T7 
commits at time 4, and it is too late for T5 to execute. As with the 2PL-HP, the 
OPT-WAIT protocol was designed to avoid the aborts of high priority transactions. 
In this case, when T7 reaches its validation phase, it waits for the higher priority 
transaction to terminate. Unfortunately, when T5 reaches its validation phase (at 
time 5) it forces the abort of transaction TT, and now it is too late for T7 to execute. 

If ordered sharing is used in the above scenario, the two transactions may be 
allowed to commit if the operations on the two objects are executed in the same 
order. In particular, assume that when T7 starts at time 0, it obtains locks on 
objects x and y, and then, when T0 starts at time 1, it obtains locks on objects x 
and y with ordered shared relationships with respect to the locks of TT. In this 
case, when transaction T7 tries to commit at time 4, it satisfies the ordered sharing 
rule (it is waiting for no transaction), and hence is allowed to commit. When at 
time 5, T5 tries to commit, the ordered sharing rule also holds (all transactions 
that it has been waiting for have already committed). Hence, both the high priority 
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transaction T5 and the low priority transaction T7 commit and meet their deadlines. 
Of course, if the order in which locks are obtained on the two objects is not the 
same, a deadlock will occur, and one of the two transactions will be aborted (in 
the simulation studies described in the next section, the lower priority transaction 
is aborted). 

Our protocols exploit ordered sharing to avoid the blocking of operations, with 
the potential possibility of blocking commit operations. Furthermore, by delaying 
the commitment of some high priority transactions until it is absolutely necessary 
to commit (if the transactions reach their deadlines), lower priority transactions 
may be allowed to commit in the slack of the higher priority transactions. Consider 
another example where T7 needs 4 time units and has deadline at time 7 and T10 
needs 6 time units and has deadline at time 10. If T10 starts at time 0 and T7 
starts at time 1, then T7 will try to commit at time 5. In this case, the ordered 
sharing rule may not hold if T10 had acquired a lock on some object before TT. 
Instead of forcing the abort of Tlo, transaction T7 waits. At time 6, T10 commits 
and the ordered sharing rule is satisfied and, hence, T7 can also commit since all 
transactions for which it is waiting have committed. Hence, T10 has exploited the 
available slack between the time when T7 terminates and its deadline. Thus, both 
transactions commit and meet their deadlines. Note that if T10 needed 8 time units 
(instead of 6), then T7 reaches its deadline at time 7 and, since it has higher priority 
than T10, it forces T10 to abort. 

5. Simulation Model 

To evaluate the performance of the proposed locking protocols for real-time data- 
bases, a database simulation model based on Carey (1983), Agrawal et al. (1987a), 
and Haritsa et al. (1990a) was developed. This simulation model uses the SIM- 
SCRIPT 11.5 language (Law and Larmey, 1984; Russell, 1983, 1987) and implements 
a centralized database. It is divided into three main components: a Transaction 
Manager (TM), a Concurrency Control Agent (CCA), and a Data Manager (DM). 
The TM is responsible for issuing lock requests, the CCA schedules these requests 
according to the specifications of the protocol, and the DM is responsible for 
granting access to the physical data objects. 

5.1 Logical Queuing Model 

The logical simulation model, shown in Figure 1, represents a closed queuing 
model of a single-site database system. There are a variable number of terminals, 
num_terms, which effectively control the maximum multiprogramming level of the 
system. A terminal initiates a transaction, and then is delayed from submitting its 
next transaction for a Poisson-distributed interval, the inter_arrival_delay parameter. 
Each transaction has an associated deadline that is calculated as (Haritsa et al., 
1990a): 



98 

Figure 1, Logical Queuing Model 
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deadline = txn_start_time -q- (slack_factor * estimated_ total_ txn_time) 

Slack_factor is an input parameter that controls the tightness or looseness of the 
deadlines, and estimated_total_txn_time is the estimated total service time for the 
transaction (this is a function of I/O and CPU time needed to process all operations 
of a transaction). For example, with slack factor two, a transaction has double its 
estimated time to complete execution. The TM issues both the lock requests and 
the actual database operations for each transaction. In addition, the TM determines 
if a transaction misses its deadline. The input parameter knows_Ixn_reqs indicates 
whether the system is aware of the amount of time a transaction will need to 
finish processing. If knows_txn_reqs is false, then the TM can only determine missed 
deadlines when they expire (referred to as not tardy; Abbott and Garcia-Molina, 
1988). Otherwise, the TM can determine at eaclh database operation whether a 
transaction should be aborted early because it can no longer make its deadline 
(referred to as feasible deadlines; Abbott and Garcia-Molina, 1988). In the majority 
of our experiments, we use the not-tardy policy, because it makes fewer assumptions 
about the system's capabilities. 

The CCA processes lock requests received through the cc_agent_queue. When 
a lock request is received, it is possible that the :requested item is already locked 
by another transaction and that the requester is given a non-shared relationship 
with the lock holder (e.g., in the cases of 2PL-HP, ACA 2PL-OS, and ST 2PL- 
OS/BI). In this scenario, the deadlines of the conflicting transactions are compared. 
If the requesting transaction has an earlier deadline, the lock holder is aborted 
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Figure 2. Physical Queuing Model 

Terminals 

and the lock is granted to the requester. Otherwise, the requester is placed in 
the priority queue, cc_wait_queue, sorted by deadlines. This scheduling policy is 
referred to as earliest deadline, and has the advantages of simplicity and relatively 
good performance (Abbott and Garcia-Molina, 1988). Delayed lock requests will 
be rescheduled once the conflicting operations have released their locks. When a 
lock request can be granted, an acknowledgement is sent back to the TM, which 
then forwards the database operation to the Data Manager. When the DM executes 
database operations it must adhere to the order in which lock requests were granted 
by the CCA. This order is preserved through the use of the dm_wait_queue and the 
din_reply_queue through a handshake mechanism (Agrawal et al., 1994). Locks are 
released when transactions commit or abort. 

The use of deadlines to schedule operations prevents the formation of deadlocks 
in 2PL-HR Unfortunately, deadlocks may form in all protocols with ordered sharing. 
For this reason, we use a deadlock detection strategy based on wait-for graphs. 
Whenever a deadlock is detected, the transaction with the latest deadline is chosen 
as the victim and aborted. The rationale for this choice is based on the fact that the 
transaction with the latest deadline has the lowest priority among the deadlocked 
transactions. 

5.2 Physical Queuing Model 

Underlying the logical model of Figure 1 are two physical resources, the CPU 
and the I/O (i.e., the disk) resources. A certain amount of resource overhead is 
associated with each lock request and each database access. Lock requests require 
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only CPU service while database accesses require both CPU and I/O services. The 
physical queuing model, shown in Figure 2, is very similar to the one used by 
Agrawal et al. (1987a, 1987b) and Carey et al. (1.990) in which the parameters 
num_cpus and num_disks specify the number of CPU servers and the number of 
I/O servers. The CPU servers are modeled as a pool of servers, all identical and 
serving a common CPU queue sorted by transaction priorities (deadlines). Thus, 
the CPU scheduling policy is based on transaction deadlines. Unlike the CPU 
servers, a separate queue is associated with each I/O server. When a transaction 
needs service, it randomly selects a disk (with all disks being equally likely) and 
waits in the I/O queue associated with the selected disk. I/O requests are also 
sorted by transaction priorities. That is, I/O scheduling is also based on transaction 
deadlines. The parameters cpu_time and io_time represent the amount of CPU and 
I/O time associated with reading or writing a data object. Both of these parameters 
are modeled as uniform distributions. The parameter cc_req_delay represents the 
amount of CPU time associated with servicing a concurrency control request (lock 
request), which is assumed to be a constant. A special flag inf_res is used to to 
override the use of num_cpus and num_disks to model the ideal environment with 
unlimited resources. When this flag is set, the simulation ignores the server queues, 
and transactions are delayed only for the amount of time associated with cpu_time 
and io_time (i.e., there is no waiting in the queues for access to the physical devices). 

5.3 Transaction Generation 

For each transaction, the sequence of operations and the data objects to be accessed 
are determined by the TM in a probabilistic manner. The size of the database is 
assumed to be db_size. It is also assumed that each transaction performs at most 
one read and/or write operation per data object. The transaction characteristics 
are determined by the transaction size, txn_size, the update transaction percent- 
age, update_txn_pct, and the write operation percentage, write_op_pct, parameters. 
The transaction size represents the average number of operations performed by a 
transaction, the mean of a uniform distribution between txn_size ± 5. The update 
transaction percentage represents the percentage ,of transactions that will be up- 
date transactions. The write operation percentage determines what percentage of 
an update transaction's operations will be writes and has a uniform distribution 
of write_op_pct ~ 20. Table 1 summarizes the parameters used in the simulation 
model. Note that cpu_time and io_time have a uniform distribution (i.e., cpu_time 

3 and io_time ± 5. 

5.4 Simulation Settings 

In real-time databases, the most important metric is the percentage of transactions 
that miss their deadlines. In addition, the throughput rate, which is defined as the 
number of transactions successfully completed per second, is useful for analyzing 
the performance of the system. A form of the batch means method was used for 
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Table 1. Simulation Model Parameter Definitions 

Parameter Description 

db_size 

num_terms 

num_cpus 

num_disks 

inf _res 
txn_size 

update_txn_pct 

write_op_pct 

inter_arrival_delay 

cpu_time 

io_time 

cc_req_delay 

slack_factor 
knows_txn_reqs 

Number of objects in database 

Number of terminals 

Number of cpus 

Number of disks 

Infinite resource flag 

Mean transaction size 

Update transaction percentage 

Mean Write operation percentage 

Transaction inter-arrival delay 

Mean CPU time for accessing an object 

Mean I/O time for accessing an object 

CPU time for servicing a lock request 

Slack Factor 

System knows service requirements 

the statistical analysis. Each simulation consisted of a minimum of four repetitions, 
each consisting of 2,000 seconds of simulation time. The first 200 seconds of each 
repetition were discarded to let the system stabilize after initial transient conditions. 
In general, we achieved 90% confidence intervals for our results. If a 90% confidence 
interval was not attained in four repetitions of the simulation, then additional runs 
were made. (We did not generate the excessive number of repetitions that would 
have been necessary to get 90% confidence intervals for very small values, e.g., miss 
percentages below 2%.) Table 2 provides a summary of the values chosen for the 
input parameters in all experiments. 

6. Experiment Results 

In this section, we present and analyze the results of the simulation experiments 
for protocols 2PL-HP, ACA 2PL-OS, 2PL-OS/BI, and ST 2PL-OS/BI. In each of 
the following experiments, the number of terminals, num_terms, is varied to include 
multiprogramming levels that are considered reasonable for actual database systems. 
This provides a wide range of operating conditions with respect to data contention 
(lock conflict) and resource contention (waiting for CPUs and disks). To evaluate the 
effect that resources have on the system, one CPU resource and two disk resources 
were chosen to represent one resource unit (Agrawal et al., 1987a, 1987b). Resource 
related experiments were performed by varying the number of resource units rather 
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Table 2. Simulation Model Parameter Values 

Parameter Value 

db_size 
txn_size 
inter_arrival_delay 
update_txn_pct 
write_op_pct 
cpu_time 
io_time 
cc_req_delay 

1000 data objects 

20 operations 

10 seconds 

60 percent: 

50 percent: 

12 milliseconds 

35 milliseconds 

3 milliseconds 

than by individually varying the number of CPUs or the number of disks. By using 
this combination of CPUs and disks, resource utilization in the system turns out 
to be slightly I/O bound (disk utilization is slightly higher than CPU utilization; 
Agrawal et al., 1987b). 

6.1 Effect of Multiprogramming Level 

We first evaluate the effect of varying the multiprogramming level on the performance 
characteristics of the four locking protocols for real-time databases. The experiment 
is based on a system with four resource units where transactions have a slack factor 
of three. We assume that transactions are only aware of their deadlines but do 
not know of their exact requirements in terms of CPU and I/O time (i.e., the not 
tardy approach is used for executing transactions). We refer to these settings as the 
baseline experiment. 

Figure 3 illustrates the throughput, miss percentage, number of total restarts, and 
number of useful restarts in the four protocols. We also plot the average arrival rate 
of transactions in the throughput graph of Figure 3. The throughput graph illustrates 
that 2PL-OS/BI, which does not incur any blocking, has the best performance among 
all the protocols. In particular, the maximum throughput for 2PL-OS/BI is 6.75 
in comparison to 4.6 for 2PL-HE This represents a 47% improvement over 2PL- 
HE The maximum throughput for ACA 2PL-OS is approximately 5.75 (a 25% 
improvement) and for ST 2PL-OS/BI is approximately 6.35 (a 38% improvement). 
The thrash points for 2PL-HP, ACA 2PL-OS, 2PL-OS/BI, and ST 2PL-OS/BI are 
75, 83, 95, and 95, respectively. After the thrash points, as the multiprogramming 
level is increased, the four protocols converge indicating that, in our protocols, 
aborts due to deadlocks dominate the system and the effect of "blocking" versus 
"non-blocking" is marginalized. 
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Figure 3. Baseline case: slack=3, resource units=4, not tardy policy 
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Table 3. Sample Illustration of Confidence Intervals for 
Multiprogramming Level of 80 Terminals 

Protocol 

Mean Interval't 

2PL-HP 4.53 4 .49  4.57 

ACA 2PL-OS 5.74 5 .67  5.80 

ST 2PL-OS/BI 6.07 6 .04  6.09 

2PL-OS/BI 6.41 6 .39  6.44 

Throughput Miss Percentage 

Meant Intervalt 

29.74% 29 .15%30.33% 

12.65% 11.5% 13.80% 

8.74% 8.20% 9.29% 

4.49% 4.13% 4.86% 

t Intervals with 90% confidence. 

The differences among the protocols become more obvious when we examine the 
miss percentage graph in Figure 3. In particular, the rate of increase of transactions 
missing their deadlines is initially much sharper for 2PL-HP than it is for 2PL-OS/BI. 
At the point when 2PL-HP exhibits its maximum throughput (75 terminals), 25% 
of the transactions are already missing their deadlines. In contrast, only 3% of the 
transactions miss their deadlines in 2PL-OS/BI, around 7% do so in ST 2PL-OS/BI, 
and 9% miss in ACA 2PL-OS. At the thrash point of 2PL-OS/BI (95 terminals), 
the percentage of transactions that miss their deadlines is 12.5% for 2PL-OS/BI, 
17% for ST 2PL-OS/BI, 27% for ACA 2PL-OS, and 44% for 2PL-HP. The miss 
percentages are indistinguishable in the four protocols at low multiprogramming level 
or equivalently at low data contention (10 to 30 terminals). However, at medium 
to high data contention (more that 40 terminals), 2PL-OS/BI misses significantly 
fewer transaction deadlines than 2PL-HP. At very high multiprogramming levels, 
the vast majority of transactions miss their deadlines under any protocol. 

Note that, as in OPT-BC (optimistic broadcast; Haritsa et al., 1990a), only a 
committing transaction can generate restarts in 2PL-OS/BI. In 2PL-HP, ACA 2PL- 
OS, and ST 2PL-OS/BI, a transaction causing a restart may later abort. Thus, there 
is an increased likelihood of wasted restarts in protocols with blocking and this 
explains the superior performance of 2PL-OS/BI. In particular, Figure 3 illustrates 
the number of restarts per generated transaction in the protocols, and demonstrates 
that, in general, 2PL-OS/BI has fewer restarts than the other protocols. This 
can be explained by noting that 2PL-OS/BI, and to a lesser extent ST 2PL-OS/BI 
and ACA 2PL-OS, restart transactions only when it: is absolutely necessary (i.e., 
transactions allow others to run in their slack). Figure 3 shows the number of useful 
restarts, which was defined by Haritsa et al. (1990b) as the restarts caused only 
by transactions that eventually commit. Recall that some aborts may occur due to 
deadlocks; this justifies the slight discrepancy between the total restarts and useful 
restarts in 2PL-OS/BI. Table 3 is a sample of interval range for the mean values 
plotted in the graphs. Note that we used the batch-means method to achieve 90% 
confidence in the indicated intervals. In general, the intervals were quite tight for 
the mean values resulting from all experiments. 
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Figure 4. slack=3, resource units=3(top)=5(bottom), not tardy policy 
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Figure 5. slack=3, unlimited resource units, not tardy policy 
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6.2 Effect of Resources 

Figures 4 and 5 report the throughputs and miss percentages in the four protocols 
for a variable number of resources, with the remaining parameters the same as in the 
baseline experiment• The experiments were conducted with three, five, and unlimited 
resource units. When the number of resources is reduced from four to three, the 
relative improvements due to ordered sharing is less pronounced (see Figure 4). 
This is due to increased resource contention in the system. When the number of 
resources is increased from four to five, the throughputs and miss percentages in 
protocols 2PL-OS/BI, ST 2PL-OS/BI, and ACA 2PL-OS are significantly better than 
in 2PL-HP. In the case of five resources, all protocols with ordered sharing are able 
to meet many more deadlines than 2PL-HP. For example, 2PL-OS/BI does not miss 
any deadlines up to the multiprogramming level of 60 terminals, at which point 
2PL-HP misses 10% of the deadlines• Similarly, ST 2PL-OS/BI and ACA 2PL-OS 
do not miss any deadlines up to 50 terminals. Once again, this is due to the 
desirable property of protocols with ordered sharing, which eliminates blocking at 
the expense of possible delays in transaction commitment. Hence, protocols with 
ordered sharing are particularly useful when there is less contention for resources 
in the system. 

To further validate our hypothesis that removing resource contention results in 
better performance of 2PL-OS/BI, ST 2PL-OS/BI, and ACA 2PL-OS in real-time 
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databases, we conducted the baseline experiment with unlimited resources (see 
Figure 5). In this case, the percentage of transactions missing their deadlines in 
2PL-HP is significantly larger than in all the other protocols at all but the highest 
multiprogramming levels (the rapid rise in missed deadlines after the thrash points 
of protocols with ordered sharing is due to the increase in deadlock formation). For 
example, at 110 terminals 2PL-OS/BI meets virtually all its deadlines, ST 2PL-OS/BI 
and ACA 2PL-OS miss 3% to 4% of their deadlines, and 2PL-HP misses more 
than 25% of its deadlines. This indicates that eliminating blocking for both data 
and resources can be significantly beneficial for protocols with ordered sharing in 
real-time databases. This is of special interest, because real-time systems frequently 
provide extra resources to handle peak load conditions or to provide for fault- 
tolerance (Haritsa et al., 1990a). Ordered shared locking protocols are better able 
to use these additional resources. Two-phase locking would fail to make use of 
them if data contention was already degrading performance. 

6.3 Effect of Slack 

In this experiment, we evaluate the effects of varying the slack factor on the 
performance of the four protocols. In particular, the slack factor was varied from 
1 to 9, and the experiment was conducted with four resource units and at two 
multiprogramming levels. We chose 75 terminals, which is the thrash point for 
2PL-HP, and 95 terminals, which is the thrash point for 2PL-OS/BI. The results of 
this experiment are illustrated in Figure 6. 

Figure 6 shows that when deadlines are very tight (i.e., when the slack factor is 
close to 1), the performance of all the protocols is indistinguishable. As the slack in 
deadlines is increased, protocols with ordered sharing start demonstrating superior 
performance. In general, they all miss significantly fewer deadlines than 2PL-HP 
beyond the slack factor of 1.5. For example, with 75 terminals and slack factor 
4, 2PL-OS/BI has almost no transactions missing their deadlines, while 2PL-HP 
has about a 16% miss rate, and the other two have miss rates below 3%. As the 
slack is increased, all protocols asymptotically reach a miss percentage of 0. At the 
thrash point of 2PL-OS/BI, which is a heavy load for 2PL-HP, the miss percentage 
in 2PL-OS/BI becomes insignificant at about a slack factor of 6. 2PL-HP is still 
missing 24% of its transactions under the same conditions. 

The improvement in performance of protocols with ordered sharing is due 
to the execution of transactions during the potential delay of other transactions' 
commitment. In particular, when the slack factor is greater than 1.5, we notice 
that 2PL-OS/BI, and to a lesser extent ST 2PL-OS/BI and ACA 2PL-OS, miss 
significantly fewer deadlines than 2PL-HR This can be explained by considering the 
possible interactions between two transactions that execute conflicting operations 
on the same object. Assume that the deadlines of the two transactions, T1 and T2, 
are such that T~ has a later deadline than T1. First, consider the case when T2 
holds a lock on the common object, and later, T1 requests a lock on the object. In 
2PL-HP, T2 is aborted and restarted since it has lower priority. In 2PL-OS/BI, on 



108 

Figure 6. Varying slack factor, 75 terminals(left), 95 terminals(right) 
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the other hand, T2 is given a chance to terminate within the slack available for T1. 
Furthermore, note that since T1 is not blocked, it cart acquire all its other locks and 
execute all its operations. When T1 reaches its deadline, if T2 has not terminated, 
T2 is forced to abort and restart. If, however, the slack of T1 is sufficiently large, 
both transactions may be able to commit within their respective deadlines without 
the need for restarts and without wasting resources. The significant decrease in 
missed deadlines for protocols with ordered sharing as the slack rises beyond 1.5 
is caused by the increasing number of transactions that are able to commit within 
the slack of other transactions. 

Second, consider the case where T1 holds the lock, and T2 later requests a lock. 
In 2PL-HP, T2 is blocked and must wait until T1 terminates, before proceeding to 
acquire locks and execute any operation. Furthermore, note that T1 may eventually 
abort and, hence, this blocking may be referred to as wasted blocking. Since 
transactions that use ordered sharing do not block read and write operations, T2 is 
allowed to progress, acquire its locks, and execute operations. Note, however, that 
T2 may not commit before T1 terminates. But this cannot have any undesirable 
side effects since T1 has an earlier deadline than T2 and, hence, T1 must be out of 
the system by the time T2 arrives at its deadline. In general, by not blocking read 
and write operations, ordered sharing allows transactions to advance and execute 
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all their operations and, hence, fully utilize the system resources. On the other 
hand, and as we have demonstrated, the delayed commitment does not affect the 
timeliness of transactions, and is actually beneficial to lower priority transactions 
that may commit during this delay. 

6.4 Effect of Delayed Commitment 

In this experiment, we examine the importance of delaying the commitment of 
a transaction to allow other transactions to finish in its slack. Ordered sharing 
benefits system performance both by reducing blocking and by using a transaction's 
slack to finish transactions that would otherwise be aborted. Specifically, when a 
transaction is ready to commit but has to wait due to ordered shared relationships 
with respect to other transactions, and delayed commitment is not employed, then 
it first aborts all transactions it is waiting for and then commits. For this experiment 
all parameters are kept the same as in the baseline experiment; the only change is 
in the immediate commitment of a completed transaction. 

Figure 7 shows the throughputs of ST 2PL-OS/BI and 2PL-OS/BI with and with- 
out delaying a transaction's commitment. For comparison purposes, the throughput 
of 2PL-HP is also shown. Recall from Section 6.1 that 2PL-OS/BI showed a 47% 
improvement in maximum throughput over 2PL-HR When delayed commitment is 
not used, 2PL-OS/BI results in a 33% increase over 2PL-OS/BI. The remaining 14% 
improvement is due to the delay of a transaction's commitment. ST 2PL-OS/BI 
without delayed commitment shows a gain of 30% over 2PL-HP, and with delayed 
commitment it shows a gain of 38%. The corresponding miss percentages are 
also illustrated in Figure 7. At 2PL-HP's thrash point of 75 terminals, the miss 
percentages are 25% for 2PL-HP, 8.5% for ST 2PL-OS/BI without delayed commit- 
ment, 7.5% for 2PL-OS/BI without delayed commitment, 6.7% for ST 2PL-OS/BI 
with delayed commitment, and 3% for 2PL-OS/BI with delayed commitment. As 
reducing missed deadlines is of primary importance in real-time database systems, 
the use of delayed commitment in 2PL-OS/BI is especially important. At this multi- 
programming level, the number of missed deadlines has been reduced by more than 
half. At 2PL-OS/BI's thrash point of 95 terminals, the reduction is approximately 
33% (from 20.7% without delayed commitment to 12.4% with the delay). 

For ST 2PL-OS/BI, there is only a slight benefit gained by delaying transaction 
commitment. Clearly, the most significant gain is due to reducing read-write and 
write-read blocking. For 2PL-OS/BI, however, the use of delayed commitment has 
a more significant effect. We can explain this difference in terms of the frequency 
and type of operation conflicts that cause delays at commitment. In both of these 
protocols, read-only transactions will never be delayed at termination, because read 
operations can never be involved in an ordered shared relationship from a writer to 
a reader. Hence, delayed transactions must be update transactions. Furthermore, a 
delayed transaction will not have to wait for much time due to read-only transactions. 
Any read-only transaction will complete without being blocked or delayed. Therefore, 
an update transaction can be delayed substantially only by other update transactions. 



110 

Figure 7. Effect of Delayed Commitment (Baseline Settings: slack=3, 
resource units=4) 
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Figure 8. slack=3, resource units =3(top) =5(bottom), not tardy policy 
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Recall that ST 2PL-OS/BI uses blocking for write-write conflicts, while 2PL-OS/BI 
does not. This has two effects with respect to ST 2PL-OS/BI. First, there will 
be correspondingly fewer situations in which a transaction can reach its commit 
point while being delayed for termination by another transaction. Some transactions 
which would have used delayed commitment in 2PL-OS/BI will instead be blocked 
in ST 2PL-OS/BI. Furthermore, transactions that are blocked for some time and 
then are delayed upon termination will have wasted some of their slack during 
the periods when they were blocked. Hence, the available slack time to do useful 
work (i.e., the advantage of delayed commitment) may be much reduced. Second, 
transactions blocked by write-write conflicts will not be able to benefit from the 
slack in another transaction's delayed commitment. As a result ST 2PL-OS/BI does 
not benefit from delayed commitment as strongly as does 2PL-OS/BI. 

6.5 Alternative Policies for Delayed Termination 

The ordered sharing rule restricts the termination of transactions. In particular, if 
transaction Ti acquires a lock with an ordered shared relationship with respect to 
a lock held by another transaction Tj, then Ti cannot commit until Tj terminates. 
We call Tj a predecessor of Ti. When Ti is ready to commit, and if there is at 
least one predecessor, Ti must wait. When Ti reaches its deadline, if there are 
any predecessors, two different policies may be considered: forced commit policy 
(i.e., Ti aborts all predecessors and commits itself), and forced abort policy (i.e., Ti 
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aborts itself). Note that, with forced aborts and unlike with forced commits, the 
different ordered sharing protocols may suffer from wasted restarts. In particular, 
when a transaction reaches its deadline, it may be aborted due to a lower priority 
transaction, which itself is later aborted. We compare the performance of 2PL-OS/BI, 
ST 2PL-OS/BI, and ACA 2PL-OS with these two different policies. 

Figure 8 illustrates the performance of 2PL-OS/BI with forced commit (2PL- 
OS/BI-FC) and forced abort (2PL-OS/BI-FA) policies in the baseline case. This 
figure shows that if the multiprogramming level is < 70 terminals, the performance 
of 2PL-OS/BI-FA is slightly worse than that of 2PL-OS/BI-FC. With the increase 
in multiprogramming level, the performance of 2PL-OS/BI-FA is slightly better 
than that of 2PL-OS/BI-FC. At the multiprogramming level corresponding to the 
maximum throughput of 2PL-OS/BI-FA, only 12.09% of the transactions miss their 
deadlines compared to 16.67% in 2PL-OS/BI-FC and 47.68% in 2PL-HP. Figure 9 
shows the simulation results for a variable number of resources. When the number 
of resources is reduced, the margins between 2PL-OS/BI-FA and 2PL-OS/BI-FC 
become smaller due to increased resource contention. When the number of resources 
increases from four to five, the margins are larger. At the point of 120 terminals, 
2PL-OS/BI-FA gives a throughput of 8.52 transactions per second, a 8.7% increase 
over 2PL-OS/BI-FC and a 93.6% increase over 2PL-HP. The miss percentage at this 
point is 13.4% for 2PL-OS/BI-FA, 18.6% for 2PL-OS/BI-FC and 53.4% for 2PL-HP. 
At the point of 130, the throughput of 2PL-OS/BI-FA is 8.5, a gain of 11.2% and 
102.8% over 2PL-OSfBI-FC and 2PL-OS, respectively. 

Figure 10 shows the performance of ST 2PL-OS/BI with forced commit (ST 2PL- 
OS/BI-FC) and forced abort (ST 2PL-OS/BI-FA) policies in the baseline case. Similar 
to 2PL-OS/BI, if the number of terminals is < 70, ST 2PL-OS/BI-FA performs slightly 
worse than ST 2PL-OS/BI-FC. When the number of terminals is > 70 but < 140, 
ST 2PL-OS/BI-FA gives larger throughput and fewer miss percentage than ST 2PL- 
OS/BI-FC. The maximum throughput of ST 2PL-OS/BI-FA is 6.5, a 2.8% increase 
over ST 2PL-OS/BI-FC. At this peak point, the miss percentage is 20.3% for 2PL- 
OS/BI-FA, 21.6% for 2PL-OS/BI-FC and 47.7% for 2PL-HP. However, when the 
number of terminals is > 140, ST 2PL-OS/BI-FA performs worse. Also similar 
to 2PL-OS, increasing the number of resource units leads to larger margins, and 
vice versa (Figure 11). In the case of five resource units, ST 2PL-OS/BI-FA gives 
a maximum throughput of 7.4, a 2.1% improvement on ST 2PL-OS/BI-FC and a 
68.8% improvement on 2PL-HP. 

We observe that, for a given multiprogramming level, the difference between 
2PL-OS/BI-FA and 2PL-OS/BI-FC is larger than that between ST 2PL-OS/BI-FA and 
ST 2PL-OS/BI-FC. To explain this discrepancy, let us consider the average number of 
predecessors of a transaction that are ready to commit and reach their own deadlines. 
Because of the existence of write-write blocking in ST 2PL-OS/BI, this number in 
2PL-OS/BI is greater than in ST 2PL-OS/BI. So, if a transaction always aborts 
itself at commitment, then 2PL-OS/BI-FA avoids aborting more predecessors than 
ST 2PL-OS/BI-FA. Hence, 2PL-OS/BI-FA performs, better than ST 2PL-OS/BI-FA. 
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Figure 9. slack=3, resource units=3(top) =5(bottom), 
not tardy policy 
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Figure 10. 
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In ACA 2PL-OS/BI, there is write-read blocking. Recall that in our simulation 
model, update-txn-pct is 60% and write-op-pct is 50%. So only 30% of operations are 
write operations and 70% are read operations. This implies that write-read blocking 
happens more frequently than write-write blocking. So, for transactions reaching 
their deadlines, the average number of predecessor's in ACA 2PL-OS/BI is greater 
than that in ST 2PL-OS/BI. Hence, in A C A  2PL..OS/BI-FA, the commitment of 
those transactions that are waiting until their deadlines will abort more predecessors 
than in ST 2PL-OS/BI-FA. This degrades the performance of ACA 2PL-OS/BI-FA. 
Our experiments show the same results as this predication. Figure 12 reports 
the performance of ACA 2PL-OS/BI-FA in comparison of ACA 2PL-OS/BI-FC 
in baseline case. The maximum throughput of ACA 2PL-OS/BI-FA is 5.5, a 
3.3% decrease compared with ACA 2PL-OS/BI-FC. At this peak point, the miss 
percentage of ACA 2PL-OS/BI-FA is 24.8%, 3.0% more than of ACA 2PL-OS/BI- 
FC. From Figure 13 we observe that the discrepancy between ACA 2PL-OS/BI-FA 
and ACA 2PL-OS/BI-FC seems to be smaller if the number of resources decreases 
from four to three, and this discrepancy is larger if tile number of resources increases 
from four to five. This is similar to the results of 2PL-OS/BI and ST 2PL-OS/BI. 

6.6 Effect of Known Requirements 

In this experiment, we evaluate the effect of feasible deadlines on the performance 
of the four protocols. Feasible deadlines or known requirements allow the transaction 
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Figure 11. slack=3, resource units =3(top) =5(bottom), 
not tardy policy 
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Figure 12. Baseline Case: slack=3,resource units=4, not tardy policy 
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manager to abort a transaction as soon as they can determine that the time needed 
to execute the transaction is more than the slack awtilable. Note that this approach 
is not very practical in general, since the exact requirements for each transaction 
are difficult to ascertain a priori. However, the experiment does provide a better 
understanding of the locking protocols for real-time databases. 

Figure 14 illustrates the throughputs and miss percentages for the four protocols. 
The parameters chosen for this experiment are identical to those in the baseline 
experiment, except for the feasible deadlines policy. When compared to the baseline 
experiment with unknown requirements, the performance of all protocols improves. 
Since transactions that cannot make their deadlines are aborted early, fewer resources 
are wasted resulting in improved performance. However, the impact of known 
requirements is more significant for 2PL-HP, since it benefits from the feasible 
deadlines policy to reduce the number of wasted restarts. Although 2PL-HP benefits 
more from known requirements (e.g.,the thrash points of all four protocols are nearly 
identical), there is still a significant difference between 2PL-HP and the other three 
protocols. For example, at the thrash point of 110 terminals, the miss percentages 
are 36% for 2PL-HP, 29% for ACA 2PL-OS, 22% for ST 2PL-OS/BI, and 19% for 
2PL-OS/BI. 

In a direct comparison of the baseline graphs (see Figure 3) with those for 
feasible deadlines, we note a change in the shape of the curves. The policy of 
feasible deadlines seems to flatten out and attenuate the curves. This is due in 
part to the half-and-half effect reported by Carey et al. (1990). Beyond the thrash 
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Figure 13. slack=3, resource units=4, feasible deadlines policy 
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Figure 14. slack=3,resource units=4, feasible deadlines policy 
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point, aborting transactions actually helps to stabilize throughput by reducing data 
contention. The feasible deadlines policy accomplishes some of this effect, because 
it aborts transactions as soon as their deadlines cannot be met. Furthermore, the 
inter-arrival delay parameter prevents a terminal from introducing a new transaction, 
immediately resulting in a stablizing effect on the throughput. 

7. Comparison of Two-Phase Locking Protocol with Transient Verisons 

In this section, we compare two-phase locking protocols with ordered sharing with 
an instance of the two-phase locking protocol that uses transient or uncommitted 
versions of data. In particular, we consider the two-version two-phase locking 
protocol (Stearns and Rosenkrantz, 1981). The reason for this choice is the obvious 
resemblance of 2PL-OS/BI with 2V2PL and other studies have shown the superiority 
of 2V2PL over 2PL for real-time databases. 

The 2V2PL scheduler uses three types of locks: read locks, write locks, and 
certify locks. The scheduler sets a read(write) lock before it processes a read(write) 
operation. When a transaction commits, the 2V2PL must convert all write locks 
of the transaction into certify locks. Figure 15 illustrates the lock compatibility 
table used in 2V2PL. By allowing two versions of a data item, the conflict between 
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Figure 15. Lock Compatibility Matrix for Two-version 2PL 

Lock Requester Tj Lock Holder Ti 
ReadLocki WriteLocki ] CertifyLocki 

ReadLockj Y Y N 

WriteLock--j  Y N N 

CertifyLockj N N N 

read and write locks is eliminated in 2V2PL. In particular, read locks are set on 
committed version of the data-object whereas a write lock results in an uncommitted 
copy of data-object being created and a write lock is being set on that copy. When 
a transaction commits, it converts all its write locks to certify locks that conflict 
with other read and write locks. After obtaining the certify locks, the transaction 
installs the uncommitted version of the data-object as the new committed value. 

In real-time databases, 2V2PL needs to be adapted to use the deadlines of 
transactions. We call this modified protocol 2V2PL-HP and summarize it below: 

1. When the scheduler receives a request for a read lock on an object, the 
request is delayed if the certify lock on this object is currently held by a high 
priority transaction. Otherwise, the lock is granted by aborting lower priority 
transactions with the certify locks. 

2. When the scheduler receives a request for a write lock on the object, the 
request is delayed if a write lock or a certify lock on this object is currently 
held by a high priority transaction. Otherwise the lock is granted by aborting 
the lower priority transactions with write or certify locks. 

3. When the scheduler receives a commit request, it has to convert all write 
locks held by this transaction into certify locks. A certify lock could be 
delayed due to read locks held by higher priority transactions. Otherwise, 
the conversion is permitted by aborting lower priority transactions with read 
locks. Since transactions in this protocol always read committed data, the 
2V2PL-HP histories/execution do not suffer from the problems of cascading 
aborts. 

The comparison of 2V2PL-HP with the proposed protocols in this article are 
illustrated in Figure 16 (Baseline Case) and Figure 17 (Variable Resources). When 
the number of terminals is < 100, 2V2PL-HP has worse performance than ACA 2PL- 
OS and better performance than 2PL-HP and when the number of terminals becomes 
> 100, 2V2PL-HP performs better than ACA 2PL-OS, but worse than ST 2PL-OS/BI 
and 2PL-OS/BI. This case also happens consistently in Figure 17, and the switching 
points are also located at about 100 terminals. This means that the differences 
between these protocols don't change when the resource units vary. Figure 18 
illustrates the missed percentages for five protocols when the slack factor varies. 
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Figure 16. Baseline case: slack=3, resource units=4 
not tardy policy 
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In the case of 75 terminals, 2V2PL-HP performs worse than ACA 2PL-OS. This 
is the same as in Figures 16 and 17. In the case of 95 terminals, the margin of 
differences between ACA 2PL-OS and 2V2PL-HP is small since 95 terminals is 
near the switching point, which is about 100 terminals. 

Comparing the two protocols 2PL-HP and 2V2PL-HP, we note that although 
certify locks in 2V2PL-HP behave much like write locks in ordinary 2PL-HP, the 
time to certify a transaction is usually much less than the total time to execute it. 
Hence 2V2PL-HP's certify locks delay read operations for less time than 2PL-HP's 
write locks delay read operations. Therefore, the 2V2PL-HP performs better  than 
2PL-HP. However, since existing read locks delay a transaction's certification in 
2V2PL-HP, the improved concurrency of read operatiLons comes at the expense of 
delaying the certification. 

The conflict relationship between the read and write operations in 2V2PL-HP 
is the same as that in ST 2PL-OS/BI. But, in 2V2PL-HP, a transaction's certification 
may abort other lower priority transactions due to the read-certify conflict while, 
in ST 2PL-OS/BI, a transaction delayed for others does not abort any transaction 
until it reaches its deadline. Thus, in ST 2PL-OS/BI some lower priority trans- 
actions for which some higher priority transactions are waiting may have enough 
time to commit. So, the main reason for the better performance of ST 2PL-OS/BI 
is that on the average, a commit operation in ST 2PL-OS/BI aborts fewer transactions 
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Figure 17. slack=3, resource units=3(top),=5(bottom), 
not tardy policy 
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Figure 18. Varying slack factor, 75 terminals(left), 
95 terminals(right) 
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We note that in 2V2PL-HP a transaction's certification may abort immediately 
other lower priority transactions with a read lock and, in ACA 2PL-OS, a transaction 
delayed for other transaction does not abort any transaction until its deadline. 
This leads to the better performance of ACA 2PL-OS than 2V2PL-HP when the 
multiprogramming level is low. When the multiprogramming level increases, the 
performance of these two protocols switches mainly' because the write-read delay 
in ACA 2PL-OS dominates the certify-read delay in 2V2PL-HP. 

8. Conclusion 

In this article, we describe locking-based protocols tor real-time database systems. 
Our approach is motivated by two main concerns.. First, locking protocols are 
widely accepted and used in most database systems• Second, in real-time databases 
it has been shown that the blocking behavior of transactions in locking protocols 
results in performance degradation• We proposed using a new relationship between 
locks called ordered sharing to eliminate blocking• Ordered sharing has the desirable 
property of eliminating blocking of read and write operations at the expense of 
a possible delay at transaction commitment. Unlike conventional databases where 
this delay may degrade response time, in real-time ,databases we exploit this delay 
by allowing other transactions to run within the slacks of delayed transactions• 
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Eliminating all types of blocking through ordered sharing may, however, result in 
cascading aborts. We overcome this problem by using before-images, which are 
generally maintained for recovery purposes. We compared the performance of 
the proposed protocols with 2PL-HE the two-phase locking protocol for real-time 
databases. Our performance results clearly establish the superiority of the proposed 
protocols over 2PL-HR In general, 2PL-OS/BI has the best performance followed 
by ST 2PL-OS/BI and ACA 2PL-OS and, finally, 2PL-HE In the region of low data 
contention or low workload, all four protocols exhibit comparable performance. 
However, at higher load or higher data contention, 2PL-OS/BI misses significantly 
fewer deadlines than 2PL-HR Once again, at very high data contention all protocols 
miss almost all deadlines. Our resource related experiments indicate that protocols 
with ordered sharing benefit significantly from an abundance of resources. Finally, 
even with known requirements (feasible deadlines), the proposed protocols still 
provide better performance than 2PL-HE Note that, in the usual circumstance of 
unknown requirements, the difference in performance is more striking. We also 
compared the multiversion locking protocol for real time databases and showed 
that, in general, the proposed protocols result in improved performance. 
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