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1. Introduction 

One of the most fundamental uses of a computer is to store and retrieve information, 

particularly when there are a large amount of data to be stored, or there are complex 

manipulations that must be performed on them. There has been a large amount of 

research on the most efficient techniques to store and retrieve data, and the associated 

problems now have satisfactory solutions. However, the problem of understanding 

and interpreting this large amount of information remains, particularly when the 

amounts of data belong to complex domains, such as those involving mineral 
exploration and financial analysis. 

To tackle this problem, a mechanism for reasoning about the stored informa- 
tion is necessary. Such a mechanism must be able to cope with large amounts 
of information, as well as to perform sophisticated inferences, and to draw the 

appropriate conclusions. A framework in which these problems may be attacked 

is given by the field of deductive databases. Deductive databases not only store 
explicit information in the manner of a relational database, but they also store 

rules that enable inferences based on the stored data to be made. This area is an 

outgrowth of the field of logic programming, in which mathematical logic is used 

to directly model computational concepts. Together with techniques developed for 

relational databases, this basis in logic means that deductive databases are capable 

of handling large amounts of information as well as performing reasoning based on 
that information. 

There are many application areas for deductive database technology. One area is 

that of decision support systems. In particular, the exploitation of an organization's 
resources requires fi~tbniy sufficient information about the current and future status 

of the resources themselves, but also a way of reasoning effectively about plans for 
the future. The present generation of decision support systems are severely deficient 
when it comes to reasoning about future plans. Deductive database technology is 
an appropriate solution to this problem. 

Another fruitful application area is that of expert systems. There are many 
computing applications in which there are large amounts of information, from which 
the important facts may be distilled by a simple yet tedious analysis. For example, 
medical analysis and monitoring can generate a large amount of data, and an error 
can have disastrous consequences. A tool to carefully monitor a patient's condition 
or to retrieve relevant cases during diagnosis reduces the risk of error in such 
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circumstances. Deductive database technology allows the analysis of these data to 

be performed more efficiently and with a lower chance of error than by ad hoc 

methods. Such an intelligent tool allows the human experts to concentrate on the 

main problems, rather than being distracted by details. A similar example may be 

found in mineral exploration; a large amount of data may be generated, which can 

then be analyzed for clues suggesting the presence of the desired mineral. 

Planning systems are another application area. For example, a student planning 

a course of study at a university, or a passenger planning a round-the-world trip 

often need to consider a large body of information, as well as the ability to explore 

alternatives and hypotheses. A deductive database is able to advise students about 

pre-requisites and regulations on the choice of subjects, or a traveller of the financial 

implications of a given change in itinerary. 

Deductive database systems have been the subject of extensive research, and 

several prototype deductive database systems are now emerging, as evidenced by 

the descriptions appearing elsewhere in this issue. 

The rest of this introduction is organized as follows. In Section 2, we discuss 

various language issues for deductive database systems, and in Section 3 we describe 

implementation schemes for these systems. In Section 4, we briefly describe various 

implementations of deductive database systems, and in Section 5 we present our 

conclusions. 

2. Deductive Database Languages 

In this section we briefly discuss some language issues relevant to deductive databases. 

For more details, the reader is referred to Lloyd (1987). 

The deductive database field has had close links with the logic programming 

community, and much of the development of deductive database systems has centered 

around languages based on Horn clauses. This class of formulas forms the basis of 

Prolog, and is powerful enough to encode Turing machines (Tfirnlund, 1977). 

A Horn clause is generally written as 

p( t )  : -  ql( t l ) ,  . . . ,  qn(~n) 

where p and ql ,  • • • qn are predicate letters, n _> 0, and all variables that occur 

in the terms t,  t-l,. • •, tn are considered universally quantified at the front of the 

clause. 

Note that n may be 0, in which case we refer to the clause as a fact. Otherwise, 

we refer to the clause as a rule. 
The a tomp( t )  is referred to as the head of the clause, a n d  q l ( t l ) ,  . . .  , qn(tn) 

as the body of the clause. 
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A logic program is a set of Horn clauses. The terms t ,  t l , .  • . ,  tn may, in general, 

be arbitrary (first-order) terms, and hence may contain variables and/or function 

symbols. 

It is often useful to consider sub-classes of this class of programs. A common 

restriction is to only allow terms to be either variables or constants. Such programs 

are known as Datalog programs. An important property of such programs is that 

it is decidable whether a given query is logically entailed by a Datalog program. 

Hence, it is reasonable to expect that a deductive database system should terminate 

on all Datalog programs. 

Not all deductive database systems restrict programs to be Datalog programs. 

Datalog programs are somewhat restrictive; for example, the append program is 

not a Datalog program, as it requires the use of function symbols. 

In the deductive database field, a distinction is usually made between predicates 

defined by rules alone (referred to as the intentional database or IDB), and predicates 

defined by facts alone (referred to as the extensional database or EDB). Any logic 
program can be rewritten so that all predicates are either IDB or EDB predicates. 

Often it is useful to consider a given IDB for various EDBs. 

While Horn clauses are Turing complete (T~irnlund, 1977), it is common to 

extend the language of Horn clauses so that the body of a clause is a conjunction 

of literals (i.e., an atom or the negation of an atom, rather than a conjunction of 

atoms alone). The negative literals are inferred by the use of the Negation as Failure 
rule (Clark, 1978); a literal ~ A succeeds if A fails. The addition of this feature 

gives the language more expressive power, but it can also confuse the semantics of 

the program somewhat. For example, consider the program below. 

p:--~ q 

q:--~ p 

Here it is not clear whether we should interpret p as true (and q as false, 

or vice-versa). As a result, negation generally has to be used carefully in logic 
programs to avoid problems of this kind. There has been a great deal of work on 

the semantics of negation in logic programs, and we give only a brief overview here. 

(For more information, see Gelfond and Lifschitz, 1988; Przymusinski, 1988; Van 
Gelder et al., 1991; Kemp et al., 1992). 

A useful class of programs in which the use of negation is restricted is known 

as the class of stratified programs (Chandra and Harel, 1985; Blair and Walker, 

1988). Intuitively, a program is stratified if there is no recursion through negation. 

For example, the following program, which defines the acyclic part of a graph, is 
stratified. 

path(X,Y) : -  edge(X,Y). 

path(X,Y) : -  edge(X,Z),  pa th(Z,Y) .  
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acycl ic(X,Y) :-  path(X,Y), ~ path(Y,X). 

Note that the definition of the acyclic predicate depends on the path predicate, 
but not vice-versa. 

A more general class of programs, which is based on the same general idea, 

is the class of locally stratified programs (Przymusinski, 1988). Essentially, a locally 
stratified program allows recursion through negation, provided that no atom depends 

on its own negation. Further extensions of this concept include modular stratification 
(Ross, 1990). 

Another restriction that is often imposed is to consider only programs that are 

range-restricted. A program is range-restricted if every variable that appears in the 

head of a clause also appears in the body of the clause (Bancilhon and Ramakrishnan, 
1988) (note that this definition can be simply extended when negative literals appear 

in the body of a clause). This implies that all facts in the program must be ground 

(i.e., contain no variables). The main advantage of this class of programs is that in 

the query evaluation process, only matching is needed, which is significantly more 

efficient than full unification. Also, all answers to a given query are ground, and 

hence there is no need to check for answers subsuming one another. 

Several of the prototype systems described in this article have implemented 
various combinations of the above features. Some systems only support Datalog 

range-restricted programs with stratified negation, some support modularly stratified 
programs, and/or function symbols. Some systems also do not impose any restrictions 
other than modular stratification. More details are provided in Section 4. 

Many deductive database systems also include aggregate operators, such as 
sum, max, rain, and count. While these operators allow the simple expression of 

many database programs, it is possible to write simple programs with a complicated 

semantics (as in the case for negations), and so many of the concepts introduced 
for negation (e.g., stratification) are also used for aggregate operators. 

3. Implementation Schemes 

There has been a significant body of research in the area of implementation of logic 

programming systems and deductive database systems, and a substantial body of 
theoretical work has been developed for such systems. In this article we are interested 
only in implementation techniques for deductive databases. These implementation 
techniques can be broadly categorized into three main groups: 

• Prolog systems loosely coupled to database systems 

• Top-down evaluation with memoing 

• Bottom-up methods 
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3.1 Prolog Systems Loosely Coupled to Database Systems 

Some of the early attempts to implement deductive databases were to interface 

a Prolog system to a database system (or a file store). These systems we refer 

to as Prolog database systems. These systems use Prolog computation and access 

appropriate database relations on a tuple-at-a-time basis. The benefit of this approach 

is that these systems can be implemented quickly and easily. The drawback of this 

approach is that the resulting system can be extremely inefficient because access 

to the underlying database system is tuple-at-a-time, and the resultant computation 

performed is similar to "the nested loop join algorithm, but performing on several 

relations simultaneously. Several systems have been developed using this approach 

(Ramamohanarao et al., 1987; Zobel and Ramamohanarao, 1986; Horsfield et al., 

1989). 

Prolog is based on the top-down computation method, which is also known as 

backward chaining or SLD-resolution. This method is also used in theorem proving. 

It starts at the query and applies the rules of the program until it arrives at the 
facts. 

The main steps in SLD-resolution are as follows: 

1. Initialize the goal list of literals to the query. 

2. Choose a goalAi from the goal list A1,A2, . . .  , A i . . .  An.  Find a ruleA :- 

B1,. • • ~ Bm such thatA0 = AiO for some most general unifier 0. Terminate 

with failure if there are no such rules. 

3. Update the goal list to (A1, A2, • .. h i - i t  B1,. • •, Bra, Ai+l~ • • • an)O. 

4. If the goal list is not empty, go back to step 2. Otherwise, terminate with 

success; an answer to the query is contained in the substitutions. 

Step 2 of the top-down algorithm has two forms of nondeterminism. 

• The computation rule specifies which literal is to be selected. 

• The search rule specifies the order in which the matching rules of the program 

are unified against the selected literal. 

These two rules give the shape of the tree explored by the top-down algorithm. 

In Prolog, the computation rule is to always use the leftmost literal in the goal 

list; the selected literal is replaced in the goal list by the body of the matching rule. 
The search rule is to always use the first matching rule. 

Using this approach for deductive databases can result in a bottleneck, as 

large amounts of information can tend to "clog" the tuple-at-a-tirne nature of 
the computation. A significant development of this approach was pursued in 
the MegaLog system, developed at ECRC (norsfield et al., 1989; Bocca, 1991). 
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MegaLog was designed to be similar to Prolog, but the main emphasis is on efficient 

database access. For example, MegaLog supports relational operations and indexing 

structures such as BANG files (Freeston, 1989). 

Note that in such systems it is possible for some Datalog programs not to 

terminate, and hence it is the programmer's responsibility to ensure that all queries 

terminate. 

3.2 Top-Down With Memoing 

To overcome the problem of the termination of top-down methods on Datalog 

programs, the technique ofmernoing is often used. The main problem for termination 

of SLD-resolution is that the refutation procedure does not recognize goals that it 

has previously called, and so may loop needlessly. Methods of incorporating such 

a check into the SLD-resolution procedure have been studied by many researchers 

(Vieille, 1986, 1987, 1988; Dietrich, 1987; Warren, 1992), all of which may be 

considered variants of OLDT-resolution (Tamaki and Sato, 1986). 

In its simplest form, top-down evaluation with memoing builds a tree similar 

to an SLD-tree except for the following restrictions and differences: 

• Answers to subgoals are tabled (memoized) for future use: when the derivation 

proceeds from the goal list 

A1,. . . ,Ai , . . .An 

to a descendent goal list of the form 

(A1,..., Ai-1, Ai+l,... A,~)O 

the atom AiO is called an answer. 

• If the subgoal A is an instance--possibly more instantiated--of a subgoal 

that occurred earlier in a left-to-right pre-order traversal of the tree, then A 

is not resolved using rules from the program, but is resolved against tabled 

answers. 

• When a new answer is found, any subgoal that has been resolved using 
answers must be tested to see if it unifies with the new answer. 

Although the above description is tuple-at-a-time in nature, it has been further 

developed to compute answers in an efficient set-at-a-time manner (Vieille, 1988). 

Essentially, the search procedure "remembers" each goal that it has called, so 

that the evaluation of a given goal does not repeatedly derive the same subgoal. 

This system is in some respects a mixture of top-down and bottom-up methods, 
as many of the characteristics of the system have direct counterparts in bottom-up 

evaluation methods. 
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3.3 Bottom-Up Methods 

The bottom-up method is known also as forward chaining or fixpoint computation. 
It starts at the facts and applies the rules until it arrives at the query. This approach 

is often used in the study of the semantics of logic programs, and by many deductive 

databases. 
This computation method can be characterized by the following steps: Let the 

query be q(O). 

1. Initialize 3,/, the set of known facts, to the set of facts in the program, and 

add the following rule to the program: 

ans(0)  :- q(0) .  

2. For each ruleA : - A 1 , .  • • ,  An, look for substitutions 0 for w h i c h A 1 0 , . . . ,  
AnO E M. For each such substitution, add AO to M. 

3. If the set of known facts M has increased, go back to step 2. 

4. The answer to the query is the set of ans facts in M. 

The bottom-up approach naturally lends itself to the application of relational 

algebra techniques, as the conjunction of literals in the goal may be implemented by 
a sequence of join operations, for which many optimization techniques are known. 

However, the bottom-up method as described above completely ignores the values 

of any constants in a query, and therefore also derives facts which are irrelevant to 

the query. Relevant facts (including derived facts) are those which are used in the 

generation of answers to the query. The number of these irrelevant facts can be 

very large, and in general this can make bottom-up computation very expensive. 

By contrast, the top-down method, with or without memoing, does not have this 
problem, because query evaluation uses the instantiated variables of the goal. To 

make bottom-up methods concentrate only on facts that are relevant to the query, 
techniques such as magic sets have been developed (Bancilhon et al., 1986; Beeri 
and Ramakrishnan, 1987, Balbin et al., 1991). This is one of the most important 

optimization techniques for bottom-up methods. 
This is a source-to-source transformation; it transforms the program (the rules 

of the database) into another program that can be evaluated more efficiently by 

the standard bottom-up computation we have presented. 
The magic set transformation is a general transformation, and can be applied 

to all programs. However, special care is needed when dealing with programs 
containing negations. The transformation provides a focus equivalent to top-down 
computation, so that only facts relevant to the query are generated. 

For example, consider the program and query below. 

7- partof(2, Y). 
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partof(X,Y) :-  component(X,Y). 

partof(X,Y) :-  component(X,Z), pa r to f (Z ,Y) .  

Under the magic set transformation, the program and query become 

?- partof_m(2, Y). 

magic_partof (2). 

magic_partof (Z) :- magic_partof (X), component (X, Z) . 

partof_m(X,Y) :- magic_partof(X), component(X,Y). 

partof_m(X,Y) :- magic_partof(X), component(X,Z), 

partof_m (Z, Y). 

The standard bottom-up evaluation of these rules produces the same result for 

this query as the evaluation of the unmodified rules would, but it looks at only 

the relevant facts. The magic_patrol  relation initially contains only the tuple (2), 

the input value for the first argument of pa t ro l .  At each stage in the bottom-up 
evaluation of magic_partof,  the computation adds to this relation the values of 

the first argument of pa r to f  that a top-down evaluation of the query would see 
at the corresponding depth in the search tree. At the end, magic_patrol  contains 
the magic set (i.e., all the values for the first argument of partof that the top-down 

evaluation of the query would ever see). 

The modified rules of partof then use the magic set to avoid computing the 

parts of the partof relation that are not relevant to the query. 

Below we provide a very simple form of the magic set transformation algorithm, 

which may be applied to any program. 

• For each derived predicate of the program, create a magic predicate by 

prefixing magic_ to the predicate name. The arguments of this new predicate 

are the bound arguments of the original predicate. 

• For each rule, add a magic atom to the front of the rule; the arguments of 
this atom are the bound arguments of the rule head. 

• For each modified rule of the program, create a new rule for each call to a 

derived predicate p whose bound arguments are X1, X2, • • •, Xn. The head 
of this new rule is magic_p(X1, X 2 , . . .  , Xn) and the body is the literals 
preceding the call. 

There are several other optimization algorithms which have been developed, 
some for particular classes of programs such as linear recursions (Kemp et al., 1990; 
Harland and Ramamohanarao, 1993), and various others which are more generally 
applicable (Sacca and Zaniolo, 1986, 1987; Beeri and Ramakrishnan, 1987; Sagiv, 

1990; Harland and Ramamohanarao, 1992; Kemp and Stuckey, 1993). 
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Several of the prototype systems described below have implemented various 

combinations of the above methods and techniques. Most systems implement either 
bottom-up evaluation or top-down with memoing, and various combinations of 
optimization techniques. Some allow the user control over the optimizations, while 

others select optimization strategies automatically. More details are provided in the 

next section. 

4. Prototype Deductive Database Systems 

A large number of prototype deductive database systems have been developed to 

date. Several of the implemented systems are memory-based. These systems assume 
that all the required permanent relations can be kept in main memory, and during 

the process of computation, any temporary relations generated can also be kept 
in memory. Although this method suffices for applications where the temporary 

relations generated are small enough to fit into main memory, this is an unreasonable 
expectation for some applications. When this assumption is false, these systems 

tend to behave poorly; therefore techniques used in building relational database 
systems must be used. 

Several of the implementations also assume that there is a single user of the 

database, and in general do not support transaction processing and crash recovery. 
In addition, many systems do not support essential database features such as integrity 

constraints and triggers. In spite of these limitations, substantial progress has been 
made towards demonstrating the feasibility of deductive database technology, and 

some prototype systems have been developed that do provide the expected features 

of a traditional database system. There are also commercial database systems under 
development that have the capabilities of a deductive database. 

Below we give an overview of the state of development of various prototype 
systems. This overview is not a complete survey of all efforts that have taken place in 
the development of deductive database systems. We concentrate on systems which 

have had significant developmental effort and have received significant attention 
in the literature. We refer interested readers to a forthcoming survey article 
(Ramakrishnan and Ullman, in press), which covers other issues. 

RDL/C. RDL/C is a programming language developed to integrate a rule-based 

language and the programming language C. RDL/C is derived from RDL1 
(Maindreville and Simon, 1988). This language supports rules and abstract 
data types (Gardarin et al., 1989); therefore, the user can program at a higher 
level than is possible using the combination of SQL and C. In particular, the 
user does not have to manage temporary relations, which are handled by the 
system. Programs written in RDL/C are compiled into an embedded database 
query language. This approach has the advantage of being easy to integrate 



116 

into an object-oriented database system or a relational database system; this 

provides a powerful and flexible database system. In many respects, this 
system is similar to LOLA (see below). 

MegaLog. MegaLog was developed at the European Computer Research Center 
(ECRC) (Horsfield et al., 1989; Bocca, 1991). This system is designed to 
support the manipulation of large amounts of data while also providing 
standard Prolog features. One of the main contributions of this development 
is the support of a multi-dimensional grid file system called Balanced And 
Nested Grid file (BANG). Other important features include its support 
for garbage collection, and excellent facilities for dictionary management. 
Because the behavior of the system is similar to Prolog, it does not guarantee 

termination even for Datalog programs. However, the system has proved to 
be a good development platform for data-intensive knowledge bases, such 
as the EKS system described below. 

EKS. The ECRC Knowledge base System (EKS) was developed at ECRC from 1989 
to 1991 (Vieille et al., 1990). Like several deductive database systems, one of 
the goals of this project is to demonstrate the viability of deductive database 
technology for real-world applications. EKS is built on the MegaLog Prolog 
platform (Horsfield et al., 1989; Bocca, 1991). The language of EKS is Datalog 
(and hence does not support function symbols). The main features of the EKS 
system include support for a very general form of integrity constraints, which 
may include references to recursive predicates and aggregate operations, rules 

which may contain recursion through aggregates, support for materialized 
views, and support for hypothetical query facilities. In this system, support for 
procedural definitions and updates is provided by the underlying MegaLog 
platform. The initial system was a single-user system. The computational 

model used in this system is derived from Query/SubQuery evaluation, a 
set-oriented top-down evaluation scheme with memoing (Vieille, 1986, 1989; 
Lefebvre and Vieille, 1989). One of the main advantages of this approach is 
that negation is handled in a top-down setting. This makes negation simpler 
to implement than bottom-up methods using the magic set transformation. 

LDL. The LDL system was developed at Micro Computer Corporation (Naqvi and 
Tsur, 1989). One of the main features of this system is support for sets in the 
language. This system was built based on the bottom-up computation model, 
and uses several optimization techniques, such as magic sets. This system is a 
single user system, and all relations are memory-resident. The deductive part 
of this system is memory-resident. Later versions of the LDL system allow it 
to be interfaced to traditional relational systems, thus providing traditional 
database features such as transactions. A second-generation version of LDL, 
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known as LDL+ + has been re-implemented (Zaniolo et al., 1993). Its main 

enhancements are the provision of interfaces to procedures written in C or 

C + + ,  as well as the addition of abstract data types to the language. 

LOLA. The LOLA system was developed at the Technical University of Munich 

(Freitag et al., 1991). The system is implemented by compiling Horn clauses, 

which may contain lists, into a Relational Lisp program with embedded 

SQL statements. The system does optimizations to minimize the calls to 

the underlying SQL database system. The system's support for multiple 

users and transactions is mainly derived from the underlying system. This 

implementation approach is very similar to that of Declare and SDS, described 

below (and in an article in this issue). The deductive part of this system is 

memory-resident, and hence this system is not scaleable to large databases 

when the intermediate relations are large. 

CORAL. The CORAL system was developed at the University of Wisconsin at 
Madison (see article in this issue). CORAL uses bottom-up evaluation, 
with a wide variety of optimization strategies, which are specified by the 

programmer. One of the main features of CORAL is support for non- 
ground terms. The system is a single-user system and memory-resident. 
However the system can be connected to the EXODUS storage manager for 
access to permanent relations. It is not clear whether this kind of integration 

will scale up to large databases in performance terms. 

Glue-Nail. The Glue-Nail system was developed at Stanford University (see article 

in this issue). An important feature of this system is the provision of two 
languages: one (Nail) for purely declarative statements based on Horn clauses, 
and another (Glue), which is procedural and used for I/O, updates and control 

constructs. The system also supports a form of higher-order syntax for the 
management of relation names. The system is a single-user system and 

memory-resident. 

Aditi. The Aditi system was developed at the University of Melbourne (see article 
in this Issue). Aditi uses a bottom-up approach using relational technology. 

In this system, both permanent and temporary relations can be disk-resident, 
and hence the system is scaleable to large databases. The system supports 
function symbols, negation, and aggregates (including recursively defined 
aggregates). The architecture of this system is based on the client-server 
model, and supports parallel query processing. The system is also a multi- 
user system. Another important feature of Aditi is that bottom-up and 
top-down computations can be interleaved. The user can declare that a 
particular predicate is to be evaluated in a top-down fashion. Aditi then 
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makes a call to a Prolog system to execute such predicates. This mixing of 

top-down and bottom-up coml~utation can improve performance by several 
orders of magnitude. However, for such predicates it is the responsibility of 
the user to ensure termination. 

Declare and SDS. The Declare and SDS project is one of the earliest deductive 
database projects to build a commercial deductive database system (see 
article in this issue). This system has a lot of similarities to the LOLA 
system, although the Declare and SDS system is further developed. The 
language of this system is based on Horn clauses and supports lists, but 
with rules defining the same head predicate grouped together to form a 

virtual relation. The system is implemented using Relational Lisp, and is 
built on top of an extended version of the TransBase system. The system also 
provides support for types, as well as for distributed databases, and facilities 
for transactions. 

XSB. The XSB system (Warren, 1989, 1992) was developed at Stony-Brook Univer- 
sity. In many respects, this system has similar goals to the CORAL system in 
supporting non-ground terms and negation. However, the main distinction is 
the model of computation used in XSB, which is based on OLDT resolution, 
a top-down method with memoing (Tamaki and Sato, 1986; Dietrich, 1987). 
In this respect the XSB system resembles the EKS system. Like CORAL, 
this system is a single-user, memory-based system. 

Starburst. The Starburst system (Haas et al., 1990) was developed at IBM Almaden. 
This is a substantial project, with the main goal being extensibility of the 
database system, and with some interest in deductive capabilities. The system 
supports a restricted but useful class of recursive rules. Due to this restriction, 
the system is able to use efficient specialized algorithms for query evaluation. 
The usefulness of the magic set transformation for non-recursive programs 
is demonstrated in this system (Mumick and Pirahesh, 1994). 

Commercial  Systems. In addition to Declare and SDS discussed above, there is 
also a commercial system currently under development at Groupe Bull. We 
believe that its main features include support for object-oriented features 
combined with the deductive facilities of EKS. 

Some other interesting systems, such as ConceptBase (Jeusfeld and Staudt, 1993), 
COL (Abiteboul and Grumbach, 1991), LogicBase, Hy+ (Consens and Mendelzon, 
1993), and X4 (Moerkotte and Lockemann, 1991), are discussed in the survey paper 
(Ramakrishnan and Ullman, in press). 
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5. Conclusion 

Deductive database technology has now reached a level of maturity so that the 

commercial development of deductive database systems is feasible. There are several 
substantial prototype deductive database systems currently available from universities 
and research institutions, and it is now possible to build real applications using this 
technology. These prototype systems have already demonstrated the potential 

of deductive database systems to perform as efficiently as relational systems (for 
those applications where relational systems are appropriate). In addition, deductive 
database systems provide significantly more expressive power, both for querying the 
database and modeling of data. 

However, before deductive database technology is generally accepted in the 
database community, these systems will need to have the standard database facilities 
for transaction processing, crash recovery, multi-user access, integrity constraints, 
triggers, and distributed database access. Unfortunately, several of the prototype 
systems do not have these facilities. We believe that systems such as Aditi, and 
Declare and SDS are closer to this goal than many others. It is also encouraging to 
see that there are some commercial deductive database systems under development 
which will include these standard database features. 
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