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Abstract. We propose a new dynamic method for multidimensional selectivity es- 
timation for range queries that works accurately independent of data distribution. 
Good estimation of selectivity is important for query optimization and physical 
database design. Our method employs the multilevel grid file (MLGF) for accu- 
rate estimation of multidimensional data distribution. The MLGF is a dynamic, 
hierarchical, balanced, multidimensional file structure that gracefully adapts to 
nonuniform and correlated distributions. We show that the MLGF directory nat- 
urally represents a multidimensional data distribution. We then extend it for fur- 
ther refinement and present the selectivity estimation method based on the MLGE 
Extensive experiments have been performed to test the accuracy of selectivity es- 
timation. The results show that estimation errors are very small independent of 
distributions, even with correlated and/or highly skewed ones. Finally, we analyze 
the cause of errors in estimation and investigate the effects of various parameters 
on the accuracy of estimation. 

Key Words. Query optimization, physical database design, multidimensional file 
structure, multilevel grid files. 

1. Introduction 

Accura te  est imation of  selectivity is crucial in database query opt imizat ion and 
physical database design (Selinger et al., 1979; Christodoulakis,  1983; Whang  and 
Krishnamurthy,  1990). Selectivity is defined as the ratio of  the number  of  records that  
satisfy the query to the total number  of  records in a file. In query optimizat ion the cost 
o f  an access plan for processing a query is est imated based on the numbers  of  records 
to be retr ieved for intermediate  and final results. Selectivity is used to estimate 
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the number of records to be retrieved. Similarly, selectivity is used for physical 
database design. For example, to optimize the following query, we need accurate 
estimation of selectivity of the predicate 30<Age< 35 AND 50000<Salary< 100000. 

SELECT Name 

FROM Employee 

WHERE 30 < Age < 35 AND 

50000 < Salary < 100000 

Several selectivity estimation methods have bee, n reported in the literature. The 
earliest and simplest one is based on the uniform distribution assumption and the 
independence assumption (Selinger et al., 1979). "Ihe former assumes that records 
are distributed uniformly over the domain of art attribute. The latter assumes 
that the distributions of different attributes are not correlated. However, these 
assumptions rarely hold in practical situations and thus cause significant errors in 
selectivity estimation. The errors are prominent, especially when the attributes are 
correlated (Christodoulakis, 1983; Vander Zander et al., 1986). Christodoulakis 
(1983) analytically showed how much the selectivity estimated under the uniform 
distribution and independence assumptions can deviate from the true selectivity 
using various parametric distributions. 

To alleviate the problem caused by these simplistic assumptions, several methods 
based on histograms have been proposed: the equi-width method (Piatetskky and 
Connell, 1984), the equi-depth method (Muralikrishna and DeWitt, 1988), and the 
homogeneity-based method (Muthuswamy and Kershberg, 1985; Chen et al., 1990). 
The basic idea of the histogram approach is to capture a data distribution by dividing 
the domain into a set of intervals. In the equi-width method, the widths of the 
intervals are equal, and the number of records in each interval approximates the 
distribution. In the equi-depth method, the widths of the intervals are adjusted 
so that each interval has the same number of records. In the homogeneity-based 
method, the domain is partitioned into intervals in such a way that the records in 
each interval are uniformly distributed. 

Each method has benefits and drawbacks. The equi-width method is a very 
simple technique corresponding to the classical histogram (Mannino et al., 1988), 
but has limitations. First, it is difficult to determine the boundaries of the domain 
and the intervals without prior knowledge of the data distribution. Second, the 
error in selectivity estimation can be significant, since some intervals can be heavily 
populated violating the assumption that the data distribution within an interval is 
uniform. The equi-depth method solves these problems by scanning the records 
of an existing file and by making each interval equal in population. However, 
the proposed technique cannot accommodate dynamic insertion or deletion of the 
records due to its static nature: the data structure has to be rebuilt periodically to 
accommodate changes. The homogeneity-based methods attempt to achieve high 
accuracy in estimation by maintaining a prespecified level of homogeneity (i.e., 
uniformity) within an interval. Thus, the assumption that the records are uniformly 
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distributed within each interval does not incur as much error in estimation as in the 
equi-depth method. The drawback is the static nature of the techniques requiring 
periodic reconstruction of the histogram. An excellent survey of various techniques 
appear in Mannino et al. (1988). To avoid the complexity of these approaches, 
some techniques attempt to use a hybrid approach (Ioannidis and Christodoulakis, 
1991). For example, IBM's DB2 can record up to ten highest-frequency attribute 
values for special treatment. The remaining values are assumed to have a uniform 
distribution (Selinger, 1991). 

This article presents a new selectivity estimation method for queries in the 
environments where records are inserted and deleted dynamically. This is an 
excellent method with nonuniform, highly skewed, and/or highly correlated data 
distributions. We also present the results of extensive experiments testing the 
accuracy of the proposed method, which prove to be excellent. Here we handle 
only range queries, leaving the cases for exact-match queries as a further study. 

Our method uses the Multilevel Grid File (MLGF; Whang and Krishnamurthy, 
1985, 1991) to maintain multidimensional data distributions. The MLGF is a 
dynamic, multidimensional file organization that gracefully adapts to nonuniform 
and correlated distributions. We discuss how each level of the MLGF directory 
maintains an n-dimensional data distribution, where n is the number of attributes. 
A lower level represents it in finer granules, and a higher level in coarser granules. 
Selectivity estimation is done based on the distribution information maintained in 
the MLGF directory. 

This article is organized as follows. In Section 2 briefly reviews the structure of the 
MLGE Section 3 investigates how the MLGF directory maintains a multidimensional 
data distribution and present the techniques for selectivity estimation. Section 4 
presents experimental results obtained from testing the accuracy of estimation. 
Section 5 analyzes the errors in estimation and discusses how various parameters 
affect the errors. Section 6 briefly discusses candidate applications of the MLGF- 
based method. Section 7 concludes the article and proposes further study. 

2. Multilevel Grid File (MLGF) 

In this section we briefly review the structure of the MLGE Section 2.1 describes 
the MLGF's dynamic characteristics, and Section 2.2 describes its structural charac- 
teristics. We first define some terminology: A file is a collection of records, where 
a record consists of a list of attributes. A subset of these attributes that determines 
the placement of the records in the file is called the organizing attributes. A file has 
a multidimensional organization if it contains more than one organizing attribute. 
A domain of an attribute is a set of values from which an attribute value can be 
drawn. We define the domain space as the Cartesian product of the domains of all 
the organizing attributes. We call any subset of the domain space a region. 
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Figure 1. Dynamic growth of an MLGF 
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2.1 Dynamic Characteristics of MLGF 

The MLGF consists of directory pages and data pages. The directory has multiple 
levels. An entry (directory entry) in the lowest level of the directory points to a data 
page and represents the region for which the data page is allocated. The data page 
contains only those records that belong to the region represented by the directory 
entry. The multilevel directory structure of the MLGF is built recursively; that is, 
a higher level of the directory is built on top of the next lower level treating it as 
if it were the base data. 

The MLGF adapts to dynamic situations where record insertions and deletions 
occur by splitting and merging pages. When a new record is inserted into an 
n-dimensional file, the region to which the record belongs is found by searching 
the directory from the root to the lowest level, and the record is inserted into the 
data page allocated for that region. If the page overflows, the region splits into 
two equal-sized subregions and the records are distributed into two pages that are 
allocated for the new regions. Figure 1 shows how a two-dimensional MLGF grows 
on repeated insertion. Let us assume that a data page can contain up to three 
records (i.e., the data page blocking factor is three). Figure la is the initial state 
where the file contains three records in the entire domain space. If we add another 
record, the data page overflows causing the region to split into two, and another 
data page is allocated. The records are redistributed into two data pages according 
to the regions they belong to (Figure lb). Figures lc and ld show the states of the 
file, when there have been subsequent splits of page A and page C. 
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Figure 2. Region splitting strategies 
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(a) Initial Status. (b) MLGF. (c) Grid File. (d) MEH. 

When records are deleted repeatedly, the MLGF shrinks. If the number of 
records in the page falls below a certain threshold (i.e., the page underflows), the 
region of the page is considered for merging with one of its buddies. A buddy of a 
region A is defined to be an adjacent, equal-sized region that forms a rectangular 
region when merged with region A. When merging actually occurs, all the records 
in two data pages are consolidated into one, and the other page is deallocated. 

2.2 Structural Characteristics of MLGF 

Local Splitting. The MLGF splits the region locally when the data page overflows. 
This is one of the advantages of using the MLGF, especially for selectivity estimation. 
Local splitting maintains exactly one directory enay pointing to one data (or directory) 
page. This policy makes it easier to maintain the number of records that a directory 
entry represents. Without it, multiple directory entries pointing to the same data 
or lower-level directory page have to be identified to obtain the estimation. This 
would be a cumbersome and costly process. 

Figure 2 compares the splitting strategy of the MLGF with those of other 
file organizations: the grid file (Nievergelt et al., 1984) and the multidimensional 
extendible hashing (MEH; Otoo, 1984). 

Figure 2a represents the state of domain space partition when region A is about 
to split. Figure 2b shows the partition that the MLGF generates after splitting 
region A locally. Figure 2c shows the partition that the grid file generates, in which 
the entire hyperplane containing region A is split. Note that, in this partition, both 
regions C and D point to the same data page. Figure 2d represents the partition 
that the MEH generates. It causes even more region splits to satisfy the equi-depth 
requirement of the directory for array-index computation of extendible hashing 
(Fagin et al., 1979). Local splitting is also employed in other data structures such 
as the BANG File (Freeston, 1987), the balanced multidimensional extendible hash 
tree (Otoo, 1986) and the K-D-B tree (Robinson, 1981). 

Directory Entries. We now look into the directory structure of the MLGF in more 
detail. A directory entry consists of a region vector and a pointer to a data or 
lower-level directory page. A region vector in an n-dimensional file consists of n 
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Figure 3. Directory entries and the corresponding regions 
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hash values that uniquely identify the region. The i-th hash value of the region 
vector is the common prefix of the hash values :for the i-th attribute of all the 
records that belong to the region. 

For example, Figure 3 shows a partition of a two-dimensional domain space. 
Directory entry 1 contains the region vector <00,0> that represents the lower left 
region and the pointer to data page 1. The hash value '00' will be the common 
prefix of the hash values for attribute A of the records in this region. Likewise, 
the hash value '0' will be the common prefix of the hash values for attribute B. 
Directory entry 2 contains the region vector <01,0> representing a buddy of the 
region of directory entry 1. The symbol ' - - '  in directory entry 3 represents the 
entire domain of the corresponding attribute. 

A region vector also indicates the size of the region. The size of the interval in 
one attribute is inversely proportional to 2 v, where v is the length of the hash value 
of the region vector for that attribute. Therefore, the size of a region is calculated 
a s  

N 

region size = IT i f ( i )  
i = 1  2 v ( i )  ' 

where K is the size of the entire domain of the i-th attribute. 
The MLGF uses an order-preserving hashing function to map attribute values 

to the range of [- 231, 231 - 1], represented by four-byte signed integers. Order- 
preserving hashing functions (Robinson, 1985) are generally known to be difficult 
to use in practice because they do not distribute values evenly over their ranges 
(i.e., they introduce skews in data distribution). However, data skew does not pose 
problems in the MLGF since its directory gracefldly adapts to highly skewed or 
even correlated distributions. The main reason for this characteristic is the local 
splitting strategy of the MLGF that has exactly one directory entry to one data (or 
directory) page and does not represent empty regions (Whang and Krishnamurthy, 
1991). The experiments in Section 4 show that selectivity estimation is not affected 
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significantly by data skew. 
Duplicate records can be introduced due to collisions. If a data page is filled up 

by duplicate records, we simply chain multiple data pages, which we regard as one 
virtual data page. We expect, however, that hash collisions for all the organizing 
attributes will be infrequent. 

MLGFDirectoly and Space Partitioning. To illustrate the hierarchical nature of the 
MLGF directory, consider a two-level directory consisting of D1 and D2 in Figure 
4a. Figure 4b shows the partition of the domain space induced by each level of the 
directory. The round enclosures in Figure 4b are the regions represented by the 
directory entries in D1. Thus, D1 has twelve entries. (Note that the empty region 
<00,1> was not represented in D1.) Level D2 serves as the directory for level D1. 
The second directory entry in D2 with the region vector <10,0> represents region 
b in Figure 4c and points to a page in D1 containing three entries, which form a 
finer partition of region b into regions E, F, and G in Figure 4b. Note that the first 
(second) element of the region vector <10,0> is the common prefix of the first 
(second) elements of the region vectors of the three directory entries. 

Summmy. We now summarize the features of the MLGF that are relevant for 
selectivity estimation. Details of the MLGF operations can be found in Whang and 
Krishnamurthy (1985, 1991): 

1. Dynamic, multidimensional file structure that adapts to nonuniform and 
correlated distributions. 

2. Hierarchical directory structure, each level of which represents a partition 
of the entire domain space. The partition allows regions of different sizes. 

3. Exactly one directory entry points to one data (or directory) page. 

. Empty regions not represented. This is an important property in estimating 
selectivity since an empty region, when merged with another region, introduces 
skews in data distribution within the merged region. The skew within a region 
is a major cause of error in estimation as we explain in Section 3. 

3. Selectivity Estimation Using Multilevel Grid File 

In this section we first show how the MLGF directory maintains data distribution 
in the domain space. Next, we present the selectivity estimation method. 

3.1 Dynamic Maintenance of Data Distribution 

In Figure 4b a rounded enclosure is the region represented by a directory entry in 
D1. Because a directory entry in D1 points to exactly one data page, the region 
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Figure 4. Two-level MLGF directory and its domain space partition 
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corresponds to exactly one data page. We call it the region of the datapage. Suppose 
that each data page contains an equal number of records. Then, each entry in the 
lowest level of the directory (and its region) represents an equal number of records. 
Thus, we derive that the density of record population is inversely proportional to 
the size of the region. For example, the density in region E is eight times that in 
region D. Therefore, the partition of the domain space derived by the lowest level 
of the directory (D1) represents the data distribution. This concept is similar to 
that of the equi-depth histogram partitioning the domain space into buckets having 
the same number of records (Muralikrishna and DeWitt, 1988). 

We now make a similar observation with D2. Assuming that each directory page 
contains an equal number of directory entries, we derive that each directory entry 
at a specific level represents an equal number of directory entries in the next lower 
level, and eventually represents an equal number of records. From this observation, 
we derive that at any specific level of the MLGF directory, the data distribution is 
inversely proportional to the size of the region that each directory entry represents. 

In general, each level of the MLGF directory reflects the data distribution over 
the entire domain space. However, a lower level keeps the distribution in finer 
granules than a higher level does because it contains more directory entries. Thus, a 
lower level of the directory provides more accurate selectivity estimation. However, 
because each page does not necessarily contain the same number of records or 
directory entries, some mis-estimation is likely. 

Extension of MLGF with COUNT Fields. Our model of data distribution becomes 
more accurate if we maintain the count of the records that each directory entry 
represents. One count field is kept with each directory entry. The count for a 
directory entry is easily maintained by updating it whenever a record or a directory 
entry is inserted/deleted into/from the page that the directory entry points to. It 
is also updated when the pages split or merge. No additional page accesses are 
required, although slightly more pages will be needed overall to accommodate the 
count fields. Maintaining these counts obviates the need for the earlier assumption 
that each data or directory page contains an equal number of records or directory 
entries. Thus, with this refined model, the data distribution is proportional to 
count(i) / region size(i) for a directory entry i. 

3.2 Selectivity Estimation 

In Section 3.1 we showed how a multidimensional data distribution is derived from 
the MLGF directory. In this subsection we present a method for estimating selectivity 
from the data distribution thus obtained. 

We first define some terminology. A query region is a subset of the domain space 
that satisfies the conditions of a query. We define a full directory entry (f-entry) as 
a directory entry whose region is fully enclosed by the query region, and a partial 
directory entry (p-enoy) as a directory entry whose region partially overlaps the query 
region (Muralikrishna and DeWitt, 1988). Figure 5 shows the relationships of 
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Figure 5. An f-entry and p-entry versus a query region 
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f-entries and p-entries with the query region. 
We now make the following assumption: 

Assumption 1. Records are uniformly distributed within the region represented by 
a directory entry. 

From Assumption 1 we estimate the selectivity of a query as follows: 

P ' " f ract ion( j ) )  E { - 1  count(i)  -q- E j = l [ c o u n t ( 3 )  × 
Selectivity(query) = N ' 

where f is the number off-entries, p the number of p-entries, and N the total number 
of records in the file. Count(i) and count(j) are the record counts maintained in 
the directory entries i and j, respectively. The function fraction(i) is defined as 

fraction(i) = 
size (query region A region of i-th p-entry) 

size (region of the i-th p-entry) 

i.e., it is the portion of the region represented by the i-th p-entry that overlaps with 
the query region. The errors in estimation due to Assumption 1 are discussed in 
Section 5. 

Example 1: Figure 6 shows the same partition of the domain space as in Figure 4b, 
where there are twelve directory entries. The numbers in the rounded enclosures are 
the counts associated with the corresponding directory entries. The file contains 300 
records. Let the rectangle with slanted lines denote the query region. It contains 
one f-entry and three p-entries. The fractions of the p-entries overlapping with 
the query region are 1/4, 1/4 and 1/2 (clockwise starting from the left). Thus, the 
estimated selectivity is (18 + 30/4 + 25/4 + 28/2) / 300 = 0.15. 
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Figure 6. Query region in the domain space 
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4. Experimental Results 

In this section we present the experimental results. The purpose of the experiments 
was to measure the accuracy of the selectivity estimation method under various data 
distributions. We also compare the results with those obtained under the uniform 
distribution and independence assumptions. 

Two MLGF's containing 50,000 records were built: one with two organizing 
attributes and the other with three. The data page blocking factor (i.e., the number 
of records in a page; Wiederhold, 1983) was 31 maximum with an average of 21.91. 
The directory page blocking factor was 21 for the three-attribute file (28 for the 
two-attribute one) with an average of 14.81 (17.50). Each MLGF directory had 
three levels, with the top level 49% (33%) full. 

We generated records using three categories of distributions: (1) uncorrelated 
distributions, (2) correlated distributions, and (3) extremely skewed distributions. 
Uncorrelated distributions were used to test the effect of different distributions and 
to help analyze the errors in estimation. Three basic one-dimensional distributions 
were used over the range of [-231, 231-1]: (1) a uniform distribution, (2) a normal 
distribution N(0#r2), where or = 2/5 X 231, 3) an exponential distribution 1/0x 

e(Z+231)/0, where  0 = 1/4 x 232. These distributions are plotted in Figure 7. The 
basic distributions were then composed into six combinations for the two-attribute 
file: UU, NN, EE, UE, UN, NE, where the first symbol indicates the distribution of 
the first attribute, and the second symbol of the second attribute. The symbols U, 
N, and E represent the uniform, normal, and exponential distribution, respectively. 
For the three-attribute file, there are ten such combinations. We use only three 
combinations, UUU, NNN, and EEE, because they produce results representative 
of those of the remaining combinations. 
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Figure 7. Basic distributions used in the experiments 
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A highly correlated distribution was used to test the effect of attribute correlation 
on the accuracy of selectivity estimation. The same. normal distribution was used 
with the two attributes of a record set to the same value (correlation = 1). In this 
distribution, records reside only on the diagonal of the domain space, representing 
an extreme case of correlated data. 

An extremely skewed distribution was used to test the effect of abnormal data 
skew on the accuracy of estimation. A normal distribution N(0,o -2) with o" = 3000 
(1.4 × 10 -6 of 232, the entire range) was used for both attributes. This distribution 
looked like a needle at the center of the two-dimensional space. 

Four sets of queries were generated, each set representing a different range 
of selectivities: large (1/5 ~ 2/5), medium (1/20 ~ 1/10), small (1/200 ,~, 1/100), 
and tiny (1/1000 ~ 1/500). For each set, 3,000 random queries were generated as 
follows: first, select the center of the initial square query region, so that the initial 
center points are distributed uniformly over the domain space, and then adjust the 
size of the query region so that it contains the number of records that satisfies 
the desired selectivity range. If the query region grows beyond the domain space 
boundary, it is clipped. 

Finally, as the measure of accuracy, we used the relative error defined as follows: 

[estimated selectivity - true selectivity[ 
relative error = 

true selectivity 
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Table 1. Relative errors in selectivity estimation using 
directory level 3 (lowest level) for 2-attribute file 

Distribution 0EE8_0(30 biN FIE EU NU UU 
avg 0.0010 0.0009 0.0010 0.0009 0.0010 

Large max 0.0053l 0.0042 0.0041 0.0056 0.0040 0.0054 
std 0.0006' 0.0007 0.0007 0.0009 0.0007 0.0008 

a v g  0.0035 0.0036 0.0032 0.0033 0.0031 0.0036 
~ lMedium max 0.0157 0.0180 0.0147 0.0160 0.0157 0.0186 

.~ std 0.0027 0.0027 0.0025 10.0026 0.0025 0.0028 
• = avg 0.0194 0.0185 0.0180 0.0178 0.0168 0.0198 

.~ Small max 0.0853 0 .0875 '0 .0729 0.0709 0.0727 0.0982 
std 0.0148 0.0142 0.0140 0.0133 0.0129 0.0159 
avg 0.0567 0.0558 0.0573 0.0535 0.0550 0.0583 

Tiny max l 0.3482 0.2908 0.2389 0.2572 0.3016 0.3209 
s t d i  0.0453 0.0441 0.0430 0.0412 0.0440 0.0461 

Table 1 shows the relative errors for the two-attribute file for six combinations of 
uncorrelated distributions, measured with the lowest level (Level 3) of the directory. 
The symbols, avg, max, std indicate the average error, maximum error, and standard 
deviation over 3,000 queries in each set. Because the lowest level provides the finest 
granularity, Table 1 shows smaller relative errors than Tables 2 and 3, where higher 
levels of the directory are used. We note that the average errors in Table 1 are 
well within an acceptable range in practice (< 6% for tiny queries) regardless of 
the distribution. Small standard deviations (< 5%) indicate that the numbers are 
quite reliable. 

Table 2. Relative errors in selectivity estimation using 
directory level 2 for 2-attribute file 

Distribution EE NN NE EU NU 

avg 0.0075 0.0098 0.0065 0.0106 0.0044 
Large max 0.0276 0.0334 0.0332 0.0423 0.0178 

std 0.0050 0.0075! 0.0047 0.0100 0.0036 
avg ~ 0.0249 0.0253 0.0195 0.0239 ! 0.0121 

Medium max 0.0921 0.074.4 0.0951 0.1684 0.0436 
std 0.0195 0.0160 0.0155 0.0332 0.0088 
avg 0.1197 0.1123 0.1061 0.0851 0.0643 

Small max 0.6047 0.6333 0.6771 0.3723 0.3348 
std 0.1286 0.1237 0.1182 0.0736 0.0557 
avg 0.2262 0.3047 0.2618 0.1627 0.1384 

Tiny max !.2714 2.4556 2.6290 0.7127 0.7531 
std 0.2415 0.4032 0.3569 0.1386 0;1158 

UU 

0.0022 
0.0154 
0.0018 
0.0074 
0.0374 
0.0059 
0.0375 
O. 1947 
0.0293 
0.0874 
0.3848 
0.0669 
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Table 3. Relative errors in selectivity estimation using 
directory level 1 (root) for 2-attribute file 

Distribution EE NN NE EU NU UU 

avg 0 .1758  0.1845 0.0770 0 .2695 0 .0486 0.0041 

Large max 0 .5170 0.5524 0.2368 0 .5205 0.1282 0.0180 
std 0 .1061 0.1411 0.0531 0 .1463 0.0292 0.0036 

avg 0 .5330  0.5430 0.2271 0 .2876 0.1094 0.0142 
Medium max 1 .4250 1.7532 0.7488 0.8873 0.2184 0.0549 

_~ std 0 .3471  0 .3800 0.1711 0 .2188 0.0614 0.0109 

• = avg 1.4368 1.1544 0.7069 0 .4794 0.2735 0.0475 

Small max 6 .3967 5.2684 3.1316 1.7325 !.1865 0.1949 
std 1 .7296  1.2431 0 .7420 0 .3917 0 .2559 0.0333 

avg 1.9590 1.5789 1.0735 0 .5555 0 .4072 0.0904 
Tiny max 13.8469 9.1387 8.2103 2 .5005 2 .7826 0.3956 

std 2 .8761 1.9617 1.5184 0 .5072 0.4802 0.0716 

For comparison, we show the errors when selectivity is estimated using the 
uniform distribution assumption (Table 4). As expected, the errors are large (up 
to 852% in average errors) and vary widely depending oh the distribution. From 
Tables 1, 2, 3 we can observe that errors get larger as a higher level of the directory 
is used, converging to those in Table 4. This tendency is expected because a higher 
level of the directory represents the distribution in coarser granules, within which 
the distributions are assumed uniform. 

Table 4. Relative errors in selectivity estimation using 
uniform distribution assumption for 2-attribute file 

Distribution EE i NN NE EU NU UU 

avg 1.0532 i 0 .2133 0.6329 0.6923 0.1816 0.0062 

Large max 2.61771 0 .7199 1.8875 1.9485 0 .4351 0.0222 
std 0.60471 0.2018 0.4181 0 .4465 0.1309 0.0044 

av 8 3.16231 0 .6692 1.4646 1.5410 0 .5343  0.0169 
Medium max 10.5084[ 1.4543 3.8861 4 .6248  1.4146 0.0646 

std 3.0921! 0.3820 1.2312 1.3858 0.3390 0.0112 
'~ avg 6 .6049  1.9261 3 .1990 2 .2944 1.0795 0.0479 

Small max 77.9682 8.3329 16.5428 9.5391 4.3592 0.2197 
std 9 . 1933  2 .1457 3.8633 2 .5578 1.1722 0.0346 
avg 8.5256 2.8499 4.4684 2 .4858 1.3374 0.0905 

Tiny max 61.66641 20.7783 38.1066 12.3821 8.2856 0.4069 
std 13.2175 4.0964 6.9647 2 .9640 1.7147 0.0725 
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Tables 5 to 7 show the results for the three-attribute file. We see the same 
tendencies as in Tables 1 to 3, and errors in similar ranges ( <  10.2% in average 
errors). The errors in the three-attribute file are slightly larger than those for the 
two-attribute file, because a data page represents a larger interval in the domain 
of each attribute, thus causing more difference in distribution within a data page 
(Section 5). Table 8 shows the results of the uniform distribution assumption for 
the three-attribute file. We observe the same tendencies as in the two-attribute file. 
(The average error is as high as 1,381%.) 

Table 5. Relative errors in selectivity estimation 
directory level 3 (lowest level) for 

Distribution 

avg 

Large max 

std 

avg 

Medium max 

std 

.~ avg 

.~ Small max 

std 

avg 
Tiny max 

std 

using 
3-attribute file 

EEE NNN UUU 

0.0056 0.0078 0.0017 

0.0260 0.0230 0.0083 

0.0044 0.0048 0.0013 

0.0156 ' 0.0111 0.0054 

0.0583 0.0373 0.0244 

0.0117 0.0080 0.0042 

0.0449 0.0417 0.0253 

0.2011 0.2292 0.1054 

0.0381 0.0369 0.0192 

0.0950 0.10201 0.0737 

0.4790 0.5965 0.3153 

0.0789 0.1015 0.0578 

Table 6. Relative errors in selectivity estimation using 
directory level 2 for 3-attribute file 

tom 

Distribution 

avg 

Large max 
std 

avg 

Medium: max 

std 

avg 

Small max 

std 

avg 
Tiny max 

std 

EEE NNN UUU 

0.0372 0.0391 0.0032 

0.1410 0.1122 0.0119 

0.0291 0.0212 0.0023 

0.0789 0.0537 0.0092 

0.3268 0.1505 0.0426 

0.0720 0.0319 0.0070 

0.2486 0.8192 0.0380 

0.9054 0.7831 0.1577 

0.2146 0.1522 0.0290 

0.4157 0.4175 0.1005 

1.8329 1.9872 0.4718 

0.3823 0.4021 0.0719 
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Table 7. Relative errors in selectivity estimation using 
directory level 1 (root) for 3-attribute file 

{,t3 

Distribution 

avg 

Large max 
std 
avg 

Medium max 

std 

avg 

Small max 

! std 

avg 
Tiny max 

std 

EEE NNN UUU 

0.1536 0 .27 '35  0.0048 

0.4375 0 .74,64 0.0188 

0.1073 0 . 1 4 0 7  0.0033 
0.4575 0 . 3 5 6 6  0.0125 

1.1848 !.0818 0.0500 
0.2825 0 . 2 1 1 9  0.0091 

1.4833 1.2404 i 0.0445 

9.5092 5.62.85 0.1976 

1.5126 1 . 1 8 2 2  0.0333 

3.3038 2 . 1 7 8 4  0.1055 

24.5124 13 .8064  0.4713 

4.5348 2 . 6 5 4 2  0.0729 

Table 8. Relative errors in selectivity estimation using 
uniform distribution assumption for 3-attribute file 

Distribution 

avg 

Large max 
std 
avg 

Medium max 

std 
avg 

Small max 

std 

avg 
Tiny max 

std 

EEE NNN UUU 

0.9631 0 . 3 9 9 7  0.0048 

2.4754 0 . 8 0 7 1  0.0202 
0.5723 0.1486 0.0036 
3.3354 0.3880 0.0131 

10.1056 0.8514 0.0575 
2.6335 0 . 2 0 8 5  0.0097 

9.0556 1 . 5 0 6 0  0.0453 
63.2002 5.(1010 0.1884 

12.0549 1 . 3 6 1 0  0.0335 

13.8088 2 . 8 1 8 7  0.1057 

209.8033 15.0495 0.4777 
23.4148 3 . 2 9 0 1  0.0728 

Table 9 shows the results of the correlated distribution and Table 10 of the uniform 
distribution assumption (for all three levels). Table 9 indicates that our method 
works as well with a highly correlated distribution as with a uniform distribution if 
the lowest level of the directory is used (see the case of UU in Table 1). The errors 
from the uniform distribution assumption (Table 10) are very large (up to 6,628%) 
in this case since the data reside only on the diagonal of the domain space. 
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Table 9. Relative errors in selectivity estimation using 
correlated distribution (NN) where attribute 1 = attribute 2 

Directory Level 

avg 

Large max 
std 

avg 

Medium max 

std 

avg 

Small max 

std 
avg 

Tiny max 

std 

Level 1 Level 2 Level 3 

0.1580 0.0016 0.0002 

0.5699 0.0256 0.0016 

0.1313 0.0031 0.0002 

0.5288 0.0083 0.0010 

2.2166 0.1205 0.0062 

0.3888 0.0156 0.0010 

5.1674 0.1136 0.0097 

22.7169 1.1463 0.0544 

5.2772 0.1485 0.0095 

27.1087 1.3569 0.0509 

111.4295 5.6396 0.3046 

26.4999 0.9417 0.0510 

Table 10. Relative errors in selectivity estimation using 
uniform distribution for correlated distribution (NN) assumption 

where attribute 1 = attribute 2 

Large 

Medium 

Small 

Tiny 

avg 0.3150 

max 0.9344 

std 0.2405 

avg 1.0999 

max 4.1898 

std 0.9377 

avg 12.9722 

max 48.8245 

std 12.7237 

avg 66.2761 

max 244.1935 

sld 63.6555 

Table 11 shows the results of testing the extremely skewed distribution for all 
three levels. Table 12 presents the results o£ selectivity estimation using the uniform 
distribution assumption. The errors are generally very small at level 3 except for 
a slightly higher error (an average error of 40.6%) for queries with tiny selectivity 
ranges. The error is an aberration due to the simple design of the query distribution 
(uniform distribution). Since the generated queries are uniformly distributed over 
the domain space, most queries fall in the periphery of the populated area resulting 
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in over-emphasis on the periphery. A small number of data pages in the periphery 
(usually under-populated) tend to have large distribution changes, which cause errors 
as explained in Section 5. Overall, however, our technique provides an excellent 
estimation even with highly skewed distributions. In comparison, the result of the 
uniform distribution assumption contains an average error as high as 21,847%. 

Table 11. Relative errors in selectivity estimation for 
extremely skewed distribution (NN) 

where Standard Deviation ~ = 3,000 
Directory Level 

i avg 
Large I max 

i std i 

i avg 

~ Medium max 
std 

• ~ avg 

"~ Small max 
std 
avg 

Tiny max 
std 

Level 1 Level 2 Level 3 

0.4{Y)4 0.0111 0.0009 
0.5288 0.0153 0.0013 
0.1074 0.0033 0.0002 
1.(3934 0.0798 0.0109 
1.9030 0.0956 0.0153 
0.7599 0.0125 0.0033 
6.7251 0.7791 0.0640 

11.0899 1.2487 0.0922 
4.1915 0.4611 0.0273 

13.8618 2.4938 0.4062 
25.4795 4.2482 0.8087 

8.4702 1,1423 0.2248 

Table 12. Relative errors in selectivity estimation using uniform 
distribution assumption for extremely skewed distribution (NN) 

where Standard Deviation ~ = 3,000 

L,~ge 

Medium 

Small 

Tiny 

avg 0.4629 

max 1.1681 

std 0.2713 

avg 3.2485 

max 6.5203 

~;~c,l 1.5146 

avg 37.5739 

max 70.8783 

sld 15.3781 
avg 218.4697 
max 468.4087 
std 93.6126 
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Figure 8. Estimation error caused by nonuniform distribution 
query region B 

I I 

error  ~ 

queryl regionl A 
actual distribution 

uniform distribution by Assumption 1 

region R for a directory entry 
I I 

5. Error Analysis 

In this section we analyze the cause of estimation errors. Assumption 1 states that 
records are uniformly distributed within the region represented by a directory entry. 
In practice, however, this assumption is often violated, leading to errors. 

Consider Figure 8, where one-dimensional query regions A and B overlap with 
region R for a directory entry. The actual distribution within R is nonuniform, but is 
assumed uniform by Assumption 1. Thus, for query region A, the area with slanted 
lines represents the error in estimation. For query region B, region R does not 
incur any error because it is completely contained in B. In this case the errors cancel 
each other out, because both the actual and uniform distributions represent the 
same number of records over the entire region R. We have the following Lemma: 

Lemma 1. An f-entry does not contribute errors in selectivity estimation. 

Thus, only p-entries contribute errors. 
There are several parameters that affect estimation errors: 

. Size of the query region. Lemma I explains why the errors are smaller for larger 
queries, which have proportionally more f-entries and fewer p-entries than 
smaller queries. In all the tables we observe that queries with tiny selectivity 
ranges have large errors. 

. Level of the directory. Errors are smaller at a lower level of the directory, 
since the domain space is partitioned into regions in finer granules and thus 
the distribution is more uniform within a region. In the experiments, we 
observe that the lowest level (Level 3) produces the best results. This is 
hardly surprising since more information is available at low levels of the 
directory. 
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3. Number of records in afile. The errors are smaller when the file contains more 
records (i.e., when the database is large). Since a larger database contains 
more data pages, the regions become smal]!er. Thus, for the same reason as 
in item 1, the error is reduced. 

4. Datapage blocking factor. A smaller blocking factor reduces the error since 
it induces smaller regions at the lowest level of the directory. 

6. Applications 

In this section we discuss alternative file configurations that can be applied to practical 
situations. The first alternative is to use the MLGF to organize the file, as well as 
to estimate the selectivity. In this case, the MLGF serves as the multidimensional 
index structure (we need only one) that replaces multiple single- (or multiple-) 
column indexes. The clustering property of such an index for a single column is 
somewhat worse than the dedicated clustering index (Astrahan, et al., 1976), but is 
much better than a nonclustering index (see discussions on partial-match queries 
in Whang and Krishnamurthy, 1991). The reason :for this is that, in the MLGF, the 
clustering property is shared evenly by all the organizing attributes. 

The second alternative is to use a conventional index as the primary (clustering) 
index and to use the MLGF as a secondary index for faster access through non- 
indexed attributes as well as for selectivity estimation. In this case, the MLGF must 
be a full index (Wiederhold, 1987) (a maximum-resolution directory in Whang and 
Krishnamurthy, 1991) providing a directory entry pointing to each record at the 
lowest level. A full index is necessary because tlhe MLGF as a secondary index 
cannot dictate the placement of the records. Instead, the directory entries at the 
lowest level serve as the surrogates of the records, whose placement is determined 
by the MLGF structure. In this case, the selectivity estimation is done using any 
level of the directory except for the lowest level. This alternative has an advantage 
of incorporating an MLGF on top of existing files without disrupting their structures. 
The overhead of maintaining an MLGF index is approximately the same as that 
of maintaining a B-tree index. If the MLGF contains multiple attributes, the cost 
is somewhat higher since the entire region vector is compared at each step of 
searching. 

7. Conclusion 

We proposed a novel approach to multidimensional selectivity estimation. The 
key element in this approach is dynamic maintenance of multidimensional data 
distribution. We showed that each level of the MLGF directory naturally reflects 
a multidimensional data distribution, where a lower level of the directory provides 
finer granularity and a higher one coarser granularity. The estimated distribution 
has been further refined by employing a COUNT :field for each directory entry. To 
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the extent of the authors' knowledge, the idea of estimating selectivity based on 
dynamic maintenance of multidimensional data distribution is new. 

We showed, through extensive experiments, that the proposed selectivity esti- 
mation method works excellently independent of distributions, even with correlated 
and/or highly skewed ones. Results show that estimation errors are practically small 
(average errors < 10.2% for most distributions and < 40.6% for the extremely 
skewed one) when the lowest level of the directory is used. 

We analyzed the cause of errors and investigated the effects of various parameters 
on the accuracy of estimation. We concluded that errors decrease for a large database, 
a low level of the directory, a small data page blocking factor, and a large query 
region. 

As a further study, we are considering extending this approach to exact-match 
queries involving equality predicates. Here, we need a technique for handling 
duplicates of distinct values in a discrete distribution (Whang et al., 1990). We also 
plan to perform a more detailed error analysis and to provide recommendations for 
practitioners on such parameters as page size, blocking factor, and directory level 
to be selected to satisfy specific requirements. 
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