
FLDB Journal, 4, 87-126 (1995), Hector Garcia-Molina, Editor

(~)VLDB

87

Ordered Shared Locks for Real-Time Databases

Divyakant Agrawal, Amr El Abbadi, Richard Jeffers, and Lijing Lin

Received August, 1992; revised version received, December, 1993; accepted July, 1994.

Abstract. We propose locking protocols for real-time databases. Our approach
has two main motivations: First, locking protocols are widely accepted and used
in most database systems. Second, in real-time databases it has been shown that
the blocking behavior of transactions in locking protocols results in performance
degradation. We use a new relationship between locks called ordered sharing to
eliminate blocking that arises in the traditional locking protocols. Ordered sharing
eliminates blocking of read and write operations but may result in delayed termi-
nation. Since timeliness and not response time is the crucial factor in real-time
databases, our protocols exploit this delay to allow transactions to execute within
the slacks of delayed transactions. We compare the performance of the proposed
protocols with the two-phase locking protocol for real-time databases. Our exper-
iments indicate that the proposed protocols significantly reduce the percentage of
missed deadlines in the system for a variety of workloads.

Key Words. Concurrency control, transaction management, time-critical schedul-
ing.

1. Introduction

Databases are being used increasingly for a wide spectrum of applications, and
many of these applications impose different and often conflicting demands on
the underlying system. One such example involves using databases for real-time
applications, referred to as real-time database systems. Some of the applications
that require real-time response include military tracking, medical monitoring, and
stock arbitrage systems. Such systems must process requests within definite time
bounds, and it is the inclusion of timing constraints that characterizes real-time
database systems. In general, a constraint is expressed in the form of a deadline,
which indicates that a transaction must be completed before some specific t ime
in the future. In contrast to traditional databases, where the primary goal is to

Divyakant Agrawal and Amr El Abbadi are Associate Professors of Computer Science, University of Cali-
fornia, Santa Barbara, CA 93106, agrawal@cs.ucsb.edu. Richard Jeffers, M.S., is Software Designer, Tandem
Computers, Inc., and Lijing Lin, M.S., is Software Engineer, Digital Media International, Santa Barbara,
CA 93105.

88

minimize the response time of user transactions and maximize throughput, the main
objective of real-time databases is to ensure that transactions meet their deadlines
and to minimize the percentage of transactions that miss deadlines in the system.

Real-time systems can be divided into two main types: those with hard deadlines
and those with soft deadlines (Abbott and Garcia-Molina, 1988). Hard real-time
systems have deadlines that always must be met by transactions, while soft real-time
systems have deadlines that may be missed at some; cost to the system. Usually
there is an associated value function with each transaction, which decreases after
the expiration of the deadline. In addition, the term .firm real-time systems is used
to describe systems that derive no benefit from completing tardy transactions. As
a result, tardy transactions are aborted as soon as they are detected. We choose to
investigate this latter type of system. If tardy transactions do provide a benefit to
the system, the analysis and judgement of a protocors performance is complicated
by the weighting of the values assigned to each transaction (termed a transaction's
criticalness; Huang et al., 1989). In databases, there are two aspects to scheduling
transactions: concurrency control for the execution of transactions that maintain
database consistency, and CPU and I/O scheduling for the execution of read and write
operations. In this article, we concentrate on the transaction scheduling aspects
for concurrency control in real-time databases. The issue of physical resource
(CPU and I/O) scheduling has been dealt with extensively elsewhere (Abbott and
Garcia-Molina, 1988, 1989, 1990; Buchmann et al., 1989; Huang et al., 1989).

Most commercial database systems use the two-phase locking protocol (Eswaran
et al., 1976) for concurrency control. The two-phase locking protocol is preferred
over other methods for concurrency control (Reed, 1978; Kung and Robinson, 1981;
Bernstein and Goodman, 1981) due to its simplicity and ease of implementation.
Unfortunately, the blocking behavior of locking protocols can greatly degrade the
performance of real-time database systems due to a phenomenon called priority
inversions (Sha et al., 1990). Recent performance studies (Haritsa et al., 1990a,
1990b) have shown that some variants of the optimistic protocol (Kung and Robinson,
1981) outperform two-phase locking in real-time databases where transactions have
firm deadlines. The authors point out that transaction blocking in the two-phase
locking protocol results in unpredictable delays, causing transactions to miss their
deadlines.

The research presented in this article is motivated by the following two facts: the
popularity of the locking approach in most database systems, and the potential of
attaining superior performance with optimistic or non-blocking concurrency control
protocols in real-time databases. Optimistic protocols have failed to migrate to
commercial database environments. We propose a new variant of the locking
approach, referred to as ordered sharing (Agrawal and E1 Abbadi, 1990), in real-
time databases with firm deadlines. Ordered sharing can be used to eliminate
blocking of read and write operations. However, transactions may be subject to
delay at commitment. In traditional databases, this delay potentially could result
in poor response time for transactions. However, in real-time databases, timeliness

VLDB Journal 4 (1) AgrawaI: Ordered Shared Locks for Real-Time DBs 89

in meeting a transaction's deadline, and not response time, is the crucial factor.
We can exploit the slack of a delayed transaction to complete the execution of any
transactions causing the delay. To terminate, a delayed transaction that reaches its
deadline may either have to abort itself or abort a lower priority transaction that
has not yet completed. To summarize, our approach is to eliminate blocking of read
and write operations, and to exploit any available slack in a transaction to improve
the overall performance of the system by decreasing the number of transactions
that miss their deadlines.

In this article, we start by reviewing some of the protocols that have been
proposed for real-time database systems. We then introduce the locking primitive
that extends standard locking, and describe several locking protocols for real-time
databases. These protocols address different failure and recovery aspects of database
systems. The issue of recovery has not been fully addressed by previous real-time
database designs, especially those that use the optimistic approach for concurrency
control. The rest of the article presents a simulation model based on Carey (1983)
and on simulation results that demonstrate the superiority of our approach over the
two-phase locking protocol used in real-time databases. We also analyze different
aspects of the proposed protocols under various workloads.

2. Real-time Databases

A database is a collection of objects. Users interact with the database by invoking
transactions. A transaction is a sequence of read and write operations that are
executed atomically on the objects. The execution of a transaction must be atomic
(i.e., a transaction either commits or aborts). Finally, a transaction is guaranteed to
be correct (i.e., it maps the database from one consistent state to another consistent
state). The execution of a set of transactions is modeled by a structure called a history.
A history is correct if it is serializable (Bernstein et al., 1979; Papadimitriou, 1979).
All protocols considered in this article ensure serializability. To ensure that aborting
a transaction does not influence previously committed transactions, we must require
that for every transaction T that commits, its commit operation follows the commit
of every other transaction from which T reads. Such executions are called recoverable
(RC; Hadzilacos, 1988). Recoverability, however, does not guarantee freedom from
cascading aborts. Cascading aborts occur when a transaction reads from another
uncommitted transaction that later aborts, forcing the former transaction to abort
as well. Cascading aborts can be prevented by requiring transactions to read only
committed values. Executions that satisfy this requirement are said to avoid cascading
aborts (ACA; Hadzilacos, 1988). Finally, if the database uses in-place updating, it
is convenient to implement the abort mechanism by restoring the before-images of
all aborted writes (Verhofstad, 1978; Hfirder and Reuter, 1983; Bernstein et al.,
1987). To use before-images to eliminate the effects of aborted transactions, read
and write operations on a data object x must be executed only on committed values.
Executions with this property are called strict (ST; Hadzilacos, 1988).

90

Many widely used concurrency control protocols use locking as a basic primitive
for synchronization. Traditionally, there are two types of relationships between
locks: shared and non-shared. For example, read locks can be shared but a write
lock cannot be shared with any other lock. Transactions in real-time databases
have deadlines associated with them, which can be used to assign priorities to
transactions (priorities can be assigned based on other criteria, e.g., criticalness;
Buchmann et al., 1989; Huang et al., 1989). In this article, we study concurrency
control protocols for real-time databases with firm deadlines and a transaction with
an earlier deadline is considered to have a higher pr.iority over a transaction with a
later deadline. Litwin and Shan (1991) proposed a concurrency control mechanism
for heterogeneous databases based on value dates that are similar to deadlines.
Transactions are assigned value dates that are used for concurrency control and
transaction termination. The value dates-based protocol has some similarities with
real-time concurrency control protocols. We now discuss some real-time concurrency
control protocols that are related to our work.

Strict two-phase locking (Eswaran et al., 1976) is the most widely accepted
concurrency control protocol. One especially undesirable property of strict two-
phase locking in real-time databases is that a low priority transaction may block
a high priority transaction; this phenomenon is called priority inversion (Sha et al.,
1990). Therefore, in real-time databases, this protocol is augmented with a high
priority conflict resolution scheme to ensure that high priority transactions are not
blocked by low priority transactions, thus avoiding priority inversions. This two-
phase locking protocol is referred to as 2PL-HP (Abbott and Garcia-Molina, 1988)
and can be summarized as follows:

1. A transaction T must obtain read (write) locks before executing read (write)
operations. If T's lock has a non-shared relationship with locks held by any
transaction, and if all such transactions have a lower priority than T, then
they are aborted and T can acquire its lock. Otherwise, T is blocked until
the locks are released by the higher priority transactions.

2. Transactions release all their locks at commitment.

When locks with two types of relationships (shared and non-shared) are used, there
are three types of blocking that can occur in the system: read-write blocking occurs
when a transaction holds a read lock on an object and a lower priority transaction
requests a write lock on the same object; write-read blocking and write-write blocking
can be defined similarly. In 2PL-HP, a blocked transaction has to wait until all higher
priority transactions holding conflicting locks commit. Furthermore, this protocol
may suffer from wasted restarts (i.e., when a high priority transaction aborts a lower
priority one and is itself later aborted). Note that deadlocks may also contribute
towards wasted restarts. In this article, however, we only consider wasted restarts
that are not due to deadlocks. Sha et al. (1991) proposed a locking-based protocol
that avoids the blocking of high priority transactions (and thus priority inversions)
for at most the duration of a single embedded transaction.

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 91

Haritsa et al. (1990a) proposed a variant of the optimistic protocol (Kung and
Robinson, 1981) for real-time database. The proposed protocol is referred to as the
optimistic protocol with broadcast commit (OPT-BC; Menasce and Nakanishi, 1982),
and is shown to have better performance in real-time databases than the 2PL-HP
protocol. The protocol can be summarized as follows. Transactions are allowed to
execute without any synchronization until they reach their commit point, at which
time they enter a validation phase. At this point, the validating transaction broadcasts
a request that forces the abort of other uncommitted running transactions with which
it conflicts. This implies that a validating transaction always commits. Furthermore,
this protocol does not suffer from any wasted restarts, since a transaction that forces
the restart of another transaction is guaranteed to commit.

In OPT-BC, the relative priorities of transactions are not taken into account
when a transaction forces the abort of another transaction. Hence, it is possible
for a lower priority transaction to abort a higher priority transaction if the former
reaches its validation phase first. The optimistic wait protocol (OPT-WAIT; Haritsa
et al., 1990b) was designed to overcome this problem by delaying a validating
transaction from committing if a higher priority transaction is in the current set of
uncommitted transactions with which it conflicts. Once there are no such transactions
executing, the transaction aborts any lower priority uncommitted transactions with
which it conflicts. An extension of OPT-WAIT is the OPT-WAIT-50 protocol,
where a validating transaction waits only if > 50% of the currently uncommitted
transactions have higher priority. The main purpose of this waiting is to detect
when waiting is beneficial, in terms of giving preference to high priority transactions,
versus no waiting, and its advantages in terms of avoiding late restarts for low priority
transactions and a possible increase in the number of conflicts. Haritsa et al. (1990a)
analyzed these variants of the optimistic approach and presented simulation results
indicating that, under conditions of low data contention, delaying the validation
of low priority transactions results in improved performance. On the other hand,
under conditions of high data contention, OPT-WAIT-50 provides the best overall
improvement in performance.

Huang et al. (1991) developed a locking variant of the optimistic concurrency
control protocol and compared its performance with the class of two-phase locking
protocols for real-time databases. Some of their results do not completely agree
with the simulation results of Haritsa et al. (1990a, 1990b), which may be due to the
differences in the simulation models and in the physical implementation schemes.
However, both studies indicate that transaction blocking is the main disadvantage
in adapting two-phase locking to real-time databases.

Lin and Son (1990) described a concurrency control protocol that uses a mixture
of the locking and optimistic protocols. A transaction executes in three phases: a
read phase, a wait phase, and a write phase. During the read phase, a transaction
obtains read and write locks, and executes read operations, but performs write
operations in its private space. Low priority transactions are blocked if a higher
priority transaction holds a conflicting lock (except in the case of write operations

92

where write locks do not conflict, since no write operations are performed during
this phase). A high priority transaction requesting a write lock aborts a lower priority
transaction with a read lock on the object. However, if the higher priority transaction
requests a read lock, on which a lower priority transaction has a write lock, both
transactions are allowed to hold locks. During the 'wait phase, a transaction must
wait for all higher priority transactions to commit. After committing, a transaction
performs all its write operations, and write operations are executed in accordance
with the serialization order between transactions (a timestamp for this purpose is
assigned during the commit phase). In general, the protocol dynamically adjusts
the serialization order between transactions in favor of higher priority transactions.
This flexibility is achieved due to the deferred update approach, which allows high
priority read operations to be serialized before lower priority write operations that
may have already been executed.

Kim and Srivastava (1991) proposed an alternative approach, which uses mul-
tiversion concurrency control to reduce the number of rejected transactions and,
thus, improve the overall performance of real-time database systems. Two ap-
proaches were proposed, one based on the two-version two-phase locking protocol
(2V2PL) (Bayer et al., 1980; Stearns and Rosenkrantz, 1981), and another based
on the multi-version two-phase locking protocol (MV2PL; Chan et al., 1982). The
main advantage of these protocols is that priority inversion due to blocking can
be eliminated. In particular, the read operation of a high priority transaction can
always read the committed version of the object. A write operation creates a new
version of the object and, thus, write operations in the MV2PL protocol never
block each other. As in the optimistic approach, before committing, transactions
must validate that no concurrent uncommitted transactions have executed write
operations. A simulation study was performed and :it demonstrated that the use of
multiple versions can improve the performance of the concurrency control protocols
in real-time databases.

Sha et al. (1991) proposed a real-time locking protocol to deal with the priority
inversions problem that arises in real-time databases. The protocol employs the
notion of priority inheritance, in which a lower priority transaction blocking a higher
priority transaction inherits the priority of the latter to avoid priority inversions (Sha
et al., 1990). In addition, they proposed a priority ceiling protocol by associating
three attributes with each object in the database: write_priority, absolute priority, and
r/wpriority ceilings. Based on these parameters, they imposed certain restrictions on
transactions when they attempted to access these objects. Although the proposed
protocol is free from deadlocks, it has significant overheads for making scheduling
decisions. In particular, a transaction cannot read/write lock a data object unless its
priority is higher than the r/w priority of all data objects locked by other transactions.
This rule is referred to as the ceiling rule. In summary, the proposed protocol has
desirable features (i.e., no priority inversions and absence of deadlocks), but its
applicability is limited to databases with a small number of objects. For large
real-time databases, the above protocol is not very practical since it tags three extra

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 93

attributes with each object, and it requires a global search to enforce the ceiling
rule.

3. Locking Protocols with Ordered Sharing

Agrawal and E1 Abbadi (1990) introduced a new locking primitive that allows a new
relationship, referred to as ordered sharing, between locks. The new relationship
provides mutual exclusion during operation execution but, unlike the traditional
locking approaches, it does not require mutual exclusion after an operation has been
executed. Instead of exclusion, the new relationship between locks captures the
relative order of operations executed by concurrent transactions. Ordered sharing
can be used with two-phase locking to eliminate the three types of blocking: read-
write, write-write, and write-read blocking. For example, to eliminate read-write
blocking, a transaction Tj can be granted a write lock on an object even if another
transaction Ti holds a read lock on the same object. We say that there is an ordered
shared relationship from Ti's read lock to Tj's write lock. Similarly, write-read
blocking can be avoided by granting read locks with an ordered shared relationship
with respect to write locks. Finally, write-write blocking can be eliminated by
granting write locks with an ordered shared relationship from the previous write
locks on the same object. To ensure serializability, protocols with ordered sharing
must observe the following rule:

Ordered Sharing Rule: If Tj acquires a lock with an ordered shared relationship
with respect to a lock held by another transaction Ti, the corresponding
operation of Tj must be executed after that of Ti. Furthermore, Tj cannot
commit until Ti terminates (i.e., commits or aborts).

The ordered shared relationship can be interpreted as allowing the constrained
sharing of locks in the following manner. If two operations acquire locks with
an ordered shared relationship between them, the first lock excludes the second
operation from executing until the first operation has been executed. Once the
operation has been executed, the second operation is executed and the order of
operation execution is the same as the order of lock acquisition. In this sense,
mutual exclusion between operations is for a short duration only, instead of for
longer periods as is necessary when non-shared relationships are used by locking
protocols for executing conflicting operations. If ordered sharing is used to eliminate
blocking, transactions may be delayed at commit. However, this delay does not
block other transactions from executing read and write operations.

We now describe the two-phase locking protocol with ordered sharing (2PL-
OS) adapted for real-time databases. In particular, we assume that we have shared
relationships between read locks and ordered shared relationships between the
remaining three types of conflicts between locks. Also, the update-in-place policy
(Gray et al., 1981; Harder and Reuter, 1983) is used to execute operations. The

94

protocol can be summarized as follows:

1. Transactions acquire locks before executing operations, and release all their
locks at commit (abort) as in strict two-phase locking.

2. When a transaction T is ready to commit, it waits until either the ordered
sharing rule is satisfied or it reaches its deadline. In the former case it
commits whereas, in the latter case, it tries to commit by aborting all preceding
transactions with which it has an ordered shared relationship. 1

3. When a transaction Z aborts, it releases all its locks and causes the abort of all
transactions which read values written by T. (Therefore, when a transaction
decides to commit at its deadline, it may have to abort if it had read
uncommitted data.)

This protocol is useful for real-time databases since', it does not block any read and
write operations from executing. There is a possibility of delay when transactions
commit, but this does not result in performance degradation since, in real-time
databases, timeliness of transactions is of greater value than the response time of
transactions. Furthermore, this delay can be exploited to execute other transactions
within a delayed transaction's slack. Unfortunately, 2PL-OS suffers from the unde-
sirable phenomenon of cascading aborts which, in turn, may result in wasted restarts.
We have argued elsewhere that locking protocols that suffer from cascading aborts
have poor performance (Agrawal et al., 1992; 1994). In the following, we develop
several variants of 2PL-OS that do not suffer from the problem of cascading aborts.

In the first variant, cascading aborts are avoided by retaining write-read blocking
(i.e., ordered sharing is not allowed from write locks to read locks). Hence, a non-
shared relationship from write locks to read locks is used in this protocol, which
is referred to as ACA 2PL-OS (avoid cascading aborts 2PL-OS). ACA 2PL-OS
is a hybrid of 2PL-HP, when locks with non-shared relationships are used, and
2PL-OS, when locks with ordered shared relationships are used. In particular, when
a transaction tries to acquire a read lock on an object, and all writers have lower
priorities, they are aborted and the transaction can acquire a read lock; otherwise,
the transaction is blocked. For the other two types of conflicts (i.e., read-write
and write-write) locks with ordered sharing are used and transactions must adhere
to the ordered sharing rule. Since write locks are held until commit, transactions
cannot read uncommitted data. Hence, all executions resulting from this protocol
avoid cascading aborts and, therefore, can be used for real-time databases.

The second variant avoids cascading aborts in 2PL-OS by exploiting the before-
images of objects and is referred to as the two-phase locking protocol with ordered
sharing and before-images, 2PL-OS/BI (Agrawal et al., 1992). Our approach is
similar to the one used by the multi-version two-phase locking protocols (Bayer et

1. Later in the article, we investigate the impact of aborting the delayed transaction itself.

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 95

al., 1980; Stearns and Rosenkrantz, 1981). When a transaction T executes a write
operation on an object x, it creates a new (uncommitted) value for x. The original
(committed) value of x is referred to as the before-image of x. When T commits,
the before-image is discarded and the new value becomes the committed value of
x. If T aborts, the before-image of x is used to restore x to its prior state. Since
the protocol allows multiple writers to execute concurrently, the state of the object
is represented by a single committed version and several uncommitted versions
corresponding to the different values written by each uncommitted transaction.
When a transaction reads an object, instead of reading the value written by an
uncommitted transaction, it always reads the current committed version of the
object, thus avoiding the possibility of cascading aborts. Hence, there is a reversal
of the ordered shared relationship between the two transactions. In particular,
write-read blocking is eliminated by allowing the reader to read committed data and
requiring an ordered shared relationship from the read lock to the write lock. Hence,
the reader must commit before the writer as mandated by the ordered sharing rule.
This non-restrictive 2PL-OS protocol uses ordered sharing to eliminate write-read
blocking and uses before-images to avoid cascading aborts. 2PL-OS/BI has all the
desirable properties of 2PL-OS, especially the property of allowing other transactions
to execute within the slack of a committing transaction. Deadlines of transactions
are used only to force termination if transactions have reached their deadlines and
are delayed due to the ordered sharing rule.

2PL-OS/BI does not suffer from the problems of either wasted or mutual restarts
(Haritsa et al., 1990b). A wasted restart occurs when an executing transaction is
aborted by another transaction that later misses its deadline. Since only committing
transactions can cause restarts of other transactions in 2PL-OS/BI, all restarts are
useful. ACA 2PL-OS, on the other hand, may suffer from wasted restarts since a
reader may abort a lower priority writer, and later the reader itself aborts. Since
priorities are assigned when transactions are created and do not change during their
lifetimes, our protocols do not suffer from the problem of mutual restarts.

Both ACA 2PL-OS and 2PL-OS/BI result in executions that avoid cascading
aborts but are not strict. For this class of executions, the recovery scheme based on
value-logging and restoring before-images of aborted transactions can give rise to
inconsistencies. We discussed a recovery implementation for such protocols (Agrawal
and E1 Abbadi, 1991; Alonso et al., 1994), which is a simple variation of the standard
log-based recovery (Harder and Reuter, 1983; Mohan et al., 1992). To continue
using the standard recovery scheme based on before-images and value-logging, 2PL-
OS/BI can be restricted so that it accepts strict histories (Hadzilacos, 1988). In strict
histories, at most one uncommitted version of a data object exists at any time. This
variant, referred to as ST 2PL-OS/BI, does not permit ordered sharing between
concurrent writers. Instead, a non-shared relationship is used between conflicting
write locks of different transactions. In particular, when a transaction tries to obtain
a write lock on an object, and another transaction with a lower priority has a write
lock on the same object, then the latter is aborted and the former is granted the

96

lock. Otherwise, the requesting transaction is blocked. For other types of lock
conflicts the rules of 2PL-OS/BI are used. The advantage of ST 2PL-OS/BI is that
it does not require any modifications to the underlying recovery architecture.

4. Illustrative Examples

In this section, we illustrate the advantages and tradeoffs between the two-phase
locking protocols with ordered sharing, and various other protocols that have been
proposed for real-time database systems. The purpose of this section is to highlight
the main features of our protocols, in comparison with the other protocols.

Consider two transactions T5 and TT, where both transactions update objects
x and y. For simplicity, we assume that each transaction needs 4 time units to
execute, and that T5 has a firm deadline at time 5, while T7 has a firm deadline at
time 7 (i.e., T5 has a higher priority than TT). We start by showing the execution
of these two transactions, assuming a standard strict two-phase locking protocol.
If transaction T7 starts at time 0 by locking x and y, and T5 starts at time 1, then
the higher priority transaction T0 is blocked because T7 holds conflicting locks on
objects x and y. When transaction T7 terminates at time 4, it is already too late for
T0 to execute (it needs 4 time units, but its deadline is at time 7). Thus, the higher
priority transaction does not make its deadline. The 2PL-HP protocol (Abbott
and Garcia-Molina, 1988) overcomes this problem by aborting the lower priority
transaction TT, when T5 requests its locks on x. However, when T5 commits at time
5, it is too late for T7 to execute; thus, the lower priority transaction can not make
its deadline.

The OPT-BC protocol (Menasce and Nakanishi, 1982; Haritsa et al., 1990a)
executes operations without requiring them to obtain locks. Hence, in the above
scenario, transaction T7 starts executing at time 0, and transaction Ts, which arrives
at time 1, is allowed to execute concurrently with TT. When Tz reaches its validation
phase, it forces the abort of Ts, since T0 conflicts with T7 on x and y. Hence, T7
commits at time 4, and it is too late for T5 to execute. As with the 2PL-HP, the
OPT-WAIT protocol was designed to avoid the aborts of high priority transactions.
In this case, when T7 reaches its validation phase, it waits for the higher priority
transaction to terminate. Unfortunately, when T5 reaches its validation phase (at
time 5) it forces the abort of transaction TT, and now it is too late for T7 to execute.

If ordered sharing is used in the above scenario, the two transactions may be
allowed to commit if the operations on the two objects are executed in the same
order. In particular, assume that when T7 starts at time 0, it obtains locks on
objects x and y, and then, when T0 starts at time 1, it obtains locks on objects x
and y with ordered shared relationships with respect to the locks of TT. In this
case, when transaction T7 tries to commit at time 4, it satisfies the ordered sharing
rule (it is waiting for no transaction), and hence is allowed to commit. When at
time 5, T5 tries to commit, the ordered sharing rule also holds (all transactions
that it has been waiting for have already committed). Hence, both the high priority

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 97

transaction T5 and the low priority transaction T7 commit and meet their deadlines.
Of course, if the order in which locks are obtained on the two objects is not the
same, a deadlock will occur, and one of the two transactions will be aborted (in
the simulation studies described in the next section, the lower priority transaction
is aborted).

Our protocols exploit ordered sharing to avoid the blocking of operations, with
the potential possibility of blocking commit operations. Furthermore, by delaying
the commitment of some high priority transactions until it is absolutely necessary
to commit (if the transactions reach their deadlines), lower priority transactions
may be allowed to commit in the slack of the higher priority transactions. Consider
another example where T7 needs 4 time units and has deadline at time 7 and T10
needs 6 time units and has deadline at time 10. If T10 starts at time 0 and T7
starts at time 1, then T7 will try to commit at time 5. In this case, the ordered
sharing rule may not hold if T10 had acquired a lock on some object before TT.
Instead of forcing the abort of Tlo, transaction T7 waits. At time 6, T10 commits
and the ordered sharing rule is satisfied and, hence, T7 can also commit since all
transactions for which it is waiting have committed. Hence, T10 has exploited the
available slack between the time when T7 terminates and its deadline. Thus, both
transactions commit and meet their deadlines. Note that if T10 needed 8 time units
(instead of 6), then T7 reaches its deadline at time 7 and, since it has higher priority
than T10, it forces T10 to abort.

5. Simulation Model

To evaluate the performance of the proposed locking protocols for real-time data-
bases, a database simulation model based on Carey (1983), Agrawal et al. (1987a),
and Haritsa et al. (1990a) was developed. This simulation model uses the SIM-
SCRIPT 11.5 language (Law and Larmey, 1984; Russell, 1983, 1987) and implements
a centralized database. It is divided into three main components: a Transaction
Manager (TM), a Concurrency Control Agent (CCA), and a Data Manager (DM).
The TM is responsible for issuing lock requests, the CCA schedules these requests
according to the specifications of the protocol, and the DM is responsible for
granting access to the physical data objects.

5.1 Logical Queuing Model

The logical simulation model, shown in Figure 1, represents a closed queuing
model of a single-site database system. There are a variable number of terminals,
num_terms, which effectively control the maximum multiprogramming level of the
system. A terminal initiates a transaction, and then is delayed from submitting its
next transaction for a Poisson-distributed interval, the inter_arrival_delay parameter.
Each transaction has an associated deadline that is calculated as (Haritsa et al.,
1990a):

98

Figure 1, Logical Queuing Model

Terminals

Transaction
Manager

• c~ wai t
¢c agent ~ queue

request ~ CC
~u~kn°wle~Igeme/~t'T'~'[I Agent

I - 1 E3 q=e=e
] Data [
I Manager I

deadline = txn_start_time -q- (slack_factor * estimated_ total_ txn_time)

Slack_factor is an input parameter that controls the tightness or looseness of the
deadlines, and estimated_total_txn_time is the estimated total service time for the
transaction (this is a function of I/O and CPU time needed to process all operations
of a transaction). For example, with slack factor two, a transaction has double its
estimated time to complete execution. The TM issues both the lock requests and
the actual database operations for each transaction. In addition, the TM determines
if a transaction misses its deadline. The input parameter knows_Ixn_reqs indicates
whether the system is aware of the amount of time a transaction will need to
finish processing. If knows_txn_reqs is false, then the TM can only determine missed
deadlines when they expire (referred to as not tardy; Abbott and Garcia-Molina,
1988). Otherwise, the TM can determine at eaclh database operation whether a
transaction should be aborted early because it can no longer make its deadline
(referred to as feasible deadlines; Abbott and Garcia-Molina, 1988). In the majority
of our experiments, we use the not-tardy policy, because it makes fewer assumptions
about the system's capabilities.

The CCA processes lock requests received through the cc_agent_queue. When
a lock request is received, it is possible that the :requested item is already locked
by another transaction and that the requester is given a non-shared relationship
with the lock holder (e.g., in the cases of 2PL-HP, ACA 2PL-OS, and ST 2PL-
OS/BI). In this scenario, the deadlines of the conflicting transactions are compared.
If the requesting transaction has an earlier deadline, the lock holder is aborted

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 99

Figure 2. Physical Queuing Model

Terminals

and the lock is granted to the requester. Otherwise, the requester is placed in
the priority queue, cc_wait_queue, sorted by deadlines. This scheduling policy is
referred to as earliest deadline, and has the advantages of simplicity and relatively
good performance (Abbott and Garcia-Molina, 1988). Delayed lock requests will
be rescheduled once the conflicting operations have released their locks. When a
lock request can be granted, an acknowledgement is sent back to the TM, which
then forwards the database operation to the Data Manager. When the DM executes
database operations it must adhere to the order in which lock requests were granted
by the CCA. This order is preserved through the use of the dm_wait_queue and the
din_reply_queue through a handshake mechanism (Agrawal et al., 1994). Locks are
released when transactions commit or abort.

The use of deadlines to schedule operations prevents the formation of deadlocks
in 2PL-HR Unfortunately, deadlocks may form in all protocols with ordered sharing.
For this reason, we use a deadlock detection strategy based on wait-for graphs.
Whenever a deadlock is detected, the transaction with the latest deadline is chosen
as the victim and aborted. The rationale for this choice is based on the fact that the
transaction with the latest deadline has the lowest priority among the deadlocked
transactions.

5.2 Physical Queuing Model

Underlying the logical model of Figure 1 are two physical resources, the CPU
and the I/O (i.e., the disk) resources. A certain amount of resource overhead is
associated with each lock request and each database access. Lock requests require

100

only CPU service while database accesses require both CPU and I/O services. The
physical queuing model, shown in Figure 2, is very similar to the one used by
Agrawal et al. (1987a, 1987b) and Carey et al. (1.990) in which the parameters
num_cpus and num_disks specify the number of CPU servers and the number of
I/O servers. The CPU servers are modeled as a pool of servers, all identical and
serving a common CPU queue sorted by transaction priorities (deadlines). Thus,
the CPU scheduling policy is based on transaction deadlines. Unlike the CPU
servers, a separate queue is associated with each I/O server. When a transaction
needs service, it randomly selects a disk (with all disks being equally likely) and
waits in the I/O queue associated with the selected disk. I/O requests are also
sorted by transaction priorities. That is, I/O scheduling is also based on transaction
deadlines. The parameters cpu_time and io_time represent the amount of CPU and
I/O time associated with reading or writing a data object. Both of these parameters
are modeled as uniform distributions. The parameter cc_req_delay represents the
amount of CPU time associated with servicing a concurrency control request (lock
request), which is assumed to be a constant. A special flag inf_res is used to to
override the use of num_cpus and num_disks to model the ideal environment with
unlimited resources. When this flag is set, the simulation ignores the server queues,
and transactions are delayed only for the amount of time associated with cpu_time
and io_time (i.e., there is no waiting in the queues for access to the physical devices).

5.3 Transaction Generation

For each transaction, the sequence of operations and the data objects to be accessed
are determined by the TM in a probabilistic manner. The size of the database is
assumed to be db_size. It is also assumed that each transaction performs at most
one read and/or write operation per data object. The transaction characteristics
are determined by the transaction size, txn_size, the update transaction percent-
age, update_txn_pct, and the write operation percentage, write_op_pct, parameters.
The transaction size represents the average number of operations performed by a
transaction, the mean of a uniform distribution between txn_size ± 5. The update
transaction percentage represents the percentage ,of transactions that will be up-
date transactions. The write operation percentage determines what percentage of
an update transaction's operations will be writes and has a uniform distribution
of write_op_pct ~ 20. Table 1 summarizes the parameters used in the simulation
model. Note that cpu_time and io_time have a uniform distribution (i.e., cpu_time

3 and io_time ± 5.

5.4 Simulation Settings

In real-time databases, the most important metric is the percentage of transactions
that miss their deadlines. In addition, the throughput rate, which is defined as the
number of transactions successfully completed per second, is useful for analyzing
the performance of the system. A form of the batch means method was used for

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 101

Table 1. Simulation Model Parameter Definitions

Parameter Description

db_size

num_terms

num_cpus

num_disks

inf _res
txn_size

update_txn_pct

write_op_pct

inter_arrival_delay

cpu_time

io_time

cc_req_delay

slack_factor
knows_txn_reqs

Number of objects in database

Number of terminals

Number of cpus

Number of disks

Infinite resource flag

Mean transaction size

Update transaction percentage

Mean Write operation percentage

Transaction inter-arrival delay

Mean CPU time for accessing an object

Mean I/O time for accessing an object

CPU time for servicing a lock request

Slack Factor

System knows service requirements

the statistical analysis. Each simulation consisted of a minimum of four repetitions,
each consisting of 2,000 seconds of simulation time. The first 200 seconds of each
repetition were discarded to let the system stabilize after initial transient conditions.
In general, we achieved 90% confidence intervals for our results. If a 90% confidence
interval was not attained in four repetitions of the simulation, then additional runs
were made. (We did not generate the excessive number of repetitions that would
have been necessary to get 90% confidence intervals for very small values, e.g., miss
percentages below 2%.) Table 2 provides a summary of the values chosen for the
input parameters in all experiments.

6. Experiment Results

In this section, we present and analyze the results of the simulation experiments
for protocols 2PL-HP, ACA 2PL-OS, 2PL-OS/BI, and ST 2PL-OS/BI. In each of
the following experiments, the number of terminals, num_terms, is varied to include
multiprogramming levels that are considered reasonable for actual database systems.
This provides a wide range of operating conditions with respect to data contention
(lock conflict) and resource contention (waiting for CPUs and disks). To evaluate the
effect that resources have on the system, one CPU resource and two disk resources
were chosen to represent one resource unit (Agrawal et al., 1987a, 1987b). Resource
related experiments were performed by varying the number of resource units rather

102

Table 2. Simulation Model Parameter Values

Parameter Value

db_size
txn_size
inter_arrival_delay
update_txn_pct
write_op_pct
cpu_time
io_time
cc_req_delay

1000 data objects

20 operations

10 seconds

60 percent:

50 percent:

12 milliseconds

35 milliseconds

3 milliseconds

than by individually varying the number of CPUs or the number of disks. By using
this combination of CPUs and disks, resource utilization in the system turns out
to be slightly I/O bound (disk utilization is slightly higher than CPU utilization;
Agrawal et al., 1987b).

6.1 Effect of Multiprogramming Level

We first evaluate the effect of varying the multiprogramming level on the performance
characteristics of the four locking protocols for real-time databases. The experiment
is based on a system with four resource units where transactions have a slack factor
of three. We assume that transactions are only aware of their deadlines but do
not know of their exact requirements in terms of CPU and I/O time (i.e., the not
tardy approach is used for executing transactions). We refer to these settings as the
baseline experiment.

Figure 3 illustrates the throughput, miss percentage, number of total restarts, and
number of useful restarts in the four protocols. We also plot the average arrival rate
of transactions in the throughput graph of Figure 3. The throughput graph illustrates
that 2PL-OS/BI, which does not incur any blocking, has the best performance among
all the protocols. In particular, the maximum throughput for 2PL-OS/BI is 6.75
in comparison to 4.6 for 2PL-HE This represents a 47% improvement over 2PL-
HE The maximum throughput for ACA 2PL-OS is approximately 5.75 (a 25%
improvement) and for ST 2PL-OS/BI is approximately 6.35 (a 38% improvement).
The thrash points for 2PL-HP, ACA 2PL-OS, 2PL-OS/BI, and ST 2PL-OS/BI are
75, 83, 95, and 95, respectively. After the thrash points, as the multiprogramming
level is increased, the four protocols converge indicating that, in our protocols,
aborts due to deadlocks dominate the system and the effect of "blocking" versus
"non-blocking" is marginalized.

V L D B Journa l 4 (1) Agrawal: Ordered Shared Locks for Real -Time DBs 103

Figure 3. Baseline case: slack=3, resource units=4, not tardy policy

77.5

7.0

6.5

6.0

5.5

hT$.0

4.5 u

• 4.0

uP 3.5
t

3.0

2.5

2.0

1°5

1.0

0.5

J

R .~
e
s
t

r
t

P
e .4
r

x
n

O
o : 2PL-HP

i e: ACA 2PL-OS
o [0: sx ~PL-OS/m

~ ~PL-OS/m
O ~ iO: ArK arrivsl rat.e

~00~

• 0 0
ee

O * * * * e @

• e

t " e 0
@

ee
ee @

M~Itlprosr~.~[nS Level

o: 2PL-HP
e: ACA 2PL-OS
Q: ST 2PL-OS/BI
@: 2PL.OS

0@ O@ O

• O O O o @

. eee e
e e e

• e ee e
000~

• e 0~@~00
e 0~ @ 00~

• e 0@ @@ ~0
• e0°@ @~ e

.

M~pros rammlngLeve l

90

8O

M
i 7O

60
P
e
r ,50 e
e
i1
t 4O
&
g
• 310

20,

10

• 0 .9
f u
1 0.8

eRO.7
t
8 0.6
r
t
s 0.5

ePo.4
r

T0.3
x
n 0 . 2

0.1

! 2PL-HP I
ACA 2PL-OS J
ST 2PL-OS/BI
2PL-OS/BI

o

.I e.

.Te
"I;

"~b~4"5~eo 80 loo 120 14o leo 1so -
Mult iprogr~mm;ug Level

I!ii 2PL-HP
ACA 2PL-OS
ST 2PL-OS/BI
2PL-OS/BI

@@o

" eeSe~e

•

• e ® ~ ~ g ~ -

20 40 60 80 I00 120 140 160 180
Mult iprosr~,~in~ Level

104

Table 3. Sample Illustration of Confidence Intervals for
Multiprogramming Level of 80 Terminals

Protocol

Mean Interval't

2PL-HP 4.53 4 .49 4.57

ACA 2PL-OS 5.74 5 .67 5.80

ST 2PL-OS/BI 6.07 6 .04 6.09

2PL-OS/BI 6.41 6 .39 6.44

Throughput Miss Percentage

Meant Intervalt

29.74% 29 .15%30.33%

12.65% 11.5% 13.80%

8.74% 8.20% 9.29%

4.49% 4.13% 4.86%

t Intervals with 90% confidence.

The differences among the protocols become more obvious when we examine the
miss percentage graph in Figure 3. In particular, the rate of increase of transactions
missing their deadlines is initially much sharper for 2PL-HP than it is for 2PL-OS/BI.
At the point when 2PL-HP exhibits its maximum throughput (75 terminals), 25%
of the transactions are already missing their deadlines. In contrast, only 3% of the
transactions miss their deadlines in 2PL-OS/BI, around 7% do so in ST 2PL-OS/BI,
and 9% miss in ACA 2PL-OS. At the thrash point of 2PL-OS/BI (95 terminals),
the percentage of transactions that miss their deadlines is 12.5% for 2PL-OS/BI,
17% for ST 2PL-OS/BI, 27% for ACA 2PL-OS, and 44% for 2PL-HP. The miss
percentages are indistinguishable in the four protocols at low multiprogramming level
or equivalently at low data contention (10 to 30 terminals). However, at medium
to high data contention (more that 40 terminals), 2PL-OS/BI misses significantly
fewer transaction deadlines than 2PL-HP. At very high multiprogramming levels,
the vast majority of transactions miss their deadlines under any protocol.

Note that, as in OPT-BC (optimistic broadcast; Haritsa et al., 1990a), only a
committing transaction can generate restarts in 2PL-OS/BI. In 2PL-HP, ACA 2PL-
OS, and ST 2PL-OS/BI, a transaction causing a restart may later abort. Thus, there
is an increased likelihood of wasted restarts in protocols with blocking and this
explains the superior performance of 2PL-OS/BI. In particular, Figure 3 illustrates
the number of restarts per generated transaction in the protocols, and demonstrates
that, in general, 2PL-OS/BI has fewer restarts than the other protocols. This
can be explained by noting that 2PL-OS/BI, and to a lesser extent ST 2PL-OS/BI
and ACA 2PL-OS, restart transactions only when it: is absolutely necessary (i.e.,
transactions allow others to run in their slack). Figure 3 shows the number of useful
restarts, which was defined by Haritsa et al. (1990b) as the restarts caused only
by transactions that eventually commit. Recall that some aborts may occur due to
deadlocks; this justifies the slight discrepancy between the total restarts and useful
restarts in 2PL-OS/BI. Table 3 is a sample of interval range for the mean values
plotted in the graphs. Note that we used the batch-means method to achieve 90%
confidence in the indicated intervals. In general, the intervals were quite tight for
the mean values resulting from all experiments.

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 105

Figure 4. slack=3, resource units=3(top)=5(bottom), not tardy policy

7.5

?.0

6.5

6.0

5.5

hT$.0
r
o 4..5
u

• 4.0

t
3.0

'2.5

2.0

1,5

1.0

o,5

7.5,

7 . 0

6 . 5 ¸

6 . 0 ¸

5.5

hT$.o

4.5

• 4.0

u p 3.5

3.0

2.0

1.$

1.0

0.5

O e: 2PL-HP
O: ACA ~PL-OS

O ~ ST 2PL-OS/BI
~: 2PL-OS/BI

0 O: Avg arrival rate

o

OoOo e ~

| .e~

"e9

~®
•

20 4O eO 8O lO0 l~O 140 ~60 ~80
Multlprogff~mmlng N

0

@co e o
@ $

~ o ' * . e

@ @
• e

e

e

@

@

I' 'P HP''CA P OSJ ST 2PL.OS/BI
• 2PL-OS/BI

Avg az'rlvsl rate

Multlprof~-~mmlng Level

M ~
i

P
e 6~

n
t

e

t0

MSO
i
s
• TO

r®
¢
¢

e

3O

ACA 2PL,.OS [
s'r 2PL-OS/Sq 8 |
'PU°S/m I g~

. t ®
e

@
$

.it'
" ~ - . ~) 60 80 I00 120 140 160 180

Multipro~,ammin s I.,~vel

[.i 2PL-HP e: ACA 2PL-OS
~: ST 2PL-OS/BI
~; 2PL-OS/BI

"t • @

• e e @

.'le$ ~

-~-~o 8o loo 12o 14o 18o 18o -
Multlpro~rLmml-~ Level

106

Figure 5. slack=3, unlimited resource units, not tardy policy

15

14

13

12'

11,

T
h I0'
Ir
o

h
P
u
t

on 2PL-HP • ACA 2PL-OS
sx 2PIrOS/m
2PL-OS/BI
Av s acrlvsl rate

O

@
@ ®

0

8 e
e

e e e
e

• e

° o e

e e

$ 9

Multipmgrmmning Level

90

MSO
i
ii
• 70

P
• 60
r
c
e n 50
¢

~,o
e

30

20

10

ACA 2PL,-OS
S'F 2P~OS/BI
2F~[,.OS/BI

@

0

$
@®

O o

O
O

,®

Multlpro~u'smming Level

6.2 Effect of Resources

Figures 4 and 5 report the throughputs and miss percentages in the four protocols
for a variable number of resources, with the remaining parameters the same as in the
baseline experiment• The experiments were conducted with three, five, and unlimited
resource units. When the number of resources is reduced from four to three, the
relative improvements due to ordered sharing is less pronounced (see Figure 4).
This is due to increased resource contention in the system. When the number of
resources is increased from four to five, the throughputs and miss percentages in
protocols 2PL-OS/BI, ST 2PL-OS/BI, and ACA 2PL-OS are significantly better than
in 2PL-HP. In the case of five resources, all protocols with ordered sharing are able
to meet many more deadlines than 2PL-HP. For example, 2PL-OS/BI does not miss
any deadlines up to the multiprogramming level of 60 terminals, at which point
2PL-HP misses 10% of the deadlines• Similarly, ST 2PL-OS/BI and ACA 2PL-OS
do not miss any deadlines up to 50 terminals. Once again, this is due to the
desirable property of protocols with ordered sharing, which eliminates blocking at
the expense of possible delays in transaction commitment. Hence, protocols with
ordered sharing are particularly useful when there is less contention for resources
in the system.

To further validate our hypothesis that removing resource contention results in
better performance of 2PL-OS/BI, ST 2PL-OS/BI, and ACA 2PL-OS in real-time

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 107

databases, we conducted the baseline experiment with unlimited resources (see
Figure 5). In this case, the percentage of transactions missing their deadlines in
2PL-HP is significantly larger than in all the other protocols at all but the highest
multiprogramming levels (the rapid rise in missed deadlines after the thrash points
of protocols with ordered sharing is due to the increase in deadlock formation). For
example, at 110 terminals 2PL-OS/BI meets virtually all its deadlines, ST 2PL-OS/BI
and ACA 2PL-OS miss 3% to 4% of their deadlines, and 2PL-HP misses more
than 25% of its deadlines. This indicates that eliminating blocking for both data
and resources can be significantly beneficial for protocols with ordered sharing in
real-time databases. This is of special interest, because real-time systems frequently
provide extra resources to handle peak load conditions or to provide for fault-
tolerance (Haritsa et al., 1990a). Ordered shared locking protocols are better able
to use these additional resources. Two-phase locking would fail to make use of
them if data contention was already degrading performance.

6.3 Effect of Slack

In this experiment, we evaluate the effects of varying the slack factor on the
performance of the four protocols. In particular, the slack factor was varied from
1 to 9, and the experiment was conducted with four resource units and at two
multiprogramming levels. We chose 75 terminals, which is the thrash point for
2PL-HP, and 95 terminals, which is the thrash point for 2PL-OS/BI. The results of
this experiment are illustrated in Figure 6.

Figure 6 shows that when deadlines are very tight (i.e., when the slack factor is
close to 1), the performance of all the protocols is indistinguishable. As the slack in
deadlines is increased, protocols with ordered sharing start demonstrating superior
performance. In general, they all miss significantly fewer deadlines than 2PL-HP
beyond the slack factor of 1.5. For example, with 75 terminals and slack factor
4, 2PL-OS/BI has almost no transactions missing their deadlines, while 2PL-HP
has about a 16% miss rate, and the other two have miss rates below 3%. As the
slack is increased, all protocols asymptotically reach a miss percentage of 0. At the
thrash point of 2PL-OS/BI, which is a heavy load for 2PL-HP, the miss percentage
in 2PL-OS/BI becomes insignificant at about a slack factor of 6. 2PL-HP is still
missing 24% of its transactions under the same conditions.

The improvement in performance of protocols with ordered sharing is due
to the execution of transactions during the potential delay of other transactions'
commitment. In particular, when the slack factor is greater than 1.5, we notice
that 2PL-OS/BI, and to a lesser extent ST 2PL-OS/BI and ACA 2PL-OS, miss
significantly fewer deadlines than 2PL-HR This can be explained by considering the
possible interactions between two transactions that execute conflicting operations
on the same object. Assume that the deadlines of the two transactions, T1 and T2,
are such that T~ has a later deadline than T1. First, consider the case when T2
holds a lock on the common object, and later, T1 requests a lock on the object. In
2PL-HP, T2 is aborted and restarted since it has lower priority. In 2PL-OS/BI, on

108

Figure 6. Varying slack factor, 75 terminals(left), 95 terminals(right)

160

90

M S O
i
$

• 7 0

P
• 60
r
c

t
a
g 4O
e

3O

20

10

o : 2 P ~ H P I '
e: ACA 2PL-OS]

I ~ sT 2Pt,-os/ml 160
1~¢ 2 P ~ O S / B T I

0

M S 0
i
8
• 1'0.

P
• 60
r
¢

t
&
g 4O
e

30

O: 2 P L - H P [
ACA 2 P b - O S]

Q: S T 2 P L - O S / B T
2PL-OS/BI

o

0 •

e e • •

2O •
Q • ® O •

@ ® e • • 10 •

o l s l ~ o l ~ s 2 1 0 2 ~ 5 3 ~ o 3 ~ s 4 ~ o 4 ~ s ~ L o s ~ s - i " 2 3 4 S s r S e -
S l a c k Factor Slack F a c t o r

the other hand, T2 is given a chance to terminate within the slack available for T1.
Furthermore, note that since T1 is not blocked, it cart acquire all its other locks and
execute all its operations. When T1 reaches its deadline, if T2 has not terminated,
T2 is forced to abort and restart. If, however, the slack of T1 is sufficiently large,
both transactions may be able to commit within their respective deadlines without
the need for restarts and without wasting resources. The significant decrease in
missed deadlines for protocols with ordered sharing as the slack rises beyond 1.5
is caused by the increasing number of transactions that are able to commit within
the slack of other transactions.

Second, consider the case where T1 holds the lock, and T2 later requests a lock.
In 2PL-HP, T2 is blocked and must wait until T1 terminates, before proceeding to
acquire locks and execute any operation. Furthermore, note that T1 may eventually
abort and, hence, this blocking may be referred to as wasted blocking. Since
transactions that use ordered sharing do not block read and write operations, T2 is
allowed to progress, acquire its locks, and execute operations. Note, however, that
T2 may not commit before T1 terminates. But this cannot have any undesirable
side effects since T1 has an earlier deadline than T2 and, hence, T1 must be out of
the system by the time T2 arrives at its deadline. In general, by not blocking read
and write operations, ordered sharing allows transactions to advance and execute

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 109

all their operations and, hence, fully utilize the system resources. On the other
hand, and as we have demonstrated, the delayed commitment does not affect the
timeliness of transactions, and is actually beneficial to lower priority transactions
that may commit during this delay.

6.4 Effect of Delayed Commitment

In this experiment, we examine the importance of delaying the commitment of
a transaction to allow other transactions to finish in its slack. Ordered sharing
benefits system performance both by reducing blocking and by using a transaction's
slack to finish transactions that would otherwise be aborted. Specifically, when a
transaction is ready to commit but has to wait due to ordered shared relationships
with respect to other transactions, and delayed commitment is not employed, then
it first aborts all transactions it is waiting for and then commits. For this experiment
all parameters are kept the same as in the baseline experiment; the only change is
in the immediate commitment of a completed transaction.

Figure 7 shows the throughputs of ST 2PL-OS/BI and 2PL-OS/BI with and with-
out delaying a transaction's commitment. For comparison purposes, the throughput
of 2PL-HP is also shown. Recall from Section 6.1 that 2PL-OS/BI showed a 47%
improvement in maximum throughput over 2PL-HR When delayed commitment is
not used, 2PL-OS/BI results in a 33% increase over 2PL-OS/BI. The remaining 14%
improvement is due to the delay of a transaction's commitment. ST 2PL-OS/BI
without delayed commitment shows a gain of 30% over 2PL-HP, and with delayed
commitment it shows a gain of 38%. The corresponding miss percentages are
also illustrated in Figure 7. At 2PL-HP's thrash point of 75 terminals, the miss
percentages are 25% for 2PL-HP, 8.5% for ST 2PL-OS/BI without delayed commit-
ment, 7.5% for 2PL-OS/BI without delayed commitment, 6.7% for ST 2PL-OS/BI
with delayed commitment, and 3% for 2PL-OS/BI with delayed commitment. As
reducing missed deadlines is of primary importance in real-time database systems,
the use of delayed commitment in 2PL-OS/BI is especially important. At this multi-
programming level, the number of missed deadlines has been reduced by more than
half. At 2PL-OS/BI's thrash point of 95 terminals, the reduction is approximately
33% (from 20.7% without delayed commitment to 12.4% with the delay).

For ST 2PL-OS/BI, there is only a slight benefit gained by delaying transaction
commitment. Clearly, the most significant gain is due to reducing read-write and
write-read blocking. For 2PL-OS/BI, however, the use of delayed commitment has
a more significant effect. We can explain this difference in terms of the frequency
and type of operation conflicts that cause delays at commitment. In both of these
protocols, read-only transactions will never be delayed at termination, because read
operations can never be involved in an ordered shared relationship from a writer to
a reader. Hence, delayed transactions must be update transactions. Furthermore, a
delayed transaction will not have to wait for much time due to read-only transactions.
Any read-only transaction will complete without being blocked or delayed. Therefore,
an update transaction can be delayed substantially only by other update transactions.

110

Figure 7. Effect of Delayed Commitment (Baseline Settings: slack=3,
resource units=4)

7.5

7.0

8.5

6.0

5.5

hTS.0
r
o 4.5 u

• 4.0

~3 .5
t

3.0

2.5

2.0

1,5

Lol
0.5'

90

8O

M
i 7O
|

6O
P
e
r 50 ¢
e
n
t 40
&
g
• 30

20

10

0: 2PL-HP 1
0: ST 2PL-OS/BI with deksy J
®: ST 2PL-OS/BI without de.la¥l
O: ArK arrivsl rsge J

o 7.5 ~

o

0 0
o ~ ® ® O

g ® o

®
0 • • • O • ®

• 8

• ®
®

• @

• • ®

O

Multlprosr~mmi= g Level

o: 2PL-HP
[~ ST 2PL-OS/BI with delsy [*
1~: ST 2PL-OS/BI without delay~ • ®

• ®
• ®

• 0

• ®®

• ®

- ~ o - / o eo 8o ~oo ~2o t4o x6o ~so -
MulUproSmn~/nS

7.0'

6 .5

6,0 ̧

5.5

• 5.0

r• 4.5
u
g 4.0
h
uP3.5
t

3.0

2.5

2.0

1.5

LO

0.5

90

80

iM701

60,
P
e
r 50' C
e
n
t 40
&
g
v 30

20

10

1•
: 2PL-HP [
: Avg &nriv~d rsl~e [

2PL,-OS/BI with delay
- 2PL-OS/BI without delay

O! •

o~e

~®®®
® e

®

~ ° e
®

9 o o o • • ®

• ~
t -

• g
e

• @
• ®

' 2 o 4 o ~ ~ , : 8o :ioo: 12o 14o l ~ 18o :~
M ~ t l p r o s r ~ i n . ~ Level

e: 2PL-H P
@: 2PL-OS/BI with delay
Q: 2PL-OS/BI without delay • •

• •
" e

• Q

•

. ~ ~ ; i , I i i 160 180 =
Mtdtiprogrammin~ Level

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 111

Figure 8. slack=3, resource units =3(top) =5(bottom), not tardy policy

7.5

77.0

6.5

6.0

$.5~

hT$.0

• 4.$'

4.0

3.$

t 3.0

2.5

2.0

1.5

1.0

O.S

O / ~: 2PL-HP
: 2PL-OS/BI-FA
: Avlg axrivai rate

0 • [@: 2PI,-OS/BI-FC

• O "

0

• ?

• •

• " 0

• • 0

- 0

M
i 70

@ • • • P
e

• r ~ ¢
e

t "
t ~

• e ~

2o ~: ~o 8o 1o012014o ~leo18o :
MulCiprotprammin ~ [.,eve[

20

I0

~! 2PL-.P I
2PL-OS/BI-FA
2PL,-OS/BI-FC . !

O . O
o,, ,~

• •

• •

O

I
O

--'~)'4~3 60 80 I00 120 140 160 180
MultiprogrsJmwaing Level

Recall that ST 2PL-OS/BI uses blocking for write-write conflicts, while 2PL-OS/BI
does not. This has two effects with respect to ST 2PL-OS/BI. First, there will
be correspondingly fewer situations in which a transaction can reach its commit
point while being delayed for termination by another transaction. Some transactions
which would have used delayed commitment in 2PL-OS/BI will instead be blocked
in ST 2PL-OS/BI. Furthermore, transactions that are blocked for some time and
then are delayed upon termination will have wasted some of their slack during
the periods when they were blocked. Hence, the available slack time to do useful
work (i.e., the advantage of delayed commitment) may be much reduced. Second,
transactions blocked by write-write conflicts will not be able to benefit from the
slack in another transaction's delayed commitment. As a result ST 2PL-OS/BI does
not benefit from delayed commitment as strongly as does 2PL-OS/BI.

6.5 Alternative Policies for Delayed Termination

The ordered sharing rule restricts the termination of transactions. In particular, if
transaction Ti acquires a lock with an ordered shared relationship with respect to
a lock held by another transaction Tj, then Ti cannot commit until Tj terminates.
We call Tj a predecessor of Ti. When Ti is ready to commit, and if there is at
least one predecessor, Ti must wait. When Ti reaches its deadline, if there are
any predecessors, two different policies may be considered: forced commit policy
(i.e., Ti aborts all predecessors and commits itself), and forced abort policy (i.e., Ti

112

aborts itself). Note that, with forced aborts and unlike with forced commits, the
different ordered sharing protocols may suffer from wasted restarts. In particular,
when a transaction reaches its deadline, it may be aborted due to a lower priority
transaction, which itself is later aborted. We compare the performance of 2PL-OS/BI,
ST 2PL-OS/BI, and ACA 2PL-OS with these two different policies.

Figure 8 illustrates the performance of 2PL-OS/BI with forced commit (2PL-
OS/BI-FC) and forced abort (2PL-OS/BI-FA) policies in the baseline case. This
figure shows that if the multiprogramming level is < 70 terminals, the performance
of 2PL-OS/BI-FA is slightly worse than that of 2PL-OS/BI-FC. With the increase
in multiprogramming level, the performance of 2PL-OS/BI-FA is slightly better
than that of 2PL-OS/BI-FC. At the multiprogramming level corresponding to the
maximum throughput of 2PL-OS/BI-FA, only 12.09% of the transactions miss their
deadlines compared to 16.67% in 2PL-OS/BI-FC and 47.68% in 2PL-HP. Figure 9
shows the simulation results for a variable number of resources. When the number
of resources is reduced, the margins between 2PL-OS/BI-FA and 2PL-OS/BI-FC
become smaller due to increased resource contention. When the number of resources
increases from four to five, the margins are larger. At the point of 120 terminals,
2PL-OS/BI-FA gives a throughput of 8.52 transactions per second, a 8.7% increase
over 2PL-OS/BI-FC and a 93.6% increase over 2PL-HP. The miss percentage at this
point is 13.4% for 2PL-OS/BI-FA, 18.6% for 2PL-OS/BI-FC and 53.4% for 2PL-HP.
At the point of 130, the throughput of 2PL-OS/BI-FA is 8.5, a gain of 11.2% and
102.8% over 2PL-OSfBI-FC and 2PL-OS, respectively.

Figure 10 shows the performance of ST 2PL-OS/BI with forced commit (ST 2PL-
OS/BI-FC) and forced abort (ST 2PL-OS/BI-FA) policies in the baseline case. Similar
to 2PL-OS/BI, if the number of terminals is < 70, ST 2PL-OS/BI-FA performs slightly
worse than ST 2PL-OS/BI-FC. When the number of terminals is > 70 but < 140,
ST 2PL-OS/BI-FA gives larger throughput and fewer miss percentage than ST 2PL-
OS/BI-FC. The maximum throughput of ST 2PL-OS/BI-FA is 6.5, a 2.8% increase
over ST 2PL-OS/BI-FC. At this peak point, the miss percentage is 20.3% for 2PL-
OS/BI-FA, 21.6% for 2PL-OS/BI-FC and 47.7% for 2PL-HP. However, when the
number of terminals is > 140, ST 2PL-OS/BI-FA performs worse. Also similar
to 2PL-OS, increasing the number of resource units leads to larger margins, and
vice versa (Figure 11). In the case of five resource units, ST 2PL-OS/BI-FA gives
a maximum throughput of 7.4, a 2.1% improvement on ST 2PL-OS/BI-FC and a
68.8% improvement on 2PL-HP.

We observe that, for a given multiprogramming level, the difference between
2PL-OS/BI-FA and 2PL-OS/BI-FC is larger than that between ST 2PL-OS/BI-FA and
ST 2PL-OS/BI-FC. To explain this discrepancy, let us consider the average number of
predecessors of a transaction that are ready to commit and reach their own deadlines.
Because of the existence of write-write blocking in ST 2PL-OS/BI, this number in
2PL-OS/BI is greater than in ST 2PL-OS/BI. So, if a transaction always aborts
itself at commitment, then 2PL-OS/BI-FA avoids aborting more predecessors than
ST 2PL-OS/BI-FA. Hence, 2PL-OS/BI-FA performs, better than ST 2PL-OS/BI-FA.

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 113

Figure 9. slack=3, resource units=3(top) =5(bottom),
not tardy policy

6.5

6.O

5.5

r
o 4,5
I1

h

t 3"0 ~

2.51

2.01

1.5

1.01

0.51

8.5

8.O

7.5,

7.0

6.5

6.0

5.5

• $.0
r
o 4 . 5
u

3.0

2.5

2.O

1o5

1.O

0o5

~2o

e : 2PL-HP
. : 2PL-OS/BLFA
~ : 2PL-OS/BI-FC

O . O: Avl l ~,nrlv~l t a l e

@

0 0 o
@ •

• • ?

• a

. i t

++re+so +mo+1++Im:~mlso -=
Mult iprosramminS Level

O .

o e •

0

@
• @ •

• @

@

II'

2PD-OS/BI-FA
• 2PD-OS/BI-FC

AvS Lrrival r~a~

2o 4o 6o so 1ooi2o14olSOlSO-

MultilmPollx~i-S Level

M S O
i

P
• 60
r
c

so
t
&

g 40
o

30

2O

10

M S ~
i

• TO,

~ m
r
¢

t
&
g 40
e

30

2 0

10

o: 2PL-HP I
• : 2PL-OS/BI-FA l
e: 2PL-OS/m-FC I • ~ ~ g

o;

@

s

o

41
@

"~+~'o 6o SO'IOOI2014O'160'180 :~
Multipro~rsmmiing Level

+ . P ,
2PL-OS/BI-FA
2PL-OS/BI-FC

II

41

e

O II

O =
B

• @=

- ~ , / ~ so loo t2o 14o leo i so
MuRiprosr~munins Level

114

Figure 10.
not tardy

Basel ine Case: s lack=3 , resource un i ts=4 ,

policy

r.51
7.01

6.~

6.C

5,$ I

s.ol
,.sl

al

• 4x

~ 3 A

t 3.0

2.5

2.0

1.5

1.o

0.5

@

• : 2PL-HP
• : ST 2PL-OS/BI-FA

O Q: ST 2PL-OS/BI-FC
O: ArK ~nrivsd

0

o @ 0

e o ' ° o

• ®

o

• o

2o ~oso ~ 1so'rio',• l~o'l~o'
M~tilxogra.mminl~ l,e,t~l

J

so!
sol

so~
P
e
r 50 c

g 4t1

e 30

20

~! 2~c-.P I
sT , ~ . o s I s I . F ,

@

• ®

®

®

" ~ o so so I S O l 2 0 t ~ 1 s o l S O r
Multiprop~mumln K Level

In ACA 2PL-OS/BI, there is write-read blocking. Recall that in our simulation
model, update-txn-pct is 60% and write-op-pct is 50%. So only 30% of operations are
write operations and 70% are read operations. This implies that write-read blocking
happens more frequently than write-write blocking. So, for transactions reaching
their deadlines, the average number of predecessor's in ACA 2PL-OS/BI is greater
than that in ST 2PL-OS/BI. Hence, in A C A 2PL..OS/BI-FA, the commitment of
those transactions that are waiting until their deadlines will abort more predecessors
than in ST 2PL-OS/BI-FA. This degrades the performance of ACA 2PL-OS/BI-FA.
Our experiments show the same results as this predication. Figure 12 reports
the performance of ACA 2PL-OS/BI-FA in comparison of ACA 2PL-OS/BI-FC
in baseline case. The maximum throughput of ACA 2PL-OS/BI-FA is 5.5, a
3.3% decrease compared with ACA 2PL-OS/BI-FC. At this peak point, the miss
percentage of ACA 2PL-OS/BI-FA is 24.8%, 3.0% more than of ACA 2PL-OS/BI-
FC. From Figure 13 we observe that the discrepancy between ACA 2PL-OS/BI-FA
and ACA 2PL-OS/BI-FC seems to be smaller if the number of resources decreases
from four to three, and this discrepancy is larger if tile number of resources increases
from four to five. This is similar to the results of 2PL-OS/BI and ST 2PL-OS/BI.

6.6 Effect of Known Requirements

In this experiment, we evaluate the effect of feasible deadlines on the performance
of the four protocols. Feasible deadlines or known requirements allow the transaction

V L D B Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 115

Figure 11. slack=3, resource units =3(top) =5(bottom),
not tardy policy

7.$

7.0

6.5

6.0

5.5

hT$o0
r
o 4.5 u
g 4.13
h
uP3.~

t
3.11

2.5

2.0

L 5

LO

0.5

7.S

77.0

6.5

6.0

5.5

• $.0
r
o 4.:; u

• 4.0

3.11

Z$]

2.0

1.0'

0.5

@

I

l
e~ 2PL*HP [

ST 2PL-OS/BI-FA [
ST 2PL-OS/BI-FC
Avg arrival rate

O 9G

O MSO,
i

P
• 6,0

• o ®
• • •

&

• 0 ~ 40
s

O 30
i i +

20 40 60 80 I00 120 140 160 180
Mu/tiprogrsmming Level

O

O@ ®

o

o

@

@ II 41Q

@ •
@

~I *

@

O

41

41
@

[. i 2PL-HP
[. : ST 2PL-OS/BI-FA I

I I [O: ST 2PL-OS/BI-FC l

2o 4o + eO 80 leO+t20 140 leo 18o -
M~tlproSrammin s Level

90

M80 ,
i

• 7'0

r
¢
e
n ~0
t
&
g 40
e

30

20

10

l e : 2PL-HP [
O: ST 2PL-OS/BI-FC [

@

tl

• 0.

, @

+2"])+40 60 80 100 120 140 160 180
MuJtlprogr~am~nlf Level

..+ +eL.uP ' I
. : ST 2PL-OS/BI-FA I
®: ST 2PL-OS/BI-FC l

• @

@

@
• ®

• ®

o

o

• ~
_ _ . . ~ + +
- ~ + ~ - e o 8o leo 12o14o leo i a o +

Multipr~sramminlg Level

116

Figure 12. Baseline Case: slack=3,resource units=4, not tardy policy

7.5

7.0

6.0

hr++
r

It

1~3.$

t 3.o

2.5

2.o

1.5

1.o

o,5

t: 2PL,-HP I
e : ACA 2PL..OS/FC

o I ": ACA 2PI.,-OS/FA I

o 90

8O
O
e e M

eoo i ,7,0

8" e ?

e . ° . . ~ [

• "e 1
t 40

° • e S

~ e • ~

g o
• e

• 0
1G

MultilmeolFum~nll l,evel

I o: 2PL-HP]
e : ACA 2PL-OS/FC|
.: ACA 2PUOS/FA I • ~

o e

e O

@

g

g

o.(~
• e

. . A I l , ~ e + +

Multipro~r~mmlnl; Level

manager to abort a transaction as soon as they can determine that the time needed
to execute the transaction is more than the slack awtilable. Note that this approach
is not very practical in general, since the exact requirements for each transaction
are difficult to ascertain a priori. However, the experiment does provide a better
understanding of the locking protocols for real-time databases.

Figure 14 illustrates the throughputs and miss percentages for the four protocols.
The parameters chosen for this experiment are identical to those in the baseline
experiment, except for the feasible deadlines policy. When compared to the baseline
experiment with unknown requirements, the performance of all protocols improves.
Since transactions that cannot make their deadlines are aborted early, fewer resources
are wasted resulting in improved performance. However, the impact of known
requirements is more significant for 2PL-HP, since it benefits from the feasible
deadlines policy to reduce the number of wasted restarts. Although 2PL-HP benefits
more from known requirements (e.g.,the thrash points of all four protocols are nearly
identical), there is still a significant difference between 2PL-HP and the other three
protocols. For example, at the thrash point of 110 terminals, the miss percentages
are 36% for 2PL-HP, 29% for ACA 2PL-OS, 22% for ST 2PL-OS/BI, and 19% for
2PL-OS/BI.

In a direct comparison of the baseline graphs (see Figure 3) with those for
feasible deadlines, we note a change in the shape of the curves. The policy of
feasible deadlines seems to flatten out and attenuate the curves. This is due in
part to the half-and-half effect reported by Carey et al. (1990). Beyond the thrash

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 117

Figure 13. slack=3, resource units=4, feasible deadlines policy

7.$,

7.0

6 . 5 ,

6.0~

5.~

hT$. G
r
o 4 . 5
u

g 4.0
h
~3.5
t

3.11

1.$

1.0

0.5

ACA 2PL,.OS/FC [
AOA 2PL-OS/FA
Av s arrival raze

@

0

.e~ e
8
; * * e

@

• e

e

e

20 4 0 ' & 80 'I00'I~.0:1~:160'180 "-
MuIt iprogrmm;ng Level

90

M 8 /
i

P
• 60
t
¢

~5o
t
&
g 4O
e

30

20

10

~! 2PL-HP I
ACA 2PL-OS/FC ~
ACA 2PL-OS/FA ~

@
O

t
e

e

@ m
e

_ . a ~ e
"~40 60 8~)'I00'120'Ii0'160~180 ';

MuJtipro~p-l,mm;n~ Level

7.5

7.0

6.S

6.O

$. 5

bT$.0
r
o 4.5

~3 .$
t

3.0

2.5

2.0

1.5

1.0

O.,5

o

O O
O O • " ~ e

O * " O

s 0 0 0
@

e
@

@

* e

• e

• e

• e

• * e
@

e * e

@ s

@

e : 2PL-HP
O: ACA 2PL-OS/FC

• . : ACA 2PL-OS/FA
O: Avg arrival x'a~e

'2o 4o:~o 8b ~6o'12o~14o'i~o Ido ''-
M u l t l p r o g r ~ Level

gO

M S 0
i
s
s T0

P
• 60
r
¢

".so
t
&
g 4O
e

30 ̧

20

I 0

~! 2PL-HP I
ACA 2PI.,-OS/FC
ACA 2PL-OS/FA

• s

e . e
e . e

• e
I

• 0

• 6

@

6

@ •

. O

" 0
0 *
• e

" 2 ~ , ~ - 60 80 i00 120:140:160:180 :~
Multlprosramm;n ~ Level

118

Figure 14. slack=3,resource units=4, feasible deadlines policy

7.5

7.0

6.5

6.O

5.5

I $. 0
r
o 4.5 u

• 4.0

I~3.5
g

3.0

2.5

2.0

1.g

1o0

0.5

O

9

e

. . e @
l

• + +

@ •

o: 2 P L - H P
e : ACA 2P[.,-OS

[Q: ST 2 P L - O S / B [
• 1(9: 2 P L - O S / B I

o: A v g arrival r&te

I I I I I I I j I I I I [[I I I ~

20 40 60 80 100120140160180200220
M u l t i p r o g r a m m i n g Level

90 ̧

M 8 0
i
$

70

P
• 60
r
¢

t

g 413
e

30

20

I0

I:: PL-HP I
ACA 2PL-OS]
ST 2 P L - O S / B [

~ ; 2 P L - O S / B I

e
@

e

i

t ®
@

Ill

" 2 0 ~ 4 0 " 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 -
Mul t ip rogranuning Leve l

point, aborting transactions actually helps to stabilize throughput by reducing data
contention. The feasible deadlines policy accomplishes some of this effect, because
it aborts transactions as soon as their deadlines cannot be met. Furthermore, the
inter-arrival delay parameter prevents a terminal from introducing a new transaction,
immediately resulting in a stablizing effect on the throughput.

7. Comparison of Two-Phase Locking Protocol with Transient Verisons

In this section, we compare two-phase locking protocols with ordered sharing with
an instance of the two-phase locking protocol that uses transient or uncommitted
versions of data. In particular, we consider the two-version two-phase locking
protocol (Stearns and Rosenkrantz, 1981). The reason for this choice is the obvious
resemblance of 2PL-OS/BI with 2V2PL and other studies have shown the superiority
of 2V2PL over 2PL for real-time databases.

The 2V2PL scheduler uses three types of locks: read locks, write locks, and
certify locks. The scheduler sets a read(write) lock before it processes a read(write)
operation. When a transaction commits, the 2V2PL must convert all write locks
of the transaction into certify locks. Figure 15 illustrates the lock compatibility
table used in 2V2PL. By allowing two versions of a data item, the conflict between

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 119

Figure 15. Lock Compatibility Matrix for Two-version 2PL

Lock Requester Tj Lock Holder Ti
ReadLocki WriteLocki] CertifyLocki

ReadLockj Y Y N

WriteLock--j Y N N

CertifyLockj N N N

read and write locks is eliminated in 2V2PL. In particular, read locks are set on
committed version of the data-object whereas a write lock results in an uncommitted
copy of data-object being created and a write lock is being set on that copy. When
a transaction commits, it converts all its write locks to certify locks that conflict
with other read and write locks. After obtaining the certify locks, the transaction
installs the uncommitted version of the data-object as the new committed value.

In real-time databases, 2V2PL needs to be adapted to use the deadlines of
transactions. We call this modified protocol 2V2PL-HP and summarize it below:

1. When the scheduler receives a request for a read lock on an object, the
request is delayed if the certify lock on this object is currently held by a high
priority transaction. Otherwise, the lock is granted by aborting lower priority
transactions with the certify locks.

2. When the scheduler receives a request for a write lock on the object, the
request is delayed if a write lock or a certify lock on this object is currently
held by a high priority transaction. Otherwise the lock is granted by aborting
the lower priority transactions with write or certify locks.

3. When the scheduler receives a commit request, it has to convert all write
locks held by this transaction into certify locks. A certify lock could be
delayed due to read locks held by higher priority transactions. Otherwise,
the conversion is permitted by aborting lower priority transactions with read
locks. Since transactions in this protocol always read committed data, the
2V2PL-HP histories/execution do not suffer from the problems of cascading
aborts.

The comparison of 2V2PL-HP with the proposed protocols in this article are
illustrated in Figure 16 (Baseline Case) and Figure 17 (Variable Resources). When
the number of terminals is < 100, 2V2PL-HP has worse performance than ACA 2PL-
OS and better performance than 2PL-HP and when the number of terminals becomes
> 100, 2V2PL-HP performs better than ACA 2PL-OS, but worse than ST 2PL-OS/BI
and 2PL-OS/BI. This case also happens consistently in Figure 17, and the switching
points are also located at about 100 terminals. This means that the differences
between these protocols don't change when the resource units vary. Figure 18
illustrates the missed percentages for five protocols when the slack factor varies.

120

Figure 16. Baseline case: slack=3, resource units=4
not tardy policy

7.5

7.0

6 . 5

6 . 0

S.S

hTS.O
r
o 4 . 5 u

• 4 . 0

~3 .5
t

3.0

2.5

2.0

1.$

1.0

0.5

e

0

O • : 2PU-HP
e : ACA 2P[,-OS
. : 2 V 2 P L - H P

o ~: ST 2PL-OS/BI
2PL-OS/BI

O ~ ~ O: AvK arrival r a t e

~00 ~
~0 0

e ' ' ' - g 0
• - . ; . ~

• e.~

ee-@
ee'@
se-@
s e --
se

20 ~ 4o' 8o ~ 8o ~,oo~12o~1~o~16o 180 ~
Multiprosramming Level

80
M
i 7 0
s
s

60
P
e
r SO c
e

• 30

20

10

I ! ! ~PL-HP
ACA 2PL-OS
2V2PI,-HP
ST 2PL-OS/BI
2PL-OS/BI •o8

• o . e
• o o

• ? ®

• e $

"~ ~ "~o so Io0 t2o 14o 16o iso -
M u l t i p r o g r s m m i ~ L e v e l

In the case of 75 terminals, 2V2PL-HP performs worse than ACA 2PL-OS. This
is the same as in Figures 16 and 17. In the case of 95 terminals, the margin of
differences between ACA 2PL-OS and 2V2PL-HP is small since 95 terminals is
near the switching point, which is about 100 terminals.

Comparing the two protocols 2PL-HP and 2V2PL-HP, we note that although
certify locks in 2V2PL-HP behave much like write locks in ordinary 2PL-HP, the
time to certify a transaction is usually much less than the total time to execute it.
Hence 2V2PL-HP's certify locks delay read operations for less time than 2PL-HP's
write locks delay read operations. Therefore, the 2V2PL-HP performs better than
2PL-HP. However, since existing read locks delay a transaction's certification in
2V2PL-HP, the improved concurrency of read operatiLons comes at the expense of
delaying the certification.

The conflict relationship between the read and write operations in 2V2PL-HP
is the same as that in ST 2PL-OS/BI. But, in 2V2PL-HP, a transaction's certification
may abort other lower priority transactions due to the read-certify conflict while,
in ST 2PL-OS/BI, a transaction delayed for others does not abort any transaction
until it reaches its deadline. Thus, in ST 2PL-OS/BI some lower priority trans-
actions for which some higher priority transactions are waiting may have enough
time to commit. So, the main reason for the better performance of ST 2PL-OS/BI
is that on the average, a commit operation in ST 2PL-OS/BI aborts fewer transactions

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 121

Figure 17. slack=3, resource units=3(top),=5(bottom),
not tardy policy

7.$
7.0

6.5

6.O

S.5

hT5. G
r
o 4 ,5 u

• 4.0

t 3.(~

2J

2.e

0.S

,.5!
7.01

6.S~,
6,0
S~Sl

s.ol
r

, - ° I
uP3.$
t 3.01

2.Si

=.o
1.$ I

O.S

: ACA 2PL-OS
2V2PL-HP
ST 2PL-OS/BI
2PL-OS/BI

O Av s srriv.J rate

O

~ e $

• og~
" ;®

•

M8~
i

* 70

r
c
e sO n

g 4~,
e

30 ̧

I0,

M u l t i l x e S r , ~ ; - - - Lev~

o

OO e)Q(~

~ 0 ® 0
~ e e ^ ~ 90' |." "~. ~ . .

o O O o ~ = ~ " 70

O • e . ~ ~ ,
• ° o e =

0 • e" ~so
° o e t

@ • • S 'q~

3O
• o: 2PL-XP I

~: ACA 2PL-OS [
=: 2V2PL-HP [20
~: ST 2PL-OS/BI I

• e : 2PL-OS/BI IO
O: AvE szTivaJ rate

2o ~ 4o ee 8o ~o ~o .o'a~o ~o"
Meltilm~gr-.,-,;.,~ Level

ACA 2PL-OS O
2V2PL-HP
ST 2PL-OS/BI
2P~OS

P
• 0

@

o@

.gg$

e ~

Mu, l t i l~Sr~; -~ Level

l

e! 2PL-HP
ACA 2PL-OS
2V2PL-HP
ST 2PL-OS/B|
2PL-OS/BI

• e *
• e ' @

• e ' @

• e @

e @

M u l t l p m l p ' ~ Level

122

Figure 18. Varying slack factor, 75 terminals(left),
95 terminals(right)

looi •

9o

e
Mgo
i
s
s 70

P
e 60
r
c
e

50
t

e

30

20

10

i i 2PL-HP 1 • ACA 2PL.OS]
ST 2P L,-OS/BI I lO0
2V2PL-HP I

2P~OS/BX j 9o

@

fi ° °

015 1.0 1.S 2.0 2•5 3.0 3.$ 4.-0 4.5 .5,0 5'.5 '
SLsck Factor

M S 0
i

s 770

P
e 60
r
¢
e
n 50
t
&
g 4O
e

30

20

I0

ACA 2PL-OS
ST 2 P L - O S / B I
2 V 2 P L - H P
2 P L - O S / B I

@

(3 •
(D

~ Q

l i J l l
1 2 3 4

@

@

° .

5 6 7 8 9 -
Slack Factor

than in 2V2PL-HE

We note that in 2V2PL-HP a transaction's certification may abort immediately
other lower priority transactions with a read lock and, in ACA 2PL-OS, a transaction
delayed for other transaction does not abort any transaction until its deadline.
This leads to the better performance of ACA 2PL-OS than 2V2PL-HP when the
multiprogramming level is low. When the multiprogramming level increases, the
performance of these two protocols switches mainly' because the write-read delay
in ACA 2PL-OS dominates the certify-read delay in 2V2PL-HP.

8. Conclusion

In this article, we describe locking-based protocols tor real-time database systems.
Our approach is motivated by two main concerns.. First, locking protocols are
widely accepted and used in most database systems• Second, in real-time databases
it has been shown that the blocking behavior of transactions in locking protocols
results in performance degradation• We proposed using a new relationship between
locks called ordered sharing to eliminate blocking• Ordered sharing has the desirable
property of eliminating blocking of read and write operations at the expense of
a possible delay at transaction commitment. Unlike conventional databases where
this delay may degrade response time, in real-time ,databases we exploit this delay
by allowing other transactions to run within the slacks of delayed transactions•

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 123

Eliminating all types of blocking through ordered sharing may, however, result in
cascading aborts. We overcome this problem by using before-images, which are
generally maintained for recovery purposes. We compared the performance of
the proposed protocols with 2PL-HE the two-phase locking protocol for real-time
databases. Our performance results clearly establish the superiority of the proposed
protocols over 2PL-HR In general, 2PL-OS/BI has the best performance followed
by ST 2PL-OS/BI and ACA 2PL-OS and, finally, 2PL-HE In the region of low data
contention or low workload, all four protocols exhibit comparable performance.
However, at higher load or higher data contention, 2PL-OS/BI misses significantly
fewer deadlines than 2PL-HR Once again, at very high data contention all protocols
miss almost all deadlines. Our resource related experiments indicate that protocols
with ordered sharing benefit significantly from an abundance of resources. Finally,
even with known requirements (feasible deadlines), the proposed protocols still
provide better performance than 2PL-HE Note that, in the usual circumstance of
unknown requirements, the difference in performance is more striking. We also
compared the multiversion locking protocol for real time databases and showed
that, in general, the proposed protocols result in improved performance.

Acknowledgments

This research is supported by the NSF under grant number IRI-917904.

References

Abbott, R. and Garcia-Molina, H. Scheduling real-time transactions: A performance
evaluation. Proceedings of the Fourteenth International Conference on Very Large
Data Bases, Los Angeles, CA, 1988.

Abbott, R. and Garcia-Molina, H. Scheduling real-time transactions with disk resi-
dent data. Proceedings of the Fifteenth International Conference on Very Large Data
Bases, Amsterdam, The Netherlands, 1989.

Abbott, R. and Garcia-Molina, H. Scheduling I/O requests with deadlines: A per-
formance evaluation. Proceedings of the Eleventh IEEE Real Time Systems Sympo-
sium, Lake Buena Vista, FL, 1990.

Agrawal, D. and E1 Abbadi, A. Locks with constrained sharing. Proceeding~ of the
Ninth ACM Symposium on Principles of Database Systems, Nashville, TN, 1990. To
appear in the Journal of Computer and System Sciences.

Agrawal, D. and E1 Abbadi, A. Ordered sharing: A new lock primitive for database
systems. Technical Report TRCS 91-18, Department of Computer Science,
University of California, Santa Barbara, CA 93106, 1991.

Agrawal, D., E1 Abbadi, A., and Jeffers, R. An approach to eliminate transac-
tion blocking in locking protocols. Proceedings of the ACM SIGMOD-SIGACT
Symposium on Principles of Database Systems, San Diego, CA, 1992.

124

Agrawal, D., E1 Abbadi, A., and Lang, A.E. The perflgrmance of protocols based on
locks with ordered sharing. IEEE Transactions on Knowledge and Data Engineering,
6(4):805-818, 1994.

Agrawal, R., Carey, M.J., and Livny, M. Concurrency control performance modeling:
Alternatives and implications. ACM Transactions on Database Systems, 12(4):609-
654, 1987a.

Agrawal, R., Carey, M.J., and McVoy, L. The performance of alternative strategies
for dealing with deadlocks in database manageme, nt systems. IEEE Transactions
on Software Engineering, 13(2):1348-1363, 1987b.

Alonso, G., Agrawal, D., and E1 Abbadi, A. Reducing recovery constraints on lock-
ing protocols. Proceedings of the 1994 ACM Symposium on Principles of Database
Systems, Minneapolis, MN, 1994.

Bayer, R., Heller, H., and Reiser, A. Parallelism and recovery in database systems.
AC M Transactions on Database Systems, 5(2):139-156, 1980.

Bernstein, P.A. and Goodman, N. Concurrency control in distributed database
systems. AC M Computing Surveys, 13(2):185-221, 1981.

Bernstein, P.A., Hadzilacos, V., and Goodman, N. Concurrency Control and Recovery
in Database Systems. Reading, MA: Addison Wesley, 1987.

Bernstein, EA., Shipman, D.W., and Wong, W.S. Formal aspects of serializability
in database concurrency control. IEEE Transactions on Software Engineering,
5(5):203-216, 1979.

Buchmann, A.P., McCarthy, D.R., Hsu, M., and Dayal, U. Time-critical database
scheduling: A framework for integrating real-time scheduling and concurrency
control. Proceedings of the Fifth IEEE International Conference on Data Engineer-
ing, Los Angeles, CA, 1989.

Carey, M.J. Modeling and evaluation of database concurrency control algorithms.
Ph.D. thesis, Electronics Research Library, College of Engineering, University
of California, Berkeley, September 1983.

Carey, M.J., Krishnamurthi, S., and Livny, M. I_x)ad control for locking: The
half-and-half approach. Proceedings of the Ninth A C M Symposium on Principles of
Database Systems, Nashville, TN, 1990.

Chan, A., Fox, S., Lin, W.K., Nori, A., and Ries, D.R. The implementation of an
integrated concurrency control and recovery scheme. Proceedings of theACM
SIGMOD International Conference on Management of Data, Orlando, FL, 1982.

Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traige, r, I.L. The notions of consis-
tency and predicate locks in a database system. Communications o f theACM,
19(11):624-633, 1976.

Gray, J., McJones, E, Blasgen, M., Lindsay, N., Lorie, R., Price, T., Putzolu, E,
and Traiger, I. The recovery manager of the system R database manager. A C M
Computing Surveys, 13(2), June 1981.

Hadzilacos, V. A theory of reliability in database systems. Journal of the ACM,
35(1):121-145, 1988.

VLDB Journal 4 (1) Agrawal: Ordered Shared Locks for Real-Time DBs 125

Hfirder, T. and Reuter, A. Principles of transaction-oriented database recovery.
ACM Computing Surveys, 15(4):287-317, 1983.

Haritsa, J., Carey, M.J., and Livny, M. Dynamic real-time optimistic concurrency
control. Proceedings of the Eleventh IEEE Real- Time Systems Symposium, Lake
Buena Vista, FL, 1990a.

Haritsa, J., Carey, M.J., and Livny, M. On being optimistic about real-time con-
straints. Proceedings of the Ninth ACM Symposium on Principles of Database Sys-
tems, Nashville, TN, 1990b.

Huang, J., Stankovic, J.A., Ramamritham, K., and Towsley, D. Experimental eval-
uation of real-time optimistic concurrency control schemes. Ploceedings of the
Seventeenth International Conference on Vepy Large Data Bases, Barcelona, Spain,
1991.

Huang, J., Stankovic, J.A., Towsley, D., and Ramamritham, K. Experimental evalua-
tion of real-time transaction processing. Proceedings of the Tenth IEEE Real-Time
Systems Symposium, Santa Monica, CA, 1989.

Kim, W. and Srivastava, J. Enhancing real-time DBMS performance with multi-
version data and priority based disk scheduling. Proceedings of the Twelfth IEEE
Real-Time Systems Symposium, Location?, 1991.

Kung, H.T. and Robinson, J.T. On optimistic methods for concurrency control. ACM
Transactions on Database Systems, 6(2):213-226, 1981.

Law, A. and Larmey, C. An Introduction to Simulation Using SIMSCRIPT II.5. Los
Angeles: CACI, Inc., 1984.

Lin, Y. and Son, S.H. Concurrency control in real-time databases by dynamic
adjustment of serialization order. Proceedings of the Eleventh IEEE Real-Time
Systems Symposium, Lake Buena Vista, FL, 1990.

Litwin, W. and Shan, M.C. Value dates for concurrency control and transaction man-
agement in interoperable systems. Proceedings of the First International Workshop
on Interoperability in Multidatabase Systems, Kyoto, Japan, 1991.

Menasce, D. and Nakanishi, T Optimistic versus pessimistic concurrency control
mechanisms in database management systems. Information Systems, 7(1), 1982.

Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz, R ARIES: A trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Transactions on Database Systems, 17(1):94-162,
1992.

Papadimitriou, C.H. The serializability of concurrent database updates. Journal of
theACM, 26(4):631-653, 1979.

Reed, D.E Naming and synchronization in a decentralized computer system. Techni-
cal Report MIT-LCS-TR-205, Massachusetts Institute of Technology, Cambridge,
Massachusetts, September, 1978.

Russell, E.C. Building Simulation Models with SIMSCRIPT II.5. Los Angeles: CACI
Inc., 1983.

Russell, E.C. SIMSCRIPT II.5 Programming Language. Los Angeles: CACI Inc.,
1987.

126

Sha, L., Rajkumar, R., and Lehoczky, P. Priority inheritance protocols: An approach
to real-time synchronization. IEEE Transactions on Computers, 39(9):1175-1185,
1990.

Sha, L., Rajkumar, R., Son, S.H., and Chang, C.. A real-time locking protocol.
IEEE Transactions on Computers, 40(7):793-799, 1991.

Stearns, R.E. and Rosenkrantz, D.J. Distributed dalLabase concurrency control using
before-values. Proceedings of the ACM SIGMOD Conference on the Management
of Data, New York, NY, 1981.

Verhofstad, J.S.M. Recovery techniques for database systems. ACM Computing
Surveys, 10(2):167-196, 1978.

