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Abstract. The performance of distributed text document retrieval systems is 
strongly influenced by the organization of the inverted text. This article compares 
the performance impact on query processing of various physical organizations for 
inverted lists. We present a new probabilistic model of the database and queries. 
Simulation experiments determine those variables that most strongly influence re- 
sponse time and throughput. This leads to a set of design trade-offs over a wide 
range of hardware configurations and new parallel query processing strategies. 
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1. Introduction 

Full text document  databases of newspaper articles, journals, legal documents, etc. 
are readily available. These databases are rapidly increasing in size as the cost of 
digital storage drops, as more source documents are available in electronic form, 
and as optical character recognition becomes commonplace. At the same time, 
there is a rapid increase in the number of users and queries submitted to such text 
retrieval systems. One reason is that more users have computers, modems,  and 
communication networks available to reach the databases. Another  is that, as the 
volume of electronic data grows, users have an increasing need for effective search 
capabilities, as provided by information retrieval systems. 

As data volume and query processing loads increase, companies that provide 
information retrieval services are turning to distributed and parallel storage and 
searching. The goal of this article is to study parallel query processing and various 
distributed index organizations for information retrieval. 

Anthony Tomasic, M.A., is a Ph.D. Candidate, Department of Computer Science, Princeton University, 
Princeton, NJ 08540. Hector Garcia-Molina, Ph.D., is Professor, Department of Computer Science, Stan- 
ford University, Stanford, CA 94305. 
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Figure 1. Example set of four documents and example hardware 
configuration 

° Fq 
I LAN I 

To present the issues that will be addressed, let us start with a simple example. 
The left hand side of Figure 1 shows four sample documents, DO, D1, D2, D3, that 
could be stored in an information retrieval system. Each document contains a set 
of words (the text), and each of these words (maybe with a few exceptions) will be 
used to index the document. In Figure 1, the words in our documents are shown 
within the document box, e.g., document DO contains words a and b. (Of course, in 
practice documents will be significantly larger and will contain many more words.) 

To find documents quickly, full text document retrieval systems traditionally 
build inverted lists (Fedorowicz, 1987) on disk. For example, the inverted list for 
word b would be b: (D0,1), (D2,1), (D3,1). Each pair in the list indicates an 
occurrence of the word (document ID, position). (Position can be word position or 
byte offset.) To find documents containing word b, the system needs only to retrieve 
this list. To find documents containing both a and b, the system could retrieve the 
lists for a and b and intersect them. The position information in the list is used to 
answer queries involving distances, e.g., find documents where a and b occur within 
so many positions of each other. 

Next suppose that we wish to store the inverted lists on a multiprocessor like 
the one shown in Figure 1 (on right). This system has two processors (CPUs), each 
with a disk controller and I/O bus. (Each CPU has its own local memory.) Each 
bus has two disks on it. The CPUs are connected by a local area network. Table 1 
shows four options for storing the lists. 

1.1 System Index Organization 

In the system index organization, the full lists are spread evenly across all the disks 
in the system. For example, the inverted list of word b discussed earlier happened 
to be placed on disk dl .  
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Table 1. Various inverted index organizations for Figure 1 

Index Disk Inverted Lists in word: (Document, Offset) form 

Disk 

Host, I /0  bus 

System 

d 0 a: (DO, 0); b: (DO, 1) 

d 1 a: (D1, O) 

d 2 a: (D2, 0); b: (D2, 1) 

d 3 a: (D3, 0); b: (D3, 1); c: (D3, 2); d: (D3, 3) 

d 0 a: (DO, 0), (D1, 0) 

d 1 b: (DO, 1) 

d 2 a: (D2, 0), (D3, 0); c: (D3, 2) 

d 3 b: (D2, 1), (D3, 1); d: (D3, 3) 

d 0 a: (DO, 0), 

d 1 b: (DO, 1), 

d 2 c: (D3, 2) 

d 3 d: (D3, 3) 

(D1, 0), (D2, 0), (D3, 0) 

(D2, 1), (D3, 1) 

The host and I/O bus organizations are identical in this example because each CPU has only one I/O bus. 

1.2 Disk Index Organization 

With the disk index organization, the documents are logically partitioned into four 
sets, one for each disk. In our example, we assume document DO is assigned to disk 
dO, D1 to dl ,  and so on. In each partition, we build inverted lists for the documents 
that reside there. Notice that now to answer the query "Find all documents with 
word b" we have to retrieve and merge four lists, one from each disk. (Since disk 
d l  contains no documents with word b, its b list is empty.) 

1.3 Host Index Organization 

In the host index organization, documents are partitioned into two groups, one for 
each CPU. Here we assume that documents DO, D1 are assigned to CPU 0, and 
D2, D3 to CPU 1. Within each partition we again build inverted lists. The lists are 
then uniformly dispersed among the disk attached to the CPU. For example, for 
CPU 1 the list for a is on d2, the list for b is on d3, and so on. 

1.4 I/0 Bus Index Organization 

The I/0 bus index organization follows the same partitioning principle as the other 
index organizations, except at the I/O bus level. Documents are partitioned into 
two groups, one for each I/O bus. Within each partition inverted lists are built and 
then uniformly dispersed among the disks attached to the I/O bus. In our example, 
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this results in the same organization as the host index organization since each host 
has exactly one I/O bus. If a host has more than one I/O bus, then the host index 
organizations and I/O bus index organizations would differ. 

1.5 Query Processing 

Query processing under each index organization is quite different. For example, 
consider the query "Find documents with words a, c", and say the query initially 
arrives at CPU 0. Under the system index organization, CPU 0 would have to fetch 
the list for a, while CPU 1 would fetch the c list. CPU 1 would send its list to CPU 
0, which would then intersect the lists. With the host index organization, each CPU 
would find the matching documents within its partition. Thus, CPU 0 would get 
its a and c lists and intersect them. CPU 1 would do likewise. CPU 1 would send 
its resulting document list to CPU 0, which then would merge the results. With 
the disk index organization, CPU 0 would retrieve the a and c lists from disk dO, 
and also would retrieve the a, c lists from disk dl .  CPU 0 would obtain two lists 
of matching documents (one for each disk), would merge them, and then would 
merge them with the list from CPU 1. 

There are many interesting trade-offs among these storage organizations. With 
the system index organization, there are fewer I/Os. That is, the a list is stored 
in a single place on disk. To read it, the CPU can initiate a single I/O, the disk 
head moves to the location, and the list is read in (this may involve the transfer 
of multiple blocks). In the disk index organization, on the other hand, the a list is 
actually stored on four different disks. To read these list fragments, four I/Os must 
be initiated, four heads must move, and four transfers take place. However, each 
of the transfers is roughly a fourth of the size, and they may take place in parallel. 
So, even though we are consuming more resources (more CPU cycles to start more 
I/Os, and more disk seeks), the list may be read into memory faster. 

The system index organization may save disk resources, but it consumes more 
resources at the network level. Notice that in our example, the entire c list is 
transferred from CPU 1 to CPU 0, and we can expect these inverted lists to be 
much longer than the document lists exchanged under the other schemes. However, 
the long inverted list transfers do not occur in all cases. For example, the query 
"Find documents with a and b" (system index organization) does not involve any 
such transfers because all lists involved are within one computer. Also, it is possible 
to reduce the size of the transmitted inverted lists by moving the shortest list. For 
example, in our "Find documents with a and c," we can move the shorter list of a 
.and c to the other computer. 

Thus, the performance of each strategy will depend on many factors, including 
the expected type of queries, the optimizations used for each query processing 
algorithm, whether throughput or response time is the goal, and the resources 
available (e.g., how fast is the network, how fast are disk seeks). In this article we 
will study these issues, discussing the options for index organization and parallel 
query processing. We also present results of detailed simulations, and attempt to 
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answer some of the key performance questions: Under what conditions is each 
index organization superior? How does each index organization scale up to large 
systems (more documents, more processors)? What is the impact of key parameters 
(e.g., how would a system with optical disks function)? 

In Section 2 we describe our hardware scenario, query processing algorithms, 
physical index organization, and related work in more detail. To study performance 
we need to model various key components such as inverted lists, queries, and answer 
sets. Although there has been a lot of work done on information retrieval systems, 
to our knowledge such models, appropriate for studying parallel query execution, 
have not been developed. In Section 3 we define simple models for these and other 
critical components. In Section 4 we describe the simulation, and in Section 5 we 
present our results and comparisons. 

2. Definitions and Framework 

Documents contain words. The set of all words occurring in the database is the 
vocabulary. For convenience, we name words by their occurrence rank, e.g., word 
0 is the most frequently occurring word, word 1 is the next most frequent, and so 
on. (In the example of Figure 1, the vocabulary is {a, b, c, d}; word 0 is a, word 1 
is b, etc.) We use the word and the rank of the word interchangeably. 

A query retrieves documents satisfying a given property. In this article, we 
concentrate on "boolean-and" queries of the form a A b/X c . . . .  Such queries find 
the documents containing all the listed words. The words appearing in a query are 
termed keywords. Given a query a A b . . .  the document retrieval system generates 
the answerset of the document identifiers of all the documents that match the query. 
A match is a document that contains the words appearing in the query. 

We focus on boolean-and queries because they are the most primitive ones. 
For instance, a more complex search property such as (a A b) OR (c A d) can 
be modeled as two simple and-queries whose answer sets are merged. A distance 
query "Find a and b occurring within x positions" can be modeled by the query 
a/X b followed by additional CPU processing that compares the positions of the 
occurrences. 

2.1 Hardware Configuration 

Table 2 lists the parameters that determine a configuration. The column "Value" in 
the table refers to the "base case" used in our simulation experiments (Section 5). 
That is, our experiments start from a representative configuration and, from there, 
we explore the impact of changing the values. The base case does not represent 
any particular real system; it is simply a convenient starting place. 
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Table 2. Hardware configuration parameter values and definitions 

Parameter 

Hosts 

I/OBusesPerHost 
DisksPerI/OBus 

Value Description 

4 Number of hosts 

4 Number of controllers and I/O buses per host 

2 Number of disks for each I/O bus 

2.2 Physical Index Organization 

The inverted index can be partitioned and fragmented in many ways. We study 
a single natural division by hardware. This division does not require any unusual 
hardware or operating system features. The documents reside in a uniformly 
distributed manner across all disks d in the system (d = Hosts. I/OBusesPerHost. 
DisksPerI/OBus). Let the disks be numbered from 0 to d l  as in Figure 1. 

The inverted index organization is compared for four mutually exclusive cases. 
In the disk index organization, an inverted index is constructed for all words in 
the documents residing on each disk. Thus, for a given word, there are d inverted 
lists containing that word (if a given word does not appear in any documents on a 
disk, then that list is empty). In the I/0 bus index organization, an inverted index 
is constructed for all the documents on the disks attached to the same I/O bus. In 
host index organization, an index is constructed for all the documents on a single 
host. Lists are distributed by host in a similar manner. Finally, in system index 
organization a single index is constructed for all documents. Table 1 illustrated 
these index organizations, but note that in that example the I/O bus and host index 
organizations are identical because hosts have a single I/O bus. Note that, regardless 
of the index organizations, the same amount of data is stored in the system and, 
for any query, the same amount of data is read from disk. 

In any of the organizations, if an index spans x disks, we assume the lists are 
dispersed over the x disks. In particular, the list for word w is placed on the disk i 
+ (w rood x), where i is the first disk in the group. For example, for the host index 
organization in Table 1, one of the indices spans disks dO, dl ;  the second spans d2, 
d3. For the second index, the list for a (word 0) goes to d2, the list for b (word 1) 
goes to d3, the list for c (word 3) goes to d2, and so on. 

2.3 Algorithms 

For all configurations except the system type, queries are processed as follows. The 
query a A b ... is initially processed at a home site. That  site issues subqueries to all 
hosts; each subquery contains the same keywords as the original query. A subquery 
is processed by a host by reading into memory all the lists involved, intersecting 
them, producing a list of matching documents. The answer set of a subquery, termed 
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the partial answer set, is sent to the home host, which concatenates all the partial 
answer sets to produce the answer to the query. 

In the system index organization, the subquery sent to a given host contains 
only the keywords that are handled by that host. If a host receives a query with 
a single keyword, it fetches the corresponding inverted list and returns it to the 
home host. If the subquery contains multiple keywords, the host intersects the 
corresponding lists, and sends the result as the partial answer set. The home host 
intersects (instead of concatenates) the partial answer sets to obtain the final answer. 

As mentioned in Section 1, the algorithm we have described for the system 
index organization can be improved. Here we describe three optimizations, called 
prefetch I, H and I lL Note that these are heuristics; in some cases they may not 
actually improve performance. 

In the prefetch I algorithm, the home host determines the query keyword k 
that has the shortest inverted list. (We assume that hosts have information on 
keyword frequencies; if not, prefetch I is not applicable.) In Phase 1, the home 
host sends a single subquery containing k to the host that handles k. When the 
home host receives the partial answer set, it starts phase 2, which is the same as 
in the un-optimized algorithm, except that the partial answer set is attached to all 
subqueries. Before a host returns its partial answer set, it intersects it with the 
partial answer set of the phase 1 subquery. This significantly reduces the size of all 
partial answer sets that are returned in phase 2. 

The prefetch II algorithm is similar to prefetch I, except that in phase 1 we 
send out the subquery with the largest number of keywords. We expect that as the 
number of keywords in a subquery increases, its partial answer set will decrease in 
size. Thus, the amount of data returned by the one host that processes the phase 1 
subquery should be small. If there is a tie (two or more subqueries have the same 
maximum number of keywords), prefetch II selects one of them at random. 

Prefetch III combines the I and II optimizations. That is, the first subquery 
contains the largest number of keywords, but if there is a tie, the subquery with the 
shortest expected inverted lists is selected. Intuitively, one would expect prefetch 
III to perform the best. However, we chose to study all three techniques (Section 5) 
to understand what each optimization contributes. In particular, keep in mind that 
prefetch I and III require statistical information on inverted list sizes. Our results 
will tell us if it is worthwhile to keep such information, i.e., if the improvement of 
prefetch III over II (which does not require this information) is significant. 

To illustrate these optimizations, consider the query a A b A c A d in Figure 1 
(system index organization). With prefetch I, the subquery d would be sent to host 
CPU 1 in phase 1. (Of the four keywords, d occurs less frequently in the database, 
and it is stored in host CPU 1.) In phase 2, the subquery a A b would be sent to 
CPU 0, together with the list for d from phase 1. CPU 1 would receive the query 
c together with the d list. With prefetch II, the first subquery would be either a /k  
b (to CPU 0) or c A d (to CPU 1), selected at random, prefetch III would select c 
A d as the first subquery because it involves shorter lists. 
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2.4 Striping 

Striping (Patterson et al., 1988) is a method that decreases response time and 
increases throughput to read an inverted list (1) by allocating the blocks of an 
inverted list horizontally across several disks (using modular arithmetic) and (2) by 
reading the blocks in parallel. For example, suppose we have four blocks b0, bl,  
b2, b3 which store an inverted list for a word z which is located on disk dl .  In the 
normal case, all four blocks would be vertically allocated and would reside on disk 
d l  of three disks dO, dl ,  d2. Striping word z across all three disks results in block 
b0 residing on disk d l  (the first block does not change its location); block bl  on 
disk d2 (since the blocks are allocated horizontally); block b2 on disk dO (by using 
modular arithmetic); and block b3 on disk dl .  Thus, disk dO and d2 have one block 
of the inverted list for word z and disk d l  has two blocks. 

We can stripe an inverted list under any index organization. In the host index 
organization, the inverted list would be striped across all the disks on the host. 
Suppose the inverted list for word a in Table 1 was striped with one entry per block. 
(This assumption simplifies the example; in practice, many entries are stored per 
block.) For CPU 0, the entry (D0,0) would be on disk dO, and the entry (D1,0) 
would be on disk dl .  Similarly for CPU 1, the (D2,0) entry would be on disk d2 
and the (D3,0) entry would be on disk d3. 

In the I/O bus index organization, the inverted list would be striped across all 
the disks on the I/O bus. In the disk index organization, striping has (essentially) 
no effect, since there is only one disk for each index so vertical and horizontal block 
allocation result in the same physical allocation for any inverted list. 

In the system index organization, the natural approach would be to stripe across 
all the disks in the system. However, this greatly complicates query processing, 
requiring, for instance, that the blocks of an inverted list be fetched from multiple 
hosts and assembled at some particular host before processing on that list can 
continue. Thus, we choose to stripe a system index organization inverted list only 
across the disks on the host on which the inverted list resides. In Table 1, the 
inverted list for word a in the system index organization would be striped across all 
the disks on CPU 0. Thus, disk dO would have the list (D0,0)(D2,0) and disk d l  
would have the list (D1,0)(D3,0). This method avoids the complication of striping 
across the system, but still provides the advantage that the inverted list for a word 
is located in only one host in the system. 

Striping does not always improve response time for reading an inverted list. To 
understand when striping is an advantage, suppose s is the disk overhead time for a 
read and l is the time needed for the read of an inverted list. Then the response time 
to read a list from disk is s + l. If the list is striped over k disks, the response time 
ranges roughly from s + l / k  best case (ignoring any queuing delays or contention) to 
sk  + I worst case when the reads are processed sequentially. Thus, under best case 
conditions, striping should improve response time when s + l/k < s + l. Note that 
the additional work required for a striped read is s ( k -  1) and this quantity must be 
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kept small to minimize the impact of striping on throughput. Given the range of 
values for these variables in our model, short inverted lists generally do not benefit 
from striping. Section 5 reports the effect of striping the longer inverted lists for 
all the index organizations. This is studied by varying the fraction of the vocabulary 
that have striped inverted lists. 

The reader may wonder about the exact difference between the disk index 
organization for an inverted list and the striped host index organization for the 
same list. Suppose we added 100,000 documents to Figure 1. First, in the disk 
organization, the lengths of the inverted list for a word a would vary slightly from 
disk to disk, due to the variation in the number of times that the word occurs in the 
documents for each disk. (This variation is ignored in this study.) Second, internal 
fragmentation occurs for each inverted list for the word a on each disk. In the host 
index organization, all the inverted lists on that host for the word a are collected 
together and striped across the disk. Thus internal fragmentation occurs only at 
the end of that single inverted list. 

The additional internal fragmentation that appears in the disk organization has 
a small impact on response time and throughput. Thus, controlling the number 
of striped inverted lists is very similar to controlling the number of inverted lists 
that have a disk index organization. We expect that, as the number of words with 
striped inverted lists approachs the entire vocabulary, performance for any index 
organization should approach the performance of the disk index organization. 

2.5 Related Work 

For an introduction to full text document retrieval, see Salton and McGill (1983). 
In the design of full text document retrieval systems, there is a basic trade-off 
between the time taken to process the document database and the time taken to 
process queries (Emrath, 1983). In this article we assume that queries can be 
answered without examining the text of any documents. The opposite approach, the 
direct scanning of documents (usually in combination with some indexing) is also 
possible (Hollaar, 1992). For full text retrieval systems, inverted lists are typically 
used. Compression of inverted lists is actively studied (Weiss, 1990; Zobel, 1992). 
The probabilistic construction of inverted lists by assuming the independence of 
word occurrences also appears in Emrath (1983); the work presents an interesting 
variation on inverted lists. In addition, much work has been done on other data 
structures, such as signature schemes (Faloutsos, 1985). 

Burkowski (1990) examined the performance problem of the interaction between 
query processing and document retrieval and studies the physical organization of 
documents and indices. His work simulated a collection of servers on a local area 
network. Our work is complementary to his in that we concentrate on physical 
index organization. This article extends previous work (Tomasic and Garcia-Molina, 
1993b) in describing the simulation fully, describing the mathematical basis of the 
work, and modeling striping. We include some performance comparisons for striping 
in Section 5. In Jeong and Omiecinski (1992), the issue of partitioning by document 
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vs. partitioning by keyword is studied for share-everything multiprocessors. Their 
article confirms the results presented here. 

The work on document retrieval in multiprocessor systems (Aalbersberg and 
Sijstermans, 1991; DeFazio and Hull, 1991; Frieder and Siegelmann, 1991; Lin, 
1991; Matsliach and Shmueli, 1991) is also related to this article in that physical 
index organization issues need to be addressed for those architectures. While some 
issues for these systems are not considered here, we believe that the issue of physical 
organization is an important one and that the prefetch algorithms presented in this 
paper probably perform well on multiprocessor architectures. Inverted files also are 
used in some parallel computers (Stanfill, 1990). This paper also assigns keywords 
to processors. Finally, in some articles on information retrieval (Rabitti and Zizka, 
1984; Voorhees, 1986; Harman and Candela, 1990) various benchmark figures are 
given. 

3. Models 

There are two choices for representing documents and queries in a simulation study. 
One is to use a real document base and an actual query trace. The other is to 
generate synthetic databases and queries, from probability distributions that are 
based on actual statistics. Using a particular database and query trace is more 
realistic, but limits one to a particular application and domain. Using synthetic data 
gives one more flexibility for studying a wide range of scenarios. Here we follow 
the synthetic data approach. We feel it is more appropriate for a first study that 
explores options and tradeoffs, rather than predicts the performance of a particular 
document application. 

3.1 Document Model 

For the model of a document we first define several parameters in Table 3. The 
database consists of a collection of D documents. Conceptually, each document is 
generated by a sequence of W independent and identically distributed trials. Each 
trial produces one word from the vocabulary V. Each word is uniquely represented by 
an integer w in the range 1 < w < T where T = [ V [. The probability distribution Z 
describes the probability that any word appears. For convenience, the distribution 
is arranged in non-increasing order of probability, i.e. Z(w) > Z(w + i), Vi > O. 
The "Value" column in Table 3 again represents our base case scenario. In this 
case, the values are from a legal document base described in Chapman and DeFazio 
(1990). 

To construct a specific probability distribution Z of Z ,  a curve is fit to the 
rank/occurrence distribution of the vocabulary of the legal documents database 
(Chapman and DeFazio, 1990) and then normalized to a probability distribution. 
Figure 2 shows the log/log graph of two curves that have been fit to some of the 
100,000 most frequently occurring words. The X axis is the distinct words in the 
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Table 3. Parameters of the document model 

Parameter Value Description 

D 

W 

V 

T 

667260 

12000 

1815322 

zq) 

the number of documents 

words per document 

the set of words appearing in documents, 

the vocabulary 

total words in V, i.e. [ V [ = T 

Pr(word = j), a probability distribution 

database, ranked by the number of occurrences in non-increasing order. The Y axis 
is the number of occurrences of each word. A diamond symbol marks the number 
of occurrences of a word. The curve labeled "linear" is the result of fitting a linear 
equation and the curve labeled "quadratic" is the fit of a quadratic equation. We 
used Wolfram (1991) for curve fitting. 

Given the quadratic fit curve, the form of the probability distribution Z is derived 
in Appendix A as 

Z (j ) : j-°'°75252s In j--0.150669 e16.3027 

8.47291 × 108 
(1) 

where the denominator is a normalization constant. Although our distribution is 
similar to Zipf (1949), ours matches the actual distribution better. 

3.2 Query Model 

A query is a sequence of words ( W l , . . . ,  WK) generated from K independent 
and identically distributed trials from the probability distribution Q(j). Thus, the 
occurrences of the words are mutually independent. See Table 4 for a list of the 
parameters and base values chosen. 

We now construct a specific probability distribution Q. There is little published 
data on this distribution, and there is no agreement on its shape (however, see 
DeFazio, 1992 for a different model). It does not follow the same distribution as 
the vocabulary (Figure 2); relatively infrequent words are often used in queries. In 
light of this, the uniform distribution was chosen for Q i.e., every word appears in 
a query with equal probability. The distribution allows easy comprehension of the 
impact of the distribution on performance. However, we found that the uniform 
distribution across the entire vocabulary gave far too much weight to the most 
infrequently occurring words (the tail of Figure 2). For example, these tail words 
are often misspellings that only appear once in the entire database and never appear 
in queries. Thus, in the Q distribution we cut off the most infrequent words. For 
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Figure 2. Curve fit to vocabulary occurrence data 
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rank of words in order by number of occurrences 

this we introduce a parameter u to determine the range of the uniform distribution, 
giving Q the equation 

1 l _~ k_< uT 
Q(k) --  0 otherwise 

As u decreases, the probability of choosing a word of low rank in a query 
increases. Words of low rank occur often in the database. Thus the expected 
number of documents to match a query increases since each word of the query 
occurs often in the database. Hence, if u is too small, queries will probabilistically 
have answer sets that are a large fraction of the database. On the other hand, if 
u is too large, answer sets will be unrealistically small. To estimate a good value 
for u, we compute the expected number of documents in Appendix B that match 
a query of length K for various values of u. Note that the Q distribution has two 
other advantages. Since the distribution is simple, the impact of the distribution and 
consequently the impact of the work load on the system can be readily understood. 
(In Section 5, for example, we vary u and show the impact on performance.) Also, 
this distribution may favor very long inverted lists because very common words 
(such as "for") are part of the distribution. Thus, we consider this simulation to 
be a worst-case scenerio. 

Using the parameter values in Table 3 and Equation 1, we graph the function 
Z for the various values of K and u in Figure 3. In the base case the number of 
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Table 4. Parameters for the query model. 

Parameter Value Description 

K 5 
(j) Q (j) 

u 1% 

V I 

S V 'g  

number of keywords in a query 

Pr(word = j), a probability distribution 

fraction of T (in rank order of 1/) appearing 

in a query 

the u fraction of V 

set of possible queries. S = V'  x • • • x V ~ 

keywords in a query is 5, so we examine the graph at the X axis value of 5. The 
value of u = 0.01 was chosen as the base value because it indicates that about 
300 documents on the average are found per query. Note that in this case the 
fraction uT of the vocabulary includes 96.3% of the cumulative keyword occurrences 
in Chapman and DeFazio (1990), thus covering all but 3.7% of the words in the 
database. In Section 5 the response time sensitivity to uT of the various index 
organizations is discussed. 

3.3 Answer Set Model 

At various points in the simulation we need to know the expected size of a query 
answer set or partial answer set. Consider a particular query (or subquery) with 
keywords w l , . . . ,  wi(. Say this query is executed on a body of documents of size 
Documents. Note that under the system index organization, Documents = D (D is 
the total number of documents). However, for the other organizations, Documents 
is the number of documents covered by the index (or indices) used by the particular 
subquery. Given this, the expected number of documents that matches the query is 

Documents. [1 -- e-WZ(wl)] . . .  [1 -- e--WZ(wK)], (2) 

(The term [1 -- e -wz(wO] is the probability that a document contains keyword 
wl.) Equation 2 is similar to Equation 5 in Appendix B, except that here we are 
looking at a specific query, as opposed to averaging over all possible queries. 

3.4 Inverted List Model 

The inverted list contains a sequence of elements, each of which describes a single 
appearance of the word. Each element contains a document identifier and a word 
offset of the word in the document. Thus, the inverted index is essentially a one- 
to-one mapping to the documents (except for the white space, punctuation, and a 
small number of common words that are ignored when the document is added to 
the inverted index). 
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Figure 3. Expected number of documents in answer set for any query 
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The expected number of occurrences of a word in a document is Z(w)-W. Thus, 
the expected number of entries of the corresponding inverted list is 

Z(w) . W .  Documents (3) 

where Z(w) is the value of Equation 1 for the word w, W is the number of words 
per document, and Documents is, as before, the number of documents spanned by 
the index. 

4. Simulation 

To study the index organizations and query algorithms, we implemented a detailed 
event-driven simulation using the D ENET (Livny, 1990) simulation environment. 
In this section we describe important aspects of the simulation. Tables 5 and 6 
describe the base parameters used. 

4.1 Hardware 

The system model consists of several hosts with a CPU and memory, several I/O 
buses per host and several disks per I/O bus. The hosts are connected by a local 
area network. See Table 5 for the parameters and base values that describe the 
hardware configuration. The values for the disk and I/O bus portions of this table 
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Table 5. Hardware parameter values and definitions 

Parameter Value Description 

DiskBandwidth 10.4 

DiskBuff 32768 

BlockSize 512 

Seek Time 6.0 

BufferOverhead 4.0 

I/OBusOverhead 0.0 

I/OBusBandwidth 24.0 

LANOverhead O. 1 

LANBandwidth 10.0 

Mbits/sec Bandwidth of the disk 

Size of a disk buffer in bytes 

Number of bytes per disk block 

Disk seek time in ms 

Cost to seek one track in ms 

Cost of each I/O bus transfer in ms 

Mbits/sec Bandwidth of the I/O bus 

Cost of each/_.AN transfer in ms 

Mbits/sec Bandwidth of the LAN 

are from Chervenak (1990). The hosts have parameter values that correspond to 
a typical workstation. See Figure 1 for an example of hardware configuration. 

4.2 Inverted Lists and Answer Sets 

In our simulation, we do not generate a synthetic document base a priori. Instead, 
when we require the length of the inverted list for a word w, we use the expected 
length of the list. Thus, the length in disk blocks of an inverted list is modeled by 
the equation 

BlockSize  

where Z(w) • W .  Documents is from Equation 3, EntrySize is the average number 
of bits used to represent an entry in the inverted list, 8.0 converts from bits to bytes, 
BlockSize is a parameter representing the size of a block on disk and Compress 
models the efficiency of the inverted list compression scheme. This compression 
scheme model assumes a linear reduction in the size of the inverted list. One simple 
way to accomplish an approximately linear reduction is to represent the inverted 
lists in sorted order and then store (packed) the difference between two consecutive 
entries (known as the delta encoding). More sophisticated compression schemes 
(Zobel et al., 1992) result in better, nonlinear, compression ratios. The BlockSize 
parameter  permits studying the effect of internal fragmentation. 

To determine if the inverted list for a word is striped, the predicate 

w < Stripe • u • T 

is true for striped inverted lists. Thus, if Stripe = 0.0 then no words have striped 
inverted lists, and if Stripe = 1.0 all words (which can appear in a query) have 
striped inverted lists. 
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Table 6. Base case parameter values and definitions 

Parameter Value 

CPUSpeed 1 
Multiprogram 4 
Querylnstr 50000 

Subque~ylnstr 10000 

SubquetyLength 1024 

Fetchlnstr 5000 

Mergelnstr 10 

Unionlnstr 

Decompress 

AnswerEntly 

EntrySize 

Compress 
Stripe 

Description 

Relative speed of each CPU 

Multiprogramming level perHost 
Query start up CPU cost 

Subquery start up CPU cost 

Base size of subquery message 

Disk fetch start up CPU cost 

Merge CPU cost per byte of a 

decompressed inverted list 

1 Concatenation CPU cost per byte of 

an answer set 

10 Decompression CPU cost per byte of 

inverted list on disk 

4 Bytes to represent an entry in an 

answer set 

10 Bits to represent an inverted list 

entry on disk 

0.5 Compression Ratio 

0.0 Fraction of query words that have a 

striped inverted list 

To fetch the inverted list for a word w in the unstriped case, one disk fetch 
corresponds to the read of one invert list and each fetch request has a length 
determined by InvertedList(w). In the striped case, the total length is the same, but 
one fetch is issued for each disk that contains part of the striped inverted list. In 
both cases, processing for the query waits until all the fetches have completed for 
all the words appearing in the subquery on a host. 

The length of an answer set, in bytes, is determined by multiplying Equation 2 
by the length of an element of an inverted list, AnswerEntry (Table 6). 

4.3 CPU Simulation 

The relative weight of all CPU parameters is controlled by the single parameter 
CPUSpeed. Thus, the rate of the CPU can be varied independently of individual 
factors contributing to the length of various CPU requests. The CPU is simulated 
by a first-come, first-served (FCFS) infinite length queue server. The number of 
CPU instructions needed by each request is determined by the type of request: 
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1. query start up, determined by parameter Quelylnstr, 

2. subquery start up, determined by parameter Subquaylnstr,  

3. disk fetch, determined by parameter Fetchlnstr, 

4. uncompression and merge of inverted lists, determined by the equation 

Mergelnstr . ~ o  InvertedList(w) 

5. the union of subquery answer sets, determined by the equation 

Unionlnstr . AnswerLis t (wl  , . . . ,wk). 

The amount of CPU time required by each request is scaled by CPUSpeed. 

4.4 Disk and I/0 Bus Simulation 

A disk services fetch requests from a CPU and sends the results to an I/O bus. The 
disk is an F C F S  infinite length queue. An I/O bus is simulated by an F C F S  infinite 
length queue which services requests from disks. The disk service time for a request 
is determined by four factors: the constant seek time overhead, the track-to-track 
seek time and overhead to load the disk buffer, the transfer time off of the disk, 
and the time needed to gain access to the I/O bus. The seek time overhead for the 
read is determined by the parameters SeekTime and implicitly includes the average 
rotational delay. Every read has a fixed overhead determined by the the initial seek 
and the track-to-track seeks and overheads. This is modeled by 

SeekTime + (InvertedList(w)DiskBuff) x BufferOverhead 

After the simulation of the seek and the seeks between buffer loads, the disk 
negotiates access to the bus by sending a BUS REQUEST message to the I/O bus 
node. The function transmit(x,y) gives the time (in ms) required to transmit y at 
bandwidth x. Let 

a = transmit(DiskBandwidth, InvertedList(w)) 
b = transmit(I/OBusBandwidth, InvertedList(w) + I/OBusOverhead) 

then the BUS REQUEST message is sent after max(0.0,a - b) units of time. This 
simulates the overlap of the disk loading its track buffer and the transfer of data 
to the I/O bus. The disk then waits until a BUS GRANTED message is received. 
Then both the disk and the I/O bus are busy for b units of time. The disk and I/O 
bus are then both freed to service the next request in each respective queue. 

Since an I/O bus services requests one at a time in the order of their arrival, all 
the disks attached to an I/O bus compete for access to the I/O bus. In the case of 
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a striped inverted list, the blocks of the inverted list that reside on disks of an I/O 
bus are read in parallel but must be transmitted through the I/O bus sequentially. 
However, if the inverted list spans more than one I/O bus, some of the blocks are 
transmitted to the host entirely in parallel, since the operations of the I/O buses 
are independent of each other. 

4.5 LAN Simulation 

The system contains a single Large Area Network (LAN) that is simulated by 
a single FCFS infinite length queue that services subquery requests and answers 
which are transmitted between hosts. Subquery requests have a length determined 
by parameter SubQuelyLength and any additional answer set appended to the query 
(as is the case with the prefetch algorithms). Answer set lengths are described in 
Section 3.3. The service time for a request is determined by the equation 

transmit(LanBandwidth, RequestLength ) --b LANOverhead 

where LanBandwidth is a parameter. Note that subquery start up requests contend 
with answer set transmission, whereas disk fetch requests do not contend with fetch 
answers in I/O bus. This is because disk fetch requests are of a short, constant 
length and consume an insignificant fraction of the I/O bus bandwidth. However, 
subquery requests have variable length and consume a significant fraction of the 
local area network bandwidth when partial answer sets are transmitted. A request 
with identical source and destination hosts is not transmitted through the local 
area network. Note that for simplicity, broadcast messages are not modeled and 
thus the query algorithms do not use this feature. In an implementation, broadcast 
messages could be used to reduce the cost of transmission of subqueries by a factor 
of the number of hosts because the transmission of the prefetch subquery to each 
individual host would be replaced by a single broadcast transmission. 

4.6 Query Simulation 

A query, consisting of a set of words, is issued to a host. The parameter Multiprogram 
determines the number of simultaneous queries per host in the simulation. The host 
processes the query with the following steps 

1. a CPU burst representing query parsing and start-up, 

2. subquery transmission to some or all hosts in the system, 

3. block and wait for the subqueries to finish, 

4. a CPU burst to merge the results of the subqueries. 

Subqueries are transmitted to hosts by inserting the subquery in the LAN queue. 
When a subquery arrives at a host, it is processed by the following steps: 
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Table 7. Simulation parameter values and definitions 

Parameter Value Description 

SimulateTime 
Confidencelnter 
ConfidenceLevel 

BatchSize 

100000 

5% 

90% 

100 

Maximum time of an experiment 

Size of the confidence interval 

Confidence level used with the 

t statistic 

Batch size of response time values 

1. a CPU burst representing subquery parsing and start-up, 

2. a fetch request for an inverted list to one or more disks for each word 
appearing in the subquery, 

3. a block and wait for the fetches to finish, 

4. a CPU burst representing the computation of the intersection of the fetched 
inverted lists, and 

5. the transmission of the answer set of the subquery back to the query. 

The answer is transmitted to the host CPU by inserting it in the LAN queue. 

4.7 Simulation 

As mentioned earlier, the simulation is written in DENET (Livny, 1990). The 
simulation tracks the system response time and, when the confidence interval is 
less than Confidencelnterval for a confidence level of ConfidenceLevel of this value 
over batches of size BatchSize, the simulation terminates early. The values of these 
variables are shown in Table 7. These features are provided by the simulation 
programming language. 

5. Simulation Results 

Table 8 presents the data collected from a simulation run on the base case of values 
(Tables 2-7). The metrics of query processing response time, the error in response 
time (90% confidence interval), query throughput, disk, I/O bus, CPU and LAN 
utilization were monitored for every simulation experiment. The amount of error in 
the response time was controlled to prevent misinterpretation of results. To avoid 
clutter, we have chosen not to add error bars to the graphs. 

The table reveals that the disk, I/O bus, and host index organizations have 
comparable performance. Of the three, the disk organization performs somewhat 
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Table 8. Results of all metrics for base case simulation experiment 

INDEX ORGANIZATION 

METRIC Disk I/O bus Host System P I P II P III 

query response time (sec) 

response time error (sec) 

query throughput (query/sec) 

disk utilization (%) 

I/O bus utilization (%) 

CPU utilization (%) 

LAN utilization (%) 

2.17 1.75 2.14 8.68 4.96 4.98 4.88 

0.049 0.044 0.081 0.324 0.417 0.366 0.385 

7.30 9.11 7.44 1.85 3.23 3.22 3.25 

86.1 76.7 44.3 13.1 24.9 24.3 26.1 

18.5 28.0 37.7 21.9 30.5 28.7 31.1 

43.9 60.9 48.8 21.9 35.7 34.7 35.4 

23.3 29.7 24.3 94.7 29.9 16.1 10.9 

(P I is prefetch I, P II is prefetch II and P III is prefetch III). 

worse because it has the highest disk utilization, leading to longer I/O delays. The 
I/O bus index organization has the best response time and throughput in this case. 
However, note that the host organization has the most balanced use of resources 
and, as we will see, this leads to better performance under more stressful scenarios. 

The system index organization, as well as the prefetch optimizations, performs 
poorly in the base case scenario. The main reason this index organization (without 
prefetch) does so poorly is that it saturates the LAN by transmitting many long 
inverted lists. The prefetch organizations reduce the amount of data sent over the 
LAN (Section 2.3), and indeed we observe that the LAN utilization is much lower 
in these cases (Table 8). Thus, the prefetch strategies perform substantially better  
than the simple system index organization. (Note that the saturation of the LAN 
depends heavily on the ratio of the bandwidth of the LAN to the average length 
of an inverted list. Elsewhere, [Tomasic and Garcia-Molina, 1993a], we describe 
scenerios where the prefetch index organizations perform better  than the disk, I/O 
bus, or host index organizations.) 

However, the prefetch strategies still perform substantially worse than the disk, 
I/O bus, and host organizations. The main reason is that there is less parallelism in 
the prefetch strategies than in the others. The first phase of the prefetch requires 
waiting for one part of the query to be completed. Furthermore, since lists are 
not split across disks, it takes longer to read them. These delays lead to lower 
throughputs in our closed system model. That  is, in our model, each computer  
runs a fixed number of queries. If they take longer to complete, less work is done 
overall. The  main advantage of the prefetch strategies is that less work is done per 
query (i.e., fewer disk seeks, I/O starts). However, in this scenario, these resources 
are not at a premium, so the advantages of prefetch do not show. 

To our surprise, prefetch II and III actually perform essentially the same as 
prefetch I (Table 8). In Section 2.3 we argued that prefetch II and III would reduce 
the amount  of data sent over the LAN. This is true as evidenced by the LAN 
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Figure 4. Sensitivity of response time to maximum query keyword rank 
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utilization. However, with hindsight, we now see that the additional work done 
in phase one of prefetch II and III is performed sequentially with respect to the 
rest of the processing of the query, leading to longer response times. Thus, only 
in cases where the LAN is a bottleneck would prefetch II and III pay off. So, to 
avoid clutter we will only show the prefetch I results. 

We now study how some of the key parameters affect the relative performance 
of the index organizations. (We only report on the more interesting results; many 
more experiments were performed than what can be reported here.) We start by 
showing in Figure 4 the sensitivity of response time to the value of uT. Recall that 
T is the size of the vocabulary and u is the fraction of the vocabulary that can 
appear in a query. Each line graphs the behavior of a different index organization. 
The line labeled prefetch is the prefetch I processing algorithm with a system 
index organization. The response times for each index organization decrease as uT 
increases because the number of word occurrences in the database for an average 
query word decreases. That is, as uT decreases, the inverted lists that have to be 
read increase in size. The disk and I/O bus organizations are relatively insensitive to 
uT  because they distribute lists across many disks, i.e., the list fragments that need 
to be read grow at a slower rate. The system and prefetch curves are more sensitive 
to uT because inverted lists are read whole. The curve for the host organization is 
an intermediate case. Although not shown here, the effect of uT on throughput is 
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Figure 5. Sensitivity of response time to seek time 
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of a disk in Figure 5 shows that the disk and I/O bus index organizations are 
most sensitive to the seek time of the storage device. This is because the disk 
index organization must retrieve for each query more inverted lists than any other 
organization. This same overhead is incurred by the I/O bus index organization to 
a lesser extent. The host index organization is very insensitive to seek time since 
only a few inverted lists must be retrieved per query. 

Figure 5 indicates some potential for the host and prefetch index organizations 
if the storage devices are relatively slow (e.g. optical disks or a jukebox). It is 
important to note that our disk seek time parameter captures not only the seek 
time but also other fixed I/O costs. For example, to get to the head of the inverted 
list, the system may have to go through a B-tree or other data structure. These 
additional I/O costs are modeled in our case by the "seek time." Furthermore, 
we are assuming that inverted lists (or fragments) are read with a single I/O. For 
longer lists there may be several I/Os in practice, and hence multiple seeks. Thus, 
the higher seek times shown in Figure 5 may occur in practice even without optical 
devices. In these cases, the disk and I/O organizations may not be advisable. 

Figure 6 shows the effect of load level on throughput for the various index 
organizations. As the load level rises, various bottlenecks in each index organization 
occur. Other collected data show that the disk index organization has a disk utilization 
rate of 80.5% for a multiprogramming level of 1. The I/O bus index organization has 
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Figure 6. Effect of load level 
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a disk utilization of 58.7% for a multiprogramming level of 1 that rises to 77.5% at 
a multiprogramming level of 8. The host index organization has low disk and CPU 
utilization at a multiprogramming level of 1 (about 23.0% and 33.0% respectively) 
and thus has more spare resources to consume as the multiprogramming level rises. 
At a multiprogramming level of 32 (128 total simultaneous queries since there are 
four hosts) the disk utilization has risen to over 74.3% and CPU utilization to over 
78.2% for this index organization. 

The system organization has a LAN bottleneck even a low multiprogramming 
loads (94.7% at a multiprogramming level of 4) and thus does not improve as the 
load increases. With a multiprogramming load of 32, additional data show that the 
response times for the disk, I/O bus, host, system and prefetch I index organizations 
are 17.9 see., 12.0 see., 10.6 sec., 62.6 sec., and 18.2 sec., respectively. 

Figure 7 shows the effect of striping on throughput. The horizontal axis, the 
variable S t r i p e ,  is the fraction of words that have striped inverted lists. (The number 
of words that have striped inverted lists is S t r i p e  • u • T . )  On the left-hand side of 
the graph, we see that striping 1% of the query words has a dramatic effect on the 
host index organization, giving a roughly 60% increase in throughput (with a similar 
decrease in response time). The system index organization shows no improvement 
due to the LAN bottleneck, but other collected data show that with a 100 Mb/sec LAN 
the system index organization shows an approximately 70% increase in throughput. 
Notice that the disk index organization curve is flat, indicating that this organization 
is independent of striping. Other collected data show that if the horizontal axis is 
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Figure 7, Effect of striping 
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extended, the host and I/O bus index organizations approach the throughput of the 
disk index organization as the fraction of striped query words approaches 1. This 
confirms the explanation of the effect of striping in Section 2.4. 

The effect of large partial answer sets is shown clearly in Figure 8, which 
graphs response time as a function of the number of keywords. This graph shows a 
counter-intuitive result: in some situations, the response time of a query decreases 
as the number of keywords in a query increases. The sharp drop of the disk, I/O 
bus, and host lines from one keyword per query to two keywords per query is due 
to the reduced size of partial answer sets. That is, since the base case parameter 
set has four hosts, a query containing one keyword under the disk, I/O bus and 
host index organizations will transmit 3/4 of the answer set across the local area 
network for these three index organizations. In the case of a two word query, again 
3/4 of the answer set is transmitted. However, the total answer set size is much 
smaller since each partial answer set is the intersection of two inverted lists. This 
explains the sharp drop in the response time for these organizations from one to 
two keywords. As the number of keywords increases beyond two, the additional 
work per keyword needed dominates the response time. 

In the system index organization, the size of the partial answer sets transmitted 
depends on the hosts in which the particular words in the query reside. A subquery 
containing a single word has a large partial answer set. For two keywords, the 
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Figure 8. Sensitivity of response time to number of keywords in query 
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probability of a single word subquery at some host is high, thus leading to a large 
response time due to the transmission of these partial answer sets. At five keywords 
per query, the probability of a large partial answer sets is reduced and thus response 
time is comparatively improved. With more than fifteen keywords per query the 
probability of a large partial answer set is small and the response time for these 
queries is large due to the work required for query processing. 

Note that after fifteen keywords per query, prefetch I performs worse than 
the simple system organization. This is because in the system organization the 
probability of a single word answer set being transmitted is very small anyway. 
Thus, the additional cost of the prefetch I algorithm is counterproductive. (This 
discrepancy can be eliminated by switching from the prefetch I algorithm to the 
algorithm when the answer set of a subquery is expected to be small.) However, 
for small numbers of keywords, the prefetch I algorithm performs as expected 
and avoids transmitting large partial answers sets characteristic of the system level 
organization. 

So far, the system organization, with or without prefetch, has generally not 
performed well. To determine under what circumstances a prefetch algorithm 
performs well, we remove the LAN bandwidth bottleneck and increase the number 
of hosts to sixteen while keeping the number of disks and I/O buses constant: We 
study the rise in query throughput as the seek time increases in Figure 9. Again, 
the disk organization is sensitive to the increase in seek time for the same reasons 
as Figure 5. The host and I/O bus index organizations are identical since each host 
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Figure 9. Good hardware configuration for prefetch algorithm 
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has one I/O bus. The figure shows that the large number of hosts makes these 
two index organizations sensitive to seek time. The prefetch I algorithm performs 
well (with a disk seek time above 50 ms) because an individual query (with five 
keywords) involves at most six hosts which frees the other hosts to process other 
subqueries. Given the arguments for considering disk seek time as a model of 
all fixed computation that consumes disk resources, 50 ms is not an unreasonable 
amount of time for a disk to be busy per inverted list fetch. For a disk seek time 
of 80 ms in Figure 9, the disk, I/O bus, host, system, and prefetch I response times 
are 27.1 see, 15.0 see, 15.0 sec, 10.8 sec, and 10.2 sec, respectively. 

6. Conclusion 

We described various options for the physical design of a text document retrieval 
system. We studied the performance of several parallel query processing strategies, 
and the impact of the underlying technology. In particular, the choice of an index 
organization depends heavily on the access time of the storage device and the 
bandwidth of interprocessor communication. We also discovered some unexpected 
results, e.g., as the size of a query increases, its response time may drop; the more 
elaborate prefetch optimizations were usually counterproductive. 

In general, our results indicate that the host index organization is a good choice, 
especially if very long inverted lists are striped. It uses system resources effectively 
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and can lead to high query throughputs in many cases. When it does not perform 
the best, it is not very far off from the best strategy. 

Our results also indicate that the system organization, even with the prefetch 
organization, is not good unless disk seeks are high and network bandwidth is high. 
We should, however, point out four factors that may be unfair to this approach: 
(1) We are not modeling document fetches from disks. If the documents were 
stored on the same disks as the indexes, then disk utilizations would be higher. 
This would make the system organization more attractive since it reduces the I/O 
load. (2) We are not modeling pipelining of prefetching, I/O, and CPU processing 
within a query. This can reduce query response time, allow users to abort partially 
finished queries, and would be more beneficial to the system organization since it 
deals with longer inverted lists. (3) Another reduction in response time is early 
termination of the intersection algorithm. That is, if the inverted lists are in sorted 
order, the intersection algorithm can (in some cases) terminate after having read 
only a fraction of the inverted lists. (4) We are using a closed simulation model 
where larger response times penalize throughput. 

In the future we plan to study the prefetch strategies more carefully, eliminating 
these potential biases. We also plan to build an actual experimental system, with 
a large collection of documents, in order to validate our models and results. We 
believe that the results in this article will be very useful in guiding the construction 
of this system. 
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Appendix A. Derivation of the Probability Distribution Z 

Given the curve fit equations, we wish to derive the form of the probability distribution 
Z. This is accomplished by transforming the continuous curve fit equation from a 
logarithmic domain to a linear domain and then using this equation to approximate 
an integer probability distribution. The distribution that results from a linear curve 
fit is derived by introducing two auxiliary equations 

x '  = ln x ,  y ~ = l n y  

that describe the relationship between the domains. The form of the curve fit 
equation is 

y'  = m x '  + b 

and by replacement and raising exponents becomes 

e ln  y ~ c m  In x+b 

which then reduces by algebra to 

y = e r n l n x e  b ~ e l n ( x ~ ) e b  ~ x m e  b. 

Note that typically a Zipf Harmonic function (Zipf, 1949) is used to approximate 
the distribution of the occurrences of high frequency words in a document. Such a 
function corresponds to a linear fit in log space. The definitions of the Zipf Harmonic 
function appear in Trivedi (1982) as follows. (Here, we model the distribution of all 
the words in the document. This simplifies the analysis and has little impact since 
we simulate only the high frequency words.) To show this relationship, suppose 
for the moment that Z is this function. We arrange the probabilities of Z(j) in 
nonincreasing order Z(1) > . . .  > Z(T). Zipf's law states that 

z ( i ) =  c -:, I < i < T ,  

where the constant c is determined from the probability distribution normalization 
1 where HT is the T th Harmonic number. requirement, ~]/T=i Z(i)  = 1. Thus c = ~T 

Given this definition, we derive the linear form of the Zipf Harmonic function in 
log/log graphs as follows. Let 

x '  = ln x ,  y '  = ln y 

again describe the relationship between the the logarithmic and linear domains. 
Then we rewrite x as 

e x~ -~  X 
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and from the above derivation we can write 

1 

Y -  HTX 

for the equation of the distribution. By substitution and some algebra, 

1 
yl = in - -  - 

HTX 
- - l n l - - l n H T - - l n x  

we derive the linear form 
yl = _ x  I _ in HT. 

This demonstrates that the Zipf Harmonic function is at best some linear fit on the 
data shown. However, Figure 2 shows that the quadratic fit is better an any linear 
fit. 

Returning to the problem of determining equation Z from the quadratic fit, we 
can use a derivation similar to the one above giving the derivation 

x ' = l n x ,  y ' : l n y  

yt = axt2 + bx' + c 

e lny  = ea(lnx) 2+blnx+c 

y : e a ( l n x ) Z e b l n x e c  = ealnxln~eln(~b)ec = (eln(xa))lnxeln(xb)ec 

to produce the general form 

y : xalnx+be c. 

Thus, by using this continuous approximation to the integer probability distri- 
bution and extracting the values of a, b, and c from the curve fit, we can express 
Z as 

~--0.0752528 Inj--O.150669e16.3027 
Z ( j )  = 8.47291x108 

where the denominator is a normalization constant. Thus, ~ = l Z q )  = 1 as required 
by probability distributions. 
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Appendix B. Derivation of the effect of u on the expected size of a 
query answer set 

A document matches a query when every word that appears in the query also 
appears in the document. For the expected number of documents to match a query 
of length K, we write 

D • Pr(query Y of length K matches document A) 

by the independence of documents, then 

D • EYES Pr(Y) Pr(Y matches A ] Y) 

by the theorem of total probability. The conditional probability 

Pr(Y matches A I Y) 
P r ( ( v l , . . . ,  VK) matches A I Y = ( V l , . . . ,  VK)) 

Pr(Vl matches A) . . .  Pr(VK matches A) I Y = ( V l , ' " ,  VK) 

reduces to a multiplication by the independence of each match. The probability of 
a match of a word v and a document A 

Pr(v matches A) 
Pr(v occurs at least once in A) 
1 - Pr(v does not occur in A) 

1 - Pr(v does not occur as word1,..., wordw in A) 
1-(1-Z(v)) w 

reduces to a simple function of Z and W by the independence of each word trial. 
Thus, by replacement, we arrive at the expected number of documents to match a 
query of size K: 

D "~Y=(v, ..... VK)ES Pr(Y) [1 - (1 - Z(Vl)) W] . . . .  [1 - (1 - Z(VK)) W] 

We can reduce this further by using the independence assumption about the set 
of queries S.  Let the words of a query be chosen independently according to a 
uniform distribution Q(j), then Pr(Y) = (~T) K and 

D 

(uT)K [1-  ( 1 -  Z ( v l ) ) w ] ' " [ 1 -  ( 1 -  Z(vg)) W] 
(Vl . . . . .  VK)ES 

is transformed to 

D 
(uT) K 

E °°° 
vlEV I 

[1 - (1 - Z(vl))w] .. .  [1 - (1 - Z(vg)) W] 
vKEV' 
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by independence of the words that appear in the query. (Note that this assumption 
is tentative and some features of user interfaces such as thesauri and wild-carding 
will invalidate this assumption.) We rewrite this as 

D (uT)g E [1 - (1 - Z ( v l ) ) w ] . . .  E [1 - (1 - Z(VK)) W] 
v l E V  I v K E V  I 

and finally, 

(uT) g [1 - ( 1  - Z(v))  W] . 

Note that in the above equation, the expression 1 -- (1 - Z ( v ) )  W can be viewed 
as the probability of at least one success in W trials where a success is determined 
by the distribution Z(]). Since the summation in the above equation is difficult to 
compute, we approximate this expression by the use of a Poisson approximation of 
the Binomial theorem as follows. The probability of x successes of probability p in 
Y trials is the binomial distribution b(x;Y,p). The Poisson distribution is p(x;A) = 
AXe-~ z! The approximation of the Binomial distribution by a Poisson distribution 
is by writing A = pY,  which is valid when Y > 20 and p < 0.05 (Trivedi, 1982). 
Let Y = W,p = Z(j), A = W Z(j). The probability of 0 successes in the Poisson 
distribution is p(0;A) = e -x .  The probability of at least one success is 1 - e -x .  

Thus, 1 - (1 - Z(v))  w = 1 - e - w z ( j ) .  The above equation can be rewritten as 

K 

(uT) K ~,v:l 

We use Mathematica (Wolfram, 1991) to perform the summation. Using the 
parameter  values in Table 3 and Equation 1 for Z, we graph this function for the 
various values of K and u in Figure 3. 


