
VLDB Jouma£ 2, 243-275 (1993), Michael Carey and Patrick Valduriez, Editors
(~)VLDB

243

Query Processing and Inverted Indices in Shared-
Nothing Text Document Information Retrieval Systems

Anthony Tomasic and Hector Garcia-Molina

Received December 1, 1992; revised version received February 1, 1993; accepted March
15, 1993.

Abstract. The performance of distributed text document retrieval systems is
strongly influenced by the organization of the inverted text. This article compares
the performance impact on query processing of various physical organizations for
inverted lists. We present a new probabilistic model of the database and queries.
Simulation experiments determine those variables that most strongly influence re-
sponse time and throughput. This leads to a set of design trade-offs over a wide
range of hardware configurations and new parallel query processing strategies.

Key Words. Performance, file organization, query processing, inverted file, in-
verted index, striping, shared-nothing, full text information retrieval.

1. Introduction

Full text document databases of newspaper articles, journals, legal documents, etc.
are readily available. These databases are rapidly increasing in size as the cost of
digital storage drops, as more source documents are available in electronic form,
and as optical character recognition becomes commonplace. At the same time,
there is a rapid increase in the number of users and queries submitted to such text
retrieval systems. One reason is that more users have computers, modems, and
communication networks available to reach the databases. Another is that, as the
volume of electronic data grows, users have an increasing need for effective search
capabilities, as provided by information retrieval systems.

As data volume and query processing loads increase, companies that provide
information retrieval services are turning to distributed and parallel storage and
searching. The goal of this article is to study parallel query processing and various
distributed index organizations for information retrieval.

Anthony Tomasic, M.A., is a Ph.D. Candidate, Department of Computer Science, Princeton University,
Princeton, NJ 08540. Hector Garcia-Molina, Ph.D., is Professor, Department of Computer Science, Stan-
ford University, Stanford, CA 94305.

244

Figure 1. Example set of four documents and example hardware
configuration

° Fq
I LAN I

To present the issues that will be addressed, let us start with a simple example.
The left hand side of Figure 1 shows four sample documents, DO, D1, D2, D3, that
could be stored in an information retrieval system. Each document contains a set
of words (the text), and each of these words (maybe with a few exceptions) will be
used to index the document. In Figure 1, the words in our documents are shown
within the document box, e.g., document DO contains words a and b. (Of course, in
practice documents will be significantly larger and will contain many more words.)

To find documents quickly, full text document retrieval systems traditionally
build inverted lists (Fedorowicz, 1987) on disk. For example, the inverted list for
word b would be b: (D0,1), (D2,1), (D3,1). Each pair in the list indicates an
occurrence of the word (document ID, position). (Position can be word position or
byte offset.) To find documents containing word b, the system needs only to retrieve
this list. To find documents containing both a and b, the system could retrieve the
lists for a and b and intersect them. The position information in the list is used to
answer queries involving distances, e.g., find documents where a and b occur within
so many positions of each other.

Next suppose that we wish to store the inverted lists on a multiprocessor like
the one shown in Figure 1 (on right). This system has two processors (CPUs), each
with a disk controller and I/O bus. (Each CPU has its own local memory.) Each
bus has two disks on it. The CPUs are connected by a local area network. Table 1
shows four options for storing the lists.

1.1 System Index Organization

In the system index organization, the full lists are spread evenly across all the disks
in the system. For example, the inverted list of word b discussed earlier happened
to be placed on disk dl .

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 245

Table 1. Various inverted index organizations for Figure 1

Index Disk Inverted Lists in word: (Document, Offset) form

Disk

Host, I /0 bus

System

d 0 a: (DO, 0); b: (DO, 1)

d 1 a: (D1, O)

d 2 a: (D2, 0); b: (D2, 1)

d 3 a: (D3, 0); b: (D3, 1); c: (D3, 2); d: (D3, 3)

d 0 a: (DO, 0), (D1, 0)

d 1 b: (DO, 1)

d 2 a: (D2, 0), (D3, 0); c: (D3, 2)

d 3 b: (D2, 1), (D3, 1); d: (D3, 3)

d 0 a: (DO, 0),

d 1 b: (DO, 1),

d 2 c: (D3, 2)

d 3 d: (D3, 3)

(D1, 0), (D2, 0), (D3, 0)

(D2, 1), (D3, 1)

The host and I/O bus organizations are identical in this example because each CPU has only one I/O bus.

1.2 Disk Index Organization

With the disk index organization, the documents are logically partitioned into four
sets, one for each disk. In our example, we assume document DO is assigned to disk
dO, D1 to dl , and so on. In each partition, we build inverted lists for the documents
that reside there. Notice that now to answer the query "Find all documents with
word b" we have to retrieve and merge four lists, one from each disk. (Since disk
d l contains no documents with word b, its b list is empty.)

1.3 Host Index Organization

In the host index organization, documents are partitioned into two groups, one for
each CPU. Here we assume that documents DO, D1 are assigned to CPU 0, and
D2, D3 to CPU 1. Within each partition we again build inverted lists. The lists are
then uniformly dispersed among the disk attached to the CPU. For example, for
CPU 1 the list for a is on d2, the list for b is on d3, and so on.

1.4 I/0 Bus Index Organization

The I/0 bus index organization follows the same partitioning principle as the other
index organizations, except at the I/O bus level. Documents are partitioned into
two groups, one for each I/O bus. Within each partition inverted lists are built and
then uniformly dispersed among the disks attached to the I/O bus. In our example,

246

this results in the same organization as the host index organization since each host
has exactly one I/O bus. If a host has more than one I/O bus, then the host index
organizations and I/O bus index organizations would differ.

1.5 Query Processing

Query processing under each index organization is quite different. For example,
consider the query "Find documents with words a, c", and say the query initially
arrives at CPU 0. Under the system index organization, CPU 0 would have to fetch
the list for a, while CPU 1 would fetch the c list. CPU 1 would send its list to CPU
0, which would then intersect the lists. With the host index organization, each CPU
would find the matching documents within its partition. Thus, CPU 0 would get
its a and c lists and intersect them. CPU 1 would do likewise. CPU 1 would send
its resulting document list to CPU 0, which then would merge the results. With
the disk index organization, CPU 0 would retrieve the a and c lists from disk dO,
and also would retrieve the a, c lists from disk dl . CPU 0 would obtain two lists
of matching documents (one for each disk), would merge them, and then would
merge them with the list from CPU 1.

There are many interesting trade-offs among these storage organizations. With
the system index organization, there are fewer I/Os. That is, the a list is stored
in a single place on disk. To read it, the CPU can initiate a single I/O, the disk
head moves to the location, and the list is read in (this may involve the transfer
of multiple blocks). In the disk index organization, on the other hand, the a list is
actually stored on four different disks. To read these list fragments, four I/Os must
be initiated, four heads must move, and four transfers take place. However, each
of the transfers is roughly a fourth of the size, and they may take place in parallel.
So, even though we are consuming more resources (more CPU cycles to start more
I/Os, and more disk seeks), the list may be read into memory faster.

The system index organization may save disk resources, but it consumes more
resources at the network level. Notice that in our example, the entire c list is
transferred from CPU 1 to CPU 0, and we can expect these inverted lists to be
much longer than the document lists exchanged under the other schemes. However,
the long inverted list transfers do not occur in all cases. For example, the query
"Find documents with a and b" (system index organization) does not involve any
such transfers because all lists involved are within one computer. Also, it is possible
to reduce the size of the transmitted inverted lists by moving the shortest list. For
example, in our "Find documents with a and c," we can move the shorter list of a
.and c to the other computer.

Thus, the performance of each strategy will depend on many factors, including
the expected type of queries, the optimizations used for each query processing
algorithm, whether throughput or response time is the goal, and the resources
available (e.g., how fast is the network, how fast are disk seeks). In this article we
will study these issues, discussing the options for index organization and parallel
query processing. We also present results of detailed simulations, and attempt to

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 247

answer some of the key performance questions: Under what conditions is each
index organization superior? How does each index organization scale up to large
systems (more documents, more processors)? What is the impact of key parameters
(e.g., how would a system with optical disks function)?

In Section 2 we describe our hardware scenario, query processing algorithms,
physical index organization, and related work in more detail. To study performance
we need to model various key components such as inverted lists, queries, and answer
sets. Although there has been a lot of work done on information retrieval systems,
to our knowledge such models, appropriate for studying parallel query execution,
have not been developed. In Section 3 we define simple models for these and other
critical components. In Section 4 we describe the simulation, and in Section 5 we
present our results and comparisons.

2. Definitions and Framework

Documents contain words. The set of all words occurring in the database is the
vocabulary. For convenience, we name words by their occurrence rank, e.g., word
0 is the most frequently occurring word, word 1 is the next most frequent, and so
on. (In the example of Figure 1, the vocabulary is {a, b, c, d}; word 0 is a, word 1
is b, etc.) We use the word and the rank of the word interchangeably.

A query retrieves documents satisfying a given property. In this article, we
concentrate on "boolean-and" queries of the form a A b/X c Such queries find
the documents containing all the listed words. The words appearing in a query are
termed keywords. Given a query a A b . . . the document retrieval system generates
the answerset of the document identifiers of all the documents that match the query.
A match is a document that contains the words appearing in the query.

We focus on boolean-and queries because they are the most primitive ones.
For instance, a more complex search property such as (a A b) OR (c A d) can
be modeled as two simple and-queries whose answer sets are merged. A distance
query "Find a and b occurring within x positions" can be modeled by the query
a/X b followed by additional CPU processing that compares the positions of the
occurrences.

2.1 Hardware Configuration

Table 2 lists the parameters that determine a configuration. The column "Value" in
the table refers to the "base case" used in our simulation experiments (Section 5).
That is, our experiments start from a representative configuration and, from there,
we explore the impact of changing the values. The base case does not represent
any particular real system; it is simply a convenient starting place.

248

Table 2. Hardware configuration parameter values and definitions

Parameter

Hosts

I/OBusesPerHost
DisksPerI/OBus

Value Description

4 Number of hosts

4 Number of controllers and I/O buses per host

2 Number of disks for each I/O bus

2.2 Physical Index Organization

The inverted index can be partitioned and fragmented in many ways. We study
a single natural division by hardware. This division does not require any unusual
hardware or operating system features. The documents reside in a uniformly
distributed manner across all disks d in the system (d = Hosts. I/OBusesPerHost.
DisksPerI/OBus). Let the disks be numbered from 0 to d l as in Figure 1.

The inverted index organization is compared for four mutually exclusive cases.
In the disk index organization, an inverted index is constructed for all words in
the documents residing on each disk. Thus, for a given word, there are d inverted
lists containing that word (if a given word does not appear in any documents on a
disk, then that list is empty). In the I/0 bus index organization, an inverted index
is constructed for all the documents on the disks attached to the same I/O bus. In
host index organization, an index is constructed for all the documents on a single
host. Lists are distributed by host in a similar manner. Finally, in system index
organization a single index is constructed for all documents. Table 1 illustrated
these index organizations, but note that in that example the I/O bus and host index
organizations are identical because hosts have a single I/O bus. Note that, regardless
of the index organizations, the same amount of data is stored in the system and,
for any query, the same amount of data is read from disk.

In any of the organizations, if an index spans x disks, we assume the lists are
dispersed over the x disks. In particular, the list for word w is placed on the disk i
+ (w rood x), where i is the first disk in the group. For example, for the host index
organization in Table 1, one of the indices spans disks dO, dl ; the second spans d2,
d3. For the second index, the list for a (word 0) goes to d2, the list for b (word 1)
goes to d3, the list for c (word 3) goes to d2, and so on.

2.3 Algorithms

For all configurations except the system type, queries are processed as follows. The
query a A b ... is initially processed at a home site. That site issues subqueries to all
hosts; each subquery contains the same keywords as the original query. A subquery
is processed by a host by reading into memory all the lists involved, intersecting
them, producing a list of matching documents. The answer set of a subquery, termed

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 249

the partial answer set, is sent to the home host, which concatenates all the partial
answer sets to produce the answer to the query.

In the system index organization, the subquery sent to a given host contains
only the keywords that are handled by that host. If a host receives a query with
a single keyword, it fetches the corresponding inverted list and returns it to the
home host. If the subquery contains multiple keywords, the host intersects the
corresponding lists, and sends the result as the partial answer set. The home host
intersects (instead of concatenates) the partial answer sets to obtain the final answer.

As mentioned in Section 1, the algorithm we have described for the system
index organization can be improved. Here we describe three optimizations, called
prefetch I, H and I lL Note that these are heuristics; in some cases they may not
actually improve performance.

In the prefetch I algorithm, the home host determines the query keyword k
that has the shortest inverted list. (We assume that hosts have information on
keyword frequencies; if not, prefetch I is not applicable.) In Phase 1, the home
host sends a single subquery containing k to the host that handles k. When the
home host receives the partial answer set, it starts phase 2, which is the same as
in the un-optimized algorithm, except that the partial answer set is attached to all
subqueries. Before a host returns its partial answer set, it intersects it with the
partial answer set of the phase 1 subquery. This significantly reduces the size of all
partial answer sets that are returned in phase 2.

The prefetch II algorithm is similar to prefetch I, except that in phase 1 we
send out the subquery with the largest number of keywords. We expect that as the
number of keywords in a subquery increases, its partial answer set will decrease in
size. Thus, the amount of data returned by the one host that processes the phase 1
subquery should be small. If there is a tie (two or more subqueries have the same
maximum number of keywords), prefetch II selects one of them at random.

Prefetch III combines the I and II optimizations. That is, the first subquery
contains the largest number of keywords, but if there is a tie, the subquery with the
shortest expected inverted lists is selected. Intuitively, one would expect prefetch
III to perform the best. However, we chose to study all three techniques (Section 5)
to understand what each optimization contributes. In particular, keep in mind that
prefetch I and III require statistical information on inverted list sizes. Our results
will tell us if it is worthwhile to keep such information, i.e., if the improvement of
prefetch III over II (which does not require this information) is significant.

To illustrate these optimizations, consider the query a A b A c A d in Figure 1
(system index organization). With prefetch I, the subquery d would be sent to host
CPU 1 in phase 1. (Of the four keywords, d occurs less frequently in the database,
and it is stored in host CPU 1.) In phase 2, the subquery a A b would be sent to
CPU 0, together with the list for d from phase 1. CPU 1 would receive the query
c together with the d list. With prefetch II, the first subquery would be either a /k
b (to CPU 0) or c A d (to CPU 1), selected at random, prefetch III would select c
A d as the first subquery because it involves shorter lists.

250

2.4 Striping

Striping (Patterson et al., 1988) is a method that decreases response time and
increases throughput to read an inverted list (1) by allocating the blocks of an
inverted list horizontally across several disks (using modular arithmetic) and (2) by
reading the blocks in parallel. For example, suppose we have four blocks b0, bl,
b2, b3 which store an inverted list for a word z which is located on disk dl . In the
normal case, all four blocks would be vertically allocated and would reside on disk
d l of three disks dO, dl , d2. Striping word z across all three disks results in block
b0 residing on disk d l (the first block does not change its location); block bl on
disk d2 (since the blocks are allocated horizontally); block b2 on disk dO (by using
modular arithmetic); and block b3 on disk dl . Thus, disk dO and d2 have one block
of the inverted list for word z and disk d l has two blocks.

We can stripe an inverted list under any index organization. In the host index
organization, the inverted list would be striped across all the disks on the host.
Suppose the inverted list for word a in Table 1 was striped with one entry per block.
(This assumption simplifies the example; in practice, many entries are stored per
block.) For CPU 0, the entry (D0,0) would be on disk dO, and the entry (D1,0)
would be on disk dl . Similarly for CPU 1, the (D2,0) entry would be on disk d2
and the (D3,0) entry would be on disk d3.

In the I/O bus index organization, the inverted list would be striped across all
the disks on the I/O bus. In the disk index organization, striping has (essentially)
no effect, since there is only one disk for each index so vertical and horizontal block
allocation result in the same physical allocation for any inverted list.

In the system index organization, the natural approach would be to stripe across
all the disks in the system. However, this greatly complicates query processing,
requiring, for instance, that the blocks of an inverted list be fetched from multiple
hosts and assembled at some particular host before processing on that list can
continue. Thus, we choose to stripe a system index organization inverted list only
across the disks on the host on which the inverted list resides. In Table 1, the
inverted list for word a in the system index organization would be striped across all
the disks on CPU 0. Thus, disk dO would have the list (D0,0)(D2,0) and disk d l
would have the list (D1,0)(D3,0). This method avoids the complication of striping
across the system, but still provides the advantage that the inverted list for a word
is located in only one host in the system.

Striping does not always improve response time for reading an inverted list. To
understand when striping is an advantage, suppose s is the disk overhead time for a
read and l is the time needed for the read of an inverted list. Then the response time
to read a list from disk is s + l. If the list is striped over k disks, the response time
ranges roughly from s + l / k best case (ignoring any queuing delays or contention) to
sk + I worst case when the reads are processed sequentially. Thus, under best case
conditions, striping should improve response time when s + l/k < s + l. Note that
the additional work required for a striped read is s (k - 1) and this quantity must be

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 251

kept small to minimize the impact of striping on throughput. Given the range of
values for these variables in our model, short inverted lists generally do not benefit
from striping. Section 5 reports the effect of striping the longer inverted lists for
all the index organizations. This is studied by varying the fraction of the vocabulary
that have striped inverted lists.

The reader may wonder about the exact difference between the disk index
organization for an inverted list and the striped host index organization for the
same list. Suppose we added 100,000 documents to Figure 1. First, in the disk
organization, the lengths of the inverted list for a word a would vary slightly from
disk to disk, due to the variation in the number of times that the word occurs in the
documents for each disk. (This variation is ignored in this study.) Second, internal
fragmentation occurs for each inverted list for the word a on each disk. In the host
index organization, all the inverted lists on that host for the word a are collected
together and striped across the disk. Thus internal fragmentation occurs only at
the end of that single inverted list.

The additional internal fragmentation that appears in the disk organization has
a small impact on response time and throughput. Thus, controlling the number
of striped inverted lists is very similar to controlling the number of inverted lists
that have a disk index organization. We expect that, as the number of words with
striped inverted lists approachs the entire vocabulary, performance for any index
organization should approach the performance of the disk index organization.

2.5 Related Work

For an introduction to full text document retrieval, see Salton and McGill (1983).
In the design of full text document retrieval systems, there is a basic trade-off
between the time taken to process the document database and the time taken to
process queries (Emrath, 1983). In this article we assume that queries can be
answered without examining the text of any documents. The opposite approach, the
direct scanning of documents (usually in combination with some indexing) is also
possible (Hollaar, 1992). For full text retrieval systems, inverted lists are typically
used. Compression of inverted lists is actively studied (Weiss, 1990; Zobel, 1992).
The probabilistic construction of inverted lists by assuming the independence of
word occurrences also appears in Emrath (1983); the work presents an interesting
variation on inverted lists. In addition, much work has been done on other data
structures, such as signature schemes (Faloutsos, 1985).

Burkowski (1990) examined the performance problem of the interaction between
query processing and document retrieval and studies the physical organization of
documents and indices. His work simulated a collection of servers on a local area
network. Our work is complementary to his in that we concentrate on physical
index organization. This article extends previous work (Tomasic and Garcia-Molina,
1993b) in describing the simulation fully, describing the mathematical basis of the
work, and modeling striping. We include some performance comparisons for striping
in Section 5. In Jeong and Omiecinski (1992), the issue of partitioning by document

252

vs. partitioning by keyword is studied for share-everything multiprocessors. Their
article confirms the results presented here.

The work on document retrieval in multiprocessor systems (Aalbersberg and
Sijstermans, 1991; DeFazio and Hull, 1991; Frieder and Siegelmann, 1991; Lin,
1991; Matsliach and Shmueli, 1991) is also related to this article in that physical
index organization issues need to be addressed for those architectures. While some
issues for these systems are not considered here, we believe that the issue of physical
organization is an important one and that the prefetch algorithms presented in this
paper probably perform well on multiprocessor architectures. Inverted files also are
used in some parallel computers (Stanfill, 1990). This paper also assigns keywords
to processors. Finally, in some articles on information retrieval (Rabitti and Zizka,
1984; Voorhees, 1986; Harman and Candela, 1990) various benchmark figures are
given.

3. Models

There are two choices for representing documents and queries in a simulation study.
One is to use a real document base and an actual query trace. The other is to
generate synthetic databases and queries, from probability distributions that are
based on actual statistics. Using a particular database and query trace is more
realistic, but limits one to a particular application and domain. Using synthetic data
gives one more flexibility for studying a wide range of scenarios. Here we follow
the synthetic data approach. We feel it is more appropriate for a first study that
explores options and tradeoffs, rather than predicts the performance of a particular
document application.

3.1 Document Model

For the model of a document we first define several parameters in Table 3. The
database consists of a collection of D documents. Conceptually, each document is
generated by a sequence of W independent and identically distributed trials. Each
trial produces one word from the vocabulary V. Each word is uniquely represented by
an integer w in the range 1 < w < T where T = [V [. The probability distribution Z
describes the probability that any word appears. For convenience, the distribution
is arranged in non-increasing order of probability, i.e. Z(w) > Z(w + i), Vi > O.
The "Value" column in Table 3 again represents our base case scenario. In this
case, the values are from a legal document base described in Chapman and DeFazio
(1990).

To construct a specific probability distribution Z of Z , a curve is fit to the
rank/occurrence distribution of the vocabulary of the legal documents database
(Chapman and DeFazio, 1990) and then normalized to a probability distribution.
Figure 2 shows the log/log graph of two curves that have been fit to some of the
100,000 most frequently occurring words. The X axis is the distinct words in the

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 253

Table 3. Parameters of the document model

Parameter Value Description

D

W

V

T

667260

12000

1815322

zq)

the number of documents

words per document

the set of words appearing in documents,

the vocabulary

total words in V, i.e. [V [= T

Pr(word = j), a probability distribution

database, ranked by the number of occurrences in non-increasing order. The Y axis
is the number of occurrences of each word. A diamond symbol marks the number
of occurrences of a word. The curve labeled "linear" is the result of fitting a linear
equation and the curve labeled "quadratic" is the fit of a quadratic equation. We
used Wolfram (1991) for curve fitting.

Given the quadratic fit curve, the form of the probability distribution Z is derived
in Appendix A as

Z (j) : j-°'°75252s In j--0.150669 e16.3027

8.47291 × 108
(1)

where the denominator is a normalization constant. Although our distribution is
similar to Zipf (1949), ours matches the actual distribution better.

3.2 Query Model

A query is a sequence of words (W l , . . . , WK) generated from K independent
and identically distributed trials from the probability distribution Q(j). Thus, the
occurrences of the words are mutually independent. See Table 4 for a list of the
parameters and base values chosen.

We now construct a specific probability distribution Q. There is little published
data on this distribution, and there is no agreement on its shape (however, see
DeFazio, 1992 for a different model). It does not follow the same distribution as
the vocabulary (Figure 2); relatively infrequent words are often used in queries. In
light of this, the uniform distribution was chosen for Q i.e., every word appears in
a query with equal probability. The distribution allows easy comprehension of the
impact of the distribution on performance. However, we found that the uniform
distribution across the entire vocabulary gave far too much weight to the most
infrequently occurring words (the tail of Figure 2). For example, these tail words
are often misspellings that only appear once in the entire database and never appear
in queries. Thus, in the Q distribution we cut off the most infrequent words. For

254

Figure 2. Curve fit to vocabulary occurrence data

l e+09 | - - i - - , - - , - - , - -

l e+08 r " qoad ra t i c

.

l e+06 ~ " O ~tl'

 ooooo
..... Zy-..*

1 0 0 0 0 ~ ~ ? " ¢ J 4 ~ .

looo ~'-~.'--..
1 0 0

1 0

1

~'~-~,

• I , I , I , , I ,

I0 I00 I000 I0000 I00000
rank of words in order by number of occurrences

this we introduce a parameter u to determine the range of the uniform distribution,
giving Q the equation

1 l _~ k_< uT
Q(k) -- 0 otherwise

As u decreases, the probability of choosing a word of low rank in a query
increases. Words of low rank occur often in the database. Thus the expected
number of documents to match a query increases since each word of the query
occurs often in the database. Hence, if u is too small, queries will probabilistically
have answer sets that are a large fraction of the database. On the other hand, if
u is too large, answer sets will be unrealistically small. To estimate a good value
for u, we compute the expected number of documents in Appendix B that match
a query of length K for various values of u. Note that the Q distribution has two
other advantages. Since the distribution is simple, the impact of the distribution and
consequently the impact of the work load on the system can be readily understood.
(In Section 5, for example, we vary u and show the impact on performance.) Also,
this distribution may favor very long inverted lists because very common words
(such as "for") are part of the distribution. Thus, we consider this simulation to
be a worst-case scenerio.

Using the parameter values in Table 3 and Equation 1, we graph the function
Z for the various values of K and u in Figure 3. In the base case the number of

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 255

Table 4. Parameters for the query model.

Parameter Value Description

K 5
(j) Q (j)

u 1%

V I

S V 'g

number of keywords in a query

Pr(word = j), a probability distribution

fraction of T (in rank order of 1/) appearing

in a query

the u fraction of V

set of possible queries. S = V' x • • • x V ~

keywords in a query is 5, so we examine the graph at the X axis value of 5. The
value of u = 0.01 was chosen as the base value because it indicates that about
300 documents on the average are found per query. Note that in this case the
fraction uT of the vocabulary includes 96.3% of the cumulative keyword occurrences
in Chapman and DeFazio (1990), thus covering all but 3.7% of the words in the
database. In Section 5 the response time sensitivity to uT of the various index
organizations is discussed.

3.3 Answer Set Model

At various points in the simulation we need to know the expected size of a query
answer set or partial answer set. Consider a particular query (or subquery) with
keywords w l , . . . , wi(. Say this query is executed on a body of documents of size
Documents. Note that under the system index organization, Documents = D (D is
the total number of documents). However, for the other organizations, Documents
is the number of documents covered by the index (or indices) used by the particular
subquery. Given this, the expected number of documents that matches the query is

Documents. [1 -- e-WZ(wl)] . . . [1 -- e--WZ(wK)], (2)

(The term [1 -- e -wz(wO] is the probability that a document contains keyword
wl.) Equation 2 is similar to Equation 5 in Appendix B, except that here we are
looking at a specific query, as opposed to averaging over all possible queries.

3.4 Inverted List Model

The inverted list contains a sequence of elements, each of which describes a single
appearance of the word. Each element contains a document identifier and a word
offset of the word in the document. Thus, the inverted index is essentially a one-
to-one mapping to the documents (except for the white space, punctuation, and a
small number of common words that are ignored when the document is added to
the inverted index).

256

Figure 3. Expected number of documents in answer set for any query

l e+06

I00000

10000

8
I000

I00

, i

u : 0.050

u = 0.010 ----

u : 0.007

u : 0.004 -- \
• \ \ " , ,

\

number of keywords in a query

I I I

4 6 8 10 12 14 16 18 20

The expected number of occurrences of a word in a document is Z(w)-W. Thus,
the expected number of entries of the corresponding inverted list is

Z(w) . W . Documents (3)

where Z(w) is the value of Equation 1 for the word w, W is the number of words
per document, and Documents is, as before, the number of documents spanned by
the index.

4. Simulation

To study the index organizations and query algorithms, we implemented a detailed
event-driven simulation using the D ENET (Livny, 1990) simulation environment.
In this section we describe important aspects of the simulation. Tables 5 and 6
describe the base parameters used.

4.1 Hardware

The system model consists of several hosts with a CPU and memory, several I/O
buses per host and several disks per I/O bus. The hosts are connected by a local
area network. See Table 5 for the parameters and base values that describe the
hardware configuration. The values for the disk and I/O bus portions of this table

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 257

Table 5. Hardware parameter values and definitions

Parameter Value Description

DiskBandwidth 10.4

DiskBuff 32768

BlockSize 512

Seek Time 6.0

BufferOverhead 4.0

I/OBusOverhead 0.0

I/OBusBandwidth 24.0

LANOverhead O. 1

LANBandwidth 10.0

Mbits/sec Bandwidth of the disk

Size of a disk buffer in bytes

Number of bytes per disk block

Disk seek time in ms

Cost to seek one track in ms

Cost of each I/O bus transfer in ms

Mbits/sec Bandwidth of the I/O bus

Cost of each/_.AN transfer in ms

Mbits/sec Bandwidth of the LAN

are from Chervenak (1990). The hosts have parameter values that correspond to
a typical workstation. See Figure 1 for an example of hardware configuration.

4.2 Inverted Lists and Answer Sets

In our simulation, we do not generate a synthetic document base a priori. Instead,
when we require the length of the inverted list for a word w, we use the expected
length of the list. Thus, the length in disk blocks of an inverted list is modeled by
the equation

BlockSize

where Z(w) • W . Documents is from Equation 3, EntrySize is the average number
of bits used to represent an entry in the inverted list, 8.0 converts from bits to bytes,
BlockSize is a parameter representing the size of a block on disk and Compress
models the efficiency of the inverted list compression scheme. This compression
scheme model assumes a linear reduction in the size of the inverted list. One simple
way to accomplish an approximately linear reduction is to represent the inverted
lists in sorted order and then store (packed) the difference between two consecutive
entries (known as the delta encoding). More sophisticated compression schemes
(Zobel et al., 1992) result in better, nonlinear, compression ratios. The BlockSize
parameter permits studying the effect of internal fragmentation.

To determine if the inverted list for a word is striped, the predicate

w < Stripe • u • T

is true for striped inverted lists. Thus, if Stripe = 0.0 then no words have striped
inverted lists, and if Stripe = 1.0 all words (which can appear in a query) have
striped inverted lists.

258

Table 6. Base case parameter values and definitions

Parameter Value

CPUSpeed 1
Multiprogram 4
Querylnstr 50000

Subque~ylnstr 10000

SubquetyLength 1024

Fetchlnstr 5000

Mergelnstr 10

Unionlnstr

Decompress

AnswerEntly

EntrySize

Compress
Stripe

Description

Relative speed of each CPU

Multiprogramming level perHost
Query start up CPU cost

Subquery start up CPU cost

Base size of subquery message

Disk fetch start up CPU cost

Merge CPU cost per byte of a

decompressed inverted list

1 Concatenation CPU cost per byte of

an answer set

10 Decompression CPU cost per byte of

inverted list on disk

4 Bytes to represent an entry in an

answer set

10 Bits to represent an inverted list

entry on disk

0.5 Compression Ratio

0.0 Fraction of query words that have a

striped inverted list

To fetch the inverted list for a word w in the unstriped case, one disk fetch
corresponds to the read of one invert list and each fetch request has a length
determined by InvertedList(w). In the striped case, the total length is the same, but
one fetch is issued for each disk that contains part of the striped inverted list. In
both cases, processing for the query waits until all the fetches have completed for
all the words appearing in the subquery on a host.

The length of an answer set, in bytes, is determined by multiplying Equation 2
by the length of an element of an inverted list, AnswerEntry (Table 6).

4.3 CPU Simulation

The relative weight of all CPU parameters is controlled by the single parameter
CPUSpeed. Thus, the rate of the CPU can be varied independently of individual
factors contributing to the length of various CPU requests. The CPU is simulated
by a first-come, first-served (FCFS) infinite length queue server. The number of
CPU instructions needed by each request is determined by the type of request:

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 259

1. query start up, determined by parameter Quelylnstr,

2. subquery start up, determined by parameter Subquaylnstr,

3. disk fetch, determined by parameter Fetchlnstr,

4. uncompression and merge of inverted lists, determined by the equation

Mergelnstr . ~ o InvertedList(w)

5. the union of subquery answer sets, determined by the equation

Unionlnstr . AnswerLis t (wl , . . . ,wk).

The amount of CPU time required by each request is scaled by CPUSpeed.

4.4 Disk and I/0 Bus Simulation

A disk services fetch requests from a CPU and sends the results to an I/O bus. The
disk is an F C F S infinite length queue. An I/O bus is simulated by an F C F S infinite
length queue which services requests from disks. The disk service time for a request
is determined by four factors: the constant seek time overhead, the track-to-track
seek time and overhead to load the disk buffer, the transfer time off of the disk,
and the time needed to gain access to the I/O bus. The seek time overhead for the
read is determined by the parameters SeekTime and implicitly includes the average
rotational delay. Every read has a fixed overhead determined by the the initial seek
and the track-to-track seeks and overheads. This is modeled by

SeekTime + (InvertedList(w)DiskBuff) x BufferOverhead

After the simulation of the seek and the seeks between buffer loads, the disk
negotiates access to the bus by sending a BUS REQUEST message to the I/O bus
node. The function transmit(x,y) gives the time (in ms) required to transmit y at
bandwidth x. Let

a = transmit(DiskBandwidth, InvertedList(w))
b = transmit(I/OBusBandwidth, InvertedList(w) + I/OBusOverhead)

then the BUS REQUEST message is sent after max(0.0,a - b) units of time. This
simulates the overlap of the disk loading its track buffer and the transfer of data
to the I/O bus. The disk then waits until a BUS GRANTED message is received.
Then both the disk and the I/O bus are busy for b units of time. The disk and I/O
bus are then both freed to service the next request in each respective queue.

Since an I/O bus services requests one at a time in the order of their arrival, all
the disks attached to an I/O bus compete for access to the I/O bus. In the case of

260

a striped inverted list, the blocks of the inverted list that reside on disks of an I/O
bus are read in parallel but must be transmitted through the I/O bus sequentially.
However, if the inverted list spans more than one I/O bus, some of the blocks are
transmitted to the host entirely in parallel, since the operations of the I/O buses
are independent of each other.

4.5 LAN Simulation

The system contains a single Large Area Network (LAN) that is simulated by
a single FCFS infinite length queue that services subquery requests and answers
which are transmitted between hosts. Subquery requests have a length determined
by parameter SubQuelyLength and any additional answer set appended to the query
(as is the case with the prefetch algorithms). Answer set lengths are described in
Section 3.3. The service time for a request is determined by the equation

transmit(LanBandwidth, RequestLength) --b LANOverhead

where LanBandwidth is a parameter. Note that subquery start up requests contend
with answer set transmission, whereas disk fetch requests do not contend with fetch
answers in I/O bus. This is because disk fetch requests are of a short, constant
length and consume an insignificant fraction of the I/O bus bandwidth. However,
subquery requests have variable length and consume a significant fraction of the
local area network bandwidth when partial answer sets are transmitted. A request
with identical source and destination hosts is not transmitted through the local
area network. Note that for simplicity, broadcast messages are not modeled and
thus the query algorithms do not use this feature. In an implementation, broadcast
messages could be used to reduce the cost of transmission of subqueries by a factor
of the number of hosts because the transmission of the prefetch subquery to each
individual host would be replaced by a single broadcast transmission.

4.6 Query Simulation

A query, consisting of a set of words, is issued to a host. The parameter Multiprogram
determines the number of simultaneous queries per host in the simulation. The host
processes the query with the following steps

1. a CPU burst representing query parsing and start-up,

2. subquery transmission to some or all hosts in the system,

3. block and wait for the subqueries to finish,

4. a CPU burst to merge the results of the subqueries.

Subqueries are transmitted to hosts by inserting the subquery in the LAN queue.
When a subquery arrives at a host, it is processed by the following steps:

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 261

Table 7. Simulation parameter values and definitions

Parameter Value Description

SimulateTime
Confidencelnter
ConfidenceLevel

BatchSize

100000

5%

90%

100

Maximum time of an experiment

Size of the confidence interval

Confidence level used with the

t statistic

Batch size of response time values

1. a CPU burst representing subquery parsing and start-up,

2. a fetch request for an inverted list to one or more disks for each word
appearing in the subquery,

3. a block and wait for the fetches to finish,

4. a CPU burst representing the computation of the intersection of the fetched
inverted lists, and

5. the transmission of the answer set of the subquery back to the query.

The answer is transmitted to the host CPU by inserting it in the LAN queue.

4.7 Simulation

As mentioned earlier, the simulation is written in DENET (Livny, 1990). The
simulation tracks the system response time and, when the confidence interval is
less than Confidencelnterval for a confidence level of ConfidenceLevel of this value
over batches of size BatchSize, the simulation terminates early. The values of these
variables are shown in Table 7. These features are provided by the simulation
programming language.

5. Simulation Results

Table 8 presents the data collected from a simulation run on the base case of values
(Tables 2-7). The metrics of query processing response time, the error in response
time (90% confidence interval), query throughput, disk, I/O bus, CPU and LAN
utilization were monitored for every simulation experiment. The amount of error in
the response time was controlled to prevent misinterpretation of results. To avoid
clutter, we have chosen not to add error bars to the graphs.

The table reveals that the disk, I/O bus, and host index organizations have
comparable performance. Of the three, the disk organization performs somewhat

262

Table 8. Results of all metrics for base case simulation experiment

INDEX ORGANIZATION

METRIC Disk I/O bus Host System P I P II P III

query response time (sec)

response time error (sec)

query throughput (query/sec)

disk utilization (%)

I/O bus utilization (%)

CPU utilization (%)

LAN utilization (%)

2.17 1.75 2.14 8.68 4.96 4.98 4.88

0.049 0.044 0.081 0.324 0.417 0.366 0.385

7.30 9.11 7.44 1.85 3.23 3.22 3.25

86.1 76.7 44.3 13.1 24.9 24.3 26.1

18.5 28.0 37.7 21.9 30.5 28.7 31.1

43.9 60.9 48.8 21.9 35.7 34.7 35.4

23.3 29.7 24.3 94.7 29.9 16.1 10.9

(P I is prefetch I, P II is prefetch II and P III is prefetch III).

worse because it has the highest disk utilization, leading to longer I/O delays. The
I/O bus index organization has the best response time and throughput in this case.
However, note that the host organization has the most balanced use of resources
and, as we will see, this leads to better performance under more stressful scenarios.

The system index organization, as well as the prefetch optimizations, performs
poorly in the base case scenario. The main reason this index organization (without
prefetch) does so poorly is that it saturates the LAN by transmitting many long
inverted lists. The prefetch organizations reduce the amount of data sent over the
LAN (Section 2.3), and indeed we observe that the LAN utilization is much lower
in these cases (Table 8). Thus, the prefetch strategies perform substantially better
than the simple system index organization. (Note that the saturation of the LAN
depends heavily on the ratio of the bandwidth of the LAN to the average length
of an inverted list. Elsewhere, [Tomasic and Garcia-Molina, 1993a], we describe
scenerios where the prefetch index organizations perform better than the disk, I/O
bus, or host index organizations.)

However, the prefetch strategies still perform substantially worse than the disk,
I/O bus, and host organizations. The main reason is that there is less parallelism in
the prefetch strategies than in the others. The first phase of the prefetch requires
waiting for one part of the query to be completed. Furthermore, since lists are
not split across disks, it takes longer to read them. These delays lead to lower
throughputs in our closed system model. That is, in our model, each computer
runs a fixed number of queries. If they take longer to complete, less work is done
overall. The main advantage of the prefetch strategies is that less work is done per
query (i.e., fewer disk seeks, I/O starts). However, in this scenario, these resources
are not at a premium, so the advantages of prefetch do not show.

To our surprise, prefetch II and III actually perform essentially the same as
prefetch I (Table 8). In Section 2.3 we argued that prefetch II and III would reduce
the amount of data sent over the LAN. This is true as evidenced by the LAN

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 263

Figure 4. Sensitivity of response time to maximum query keyword rank

1 2 0 0 0

I0000

e
8 0 0 0

®

6 0 0 0

4 0 0 0

2 0 0 0

' ' 'disk -e---
I/O bus -M--

host -B--.
4 system -I~--
• pre[etch I .a..-

.

0 I I I I I I

5 0 0 0 110000 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 4 0 0 0 0
maximum keyword rank

utilization. However, with hindsight, we now see that the additional work done
in phase one of prefetch II and III is performed sequentially with respect to the
rest of the processing of the query, leading to longer response times. Thus, only
in cases where the LAN is a bottleneck would prefetch II and III pay off. So, to
avoid clutter we will only show the prefetch I results.

We now study how some of the key parameters affect the relative performance
of the index organizations. (We only report on the more interesting results; many
more experiments were performed than what can be reported here.) We start by
showing in Figure 4 the sensitivity of response time to the value of uT. Recall that
T is the size of the vocabulary and u is the fraction of the vocabulary that can
appear in a query. Each line graphs the behavior of a different index organization.
The line labeled prefetch is the prefetch I processing algorithm with a system
index organization. The response times for each index organization decrease as uT
increases because the number of word occurrences in the database for an average
query word decreases. That is, as uT decreases, the inverted lists that have to be
read increase in size. The disk and I/O bus organizations are relatively insensitive to
uT because they distribute lists across many disks, i.e., the list fragments that need
to be read grow at a slower rate. The system and prefetch curves are more sensitive
to uT because inverted lists are read whole. The curve for the host organization is
an intermediate case. Although not shown here, the effect of uT on throughput is

264

Figure 5. Sensitivity of response time to seek time

12000 / ' ' ' disk -e--

[I/O bus -~---
host -B--"

10000 system -~--
prefetch I -A-.-

8 0 0 0 ~ . / ' - - ~ ' - - ~

6 0 0 0

4000

2 0 0 0 c . -
.,F

0 i i i i

0 20 40 60 80 100
disk seek time (ms)

similar,
A graph of the response time of the various configurations vs. the seek time

of a disk in Figure 5 shows that the disk and I/O bus index organizations are
most sensitive to the seek time of the storage device. This is because the disk
index organization must retrieve for each query more inverted lists than any other
organization. This same overhead is incurred by the I/O bus index organization to
a lesser extent. The host index organization is very insensitive to seek time since
only a few inverted lists must be retrieved per query.

Figure 5 indicates some potential for the host and prefetch index organizations
if the storage devices are relatively slow (e.g. optical disks or a jukebox). It is
important to note that our disk seek time parameter captures not only the seek
time but also other fixed I/O costs. For example, to get to the head of the inverted
list, the system may have to go through a B-tree or other data structure. These
additional I/O costs are modeled in our case by the "seek time." Furthermore,
we are assuming that inverted lists (or fragments) are read with a single I/O. For
longer lists there may be several I/Os in practice, and hence multiple seeks. Thus,
the higher seek times shown in Figure 5 may occur in practice even without optical
devices. In these cases, the disk and I/O organizations may not be advisable.

Figure 6 shows the effect of load level on throughput for the various index
organizations. As the load level rises, various bottlenecks in each index organization
occur. Other collected data show that the disk index organization has a disk utilization
rate of 80.5% for a multiprogramming level of 1. The I/O bus index organization has

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 265

Figure 6. Effect of load level

C =.
o'

16

14

12

10

8

6

4

2

0
0

, , , i i !

disk

I/O bus-~--
host -B---

system -14---
prefetch I ~--

.......... D

f i + ~ $ 5 = ~ " ~
/ ~ ° . ° D . o-o°°

s / ° o°.-°

/ ,+

° h ~ ' / &

---m- N X - - - - - - X

I I I 210 I I
5 10 15 25 30 35

multiprogramming level (per host)

a disk utilization of 58.7% for a multiprogramming level of 1 that rises to 77.5% at
a multiprogramming level of 8. The host index organization has low disk and CPU
utilization at a multiprogramming level of 1 (about 23.0% and 33.0% respectively)
and thus has more spare resources to consume as the multiprogramming level rises.
At a multiprogramming level of 32 (128 total simultaneous queries since there are
four hosts) the disk utilization has risen to over 74.3% and CPU utilization to over
78.2% for this index organization.

The system organization has a LAN bottleneck even a low multiprogramming
loads (94.7% at a multiprogramming level of 4) and thus does not improve as the
load increases. With a multiprogramming load of 32, additional data show that the
response times for the disk, I/O bus, host, system and prefetch I index organizations
are 17.9 see., 12.0 see., 10.6 sec., 62.6 sec., and 18.2 sec., respectively.

Figure 7 shows the effect of striping on throughput. The horizontal axis, the
variable S t r i p e , is the fraction of words that have striped inverted lists. (The number
of words that have striped inverted lists is S t r i p e • u • T .) On the left-hand side of
the graph, we see that striping 1% of the query words has a dramatic effect on the
host index organization, giving a roughly 60% increase in throughput (with a similar
decrease in response time). The system index organization shows no improvement
due to the LAN bottleneck, but other collected data show that with a 100 Mb/sec LAN
the system index organization shows an approximately 70% increase in throughput.
Notice that the disk index organization curve is flat, indicating that this organization
is independent of striping. Other collected data show that if the horizontal axis is

266

Figure 7, Effect of striping

16

14

12

10

8

6

4

2

0

| i ! i

disk
I/O bus -+---

host -m--.
system ~--

prefetch I -a---

.~...-E} D -D "ID
Q

We-K------M---- 14---- ~ - - ~ - - - - I(

I 1 I I

0 . 0 5 0 . 1 0 . 1 5 0 . 2
fraction of query words which are striped

0.25

extended, the host and I/O bus index organizations approach the throughput of the
disk index organization as the fraction of striped query words approaches 1. This
confirms the explanation of the effect of striping in Section 2.4.

The effect of large partial answer sets is shown clearly in Figure 8, which
graphs response time as a function of the number of keywords. This graph shows a
counter-intuitive result: in some situations, the response time of a query decreases
as the number of keywords in a query increases. The sharp drop of the disk, I/O
bus, and host lines from one keyword per query to two keywords per query is due
to the reduced size of partial answer sets. That is, since the base case parameter
set has four hosts, a query containing one keyword under the disk, I/O bus and
host index organizations will transmit 3/4 of the answer set across the local area
network for these three index organizations. In the case of a two word query, again
3/4 of the answer set is transmitted. However, the total answer set size is much
smaller since each partial answer set is the intersection of two inverted lists. This
explains the sharp drop in the response time for these organizations from one to
two keywords. As the number of keywords increases beyond two, the additional
work per keyword needed dominates the response time.

In the system index organization, the size of the partial answer sets transmitted
depends on the hosts in which the particular words in the query reside. A subquery
containing a single word has a large partial answer set. For two keywords, the

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 267

Figure 8. Sensitivity of response time to number of keywords in query

1 2 0 0 0

1 0 0 0 0

E
8000

o

Z 6000

4000

2000

' ' / ' ' ~disk-e---
/ ~/o bus -4--.

/ / ho~t -,--.
/ / system -~--

/ / / j>.----" ¢::¢::y'
I', i _../-

I I I I I
5 1 0 1 5 2 0 2 5 3 0

number of keywords per query

probability of a single word subquery at some host is high, thus leading to a large
response time due to the transmission of these partial answer sets. At five keywords
per query, the probability of a large partial answer sets is reduced and thus response
time is comparatively improved. With more than fifteen keywords per query the
probability of a large partial answer set is small and the response time for these
queries is large due to the work required for query processing.

Note that after fifteen keywords per query, prefetch I performs worse than
the simple system organization. This is because in the system organization the
probability of a single word answer set being transmitted is very small anyway.
Thus, the additional cost of the prefetch I algorithm is counterproductive. (This
discrepancy can be eliminated by switching from the prefetch I algorithm to the
algorithm when the answer set of a subquery is expected to be small.) However,
for small numbers of keywords, the prefetch I algorithm performs as expected
and avoids transmitting large partial answers sets characteristic of the system level
organization.

So far, the system organization, with or without prefetch, has generally not
performed well. To determine under what circumstances a prefetch algorithm
performs well, we remove the LAN bandwidth bottleneck and increase the number
of hosts to sixteen while keeping the number of disks and I/O buses constant: We
study the rise in query throughput as the seek time increases in Figure 9. Again,
the disk organization is sensitive to the increase in seek time for the same reasons
as Figure 5. The host and I/O bus index organizations are identical since each host

268

Figure 9. Good hardware configuration for prefetch algorithm

1 6

i 10

8

6

f" 4

2

0

' ' ' ' ' 'disk -e---
I/O ~s +--

\ h o s t -m--.
system ~--

~ prefetch I ~--

.

" "1" '"

I I I I I I

I0 20 30 40 50 60 70 80
disk seek time (hosts = 16, I/O buses per host = I0 LAN bandwidth = 90)

has one I/O bus. The figure shows that the large number of hosts makes these
two index organizations sensitive to seek time. The prefetch I algorithm performs
well (with a disk seek time above 50 ms) because an individual query (with five
keywords) involves at most six hosts which frees the other hosts to process other
subqueries. Given the arguments for considering disk seek time as a model of
all fixed computation that consumes disk resources, 50 ms is not an unreasonable
amount of time for a disk to be busy per inverted list fetch. For a disk seek time
of 80 ms in Figure 9, the disk, I/O bus, host, system, and prefetch I response times
are 27.1 see, 15.0 see, 15.0 sec, 10.8 sec, and 10.2 sec, respectively.

6. Conclusion

We described various options for the physical design of a text document retrieval
system. We studied the performance of several parallel query processing strategies,
and the impact of the underlying technology. In particular, the choice of an index
organization depends heavily on the access time of the storage device and the
bandwidth of interprocessor communication. We also discovered some unexpected
results, e.g., as the size of a query increases, its response time may drop; the more
elaborate prefetch optimizations were usually counterproductive.

In general, our results indicate that the host index organization is a good choice,
especially if very long inverted lists are striped. It uses system resources effectively

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 269

and can lead to high query throughputs in many cases. When it does not perform
the best, it is not very far off from the best strategy.

Our results also indicate that the system organization, even with the prefetch
organization, is not good unless disk seeks are high and network bandwidth is high.
We should, however, point out four factors that may be unfair to this approach:
(1) We are not modeling document fetches from disks. If the documents were
stored on the same disks as the indexes, then disk utilizations would be higher.
This would make the system organization more attractive since it reduces the I/O
load. (2) We are not modeling pipelining of prefetching, I/O, and CPU processing
within a query. This can reduce query response time, allow users to abort partially
finished queries, and would be more beneficial to the system organization since it
deals with longer inverted lists. (3) Another reduction in response time is early
termination of the intersection algorithm. That is, if the inverted lists are in sorted
order, the intersection algorithm can (in some cases) terminate after having read
only a fraction of the inverted lists. (4) We are using a closed simulation model
where larger response times penalize throughput.

In the future we plan to study the prefetch strategies more carefully, eliminating
these potential biases. We also plan to build an actual experimental system, with
a large collection of documents, in order to validate our models and results. We
believe that the results in this article will be very useful in guiding the construction
of this system.

Acknowledgements

This research was partially supported by the Defense Advanced Research Projects
Agency of the Department of Defense under Contract No. DABT63-91-C-0025.
Thanks to Sam DeFazio, Benjamin Kao, Miron Livny, Sergio Plotkin, Mendel
Rosenblum, and the anonymous referees for help on various aspects of this article.

References

Aalbersberg, I.J., and Sijstermans, E High-quality and high-performance full-text
document retrieval: The parallel infoguide system. Proceedings of the First Inter-
national Conference on Parallel and Distributed Information Systems, Miami Beach,
FL, 1991.

Burkowski, EJ. Retrieval performance of a distributed text database utilizing a paral-
lel processor document server. Proceedings of the Second International Symposium
on Databases in Parallel and Distributed Systems, Dublin, 1990.

Chapman, D. and DeFazio, S. Statistical characteristics of legal document databases.
Technical report, Mead Data Central, Miamisburg, OH, 1990.

Chervenak, A.L. Performance measurements of the first raid prototype. Technical
Report UCB/UCD 90/574, University of California, Berkeley, 1990.

270

DeFazio, S. Document retrieval benchmark. Working draft version 1.2, Sequent
Computer Systems, 1992.

DeFazio, S. and Hull, J. Toward servicing textual database transactions on symmetric
shared memory multiprocessors. Proceedings of the International Workshop on High
Performance Transaction Systems, Asilomar, CA, 1991.

Emrath, P.A. Page indexing for textual information retrieval systems. Ph.D. thesis,
University of Illinois at Urbana-Champaign, 1983.

Faloutsos, C. Access methods for text. ACM Computing Surveys, 17:50-74, 1985.
Fedorowicz, J. Database performance evaluation in an indexed file environment.

A CM Transactions on Database Systems, 12(1):85-110, 1987.
Frieder, O. and Siegelmann, H.T. On the allocation of documents in multipro-

cessor information retrieval systems. Proceedings of the Fourteenth Annual In-
ternational ACM/SIGIR Conference on Research and Development in Information
Retrieval, Chicago, IL, 1991.

Harman, D. and Candela, G. Retrieving records from a gigabyte of text on a mini-
computer using statistical ranking. Journal of the American Society for lnformation
Science, 41(8):581-589, 1990.

Hollaar, L.A. Implementations and evaluation of a parallel text searcher for very
large text databases. Proceedings of the Twenty-Fifth Hawaii International Confer-
ence on System Sciences, IEEE Computer Society Press, 1992, pp. 300-307.

Jeong, B.-S. and Omiecinski, E. Inverted file partioning schemes for a shared-
everything multiprocessor. TechnicaI Report GIT-CC-92/39, Georgia Institute of
Technology, College of Computing, 1992.

Lin, Z. Cat: An execution model for concurrent full text search. Proceedings of
the First International Conference on Parallel and Distributed Information Systems,
Miami Beach, FL, 1991.

Livny, M. D E N E T user's guide. TechnicalReport, University of Wisconsin-Madison,
1990.

Matsliach, G. and Shmueli, O. An efficient method for distributing search struc-
tures. Proceedings of the First International Conference on Parallel and Distributed
Information Systems, Miami Beach, FL, 1991.

Patterson, D.A., Gibson, G., and Katz, R.H. A case for redundant arrays of inex-
pensive disks (raid). International Conference on Management of Data (SIGMOD),
Chicago, Illinois, 1988.

Rabitti, E and Zizka, J. Evaluation of access methods to text documents in office
systems. In: Research and Development in Information Retrieval, Cambridge, G.B.:
Kings's College, 1984, pp. 21-40.

Salton, G. and McGill, M.J. Introduction to Modern Information Retrieval. New York:
McGraw Hill, 1983.

Stanfill, C. Partitioned posting files: A parallel inverted file structure for information
retrieval. ACM Special Interest Group on Information Retrieval (SIGIR), Brussels,
Belgium, 1990.

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 271

Tomasic, A. and Garcia-Molina, H. Caching and database scaling in distributed
shared-nothing information retrieval systems. Proceedings of the ACM SIGMOD
International Conference on Management of Data, Washington, DC, 1993a.

Tomasic, A. and Garcia-Molina, H. Performance of inverted indices in shared-
nothing distributed text document information retrieval systems. Proceedings of
the Second International Conference on Parallel and Distributed Information Systems,
San Diego, California, 1993b.

Trivedi, K.S. Probability and Statistics with Reliabili~, Queuing, and Computer Science
Applications. Englewood Cliffs, NJ: Prentice-Hall, 1982.

Voorhees, E.M. The efficiency of inverted index and cluster searches. Proceedings of
the ACM Conference on Research and Development in Information Retrieval, Pisa,
Italy, 1986.

Weiss, E Size reduction of inverted files using data compression and data structure
reorganization. Ph.D. thesis, George Washington University, 1990.

Wolfram, S. Mathematica, 2nd ed. Redwood City, CA: Addison-Wesley, 1991.
Zipf, G.K. Human Behavior and the Principle of Least Effort. Redwood City, CA:

Addision-Wesley, 1949.
Zobel, J., Moffat, A., and Sacks-Davis, R. An efficient indexing technique for full-

text database systems. Proceedings of the 18th International Conference on l~ry
Large Databases, Vancouver, British Columbia, 1992.

272

Appendix A. Derivation of the Probability Distribution Z

Given the curve fit equations, we wish to derive the form of the probability distribution
Z. This is accomplished by transforming the continuous curve fit equation from a
logarithmic domain to a linear domain and then using this equation to approximate
an integer probability distribution. The distribution that results from a linear curve
fit is derived by introducing two auxiliary equations

x ' = ln x , y ~ = l n y

that describe the relationship between the domains. The form of the curve fit
equation is

y' = m x ' + b

and by replacement and raising exponents becomes

e ln y ~ c m In x+b

which then reduces by algebra to

y = e r n l n x e b ~ e l n (x ~) e b ~ x m e b.

Note that typically a Zipf Harmonic function (Zipf, 1949) is used to approximate
the distribution of the occurrences of high frequency words in a document. Such a
function corresponds to a linear fit in log space. The definitions of the Zipf Harmonic
function appear in Trivedi (1982) as follows. (Here, we model the distribution of all
the words in the document. This simplifies the analysis and has little impact since
we simulate only the high frequency words.) To show this relationship, suppose
for the moment that Z is this function. We arrange the probabilities of Z(j) in
nonincreasing order Z(1) > . . . > Z(T). Zipf's law states that

z (i) = c -:, I < i < T ,

where the constant c is determined from the probability distribution normalization
1 where HT is the T th Harmonic number. requirement, ~]/T=i Z(i) = 1. Thus c = ~T

Given this definition, we derive the linear form of the Zipf Harmonic function in
log/log graphs as follows. Let

x ' = ln x , y ' = ln y

again describe the relationship between the the logarithmic and linear domains.
Then we rewrite x as

e x~ -~ X

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 273

and from the above derivation we can write

1

Y - HTX

for the equation of the distribution. By substitution and some algebra,

1
yl = in - - -

HTX
- - l n l - - l n H T - - l n x

we derive the linear form
yl = _ x I _ in HT.

This demonstrates that the Zipf Harmonic function is at best some linear fit on the
data shown. However, Figure 2 shows that the quadratic fit is better an any linear
fit.

Returning to the problem of determining equation Z from the quadratic fit, we
can use a derivation similar to the one above giving the derivation

x ' = l n x , y ' : l n y

yt = axt2 + bx' + c

e lny = ea(lnx) 2+blnx+c

y : e a (l n x) Z e b l n x e c = ealnxln~eln(~b)ec = (eln(xa))lnxeln(xb)ec

to produce the general form

y : xalnx+be c.

Thus, by using this continuous approximation to the integer probability distri-
bution and extracting the values of a, b, and c from the curve fit, we can express
Z as

~--0.0752528 Inj--O.150669e16.3027
Z (j) = 8.47291x108

where the denominator is a normalization constant. Thus, ~ = l Z q) = 1 as required
by probability distributions.

274

Appendix B. Derivation of the effect of u on the expected size of a
query answer set

A document matches a query when every word that appears in the query also
appears in the document. For the expected number of documents to match a query
of length K, we write

D • Pr(query Y of length K matches document A)

by the independence of documents, then

D • EYES Pr(Y) Pr(Y matches A] Y)

by the theorem of total probability. The conditional probability

Pr(Y matches A I Y)
P r ((v l , . . . , VK) matches A I Y = (V l , . . . , VK))

Pr(Vl matches A) . . . Pr(VK matches A) I Y = (V l , ' " , VK)

reduces to a multiplication by the independence of each match. The probability of
a match of a word v and a document A

Pr(v matches A)
Pr(v occurs at least once in A)
1 - Pr(v does not occur in A)

1 - Pr(v does not occur as word1,..., wordw in A)
1-(1-Z(v)) w

reduces to a simple function of Z and W by the independence of each word trial.
Thus, by replacement, we arrive at the expected number of documents to match a
query of size K:

D "~Y=(v, VK)ES Pr(Y) [1 - (1 - Z(Vl)) W] [1 - (1 - Z(VK)) W]

We can reduce this further by using the independence assumption about the set
of queries S. Let the words of a query be chosen independently according to a
uniform distribution Q(j), then Pr(Y) = (~T) K and

D

(uT)K [1- (1 - Z (v l)) w] ' " [1 - (1 - Z(vg)) W]
(Vl VK)ES

is transformed to

D
(uT) K

E °°°
vlEV I

[1 - (1 - Z(vl))w] .. . [1 - (1 - Z(vg)) W]
vKEV'

VLDB Journal 2 (3) Tomasic: Query Processing and Inverted Indices 275

by independence of the words that appear in the query. (Note that this assumption
is tentative and some features of user interfaces such as thesauri and wild-carding
will invalidate this assumption.) We rewrite this as

D (uT)g E [1 - (1 - Z (v l)) w] . . . E [1 - (1 - Z(VK)) W]
v l E V I v K E V I

and finally,

(uT) g [1 - (1 - Z(v)) W] .

Note that in the above equation, the expression 1 -- (1 - Z (v)) W can be viewed
as the probability of at least one success in W trials where a success is determined
by the distribution Z(]). Since the summation in the above equation is difficult to
compute, we approximate this expression by the use of a Poisson approximation of
the Binomial theorem as follows. The probability of x successes of probability p in
Y trials is the binomial distribution b(x;Y,p). The Poisson distribution is p(x;A) =
AXe-~ z! The approximation of the Binomial distribution by a Poisson distribution
is by writing A = pY, which is valid when Y > 20 and p < 0.05 (Trivedi, 1982).
Let Y = W,p = Z(j), A = W Z(j). The probability of 0 successes in the Poisson
distribution is p(0;A) = e -x . The probability of at least one success is 1 - e -x .

Thus, 1 - (1 - Z(v)) w = 1 - e - w z (j) . The above equation can be rewritten as

K

(uT) K ~,v:l

We use Mathematica (Wolfram, 1991) to perform the summation. Using the
parameter values in Table 3 and Equation 1 for Z, we graph this function for the
various values of K and u in Figure 3.

