
VLDB Journal,2, 489-512 (1993), Fred J. Matyanski, Editor 489
©VLDB

Searching a Minimal Semantically-Equivalent Subset

of a Set of Partial Values

Frank S.C. Tseng, Arbee L.R Chen, and Wei-Pang Yang

Received August 6, 1991; revised version received, July 30, 1992; accepted January 17,
1993.

Abstract. Imprecise data exist in databases due to their unavailability or to data/
schema incompatibilities in a multidatabase system. Partial values have been used
to represent imprecise data. Manipulation of partial values is therefore necessary
to process queries involving imprecise data. In this article, we study the problem of
eliminating redundant partial values that result from a projection on an attribute
with partial values. The redundancy of partial values is defined through the in-
terpretation of a set of partial values. This problem is equivalent to searching a
minimal semantically-equivalent subset of a set of partial values. A semantically-
equivalent subset contains exactly the same information as the original set. We
derive a set of useful properties and apply a graph matching technique to develop
an efficient algorithm for searching such a minimal subset and therefore elimi-
nating redundant partial values. By this process, we not only provide a concise
answer to the user, but also reduce the communication cost when partial values
are requested to be transmitted from one site to another site in a distributed envi-
ronment. Moreover, further manipulation of the partial values can be simplified.
This work is also extended to the case of multi-attribute projections.

Key Words. Imprecise data, minimal elements, multidatabase systems, partial val-
ues, bipartite graph, graph matching.

1. Introduction

Imprec i se data, or nullvalues, in da tabase systems reflect the real world p h e n o m e n o n .
Null values were originally adop ted to represen t "va lues unknown at p resen t" in
da tabase systems. Codd (1979) p ionee red the work on extended relat ional a lgebra to
manipu la te null values. Since then, incomple te informat ion in relat ional da tabases

Frank S.C. Tseng, Ph.D., is Professor, and Wei-Pang Yang, Ph.D., is Professor, Department of Computer Sci-
ence and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC; Arbee
L.E Chen, Ph.D., is Professor, Department of Computer Science, National Tsing Hua University, Hsinchu,
Taiwan 30043, ROC.

490

has been extensively studied (Grant, 1977; Lipski, 1979; Imielifiski and Lipski,
1981; Biskup, 1983; Liu and Sunderraman, 1990, 19,91). Update semantics of null
values in relational databases have been discussed (Bancilhon and Spyratos, 1981;
Abiteboul and Grahne, 1985), as well as the relationship between null values and
functional dependencies (Lien, 1979; Vassiliou, 1979, 1980; Imielifiski and Lipski,
1983). Codd (1986, 1987) divided null values into applicable and inapplicable null
values. An inapplicable null value denotes an attribute that is not applicable to a
given object (e.g., if Mary has not married yet, then lVlary's spouse can be recorded
as an inapplicable null value). For a concise review of handling null values by
algebraic approaches, see Maier (1983).

The concept of applicable null values has been generalized to the concept of
partial values by Grant (1979). Instead of being treated as an atomic value, an
attribute value in a table is considered a nonempty subset of the corresponding
domain. A partial value is represented as an interval such that exactly one of the
values in the interval is the "true" value of the partial value. In our work, however,
a partial value is considered to correspond to a finite set of possible values such
that exactly one of the values in that set is the "true" value of the partial value.
Therefore, an applicable null value is a partial value that corresponds to the whole
domain of the corresponding attribute (e.g., if we do not know Mary's age, then
it can be recorded as an applicable null value, which can be regarded as a partial
value [0,...,120] if the domain of age is {0,...,120}). However, if we know Mary's
age is either 25 or 28, then it can be recorded as a partial value (Motro, 1990; Tsai
and Chen, 1993). Lipski (1979) presented a general discussion for manipulating
imprecise information, including partial values. We discussed the implementation
of a division operation over partial values (Tseng et al., 1993b) and we studied some
aggregate operations over partial values (Tseng et al., 1993c).

In addition to manipulating incomplete data, partial values are also important
in resolving the semantic discrepancies in multidatabase systems. DeMichiel (1989)
employed partial values to resolve domain mismatch problems in multidatabase
systems, and proposed an algebraic approach to operate on partial values. In this
approach, data imprecision comes from data incompatibilities in a multidatabase
system.

Suppose we want to integrate the following relations located in different sites
in a multidatabase system.

CS-Researchers Taiwan-Scientists

name specialS, I name specials I
Frank DB 26 Frank CS 26

Jesse AI 30 Jesse CS 30

Annie SE 28 Andy CS 25

Site 1 Site 2

VLDB Journal 2 (4) Tseng: Searching a Minimal Semantically-Equivalent Subset 491

Assuming that Computer Science (CS) consists of three subareas, i.e., database (DB),
artificial intelligence (AI), and software engineering (SE), we can use partial values
to resolve the mismatched domain, specialty. That is, the relation Taiwan-Scientists
can be transformed into

Taiwan.Scientists ~

name specialty [age [
Frank [DB, AI, SE] 26

Jesse [DB, AI, SE] 30

Andy [DB, AI, SE] 25

We can now integrate CS-Researchers and Taiwan-Scientists ~ into the following re-
lation, Taiwan-CS-Scientists, for global multidatabase queries.

Taiwan-CS-Scientists

name I peci t
Frank DB 26

Jesse AI 30

Annie SE 28

Andy [DB, AI, SE] 25

We further generalize the concept of partial values into probabilistic partial
values (Tseng et al., 1993a) to resolve more interoperability problems, and to join
relations on incompatible keys (Tsai and Chen, 1993) in multidatabase systems.

In this article, we study the problem of eliminating redundant partial values that
may result from a projection on an attribute with partial values. The redundancy
of partial values is defined by interpreting a set of partial values. This problem is
equivalent to searching a minimal semantically-equivalent subset of a set of partial
values. A semantically-equivalent subset contains exactly the same information as
the original set. We derive a set of useful properties and apply a graph matching
technique to develop an efficient algorithm to search such a minimal subset and
therefore eliminate redundant partial values.

The motivation of this work is as follows. When a non-key attribute is projected,
the set of values in that attribute will be obtained. For example, consider the following
relation, Employees.

Employees

492

If we issue the command 7rsalary(Employees), then the answer is

7r salary (Employees)
salary

30k

35k

20k

Note that duplicate values have been eliminated. However, when partial values
are allowed to appear in the projected attribute, how can we determine redundant
partial values such that they can be eliminated?

Let the relation Employees contain partial values in the attribute salary as follows.

Employees
. . ~ salary . ~

30k

[2Ok, 3Ok]

[2Ok, 35k]

[30k, 35k]

If we issue the command 7rsataru(Employees), according to our algorithm, the
answer can be one of the followings.

7r salary(Employees)
salary

20k

30k

[2Ok, 35k]

7rsataTu(Employees)

salary
20k

30k

[30k, 35k]

These two answers contain the same information as the original attribute salary.
More precisely, because they each correspond to the following two possible sets of
definite data (exactly one of the sets is correct), and so does the original attribute,
they are both semantically-equivalent to the original attribute.

71"salary (Employees)
salary

20k

30k

7r salary(Employees)
salary

20k

30k

35k

VLDB Journal 2 (4) Tseng: Searching a Minimal Semantically-Equivalent Subset 493

This elimination process has not been studied in previous works concerning
partial values. By this process, we provide a concise answer to the user, and
we reduce the communication costs of data transmission requests in a distributed
environment (i.e., our work can be used for query optimization in a distributed
database system). Moreover, we simplify further manipulation of the partial values
(i.e., processing an operation involving sets of partial values with redundancies is
cumbersome).

This article is organized as follows: In Section 2, basic concepts and some
definitions are stated. In Section 3, we first sketch our approach, then elaborate
on the properties of a set of partial values. The algorithm developed to eliminate
redundant partial values is presented in Section 4. Section 5 provides a generalization
of this work for the case of multi-attribute projections. In Section 6, we conclude
and discuss relevant work.

2. Basic Concepts and Definitions

Partial values model data imprecision in databases in the sense that, the true value of
an imprecise datum can be restricted in a specific set of possible values (DeMichiel,
1989), or an interval of values (Grant, 1979). In our work, a partial value is
represented by a set of possible values, in which exactly one of the values is true.
These kinds of partial values are also known as disjunctive data (Motro, 1990). In
the following, we follow the definition of a partial value given by DeMichiel (1989),
which is formally stated as follows.

Definition 2.1 A partial value, denoted 77 = [al, a 2 , . . . , an], associates with n
possible values, a l , a2, • • •, an, n > 1, of the same domain, in which exactly one
of the values in 77 is the "true" value of 77.

For a partial value 77 = [al, a2, . • •, an], a function u is defined by DeMichiel
(1989), where u maps the partial value to its corresponding finite set of possible
values; i.e., /2(77) = {aa, a 2 , . . . , an}. Notice that an applicablenullvalue (Codd,
1986), R, can be considered a partial value with u(R) = D, where D is the whole
domain. We use 77 and u(77) interchangeably when it does not cause confusion.
For example, v E 77 if v E u(77).

The cardinality of a partial value 77 is defined as I u(77) I by DeMichiel (1989).
When the cardinality of a partial value equals 1 (i.e., there exists only one possible
value, say d, in the partial value), then the partial value [d] actually corresponds to
the definite value d. On the other hand, a definite value d can be represented as a
partial value [d]. Besides, a partial value with cardinality greater than 1 is referred
to as a proper partial value (DeMichiel, 1989).

For any two proper partial values, say 771 and 772,771 ~ 772 even if//(771) ://(772).
This is because the true value of 771 may not be the same as the true value of 772.

494

Definition 2.2 If the proper partial values, 971, 7/2, • • . , r/k, k _> 2, are elements of
a set of partial values, ~ , and u(r/1) : u(r/2) = u(r//~), then we say
r/l, r/2, • • •, r / i - l , r/i+1, • • . , r/k are quasi-duplicates of r/i, 1 < i < k.

~I ~2

By Definition 2.2, if (I) = {[a, b], [a, b]} then r/1 is a quasi-duplicate of r/2, and
vice versa.

Definition 2.3 An interpretation, a = (al, a 2 , . . . , am), of a set of partial values,
= (r/ l , r / 2 , . . . , r/m}, is an assignment of values from ff such that ai E r/i, 1 _<

i_<m.

By Definition 2.3, for a set of partial values ff = {r/l, r / 2 , . . . , r/m}, 971 X 772 X
• " " × r/m is the set of all interpretations of ft.

Definition 2.4 For an interpretation o~ = (al, a2, • • • :. am) of a set of partial values
= {r/l, 7 /2 , . . . , r/m), the valueset of o~ is denoted So = Ul_<i_<m{tzi}.

Definition2.5 For allinterpretations, oLj, 1 < j <_p,p = I r/ll × [r/2l × . . . x I zlm l,
of a set of partial values (I) = {r/l, r / 2 , . . . , r/m}, the farnily ofvaluesets of • is
denoted .T'(ff) = LJl_<j_<p{sc, j }. If • = ~ then define .T'(~) = 0.

.)r(@) is a mapping for characterizing the information content of a set of
partial values in terms of the various definite sets it represents. By this, we have
the following definition•

Definition 2.6 For a set of partial values ~ : { 9 7 1 , r / 2 , • • • , r/m} if we have .T'(ff --

~) : . F (~) for some ~ C ~ , then those partial values in ~) are said to be

redundant in (I) with respect to • -- ~.

~1 172 ~13

Example 2.1 Suppose there is a set of partial values (I) = { [a], [b], [a, b]}; then
there are two interpretations, ol 1 = (a , b , a) and ce2 = (a, b, b), and the value sets
of o~ 1 and ce2 are S~ 1 = {a} U {b} U {a} = {a, b} and So, 2 = {a} LJ {b} U
{b} = {a, b}. Therefore, the family of value sets of • is

.T'(~) = {Sa,}U{Sa2)= { { a ,b } }U ({a ,b })= {{a, b } } .

rll r/2

r/3 = [a, b I is redundant in • with respect to • -- {r/3} = { [a], [b] }, for we
h a v e - = []

Note that, in Example 2.1, if we delete r/1 (respectively, r/2)jnstead of r/3 from
• , then the value set {b} (respectively, {a}), which does not belong to .T'((I)), will
be derived in .T'(~ - - { r / l }) (respectively, .T'(~ -- {r/2}))i

VLDB Journal 2 (4) Tseng: Searching a Minimal Semantically-Equivalent Subset 495

Definition 2. 7 A partial value ~ in a set • is necessary in • if the deletion of
from • makes .T'(~ -- {~}) # .T'(~).

In Example 2.1, ~]1 and ~2 are necessary in ft.
In this article, we derive properties of a set of partial values, ~ , and develop a

polynomial time algorithm to find a minimal subset of if, if**, such that .T'(ff**) =
. jr(if) . We call if** a minimal sufficient subset of ~ , because ~** is sufficient to
generate exactly the same family of value sets of ft. Therefore, if** and • are
semantically-equivalent. That is, if* = ~ -- qb** is redundant in d9 with respect
to ~**. For a set of partial values q5, the minimal sufficient subset of • may not
be unique. For example, suppose q5 = {[a], [a, b], [b, c], [a, c]}. There are two
minimal sufficient subsets of ~ , namely q5~* and ff~*, where ~ * = {[a], [a, b], [b,
c]} and ~ * = {[a], [b, c], [a, c]}, because .T'(~) = . T ' (~ *) = . T ' (~ *) = {{a,
b}, {a, c}, {a, b, c} }.

3. Eliminating Redundant Partial Values

The computational complexity of .T'(ff) is exponential (Definition 2.5). Therefore,
a brute force method to compute ~** is also exponential. In the following, we
develop a polynomial time algorithm to compute ~** based on certain properties.

Our approach can be sketched as follows. We start with finding some necessary
elements in • that correspond to all minimal elements (Suppes, 1960) of ~ . In set
theory, we call x a minimal element of a set A if and only if (1) x E A, (2) x is a
set, and (3) for every other y C A, y ~ x. These minimal elements are then used
as a kernel to find the upper bound of .T'(~), .T'* (ffP), through a deterministic graph
(defined be low) . .T '*(~) contains all possible value sets which may be generated
from ~. By .T'*(~), we derive some useful properties for searching a minimal
sufficient subset. Finally, the matching technique in graph theory (Bondy and Murty,
1976) is employed to develop an efficient algorithm to achieve the goal.

3.1 Finding All Minimal Elements of

Minimal elements are necessary and must be included in ~** to ensure .T'(ff) =
.T'(~**). We prove all minimal elements are necessary in ¢ by the following
lemma. Notice that quasi-duplicates are ignored here. They will be considered in
the matching process discussed in Section 4.

Lemma 3.1 For a set of partial values ~ = (~ 1 , ~ 2 , . . . ,~m} without quasi-
duplicates, if r/k is a minimal element of • (i.e., ~i ~ ~Tk, Vi ~ k), then ~k is
necessary in ~ .

Proof." We distinguish two cases:
Case1: m = 1. Thenwe have ~ = {z/t} a n d . F (~) 5~ 0. Bu t . T ' (~ - - {~/1}) =

0. Therefore, ~h is necessary in ~ .

496

Case 2: m > 1. I f r / i ~ r/k, Vi 5~ k, then we have r/i--r/to • 0, Vi ¢ k.
Therefore, there exists an interpretation, o/ = (at, a ~ , . . . , a Ik_l, aS+l, ' ' ' , a~m),

!
o f ~ -- { r /k} , suchtha ta~ E r/i -- r/k, V i ¢ k That is, a i ~ r/k, V i 7 ~
k. Because the value set of oz' is Sa, = Uv i Ck {a~}, we have Sa, fq r/k = 0.
But, for all interpretations, aj = (al j , a2j,. . . , a k j , . . . , amj), 1 <_ j < I
r/1 I X I r/2 I X " ' " X]r/m I, of if, we have akj E r/k and the corresponding
value sets Sat = Ul<_i_<m{aij}. That is, akj E (Sai 71 r/k) 7 ~ 0, 1
J -< [r/1 I x I r/2] x . . . x I r/m I, which implies S a~ ¢ Sa,, Vj. Therefore,
S,~, C (.T'(~ -- {r/k }) -- .T '(~)) 7 ~ 0, which completes the proof. []

We denote .Ad(~) = {r/k I r/i ¢ r/k, r/i, r/k E ~ , Vi 5~ k} to be the set
of all minimal elements of • which contains no quasi-duplicates. Note that .Ad (~)
may be just a subset of the set of all the necessary e, lements of ~ . For example, if

= {[a], [b], [a, b], [b, c]} then .Ad(~) = {[a], [b]}. However, by Definition 2.7,
[b, c] is also necessary in ~ . In some cases, .Ad(~) contains all necessary elements
of ~ . For example, if ff = {[a], [b], [a, b]}, then .Ad(~) = {[a], [b]} contains all
the necessary elements of ~ . Besides, ,Ad(~) ¢ O, V~ ¢ O.

If we consider a partial value r/i to be subsumed by another partial value r/j
if r/j C_ r]i, .Ad(~) can be obtained from ff by eliminating all subsumed partial
values. In fact, all minimal elements of • subsume the other non-minimal elements.

By Lemma 3.1, the following corollaries can be obtained.

Corollary 3.1 Any partial value of cardinality 1 in a set of partial values • is a
necessary element of ~ .

Proof." Directly from Lemma 3.1. []

Corollary 3.2 If all the partial values in a set of partial values • have the same
cardinality and there is no quasi-duplicate in ~ , then . M (~) = ~ .

Proof" Directly from Lemma 3.1. []

Corollary 3.3 For all r/i C ~ -- .Ad (tb), ff contains no quasi-duplicates, there exists
an element r/j E .Ad(~) such that r/j C r/i.

Proof." Since r/i C ~ -- .A4(~), by Lemma 3.1 there exists at least an r/x C ~ , such
that r/x C r/i. Now we choose r/z to have the minimum cardinality in ~ , say r/j,
such that r/j C r/i. That is, there is no element in • which is a proper subset of
r/j. Therefore, by Lemma 3.1, r/j must be an element of .A4(~). This completes
the proof. []

Because minimal elements of • cannot be eliminated, they are used as a kernel
for finding the upper bound of .T'(~), .T'* (~) . First, we identify .Ad (~) by applying
Lemma 3.1 to ft. We summarize the procedure of finding .Ad(~) by the following

VLDB Journal 2 (4) Tseng: Searching a Minimal Semantically-Equivalent Subset 497

procedure Find.All_Minimal_Elements.

Procedure. Find.All_Minimal_Elements: (Finding .Ad (i f) of ~ .)

Input: A set of partial values, ~ , which contains no quasi-duplicates.

Output: .Ad (~) .
1. .Ad(q5) = 0;

2. for each r/i E • do {

3. if (I r/i I = = 1) then .Ad(~) = .A,4(~) (_J {r/i};/*Corollary 3.1"/
4. else {

5. minimal = t r u e ; / * a flag * /

6. for each r/j C ~ , r/j 7 ~ r/i, do
7. if (r/j -- r/i = 1~) then {
8. minimal = false;

9. break; / . exit the inner for loop * /

10. }
11. if (minimal) then .Ad(~) = .Ad(~) t.J {r/i};

12. }

13. }
14. Output(.Ad (~)) ;

Recall that .Ad(q5) is defined on the set ff which contains no quasi-duplicates.
In other words, if we want to apply Find.All_Minimal_Elements to find a subset
of necessary partial values for an arbitrary ~ , we need to eliminate all the quasi-
duplicates in g9 first. Therefore, Corollary 3.3 can be stated in a more general form
as follows.

Corollary3.4 For all r/i E • -- .Ad(~), there exists an element r/j C .A4(~) , such
that r/j _C rli.

Proof." For an r/i C ff -- .A4(~), we distinguish two cases:

Case 1: r/i is a quasi-duplicate of an r/j C .A4(~). Then Y(r/i) = u(r/ j) and
r/j C r/i holds.

Case 2: r/i is not a quasi-duplicate of any r/j E .hal(g). Then, by following the
same proof in Corollary 3.3, we have rlj C r/i and r/j C r/i holds. []

3.2 Finding the Upper Bound of .~'(~)
Based on .Ad(@), the upper bound of .T'(ffg), .T'*(@), can be derived by a deter-
ministic graph defined as follows.

Definition 3.1 A deterministic graph (DG) is denoted by a 3-tuple (Q ~ , ~), where

498

Q is a finite set of states,
is a finite input alphabet, and

is a transition function mapping Q x ~ to Q. That is, 6(q, a) is a state

for each state q and input symbol a.

A DG can be represented by a directed graph with the vertices of the graph
corresponding to the states of the DG. If there is a transition from state q to state
p on input a, then there is an arc labelled a from state q to state p in the directed
graph.

To derive the upper bound of .T'(~), we employ a DG (~ E, di), with Q =
.T'*(~), ~ = U v m ~ r/i; 6 defined as ~(Si,aj) : Sk C .F*(~) , where Sk = SiU
{aj}, V Si C .T'*(~) and aj E E. Initially, we compute .T'(.Ad(~)) by Definition
2.5 and then work toward .F*(~) by applying fi to all the elements of .T'(.Ad(~)),
which iteratively generates new states fi(Si, aj), V Si ~ .F(.Ad(~)) and aj E ~.
These new states are used again to generate other new states. Therefore, repeating
this process will monotonically increase the number of states. However, as ~ and

are all finite, there exists a least fixed point (Ullman, 1988) such that at that point
no more new states can be generated. As a matter of fact, the least fixed point is
reached after ~ is generated as a new state. When the least fixed point is reached,
we have the maximum number of states which may be generated from ~. Procedure
Find_Upper_Bound_of_T'(~) illustrates this process.

Procedure Find_Upper_Bound_of_T'(~): (Finding the .T'*(~).)
Input: .Ad (~) .

Output: .T* (~) .
l. Compute .T'(.hd(ff)) by Definition 2.5;

2. Q = .~(.Ad(ff));
3. repeat {

4. c=la l ;
5. for each Si E Q do

6. for each aj C ~ do/* ~ : UvmE,~ r/i */

7. Q = Q U{~(Si, aj)};

8. c ' = l a l ;
9. } until (c = = c~);/* the least fixed point is reached */
10..T'*(ff) = Q;
11. Output(.T'* (if));

The following example illustrates this process.

~i ~2 ~3 ~4 ~5

Example 3.1 Let • = {[a, b], [a, c], [b, c], [a, b, d], [a, c, d]}; then we have

VLDB Journal 2 (4) Tseng: Searching a Minimal Semantically-Equivalent Subset 499

Figure 1. The deterministic graph of Example 3.1

it, b, c, d

a,b a,c b,c

~/1 ~2 ~3

.A4(~) -= {[a, b], [a, c], [b, c]} and

.T'(.A4 (69)) = { { a , b } , { a , c } , { b , c } , { a , b , c } } .

By the deterministic graph model, we can derive

=

{ {a, b}, {a, c}, {b, c}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b, c, d} }.

Figure 1 depicts the DG (Q~, 6), where Q = .T*(6~), ~ = {a, b, c, d}, and
6 is as shown in the directed graph. Note that the shaded nodes are elements in

[]

Lemma3.2 For all 69', .A/[(~) C ~ ' C ~, .T'(~') C f ' * (~) .

Proof: Since .A4(~) C_ ~' , for any value set S' C .T'(~'), there exists an SC
.T'(.M(ff)) such that SC S'. By d~' C ~, we have E' = Uum~,, rli C E.
Therefore, by the procedure Find_Uppe~_Bound..of.ff(6~), for any S' G .T'(~ -/3 we
obtain S t E .T'*(~). That completes the proof. []

Corollary 3.5 .T'(¢~) Q .T* (d~).

Proof." Directly from Lemma 3.2 when ~l = <b. []

500

Figure 2. The relationship among f(.M(ff)), .Y'(~'), .Y'(ff), and f*(~) .

(
3.3 Properties of a Set of Partial Values

In the following, we show that for any Ct, .hd(gg) C ¢ ' C ~, .)r(.A4(~)) C
.T'(~ t) C .T'(~) C .T'*(~). Figure 2 illustrates this.

Lemma3.3 5t"(.A4(69)) C .T'(~) C .T'*(~).

Proof." Because .T'(qS) C .T'*(~), we only have to show that for any value set
SE,.T'/ .Ad(~)/, S is also in .T'(ffp). Let .AA(~) == { ~ , ~ , . . . ,rlL} and ff =
{ffl,zl2,~.. ,r/k, f fk+x,r /k+2, . . . ,~m), where k = [.M(~) [and m = [~ [. By

M(~) ~-~(~)
Corollary 3.4, for all ~i, k +1 < i < m, there exists an r/~ , 1 _< j _< k; such
that r/~ C_ r/i. Therefore, for any interpretation a ' = (a~, a ~ , . . . , a~) of .M(~) ,
we can find a corresponding interpretation a = (a~, a ~ , . . . , a~, ak+l, ak+2, • • •,

! I am) for ~ such that ai = aj if ~/) C r/i. Then the value set of a t is equal to that
of a. That is, for any SC .T'(.Ad(~)), S is also in .T'(~). This completes the
proof. []

By Lemma 3.3, we conclude the following corollary.

Corollary 3.6 For all ~ ' , .A4(qS) C ~t C ~, .T'(.A4(~)) C .T'(~') C .T'(~) C

Proof." We need to prove .T'(.A/I(~)) C .T'(~ t) and .T'(~ t) C .T'(~). The proof
! of f (. A 4 (~)) C .T'(~) is similar to that of Lemma 3.3, except that • is replaced

! l l I I by • and • = {~1,~/=,~.. ,~k, ffk+l,~/k+/, . . . , ~ } , where k = [M (~) [and

z=l 'l.
Also, the proof of .T'(~') C_ .T(~) is similar to that of Lemma 3.3, except

that .Ad(~) is replaced by ~t. []

VLDB Journal 2 (4) Tseng: Searching a Minimal Semantically-Equivalent Subset 501

The following theorem states under what conditions .Ad(ffP) can be used as a
minimal sufficient subset of ft.

Theorem3.1 E E .T'(.A/[(~)) if and only if .T'(.M(ff)) = .T'(~) = .T'*(~).

Proof." If .T'(.Ad(~)) = .T'(~) = .T'*(~) then, by E C .T'*(~), we have E E
~ : (M (~)) .

Conversely, by Lemma 3.3 we only have to show that .T'*(q~) C_ .T'(.Ad(ffp))
if E E .T(.A4(~)). That is, for any value set S~ .T(.Ad(ff)), we want to
show that S ~ .T'*(~). By E E .T'(.A4(~)), we have S 5~ E. We now claim
that there is an ~/i C .Ad(qb), such that z/i C E -- S. If this is not true,
then ~/.M S ¢ ~, V~/j E .AA(~). Let E be the value set of an interpretation.
o~ = (a l , a2 , . . . ,ak) of .hal(if), where k = I .AA(~) 1, we can obtain another

t t . . . a t interpretation, a ' = (al,a2, , ~), of .h/l(6p) by letting

!
aj = aj ifaj E S, Vj = 1, 2 , . . . , k

t a j E r l j f q S i f a j E E - S , V j = l , 2 , . . . , k .

Then, the value set of ce' is SE .T'(.A4(qb))--a contradiction. Hence, the claim
follows. That is, for all the interpretations of .A4(~), o ~ j = (alj ,azj , . . . ,
ai j , . . . ,akj), where k = [.A4(~) I, we have aij E ~li C (E -- S) and the corre-
sponding value set So~j = Ul<t<k{atj} ~S. Therefore, all the Sat E .T'(.AA(~))
contain an element of E - S. Recall that .T'*(qb) is generated from .~(AA(~)) by
the transition function 6, which is defined as ~(Si,aj) =Si U {aj}, Si E .T*(gP)
and aj E E. Thus, by the definition of 6, all the new states generated from any
value set in .T'(.Ad(ffP)) contain an element of E - S , no matter how many times
the transition function ~ is applied. That is, S cannot be an element of .T'* (~) .
Hence, .T'*(~) C .T'(.AA(~)) and the theorem follows. []

The following theorem provides a more general property for a minimal sufficient
subset of ~.

Theorem3.2 For all ~t, ..hA(D) C ~t C ~, E E .T'(ffp') if and only if .T'(~') =
7 (¢) = 7" (~) .

Proof." If .)r(~,) = .T'(@) = .T'*(@) then, by E E .T'*(@), we have E E .T'(@').
Conversely, by Lemma 3.3 we have to show only that .T'*(cI,) C .T'(~')

if E E .T'(cb'). That is, for any value set S~ .T(@t), we want to show that
S~ .T'*(@). By E E 9r (~ ') , we have S ¢ E . Similar to the proof in Theorem 3.1,
we can claim that there is an ~7i E ~t, such that ~/i C E- - S.

That is, for all the interpretations of ~ , o~j = (alj,a2j,... ,aij, . . . ,akj),
where k =] @' [, we have aij E ~li C (E--S)and the corresponding value set
S ~ = Ut<t<k{alj} ¢S. Therefore, all the S~j E .~(@') contain an element of
E--S, which implies all the value sets in .T'(.AA(~)) contain an element of E - S .

502

Similar to the proof in Theorem 3.1, we know S cannot be an element of .T'*(~).
Hence, .T'*(~) C . f ' (~ ') , which completes the proof. []

From Theorem 3.1, if E E .T'(.AA(~b)), then the minimal sufficient subset
of ~ , if**, is .AA(ff). Theorem 3.2 provides another property to determine ~**
when ~ ~ .T'(~A,4(ff)); i.e., for a minimal subset of ~ , ~ ' , where .AA(dg) C ~ ' ,
and ~ C .T'(~ ~) then ~** = ~t. Later, we will discuss how to find ~** when

3.4 Matching in a Graph

To efficiently determine if E E f f (.AA(~)) or E E .~'(ff ') , the bipartite matching
technique in graph theory can be used. In the following, some terminologies about
a graph are given (Bondy and Murty, 1976).

A graph G is denoted G = (V, E), where V, also denoted V(G), is the set of
vertices and E, also denoted E(G), is the set of edges in the graph. An edge (x,
y) is said to join the vertices x and y. If (x, y) C E then x and y are adjacent or
neighboring vertices of G. For any set S C V, we define the neighbor set of S in G,
denoted N(S), to be the set of all vertices adjacent to the vertices in S. Two edges
that do not share a common vertex are said to be independent. A set of pairwise
independent edges is called a matching. A matching of maximum cardinality in a
graph G is called a maximum matching. Also, a bipartite graph G = (V,E) is one
whose vertex set V can be partitioned into two subsets X and Y, such that each edge
in G joins a vertex in X and a vertex in Y. Finally, a subgraph of G is any graph H
such that V(H) C V(G) and E(H) C E(G).

Definition 3.2 Let S = { $ 1 , $ 2 , . . . ,Sn} be a family of sets and s = { s l , s 2 , . . . ,
sin). The membership graph orS overs is a bipartite graph G = (V,E) = (X U Y,
E), where

S = s = (S l , S 2 , . . . , s m } ,

Y = S = {S1,S2,. . . ,Sn}, and

E = {(si,Sj)Isi ESj, 1 _<i<m, 1 .<j<n}.

Definition 3.3 For a bipartite graph G = (XLJY, E), I s l _< IY I, we say that there
is a complete matching M from X to Y if there is a matching of cardinality] X I; that
is, each vertex in X is adjacent to a distinct vertex in Y.

The following two theorems can be used to determine whether ~ C .T'(.A/I (~))
or E E . ~ (~ ') , where .AA(dg) C ~ ' C ~.

Theorem 3.3 ~ C .T'(.A,4(~)) if and only if, for the membership graph of .AA(~)
over ~ , G = (~ t..J .A.4(~), E), there is a complete matching from ~ to .AA(~).

Proof." Let M = { (a l , 7 1) , (a 2 , r /2) , . • • , (as, ~/s)} be a complete matching from E
to .,AA(~) = (~/1, r / 2 , . . . , r/s, ~ / s + l , . . . , r/k} in G = (~ t_J ..AA(~), E), where s =

VLDB Journal 2 (4) Tseng: Searching a Minimal Semantically-Equivalent Subset 503

I ~] and ~ = {al, a 2 , . . . , as}. Then we have ai ~ rli, 1 < i < s. Therefore,
we can find an interpretation of .A4(~), oz = (a l , a 2 , . . . ,as, a s + l , . . . , a/~), such
that its value set S = Ul<i<k {ai} = ~ G .T'(.A4(ff)).

Conversely, if ~ = {al, a 2 , . . . , as} ~ .T'(.A4(~)) then there exists an
interpretation of.A4 (if) , o~ = (al, a 2 , . . . , as, a s+l , . . •, ak), such that a i ~ ~i, 1 <
i < s. That is, M = {(al, r/l), (az, ~/~), . . . , (as, ~s)} is a complete matching from

to .A4(~) in the membership graph G = (~ U .A4(~) , E). []

Theorem 3.4 For all ~ ' , .A4(~) C_ if ' C_ ~ , ~ E . ~ (~ ') if and only if, for the
membership graph of ~ over ~ , G = (E U fit, E), there is a complete matching
from E to ff~.

Proof." By replacing .A4(ff) by ff~, the proof is the same as that of Theorem 3.3. []

In some cases, there may not be
membership graph G = (~ U ~ , E).
explore how to determine if** in this
an important theorem as follows.

a complete matching from ~ to • in the
That is, E ~ .T'(~). In the following, we

situation. We start with a useful lemma and

Lemma 3.4 For all SC ~ and .A4(~) C_ ~ ' C ~ , S~) r (f f ,) if and only if

• there is no complete matching from S to ~ in the membership graph of ~
over S, G = (S U ~ I, E) or

• there is an ~7i E ~ , such that r/iN S = 0.

Proof." We prove the following equivalence statement of this lemma: For all SC_
and .A4 (if) C if ' C_ if, SC .T'(~') if and only if

• there is a complete matching from S to ~ in the membership graph of ff~
over S, G = (S U ~ ~, E) and

• for all r/i E ~ ' , uiN S ~ 0.

Suppose M = ((a l , 71), (a2, ~/2),. • •, (as, ~/s)}, where s = I S I and S = (a l ,
a 2 , . . . , as}, is a complete matching in G = (S U ~ ~, E) and ~ifq S ~ 0, ~/~i E ff~.
Then choose the interpretation oZ = (aid a 2 , . . . ~ ass as+l~. . .~ ak), where k =
[if ' 1, of fig' such that ai E ~iN S, i = s + 1 , . . . , / ¢ That is, Sa, = S E .T'(~') .

Conversely, if S C .T'(~ ~) then there is an interpretation a ~ = (al , a2, • • •, as,
a s + l , . . . , ak) of ~ , such that ai C ~i, 1 < i < s, and aj C ~/jfq S ~ 0, s + l <
j < k: That is, M = {(al, zh), (a2, r12),.. . , (as, ~s)} is a complete matching in G
= (S U ~ ' , E) and ai @ (~ifq S) 5~ 0, 1 < i < /~ [3

Hall (1935) gave a necessary and sufficient condition under which there is a
complete matching M from X to Y for a bipartite graph G = (X U Y, E).

504

Figure 3. The partitions of ~ and ~.

M~ ~,

Theorem 3.5 Let G = (X U Y, E) be a bipartite graph; then there exists a complete
matching from X to Y if and only if I N(S) I --> I S I, V S C X, where N(S) is the
neighbor set of S. []

If there is a matching M = {(al, rh), (a2, r12) ,(as, r/s)}, where s = IMI,
in a membership graph G = (~ U ~, E), then denote M1 = Ul<i<s {ai} and
M2 = Ul<i<s {r/i}. The following theorem states how to determine if** when
there is not a complete matching from ~ to ~.

Theorem 3.6 If M* is a maximum matching in the membership graph G = (~ tA ~ ,
E), then .T'(.hd(~) U M~) = .T'(~).

Proof." Denote ~ ' = .hd(~)tA M~. We distinguish two cases:
Case 1: [M* I = [~ [. That is, M* is a complete matching from ~ to

ft. Because .hal(if) C ~ ' C ~, by Theorem 3.2 and Theorem 3.4, we have

Case 2: [M* [< [E I. That is, there is no complete matching from ~ to
• . Therefore, according to M* and ~1, E can be partitioned into M~ and ~--M~
and ff can be partitioned into ~l and f f - - ~ . I f ~ - - q b t = ~ then ~l = qb,
which implies .T'(~') = .T'(~) and the theorem follows. In the following, we prove
the case for qb -- ~t 5~ ~- First, we claim that it is impossible for G to have an
edge (a, b) such that a E ~ - - ~ 1 and b E • -- ~1. Otherwise, a larger matching
M** =M*U {(a, b)} can be obtained (Figure 3), which violates the condition that
M* is a maximum matching. That is, for all ai E ~ - M ~ and ~/j C ~ -- ~t ,
ai

Because .T'(~ t) C .T'(~), we have to show only .T'(~) C .T'(qS'). That is,
for any S ~ .T'(ff'), we want to show that S ~ .T'(q5). For any S ~ .T'(~'), we

VLDB Journal 2 (4) Tseng: Searching a Minimal Semantically-Equivalent Subset 505

distinguish three cases as follows. Note that S cannot be M~, for M~ E .T'(qb').

Case (1): S C M~. Because M* is also a complete matching in G* = (~1 U (b ~, E*),
by Theorem 3.5 we know that I N(S*) I --> I S* 1, for all S* C M~. That implies
[N(S') I -> [S' I, for all S' C_ S. Therefore, there is a complete matching M ~ C_
M* from S to ~ in the membership graph G ~ = (S Uq~ ~, E~), a subgraph of G*.
Thus, by Lemma 3.4, S ~ .T'(@ ~) implies that there must be an z/i E @~ such that
z/in s = 0. That is, for all the interpretations of @~, a j = (alj, a2j, • • • , ai j , • • • ,
akj) , where k = I q~ I, we have aij E z/i, aij ~ S, and the corresponding value
set S~j = Ul<t<k {a t j } 5 ~ S. Therefore, all the Sc~j E .T'(@') contain an element
aij ~ S, which implies that all the value sets in .T'(.Ad(6#)) contain an element
aij ~ S. Similar to the proof in Theorem 3.1, we know S cannot be an element of
.T'* (@), which implies S ~ .T'(~).

Case (2): S C ~--M~i. We know that for a l la i E ~--M~i and Z/j E ~ - - ~ l ,
ai ~[Z/j. Therefore, S ~ .T((I)), because elements in qb - ~ ' cannot contribute to
any element of ~--M~i.

Case (3): S f3 M~z ¢ 0 and S fq(E-M~) :~ 0. By Lemma 3.4, for S ~ .T'(~'),
either

(a) There is no complete matching from S to qb t in the membership graph of
~ l o v e r S , G ~ = (S U B I , E ~)or

(b) There is an z/i E q bl such that z/i n S = 0.

If (a) holds, then I N(S') I < I s' I in G' = (S U~ ' , E'), for some S t C S, which
implies S ~ ~M~. By the Pigeonhole Principle (Lewis and Papadimitriou, 1981), we
can find S" C S ~ such that S" contains at least two elements adjacent to only a
common neighboring vertex z/z E if'. That is, [S" [> 2 and [N(S") [= 1 in
G ~ = (S U ~ ~, E~). Because S ~ ~M~, we have either

(1) S" C_ E - - ~ 1 or

(2) S"V1M~ ~ ¢ and S"M (~--M~) ~ ~.

If (1) holds, then we also have IN(S") I < I S" [in G" = (S U ¢ , E"), because
q5 -- ~t contains no neighboring vertices of S". That is, there is no complete
matching from S to • in G". By Lemma 3.4, S ~ .T'(~).

If (2) holds, then we claim that there is only one element x in S", such that x E
S"MM~. Otherwise, if there is more than one element in S " f 3 ~ 1 then [N(S")[> 1,
which violates [N(S ~') [= 1. Therefore, (x; z/x) E/14". We also claim that x has no
neighboring vertices in • -- ~t. Otherwise, suppose z/v E (~ -- ~) is a neighboring
vertex of x, and rti y is any element in S"N (~--M~), then a larger matching M**
= (M* - {(x; z/z)}) U {(x; z/y), ~v, z/z)}, [M** [= [M* [+1 , can be obtained
(Figure 4). This contradicts the assumption that M* is a maximum matching in G.

506

Figure 4. If flu E N({x}) in G, then M* can be augmented into M**, which
is impossible.

{ (x , y .) } C M*

@

{(X,~,),(y,i~)} C M**

Therefore, IN(S") I = 1 <l S" l is true in the graph G" = (S U~ , E ') , which
implies there is no complete matching from S to ff in G ' . Hence, S ~ .T'(q5). If
(b) holds then, we have S ~ .T'(ff), similar to the proof in Case (1). For all the
cases discussed above, we conclude that for any S ~ .T(~ ') , S ~ .T'(qS), neither.
That is, .T'(~) C (~ ') . That completes the proof. El

4. Finding a Minimal Sufficient Subset

Based on the properties discussed above, we develop an efficient algorithm to
derive ~** in this section. As we have shown in the previous section, the bipartite
matching technique plays an important role in our algorithm. Hopcroft and Karp
(1973) developed an O(n 5/2) algorithm for finding a maximum matching in a bipartite
graph, where n is the number of vertices. Due to this algorithm, Papadimitriou and
Steiglitz (1982) relate this problem to the max-flow problem (Ford and Fulkerson,
1962) for simple networks and prove that the matching problem for bipartite graphs
can be solved in O(I V 11/2 • I E I)" Given an initial matching (including that
which is empty), this algorithm gradually augments the matching process until no
augmentation can be obtained. Thus, the resultant matching becomes maximum.

By giving an initial matching, this matching algorithm will be used as a procedure
in our algorithm as follows. Notice that a complete matching in a bipartite graph G
is also a maximum matching in G.

Algorithm 4.1 An Algorithm That Derives a Minimum Sufficient Subset of ~, if**.

Input: A Set of Partial Values, ft.
Output: A Minimum Sufficient Subset of ~ , ~**.

1. E = Ur ine+ ~+;
2. Eliminate all quasi-duplicates of • and denote the resultant set ~ ;
3. Call Find_All_Minimal_Elements(~'), which returns .hd(~ ') ;
4. Find a maximum matching M* in membership graph G =

VLDB Journal 2 (4) Tseng: Searching a Minimal Semantically-Equivalent Subset 507

Figure 5. Relationship between M* and M.**

M* M * *

(s u M(e'), e)
by giving an empty matching as the initial matching;

5. If (1 M* [= = [~ [) then (/ * Theorems 3.1 and 3.3 */
6. ~** = M (~ ') ;
7. Output(Q**); Stop;
8. } else {
9. Find a maximum matching M** in membership graph G* =

(E u E)
by giving M* as the initial matching to ensure the minimality;

10. @** = .A//(@0U M~*;/* Theorem 3.6 */
11. Output(@**); Stop;
12. }

Note that to ensure @** to be minimal, M* must be given as the initial matching
when finding M** in Step 9. That ensures M~ C M~*. Notice that M* is not
necessarily a subset of M**. For example, in Figure 5, M* = {(al, bl)} and M**
= {(al, b2), (a2, bD}. M* ~ M** but M~ C M~*. In the following, we show how
the algorithm works.

~1 ~2 7/3 ~4 ~5 ~]6

Example 4.1 Let ffP = {[a, b], [b, c], [a, c], [a, c], [a, b, c], [a, c, d]}. We want to find
@** such that .T'(~) = .T'(@**). By the algorithm, we obtain ~ = (a , b, c, d} and

~I T/2 ~/3 7/~ T/6

~t = {[a, b], [b, c], [a, c], [a, b, c], [a, c, d]) inSteps 1 and 2, respectively. After Step
~1 ~2 ~3

3, we derive .A4(~ t) = {[a, b], [b, c], [a, c]}. After finding a maximum matching in
the membership graph G = (E u.A4 (~/), E), we have one of the possible maximum

~1 ~2 ~3

matching M* = ((a, [a, b]), (b, [b, c]), (c, [a, c]) }. This is illustrated by Figure 6(a).
The shaded nodes in Figure 6(a) are elements of M~. Because the cardinalities of

508

Figure 6(a). Maximum matching M*

113

(b) Maximum matching M**.

ql

%

Tl 5

%

(a) (b)

M* and ~ are not identical, we continue to find another maximum matching in G* =
r/1

(E U ~ , E) by giving M* as the initial matching. This produces M** = { (a, [a, b]), (b,
772 ~3 r/8 ~/i r/~ r/a ~}s

[b, c]), (c, [a, c]), (d, [a, c, d])}, which implies M~* = {[a, b], [b, c], [a, c], [a, c, d]}.
Figure 6(b) depicts this. The shaded nodes are elements of M~*.
Therefore,

W1 W2 ~3 W6

• *" = .A4(~') O M~" = {[a, b], [b, c], [a, c], [a, c, d]).

A computation of .T'(69) and .T'(.A4(cb')U M~*) verifies the result:

=

= {{a, b}, {a, c}, {b, c}, {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}, {a, b, c, d} } .Box

The procedure Find_All.Minimal_Elements takes O(n2), where n = I ~ ' I, to
generate .A4(~'). Therefore, the time complexity of the algorithm is dominated
by the procedure for finding a maximum matching. That is, the time complexity of
the algorithm is O(I V 11/2 I E [), where I V I = I ~ I + I ~ I
and] E [: Ev,7,e,~ I ~/i 1. In the worst case, this complexity is 0(n5/2),
where n =] V 1. Note that in this algorithm we do not need to generate .T'*(~)
by Find_Upper_Bound_of _.T (~).

VLDB Journal 2 (4) Tseng: Searching a Minimal Semantically-Equivalent Subset 509

Figure 7. Two equivalent relations

7rA1,A2 Am(R)

(a)

~AIA2.. .Am(R)
A1A2""Am

711~Q721 ~Q " ' " ~'QTml

712 ~ 7 2 2 ~ " ' " ~ 7 m 2

71n 72n " ' "

(b)

5. Extension on Multi-Attribute Projections

In general, a projection may involve more than one attribute in a relation. To cope
with the redundant tuple elimination under this case, the following definition is
given.

Definition 5.1 The cartesian product 7a X 7b of the partial values 7a = [al, a 2 , . . •,
am] and 7b = [bl, b 2 , . . . , bn] is the partial value 7a~b with U(7a~b) being a set
of the ordered pairs (ai, bj) for every ai E 7a and bj E 7b.

Example 5.1 The cartesian product 7a X 7b of the partial values 7a = [a, b, c] and
7b = [x~ y] is the partial value 7a~b with U(7a~b) = {(a, x), (a, y), (b, x), (b, y), (c,
x), (c, y)}. That is, 7axb = [(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)]. []

Consider the result of a projection 71A1 ,A2 Am (R), m > 1, as Figure 7(a) depicts.
The relation 7rA1,A2 Am (R) then can be regarded as a relation 71-A1A2...A m (R) with
the single attribute A1 A2 • • • Am. If the "true" value of a tuple of 71"A1 ,A2 Am (R),
7 1 j , 7 2 j , . . . , 7 m j ~ is the m-tuple (al, a 2 , . . . , am), ai E 7ij, where ai is the

"true" value of 7ij; then the "true" value of 7U ~ 2j ~... ~ mj is also (a 1, a 2, • • •, a m),

and vice versa. We know that a tuple of 7rA1,A2 Am (R), 71j, 72j , . • •, 7mj ~ can

be considered as a tuple of 7rAiA2...Am(R) with attribute value 71j><2j><...xmj ~

71j x 72j x • • • x 7mj. That is, the relations 71"A1,A2 Am (R) and 7rA1A2...Am (R) are
semantically equivalent and can be transformed to each other. Figure 7 illustrates
this. By this transformation, a one-attribute relation can always be obtained and
Algorithm 4.1 works as before.

6. Conclusion

Partial values have been used to represent imprecise data in databases. In previous
work we studied extended algebraic operations on partial values (Tseng et al., 1993b,

510

1993c). In this article, we further consider the problem of eliminating redundant
partial values which may result from a projection on an attribute with partial values.
Our work provides a more concise answer for users and reduces the communication
cost when partial values are requested to be transmitted from one site to another
site in a distributed environment. Therefore, our work also contributes to query
optimization in a distributed database system.

Using the notion of interpretations over a set of partial values, we define necessary
and redundant partial values. We then proceed to find a subset of the necessary
partial values, which is the set of all minimal elements of 69, and derive properties
for a set of partial values. In addition, the problem of searching a minimal sufficient
subset of 69, 69"*, is converted into a bipartite grap]h matching problem. Based
on the properties of partial values, we develop an efficient algorithm to find 69"*
and eliminate the redundant subset 69 -- 69**. A very interesting duality in our
algorithm is that searching a minimal sufficient subset in a set of partial values can
be achieved by finding a maximum matching in a bipartite membership graph.

For the union of two sets of partial values, 691 and 692, our work can be employed
as follows. First, collect together all members of 691 and 692 to form another set
69. Then, apply our work to eliminate redundant elements in 69. Imielifiski and
Vadaparty (1989) and Imielifiski (1991) pointed out that if partial values are allowed
to occur in databases, the data complexity of query processing jumps from PTIME
to CoNP (Garey and Johnson, 1979). However, there are also some types of queries
that have PTIME complexity. Our ongoing studies of query processing over partial
values are intended to discover more PTIME algorithms from algebraic point of
view. In our recent work (Tseng et al., 1993b, 1993c), we found that division (by
restricting the divisor to be definite) and some aggregate operations over partial
values---m/n, max, and count--can be done in PTIME.

Acknowledgments

This research was partially supported by the Republic of China National Science
Council under Contract No. NSC 81-0408-E-007-12. The authors wish to thank the
anonymous referees whose invaluable comments and suggestions helped to improve
this paper substantially.

References

Abiteboul, S. and Grahne, G. Update semantics for incomplete information, Proceed-
ings of the Eleventh International Conference on l,~ry Large Data Bases, Stockholm,
1985.

Bancilhon, F. and Spyratos, N. Update semantics of relational views, ACM Trans-
missions of Database Systems, 6(4):557-575, 1981.

Biskup, J. A foundation of Codd's relational maybe-operations, ACM Transmissions
of Database Systems, 8(4):608-636, 1983.

VLDB Journal 2 (4) Tseng: Searching a Minimal Semantically-Equivalent Subset 511

Bondy, J.A. and Murty, U.S.R. Graph Theory with Applications, New York: Macmil-
lan Press, 1976.

Codd, E.F. Extending the database relational model to capture more meaning, ACM
Transmissions of Database Systems, 4(4):397-434, 1979.

Codd, E.E Missing information (applicable and inapplicable) in relational databases,
SIGMODRecord, 15(4):53-78, 1986.

Codd, E.E More commentary on missing information in relational databases (ap-
plicable and inapplicable information), SIGMODRecord, 16(1):42-50, 1987.

DeMichiel, L.G. Resolving database incompatibility: An approach to performing re-
lational operations over mismatched domains, IEEE Transmissions on Knowledge
and Data Engineering, 1(4):485-493, 1989.

Ford, L.R. and Fulkerson, D.R. Flows in Networks, Princeton, NJ: Princeton Uni-
versity Press, 1962.

Garey, M.R. and Johnson, D.S. Computers and Intractability: A Guide to the Theory
of NP-Completeness, San Francisco: Freeman, 1979.

Grant, J. Null values in a relational data base, Information Processing Letters, 6(5):156-
157, 1977.

Grant, J. Partial values in a tabular database model, Information Processing Letters,
9(2):97-99, 1979.

Hall, E On representatives of subsets, J. London Mathematical Society, 10(26-30),
1935.

Hopcroft, J.E. and Karp, R.M. An n 5/2 algorithm for maximum matching in bipartite
graphs, SIAMJ. Computing, 2(4):225-231, 1973.

Imielifiski, T. and Lipski, W. On representing incomplete information in a relational
database. Proceedings of the Seventh International Conference on l~ry Large Data
Bases, Cannes, France, 1981.

Imielifiski, T. and Lipski, W. Incomplete information and dependencies in relational
databases, Proceedings of the A CM SIGMOD International Conference Management
of Data, San Jose, California, 1983.

Imielifiski, T. and Vadaparty, K. Complexity of query processing in databases with
or-objects, Proceedings of the ACM Symposium on Principles of Database Systems,
1989.

Imielifiski, T. Incomplete Deductive Databases. Annals of Mathematics and Artificial
Intelligence, 3(2-4):259-294, 1991.

Lewis, H. and Papadimitriou, C. Elements of the Theory of Computation, Englewood
Cliffs, NJ: Prentice-Hall, 1981, pp.26-26.

Lien, E. Multivalued dependencies with null values in relational databases. Proceed-
ings of the Fifth International Conference on l,~ry Large Data Bases, Rio de Janeiro,
1979.

Lipski, W. On semantic issues connected with incomplete information systems. ACM
Transmissions on Database Systems, 4(3):262-296, 1979.

Liu, K.-C. and Sunderraman, R. Indefinite and maybe information in relational
databases. ACM Transmissions on Database Systems, 15(1):1-39, 1990.

512

Liu, K.-C. and Sunderraman, R. A generalized relational model for indefinite
and maybe information. IEEE Transmissions on Knowledge and Data Engineering,
3(1):65-77, 1991.

Maier, D. The Theory of Relational Databases, Rockville, MD: Computer Science
Press, 1983.

Morro, A. Accommodating imprecision in database systems: issues and solutions.
ACM SIGMOD Record, 19(4):69-74, 1990.

Papadimitriou, C.H. and Steiglitz, K. Combinatorial Optimization: Algorithms and
Complexity, Englewood Cliffs, NJ: Prentice-Hall, 1!982, pp.221-226.

Suppes, E Axiomatic Set Theory, Princeton, New Jersey: D. Van Nostrand Company,
1960, pp.99-100.

Tsai, P.S.M. and Chen, A.L.E Querying uncertain data in heterogeneous databases.
Proceedings of the IEEE International Workshop on Research Issues on Data Engi-
neering (RIDE), Vienna, 1993.

Tseng, ES.C., Chen, A.L.E, and Yang, W.E Answering heterogeneous database
queries with degrees of uncertainty. Distributed anti Parallel Databases: An Inter-
national Journal, 1(3):281-302, 1993a.

Tseng, ES.C., Chen, A.L.P., and Yang, W.P. Implementing the division operation on
a database containing uncertain data. Submitted, 1993b.

Tseng, ES.C., Chen, A.L.P., and Yang, W.E Evaluating aggregate operators over
imprecise data. Submitted, 1993c.

Ullman, J.D. Principles of Database and Knowledge-Base Systems, Vol. 2, Rockville,
MD: Computer Science Press, 1988.

Vassiliou, Y. Null values in data base management: A denotational semantics
approach. Proceedings of the ACM-SIGMOD International Conference on the Man-
agement of Data, Boston, MA, 1979.

Vassiliou, Y. Functional dependencies and incomplete information. Proceedings of
the Sixth International Conference on Very Large Data Bases, Montreal, 1980.

