
VLDB Journal2, 215-241 (1993), Andreas Reuter, Editor 215
OVLDB

Supporting Consistent Updates in Replicated
Multidatabase Systems

Weimin Du, Ahmed K. Elmagarmid, Won Kim, and Omran Bukhres

Received November 7, 1990; revised version received January 26, 1992; accepted
December 16, 1992.

Abstract. Replication is useful in multidatabase systems (MDBSs) because, as in
traditional distributed database systems, it increases data availability in the pres-
ence of failures and decreases data retrieval costs by reading local or close copies
of data. Concurrency control, however, is more difficult in replicated MDBSs than
in ordinary distributed database systems. This is the case not only because local
concurrency controllers may schedule global transactions inconsistently, but also
because local transactions (at different sites) may access the same replicated data.
In this article, we propose a decentralized concurrency control protocol for a repli-
cated MDBS. The proposed strategy supports prompt and consistent updates of
replicated data by both local and global applications without a central coordinator.

Key Words. Multidatabases, replicated data management, concurrency control,
replica control, serializability, resolvable conflicts.

1. Introduction

A mult idatabase system (MDBS) is a federat ion of pre-existing database systems
(called local database systems, or LDBSs). A n M D B S is the natural result of the
shifting priorities and needs of an organizat ion as it acquires new database systems
that have been designed independently. For many applications, an M D B S is an
attractive alternative to a single distributed database system in that it allows existing
software developed for each L D B S to cont inue to be executable wi thout modification.
The most impor tant feature o f an M D B S is the au tonomy of its LDBSs. Local
au tonomy is both desirable and necessary; it facilitates flexible in terconnect ion o f
various kinds o f LDBSs, ensures consistency and security of LDBSs, and guarantees
that old applications are executable after interconnection.

Weimin Du, Ph.D., is Technical Staffmember, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo
Alto, CA 94304; Ahmed K. Elmagarmid, Ph.D., is Associate Professor and Omran Bukhres, Ph.D., is Visit-
ing Associate Professor, Computer Sciences Department, Purdue University, W. Lafayette, IN 47907; Won
Kim, Ph.D., is President and CEO, UniSQL, Inc, 9390 Research Blvd., Austin, 'IX 78759.

216

The main objective of interconnecting otherwise isolated LDBSs is the sharing
of data. An effective approach to data sharing among LDBSs is the replication of
local data at remote sites. Replication is desirable in MDBSs because it allows a
local user to read otherwise "remote" data easily, thereby reducing retrieval costs.
Replication also increases data availability in the presence of failures. On the other
hand, replication adds complexity to transaction processing. For example, updates
to replicated data at one site must be propagated to other sites so that mutual
consistency is maintained.

In traditional replicated database systems, mutual consistency is guaranteed by
executing transactions in a one-copy serializable manner (Bernstein et al., 1987).
In one-copy serializable executions, transactions see the same database states as in
a serializable execution of the same set of transactions on a single copy (i.e., non-
replicated) database. One-copy serializability is ensured by a concurrency control
protocol which guarantees that physical data (regardless of replication) are accessed
consistently (e.g., in a serializable fashion), and by a replica control protocol that
ensures that physical copies of all replicated data are accessed consistently. For
example, a transaction may read any copy of a replicated data item. To update
replicated data, however, it must write all copies.

Although the basic paradigm remains largely unchanged, concurrency control in
replicated MDBSs presents significantly increased challenges. Ensuring such control
is more difficult than in traditional databases because the component LDBSs schedule
local executions independently and possibly inconsistently. It is also more difficult
than in non-replicated MDBSs because both global and local applications can update
replicated data. Furthermore, due to the constraints of autonomy and availability,
there can be no central agent coordinating such concurrent accessing.

Quasi-serializability has been proposed as an alternative to the traditional serial-
izability approach (Du and Elmagarmid, 1989). Quasi-serializability reflects the fact
that transactions are scheduled by LDBSs independently. Instead of trying to ensure
consistent serialization order at different sites, it requires only consistent execution
order for global transactions. It has been shown that quasi-serializability is easier
for the global transaction manager (GTM) to ensure, and possible inconsistencies
can be resolved by controlling information flow between global subtransactions.

In this article, we first extend the basic quasi-serializability theory to handle
replicated data, resulting in one-copy quasi-serializability (1QSR). The main result
is a concurrency control protocol for a replicated MDBS that supports prompt
and consistent (i.e., one-copy quasi-serializable) updating of replicated data in a
decentralized and autonomous fashion. The protocol is decentralized; there is no
central agent imposed to coordinate access to replicated data. Instead, a set of local
servers is used to coordinate the execution of transactions that access replicated
data. Each server manages submissions of global and local transactions at each site
independently, without consulting the global transaction manager and other servers.
The proposed strategy maintains the global consistency (i.e., 1QSR) of replicated
multidatabases in the presence of the concurrent execution of both local and global

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 217

transactions. Another advantage of the protocol is that it does not violate local
autonomy; the LDBSs have full control over their data regardless of replication. A
local transaction independently updates replicated data that logically belong to its
host LDBS. It can also read other replicated data that have copies at its site. In
addition, no modification to the LDBSs is required, and local transactions that do
not update replicated data are processed in the same way as if the LDBSs were
not interconnected.

The rest of this article is organized as follows. In Section 2 some basic concepts
and terminology are introduced. An overview of replicated data management in
multidatabase systems is then given in Section 3, showing that the crux of the
problem is to devise a decentralized concurrency control protocol. Basic quasi-
serializability is extended in Section 4 to handle replicated data. In Section 5 we
present a concurrency control protocol that supports prompt and consistent access
to replicated data by both local and global applications. In Section 6 several related
issues are discussed. Section 7 contains concluding remarks.

2. System Model

A replicated MDBS consists of a set of LDBSs, S = {$1, $2, ..., Sn) and a set
of transactions, 'T. 1 Each local database system is defined by a pair of data sets,
Si = (~Di, 79i), where 79 i is a set of logic aata items that belong to Si, while 79i
is a set of physical data copies that reside at Si. We also use 79 = t_J~=179 i and
T' = U~=iT'i to denote respectively the set of logical data items that belong to the

set of physical copies that reside at the MDBS. The function f : ~D ~ 2 r ' (where
2 ~ denotes the powerset of T') gives for each data item, d, the set of data copies
which implement d. A data item, d, is said to be replicated if the cardinality of
f (d) is greater than one. Otherwise, it is said to be non-replicated. For a replicated

data item, di E 79i, there always exists a data copy, d~ E 'Pi fq f (d i) (i.e., the
copy that resides at its host site), which is called the primary copy. 2

There are two kinds of transactions in a replicated MDBS: global and local
transactions. Local transactions represent those applications developed on each
LDBS before the construction of the MDBS and which therefore access 79 i only.
Global transactions represent applications developed afterwards which usually access
multiple 79i's. Local transactions can be further differentiated between basic local
transactions which update non-replicated data only, and replica-update local trans-
actions which update both replicated and non-replicated data. From a user's point

1. Notation: Calligraphic letters denote sets, Roman letters denote acronyms, and italic letters denote
instances; lower case letters are used for data items and capitals for transactions and local database systems.

2. Notation: We use d~ to denote the physical copy of data item di at site S j ; the subscript specifies the
data item and the superscript specifies the site.

218

of view, replica-update and basic local transactions present the same appearance,
because they access only data items that logically belong to a single LDBS. From a
transaction management point of view, however, replica-update transactions appear
to be global, because they access data copies that physically reside at several sites.
In the rest of this article, those two situations will be simply referenced as local
and replica-update transactions.

Formally, transaction set "T consists of 2n + 1 subsets, ~'T,/~'7'~, "R.7~,/~'7~,
TCT2, ..., 1~7",~, T~Tn, where ~ 'T is the set of global transactions,/~'7"i is the set of
local transactions belonging to Si, and TCTi is the set of replica-update transactions
belonging to Si. A global transaction ~i consists of a set of subtransactions (called

global subtransactions) G~, G~,.. . , G~, where ~] accesses 79j only. 3 Similarly, a

replica-update transaction, Ri, consists of a replica-update subtransaction, R[(that
accesses Pi only), and a set of replica-propagation subtransactions, R~, R~, ..., R~,

where R i accesses only f(Di) f'l 79j(i ~ j). We use ~ 7 " = U~=i"R.7~ and
/~'T = LJ~=l/~'7"i to denote, respectively, the set of all replica-update transactions
and the set of all local transaction in the MDBS. We also use ~/ = / ~ / L J { T~ [To •
~ 'T} U (t_Jj~_l"R.7~.)} to denote the set of transactions that are executed at site Si.

Generally, a transaction is a finite set of partially ordered operations. Each is
either a read or a write operation. In this paper, we use r t(d~)(or wt(d~)) to
denote the read (or write) operation of transaction T reading (or writing) a copy
of data item do at site ~s. The set of all data copies read (or written) by T is
denoted as T~(T) (or • (T)) . O(T) = ~ (T) LJ }/V(T) is the set of all data
copies accessed by T.

For G • ~ 'T, Ri • "T~i and Li • l~'Ti, accessibility to data copies is defined
as follows:

1. T~(G) C_ 7 9

2. w (c) c

3. c_ p,

4. W(R) c n f (V,)

5. n (R i) =

6. W(R{)= Pj fq f(:Di)
7. 7Z(L) c_

8. W(Li) C {p • P~13d • such that f(d) = {p})

3. Notation: We use T~ to denote the subtransaction of ~ at site S j .

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 219

Figure 1. Transaction Processing in Replicated MDBSs

£T:,~TI

C.,

I
I

(¢'ra,aT"~,..., aT,) I

]o]

DBSi] I LD

£T., RTn <
~Sn I

The transaction processing model used in this article is presented in Figure
1. There are three major components: a global data manager (GDM), a global
transaction manager (GTM), and a set of servers residing at each local site.

Both the GDM and the GTM are centrally located, while a server is superimposed
on the LDBS at each site. The interrelationship of these components is as follows.
A global transaction (in logical operations) is first submitted to the GDM, which
decomposes it into a set of subtransactions (in physical operations) and passes them
to the GTM. The GTM then sends the subtransactions to servers at local sites
and coordinates their execution. Each server in turn sends each operation of the
subtransaction (including commit/abort) to the underlying database as instructed by
the GTM.

In this model, local and replica-update transactions first must be submitted to
the server, rather than directly to the underlying database. The server translates
each logical operation on a data item into the corresponding physical operation
on the local copies of the data and forwards it to the underlying database. The
server also propagates each replica-update operation to servers at remote sites so
that mutual consistency is maintained. Clearly, local and replica-update transactions
must be submitted to the server to maintain mutual consistency, although it may
imply modifications to pre-existing local applications.

220

3. Replicated Data Management for an MDBS

The ultimate goal of mutual consistency carries with it two implications. First, as in
non-replicated databases, data items (regardless of replication) must be accessed in
a consistent order (data consistency). For example, two transactions may not update
two data items in different orders. Second, physical copies of the same replicated data
must be accessed by different transactions in a consistent order (replica consistency).
Therefore, two transactions may not update the same replicated data in different
orders at two sites.

These two restrictions are accommodated by a pair of separate protocols. A
replica controlprotocol ensures replica consistency by translating each logical oper-
ation into one or more physical operations, while a concurrency control protocol
ensures data consistency by coordinating the execution of physical operations. To-
gether they maintain mutual consistency of a replicated DBMS. In this section, we
review the traditional strategies for both protocols to identify key issues in extending
the strategies for a replicated MDBS. First, let us summarize the basic requirements
and assumptions of replicated data management in an MDBS.

3.1 Assumptions and Requirements

The following requirements are desirable for a replicated data management proto-
col in a replicated MDBS: preserving local autonomy; supporting consistent access
to replicated data; enhancing system reliability and data availability; and providing
transparent access to replicated data. These requirements and their implications will
now be discussed in further detail.

Local Autonomy. We assume that local databases are autonomous. Local autonomy
reflects the fact that local databases were independently designed and administrated.
Data were replicated to facilitate sharing. We make no assumption regarding the
accessibility of local data. In other words, local data are fully controlled by their
host LDBSs. These conditions generate two implications. First, no modification to
the local DBMSs (including local transaction managers) is allowed. Second, it is
impossible, or at least undesirable, to impose a central agent that regulates access
to all replicated data. The LDBSs should be able to independently update each
data item (regardless of replication), and each should have full control over updates
to its data by remote transactions.

Consistency. The conventional correctness criterion for data management is serial-
izability (Bernstein et al., 1987). Ideally, we would like to devise a protocol that
ensures the serializability of global executions as long as local DBMSs ensure local
serializability. However, this seems to be difficult to achieve given the autonomy
requirement (D u e t al., 1989). The protocol we propose ensures serializability only
if all LDBSs ensure strict serializability (Papadimitriou, 1986). In general, how-
ever, the protocol ensures only a weaker notion of consistency: quasi-serializability
(Section 4).

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 221

Reliability and Availability. To facilitate effective data sharing, local users should
be able to read replicated data both independently (without consulting other sites)
and efficiently (reading the nearest copy only). In addition, they should always be
able to read local data (regardless of replication), even when the site is isolated.
Similarly, local users should be able to update local data independently. Although
updates must be propagated to remote sites, local updates should be committed as
soon as possible, without waiting for the completion of remote ones. This implies
that any protocol (e.g., two-phase commit) that aborts replica-update transactions
due to inconsistent update propagations violates the availability requirement. Two-
phase commitment is neither desirable nor necessary for replica-update transactions
(Section 6).

Replication Transparency. We assume that, in replicated MDBSs, local users are not
aware of the replication of local data. As a matter of fact, for those local applications
developed before the databases were integrated, all data are local and non-replicated.
It is therefore necessary to provide transparent access to replicated data. Local
applications, regardless of the data they access, should be treated uniformly. This
has led to the distinction between global and replica-update transactions. In our
transaction processing model (Figure 1), replica-update transactions are submitted
and executed in the same way as other local transactions and are not controlled by
the GTM. The server, however, must distinguish between replica-update and local
transactions and propagate any updates made by replica-update transactions. This
requires that each server keep a replicated data dictionary for data at the site. In
addition, a global dictionary is maintained and used by the GDM for replicated
data at all sites.

In the next two subsections, we shall discuss the implications of the above
requirements on replica and concurrency control for a replicated MDBS.

3.2 Replica Control

In the absence of failures, replication control simply involves the translation of
each pair of logically conflicting operations into physical operations conflicting on at
least one physical copy. As a special case, the read-one-write-all protocol translates
each logical read operation into one physical read operation and each logical write
operation into a set of all physical write operations. By reading only the nearest copy,
the algorithm implements the efficient reading of a data item, an attractive feature
when reads outnumber writes, as in most real-world applications (Stonebraker,
1988).

In the presence of failures, the above basic read-one-write-all algorithm can be
extended. A read operation is allowed if at least one copy is available; the nearest
available copy is read. A write operation, however, is allowed only if the majority
of copies are available, and all available copies must be updated. When a site
recovers from a failure or is reconnected, the protocol restores each replicated data
item at the site by copying up-to-date values from the nearest available sites before

222

new requests are processed. Abbadi et al. (1985) described such an extension
that tolerates a large class of failures, including processor and communication
link crashes, partitioning of the communication network, lost messages and slow
responding processors, and communication links.

In our transaction processing model (Figure 1), replica control is implemented
by the GDM (for global transactions) and servers (for replica-update transactions).
Because both the GDM and servers are new modules added at integration time,
replica control protocols can be easily implemented, i.e., replica control in MDBSs
is essentially identical to that in traditional database systems. Throughout this
article, we assume that a modified version of the above mentioned read-one-write-
all-available protocol is implemented in our transaction processing model.

3.3 Concurrency Control

The most commonly used concurrency control protocol in traditional database
environments is two-phase locking. Many other protocols have also been proposed
(Bernstein et al., 1987). None of these, however, can be applied directly to MDBSs,
because transactions in that environment are managed by a set of autonomous local
transaction managers. The GTM, responsible for global consistency, is superimposed
on those local transaction managers and therefore has neither information about
nor direct control over local executions.

Given these constraints, the GTM may adopt one of two approaches. The pes-
simistic approach prevents inconsistencies by imposing restrictions on global transac-
tions and their executions, while the optimistic approach detects and resolves incon-
sistencies afterwards by aborting global transactions. Although the latter method
may provide a higher degree of concurrency, its tendency to abort replica-update
transactions (and therefore violate availability requirements) renders it inappropriate
for use in a replicated MDBS.

Several pessimistic protocols have been proposed to ensure consistency for
non-replicated MDBSs (Alonso et al., 1987; Breitbart and Silberschatz, 1988; Du
et al., 1991). These protocols, as well as other optimistic protocols proposed in
the literature (Georgakopoulos et al., 1991), are all centralized, in that all global
transactions accessing multiple sites are controlled by a central agent, the GTM.
Therefore, they cannot be applied directly to replicated MDBSs, because replica-
update transactions access multiple sites but are not under control of the GTM.

In a simple solution to the above problem, the replica-update transaction is
controlled by the GTM through one of two methods. Replica-update transactions
may be submitted to the GTM, or the local servers may consult the GTM before
submitting the replica-update transactions to the underlying DBMSs. However, these
straightforward approaches present several drawbacks. Both methods engender
delays in replica-update transactions. For example, let us suppose that a user has a
checking account in a San Francisco bank which is replicated at the bank's New York
office. The MDBS integrating the two local databases is located in New York. When
cashing a check in San Francisco, the user must wait while the request from the local

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 223

server at San Francisco is sent to the GTM in New York, and a response is returned.
Because the GTM is responsible for the update propagation of all replicated data,
communication bottlenecks are also likely. An even greater concern is that local
transactions are unable to update replicated data when the central agent is down,
even if the local database system is still running. This significantly violates the
requirements of local autonomy and reliability.

In summary, we have viewed replicated data management as two separate but
interrelated tasks of replica and concurrency control. Because replica control in
the MDBS environment remains largely unchanged from traditional models, we
will focus on global concurrency control in extending the traditional strategies to
support consistent access in replicated MDBSs. More specifically, we will describe
a decentralized and pessimistic concurrency control protocol that overcomes the
problems discussed above. Before we can do that, we need to extend the basic
quasi-serializability to handle replication. The concurrency control protocol based
on 1QSR will be presented in Section 5.

4. One-Copy Quasi-Serializability

First we will review the basic quasi-serializability theory. Then we will generalize
the theory to deal with replication, and lead to the formulation of 1QSR.

4.1 An Overview of Quasi-Serlalizability

Quasi-serializability is a correctness criterion for global concurrency control in
MDBSs. It is weaker than serializability and therefore is easier to ensure. There
are two reasons for using quasi-serializability. First, due to the demands of local
autonomy, it is difficult to maintain serializability in MDBSs. We have already
pointed out that the only control the GTM has over local executions is in the
submission of global subtransactions. It is well known that a transaction following
another in an execution may effectively precede the latter in serialization order
(Papadimitriou, 1986). The second reason is the independence of local transactions,
which are designed and executed independently. There is no direct precedence
between local transactions at different sites. Although global transactions may
introduce indirect precedence between two local transactions (e.g., local transaction
L1 precedes global transaction G~ at site $1, which in turn precedes another local
transaction, L2 at site $2), this precedence does not necessarily imply interaction
between local transactions. Indeed, such precedence can often be prevented by
delaying global transactions.

Informally, a global execution is quasi-serializable if it is equivalent to a quasi-
serial execution in which global transactions are executed sequentially. The basic
quasi-serializability theory assumes that there are no data replicated at the global
level and therefore no replica-update transactions.

224

Definition 4.1. (Quasi-serial executions) A global execution, E = { E l , E2, ..., E,, },
is quasi-serial if

1. each local execution Ei is serializable; and

2. there is a total ordering (called quasi-serialization order) over ~ T so that if
T/ precedes Tj in the order, all operations of Ti are executed before those
of Tj in each local execution.

Definition 4.2. (Quasi-serializable executions) A global execution is quasi-serializable
if it is equivalent to a quasi-serial execution of the same set of transactions.

Example 4.1. Consider a non-replicated MDBS, ({$1, $2}, {G1, G2, L1, L2}),
where S1 = (~ i , ' P l) and $2 = (~)2,~2). ~[~1 = ~ 1 = {a,b} and'P2 = "D2 =
{c, d}. G1, G2 E ~ 'T are global transactions and L1 C ~ T 1 and L2 C /~'T2
are local transactions at sites S1 and $2, respectively.

G1 = IGi , i ,G1,21, where G 1 j : wgl(a) and G1,2: rvl(c).
LG12= 1G2,1,G2,21, where G2,1: ro2(b) and G2,2:wa2(d).

:rt~(a)wt~(b).
:

Let E = {El , E2} be a global execution of G1, G2, L1 and L2, where
El: wa~(a)rtl(a)wtl(b)rg2(b), and
E 2 : wt2(c)rg,(c)wg,(d)rt2(d).
By definition, E is quasi-serializable. However, it is not serializable. []

In quasi-serializable executions, global transactions affect each other in a partial
order because they are executed sequentially in the equivalent quasi-serial executions.
For example, G1 affects G2 (Example 4.1), but not vice versa. Global and local
transactions accessing the same site also affect each other in a partial order because
of local serializability. It is possible, however, for two local transactions at different
sites to affect each other bilaterally. L2 affects L1 if rl~ (a) reads indirectly from
Wl2(C) (i.e., wgl (a) depends on rg~ (c)). Similarly, L1 affects L2 if wg2(d) depends
on rg2(b). Generally, a local transaction at site $1 will be affected by another
local transaction at site $2 only if there is a global transaction whose subtransaction
at site $1 depends on the subtransaction at site $2. Therefore, the interaction
between local transactions at different sites can be prevented by controlling remote
information flow in global transactions. L2 will not affect L~ if G2 is delayed until
either L1 or L2 is concluded.

Quasi-serializability proves easier to ensure than serializability, because the
order of global transactions is more independent of local transactions in the former
than in the latter. Some local transactions may mandate serialization orders, but
such constraints are not made on quasi-serialization orders. For example, G1 must
follow G2 in serialization order because of local transaction L1. This is, however,
not the case in quasi-serialization order.

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 225

4.2 One-Copy Quasi-Ser|alizable Executions

There are two issues we must consider when extending quasi-sefializability to deal
with replication. First, if a transaction reads a data item from another transaction
at the logical level, it should read the corresponding copy from the transaction.
Second, since both global and replica-update transactions may update replicated
data, their execution must be coordinated in a consistent way.

Definition 4.3. (One-copy quasi-serial executions) A global execution, E = { E1, E2,
..., E=}, of a set of well-formed transactions is one-copy quasi-serial if

1. each local execution E i is serializable;

. there is a total ordering (called quasi-serialization order) over ~ 'T U "N/T,
such that if Ti precedes Tj in the order, all operations of Ti are executed
before those of Tj in each local execution; and

. for Ti, Tj E @T U 7~'T, if Ti reads d~ (a copy of dl at site S,) and Tj is
the last transaction before T / in the quasi-serialization order that writes dx,
then Tj writes d~.

The first two conditions of one-copy quasi-serial executions are the same as those
of basic quasi-serial executions (if we consider replica-update transactions as global
transactions). The last condition guarantees that, although transactions may access
different copies of a replicated data item, the execution is equivalent to an execution
on a single copy database. Therefore, one-copy quasi-serial executions define, from
a user's single-copy point of view, correct (or acceptable) executions.

Example 4.2. Consider a replicated MDBS, ({$1, $2}, {G1, G2, R1, R2, L~,

= = {dl ,d2} , L2}), where $1 (79,,7vl) and $2 = (V2,792).791 {d ,} , ' P l = 1 1

{dl , d2, d]}. G1, G2 E ~7" are global transactions; 792 = {d2,d3}. P2 ~- 2 2
R1 E "R.T2 and R2 E "R.'T1 are replica-update transactions; L~ C /~'T1 and
L2 E / ~ " 2 are local transactions.

G~ = {G~,i,G~,2}, where G~,~: wg~(dla) and G~,2: wg~(d~).
G2 = {G2,1, G2,2}, where G2, , : r.~(dl)w.~(d~) and G2,2: wg2(d~).
R1 = {R, ,1 ,R, ,2} , where R i , , : w~,(d~) and R1,2: r~(d22)r~,(d32).
R2 = {R2,~,R2,2}, where R2,~: w~(d~) and R2,2: wry(d22).
Li : rh(a])rh(d~).
L2 : wt~(d~)rt~(d~).
Let

where
E1
E2

E : {E l , E2} be a global execution of G1, G2, R1, R2, L1 and L2,

: rh(d~)wgl(d~)wrl(d~)ra2(d~)wg2(d~)w,.2(d~)rtl(d~) , and
: wgl (dl)rr, (d)rr (d])w,2 (d)wg

226

t3 is one-copy quasi-serial, and the quasi-serialization order is G1 --~ /~1 ~ G2 -.-¢.
R2. Note that C2 reads d I from R1, which is the last transaction before G2 in
the quasi-serialization order that writes dl. If, instead of reading d~, G2 reads dl 2,
the execution will not be one-copy quasi-serial, because G2 reads dl from G1. We
observe that E is not one-copy serializable. []

Definition 4.4. (One-copy quasi-serializable executions) A global execution of a
set of well-formed transactions is one-copy quasi-serializable if it is equivalent to a
one-copy quasi-serial execution of the same set of transactions.

Example4.3. For the same MDBS in Example 4.2, let E ' = {E~,/3~}, where

t 1 1 1 1
/ 3 1 : 'u3.q2(d2)li3r2(d2)7"ll(dl)T'tl(d2)'u).ql(d~)'wrl(d~)T92(d~)

'

E ~ is one-copy quasi-serializable, because it is equivalent to E of Example 4.2. []

The correctness of one-copy quasi-serializable executions is derived directly
from that of quasi-serializable executions by considering replica-update transactions
as global transactions. Local transactions at different sites do not affect each other
directly, because they are not allowed to update replicated data. Global and replica-
update transactions, which update replicated data, affect each other in a partial
order, because they are executed sequentially in the one-copy quasi-serial execution.

5. A Decentralized Concurrency Control Protocol

As we have seen, decentralized concurrency control in replicated MDBSs is a
difficult problem with no general solution. Because a replica-update subtransaction
is executed and committed independently at its host site, it is inevitable that two
conflicting replica-update and/or global transactions may be scheduled inconsistently
by two servers. To address the problem, we distinguish between resolvable and
unresolvable conflicts. As their names suggest, resolvable conflicts can be resolved
by local servers at run time, while unresolvable conflicts cannot. In this section, we
first present the basic protocol. We then identify resolvable conflicts in a replicated
MDBS and show how they can be resolved at run time. We also show how
unresolvable conflicts can be prevented by imposing restrictions on the accessibility
of global and replica-update transactions. A concurrency control algorithm based
on the protocol is also presented.

5.1 Basic Protocol

To maintain 1QSR of global executions, it is sufficient to execute global and replica-
update transactions in a consistent order at all local sites. The key to achieving this

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 227

goal is for each server to have the global execution order before it actually executes
the transactions. In conventional pessimistic protocols (e.g., altruistic locking, Alonso
et al., 1987; access graph, D u e t al., 1991), the GTM is responsible for generating
and sending the order to the servers. The servers enforce the order by delaying
any transactions that arrived too early.

This approach is not applicable to replicated MDBSs, because the GTM is not
aware of replica-update transactions at local sites. In fact, there is no central agent
that possesses knowledge of all global and repliea-update transactions, and therefore
it is impossible to construct such an order statically (i.e., before transactions are
executed).

In the proposed protocol, the GTM generates the order for global transactions
only. It is each server's responsibility to construct its own order for both global and
replica-update transactions at the site. Primary copies are accessed in this order,
and the order is also propagated to other sites. Restrictions, however, must be
imposed on the transactions that update replicated data, so that if they are ordered
consistently at different sites, at least the inconsistencies can be resolved at run
time.

The following concepts will be useful in describing the procedure of generating
the consistent order. A global order is a linear order over all global transactions, and
a global total order is a linear order over all global and replica-update transactions.
A local order at a site is a linear order over all global and replica-update transactions
originating at the site, and a local total order is the projection of a global total order
of all transactions executed at the site.

We say that two orders 01 and 02 are compatible if for any transactions T1

and T2 that appear in both orders, either T1 ~ T2 and T1 ~ T2, or T1 ~ T2

and T1 ~ T2. Given a set of compatible local orders, there exists at least one
global total order that is compatible with all local orders.

Example 5.1. Let O1 and 02 be two local orders at site $1 and $2, respectively.
01 : G1 ~ R2 ~ R3 ~ G4 ~ R5 ~ G6 ~ R7 ~ R8 ~ G9.
02 : G1 ~ Rio ~ G4 ~ Rll ~ R12 ~ G6 ~ R13 --~ Gg.
Where G1, G4, G6, G9 E ~'T, R2, R4, R5, R7, R8 E "T~'T1, and

Rio, R l l , R12, R13 E ~ T 2 .
01 and 02 are deafly compatible, and there exists a global total order 0 that

is compatible with both O1 and 02.
0 :G1 ~ R2 ~ R3 ~ Rio--~ G4 ~ R5 ~ R12 ~ G6 ~ R7

R8 ~ R13 ~ 69 .
01 and 02 are also compatible with the following local total order 0 .

(~ : a l ---," Rio ~ R2 ~ R3 ---~ G4 ~ R12 ~ R5 ~ G6 --4 R13
Rr ~ Rs ~ Gg. D

228

In the proposed protocol, local total orders are constructed in the following
four steps:

1. The GTM determines the global order and submits the order along with each
global subtransaction to all local sites.

. After receiving the global order, a server constructs a local total order
by adding all replica-update/propagation subtransactions executed or being
executed at the site. The order is compatible with the global order and
reflects the actual execution (and therefore quasi-serialization) order at the
site.

. For each locally executed replica-update subtransaction, the server sends both
the replica-propagation subtransaction and the local total order to relevant
sites.

4. After receiving local total orders from other sites, a server compares it with
its own order. Inconsistencies (if any) are resolved at this step.

Local orders at different sites are always compatible, because the replica-update
transaction sets at different sites are disjoint. Therefore, there is always a global
total order. Became local servers construct local total orders independently, it is
possible that they construct incompatible orders. The question is whether and under
what condition the inconsistency can be resolved without aborting transactions.

5.2 Resolvable Conflicts

Although it is impossible to prevent all inconsistencies, it is possible to resolve some
inconsistencies at run time, as illustrated by the following example.

Example 5.2. Consider a fully replicated MDBS, ({S1, $2} , {G1, R2, L3}), where
$1 = (791,791) and $2 = (792,792). There are two data items belonging to ,5'1
which are replicated at both sites: 791 = { d l , d2}, 792 = ¢, 791 = {d], d~}, and
'P2 = {~1, d~2} • G1 E ~ 'T is a global transaction, R2 E T~'T1 are replica-update
transactions, and L3 E/~7-2 is a local transaction, defined as follows.

G 1 = {GI, G12}, where G I : rgl(dl)wal(dl) and G~ : wa~(d~).
1 1 1 1 R2 = {R~,R~}, where n ~ : rr2(dl)Wr2(dl)rr2(d2)wr2(d2) and

N:
L z : rtz(d~)rt(d~).

Suppose that G] and R2 were submitted to the GTM and to the server at $1,
R 1 respectively, at about the same time. Due to the communication delay, 2 was

already committed before G] arrived at S], but R2 2 arrived at $2 after G~ was
committed. In other words, the local total orders constructed at two sites are
R2 --¢" G'I and G1 ~ R:2, respectively.

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 229

Let E = { E l , E2 } be the execution of G1 and R2, where
E1 : rr2(d11)wr~ I 1 1 (dl)rr2(d2)w~2(d2)ral(d11)Wal(d~), and

2 2 2 2 : ",3(dl)W.1(di)wr (dl)Wr (<)r,3(a2)

The execution is not one-copy quasi-serializable, because two local total orders are
not compatible with each other. The inconsistency cannot be prevented by the
GTM, because it is not aware of R2. The server at Si has no information about
E2, therefore it is unaware of the inconsistency and will commit R21 as soon as it
finishes. The server at $2 detects the inconsistency after R2 2 arrives, too late to
prevent this from occurring, because R12 and G~ have already been committed. []

The inconsistency in the above example is caused by the obsolete write Wr2 (dl 2)
of R2. It is obsolete because it conflicts with the write operation wffl (d~) of G1 and
arrived at $2 too late (i.e., after G~ completes). The inconsistency can be prevented
by servers at $1 and $2 if both G1 and R2 follow two-phase commit protocol, as
in conventional distributed database systems. This is, however, undesirable for two
simple reasons: we do not want to delay the commitment of R~ until R~ completes,
and we do not want to abort G1 or R2 unless it is really unavoidable.

In this particular example, the inconsistency can be resolved at $2 without
aborting any transactions: by simply ignoring the obsolete write (i.e., wr2(d~)).

Let /~ = {/~1,/~2 } be the resultng execution, where

] ~ 1 : rr2(d~)wr2(d~)rr2(d21)Wr2(d~)rg~(d~)wg~(d~), and

t~2 : r13(d12)wyl (d12)wr2(dl)r13(d~).
Clearly, _E is semantically equivalent to a one-copy quasi-serializable execution

JE = { El, E2 }, where
1 1 E l : rr2(dl)Wr2(dl)rr2(d~)w,2(d~)raa(dl)waa(d~), and
2 2 2

E 2 : r13(dl)Wr2(dl)Wr2(d2)wg1(di2)r13(dl) •

Unfortunately, not all inconsistencies lend themselves to such a resolution.
In Example 5.2, if Ga not only updates dl 2 but also reads d~, simply ignoring
R2 2 will result in a semantically different execution. Therefore, it is important to
distinguish between resolvable and unresolvable conflicts. In order to do so, we
need to formalize the notion of semantic equivalence. The following concept of
virtual equivalence is an extension of the traditional notion of execution equivalence
(Bernstein et al., 1987).

Given two executions, E and /~, over transaction sets {T1, T2, ..., Tk} and

{T1, T2, ..., Tk }, respectively, we say that E is virtually equivalent t o / ~ if

1. O(Ti) C (Q(T~) f o r i = O , 1,... ,k;

2. for any two transactions T/, Tj in E (hence ~ , Tj in/~) and for any data

item x, if Ti reads x from Tj in E, then Ti reads x from Tj in/~; and

230

3. for each data item x, if Ti is the last transaction that writes x in E , then

T / i s the last transaction that writes x in E .

Notice that two virtually equivalent executions do not have to be defined on the
same set of transactions. The difference is a set of obsolete operations that have no

imp_act on the semantics of the executions. For example, E is virtually equivalent
to E . The difference between two executions is a dead-write wr2 (d12).

Informally, a conflict between two transactions is resolvable if one of the
conflicting operations can be removed without changing the semantics of execution.

Definition 5.1. (Resolvable conflicts) Given a local execution, gt, defined over
transaction set Ti and two conflicting operations, oi C O (T /) a n d oj C O(Tj)(i 7 ~
j and oiprecedesoj), the conflict is resolvable if there exists Et and /~ t so that

= E / o s ; 4

Et is defined over Tt, and Ti t does not conflict with 7J in -/~t; and

JEt is virtually equivalent to El .

According to Definition 5.1, the conflict between wal (all 2) and wr2(d~) in E

of Example 5.2 is resolvable by ignoring wr2(d12).
We also say that a conflict between two transactions is resolvab!e if conflicts

between their operations are all resolvable. Conflicts between two transactions that
are not resolvable are called unresolvable conflicts.

5.3 Preventing Unresolvable Conflicts

In order to ensure one-copy quasi-serializability, it is sufficient for a protocol to
prevent all unresolvable conflicts. Generally, there are four types of global conflicts
in a replicated MDBS:

1. conflicts between two global transactions;

2. conflicts between two replica-update transactions at the same site;

3. conflicts between a global and a replica-update transaction; and

4. conflicts between two replica-update transactions at different sites.

The first two types are easily prevented in the protocol. For example, the global
order is determined by the GTM and sent to all relevant local sites along with these
global transactions. Local servers, therefore, can forestall Type 1 conflicts simply by

4. E/oj means removing oj from E .

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 231

delaying global subtransactions which arrived too early. Similarly, Type 2 conflicts
can be prevented by the server, as it has full control over both transactions.

As illustrated in Example 5.2, Type 3 conflicts are unpreventable at a non-host
site. It is also impossible to prevent Type 4 conflicts if two replica-update sub-
transactions are issued to two sites at about the same time. In this case, both
replica-update subtransactions are committed before submitting the correspond-
ing replica-propagation subtransactions, and therefore no server is aware of both
transactions until the two updating subtransactions have completed. In either case,
however, the conflict is caused by an obsolete replica-propagation subtransaction.

Generally, the resolvability of these two types of conflicts depends on the data
accessed by the two subtransactions. Because a replica-propagation subtransaction
contains writes only, a conflict is resolvable if the subtransaction does not write data
previously read by the conflicting (global or replica-update) subtransactions, and as
in Example 5.2, the conflicts can be resolved by ignoring the obsolete writes.

The discussion presented above can be summarized by the following theorem
(see Appendix A for proof).

Theorem 5.1. The global execution generated by the protocol is virtually equivalent
to a one-copy quasi-serializable execution of all original transactions, if the following
two conditions hold:

1. MGo E ~:T and Ri E TCTi,'I~(G~) n W (R i) = O, for all j # i; and

2. VRi C 7 ~ / a n d R j E 7~j,(W(Ri)AT~(Rj))U(T~(Ri)NW(Rj)) = 0.

Basically, the conditions set forth in the theorem ensure that the write set of a
replica-propagation subtransaction does not overlap with the read set of global and
replica-update/propagation subtransactions from other sites. The conditions can be
satisfied by imposing the following restrictions on the accessibility of global and
replica-update transactions:

1. MG E GT-, T~(G) n (79i n f (Dj)) = 0. That is, global transactions do not
read non-primary copies of replicated data.

2. MR E T~7"i, O(R) C_ "Pln f (Di). That is, replica-update transactions only
access data that logically belong to the host site.

Given these restrictions, the first condition of the theorem holds true because a
replica-propagation subtransaction updates only non-primary copies which are not
readable by global transactions. The validity of the second condition arises from
the disjointness of replicated data sets at different sites.

We believe that the restrictions proposed do not conflict with the requirements
of local autonomy and availability, because no restriction is imposed on local
transactions, and replica-update transactions can independently access all data items
(regardless of replication) belonging to their host sites.

232

5.4 The Algorithm

The algorithm for the proposed protocol consists of two parts: a global scheduler and
a set of local servers. The global scheduler assigns a unique global identification, or
GID, to each global transaction. This number, incremented with each use, reflects
the global order of the transaction and is submitted along with global subtransactions
to servers at local sites.

Local servers at each site not only enforce the global order, but also coordinate
executions of replica-update transactions. A server executes global and replica-
update transactions sequentially at each site (Section 6 presents an optimization
of this approach). Each replica-update transaction issued at a site is incrementally
assigned an identification number (local identification, or LID) by the server. The
number and its relationship to the global order (e.g., LID0 follows GID1 but precedes
GID2) reflect the local order of the site.

In order for local servers to construct local total order, each replica-propagation

subtransaction R i of Ri is augmented with the following data structures:

1. G_ID: The GID of global transactions that precede Ri in the local order.

2. R_I D: The LID of Ri.

3. R_LID[k]: The largest LID of replica-update transactions at site Sk that
have propagation subtransactions at both Si and Sj and have been scheduled

before R~ at site Si.

With the same rationale, each global subtransaction G~ is augmented with the
following data structure: G_ID: The GID of G1.

The local total orders are never explicitly constructed. However, they can be
derived from the values of the above data structures. Given a global subtransaction,

G~, and a replica-update subtransaction, R~, G{ precedes R~ at site Sj if and

only if G(.G_ID _< R(.GdD. Similarly, a replica-propagation subtransaction

R~ from site Sk precedes Ri, a replica-propagation subtransaction from site Si,

if R~.R_LID[k] < R{.R_ID.
The following data structures are used by a server to assign C . . /D , R_ID, and

R_LID values to a replicaTropagation subtransaction.

1. DELAYED: A set of global and replica-update/propagation subtransac-
tions that are delayed due to preceding subtransactions in the local total
order that have not yet completed. Note that a local transaction is never
delayed.

2. ARRIVED: A set of global and replica-update/propagation subtransactions
that are either delayed or still active.

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 233

3. FINISHED: A set of global subtransactions that are either committed
or aborted.

4. CURRENT_GAD: The largest GID of global subtransactions that are
either active or finished at site Si.

5. L A S T _ G A D : The largest GID of global transactions that arrived at site

.

.

CURRENT_R_ID[k] : The largest LID of replica-update transactions that
belong to Sk and are either active or finished at Si.

LAST_R_ID[k]: The largest LID of replica-update transactions that belong
to Sk and are arrived at Si.

. CURRENT_R_ID[k]: The largest LID of replica-propagation subtrans-
actions that belong to Sk and are either active or finished at Si.

9. GT[k]: The global subtransaction of GID k.

Each server consists of two components: SERVER_SUBMISSION and SERVER_
TERMINATION. The former is invoked each time a transaction is received, while
the latter is invoked only when a transaction has finished. SERVER_SUBMISSION
invokes subprocedures SERVER_GT, SERVER_LT, and SERVER_RT to sched-
ule global subtransactions, local replica-update transactions, and remote replica-
propagation subtransactions, respectively.

Procedure SERVER_GT enforces the global order by comparing the GAD
of each global subtransaction with CURRENT_GAD. A global subtransaction
is delayed ff its GAD is greater than CURRENT_GAD (meaning that the
previous global subtransaction has not yet completed).

Procedure SERVER_LT executes local repliea-update transactions separately.
Each repliea-update transaction is assigned a unique R_ID, which reflects the local
order in which it is executed. A replica-update transaction is delayed if the current
global subtransaction has not yet completed. This not only guarantees that the
replica-update transaction is executed sequentially with the global transactions, but
also implies that the replica-update transaction follows the global transaction in the
local order. The order is sent, along with replica-propagation subtransactions, to
other sites.

Procedure SERVER_RT adopts two measures to enforce a given local total order
between a global subtransaction and a replica-propagation subtransaction at a remote
site. First, a replica-propagation subtransaction will be delayed if it follows a global
subtransaction in the local order but arrives before the global transaction. Second,
if a replica-propagation subtransaction finds that a global transaction following it
in the local order has already been executed, it will simply ignore the updates that
conflict with the global subtransaction (resolvable conflicts):

234

procedure SERVER_SUBMISSIONi (T)
begin

if T is not a local transaction
then A R R I V E D = A R R I V E D U { T)

case 1: /* T is a local transaction */
submit T to the LDBS

case 2: /* T is a global transaction */
SERVER_GTi (T)

case 3 : /* T is a local replica-update transaction */
SERVER_LTi (T)

case 4: /* T is a replica-propagation subtransaction from site Sk */
SERVER_RTi (T)

endprocedure SERVER_SUBMISSIONi

procedure SERVER_TERM INATIONi (T)
begin

A R R I V E D = A R R I V E D - {T}
case 1: /* T is a local transaction */

do nothing
case 2: /* T is a global subtransaction */

F I N I S H E D = F I N I S H E D U {T}
C U R R E N T _ G _ I D = C U R R E N T _ G _ I D + 1

case 3: /* T is a local replica-update transaction */
C U R R E N T _ R _ I D [i] = C U R R E N T _ R _ I D [i] + 1

case 4 : /* T is a replica-propagation subtransaction from Sk*/
C U R R E N T _ R . . I D [k] = C U R R E N T _ R _ I D [k] + 1

for each T C D E L A Y E D do
D E L A Y E D = D E L A Y E D - { T }
SERVER_SUBMISSIONi (T)

endfor
endprocedure SERVER_TERMINATIONi (T)

procedure SERVER_GTi (Gi)
/* Gi is a global subtransaction */
begin

LAST_G._ID = max(LAST_G_ID, Gi .G_ID)
if (G~. G J D) C U R R E N T _ G _ I D)

or (Gi .G_ID = C U R R E N T _ G J D)
and (3T C A R R I V E D such that T .G_ID(Gi .G_ID)
then D E L A Y E D = D E L A Y E D U {Gi}
else if G_i.G_ID = C U R R E N T _ G J D

then submit G to the LDBS
else return(ERROR)
endif

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 235

endif
endprocedure SERVER_GTi

procedure SERVER_LTi(Ri)
/* R / i s a local replica-update transaction */
begin

for each subtransaction R{ of Ri do
if (i ~ j) /* replica-propagation subtransaction */

then R~.R._ID = LAST_R_ID
LAST.R_ID = LAST_R_ID + 1
for k = 1 , 2 , . . . , n do

Ri.R_LID[k] = LAST_R_ID[k]
end for
R~.G_ID = L A S T _ G J D
send R~ tO site Sj

else if GT[CURRENT_G_ID] E F I N I S H E D
and R~.R_ID!CURRENT_RJD
then submit R~ to the LDBS
else D E L A Y E D = D E L A Y E D U {R~}
endif

endif
end for

endprocedure SERVER_LTi

procedure SERVER_RTi(R~)
/* R/k is a replica-propagation subtransaction from site Dk */
begin

LAST_R_ID[k I = max(LAST_R_ID[k], Rk.R_ID)
i f (R~.G_ID)CURRENT_GJD)or(R~.R_ID)CURRENT_R_ID[k])

then D E L A Y E D = D E L A Y E D U {R~}
endif

if 3G E F I N I S H E D such that G.G_ID)R~.GJD
then for each wk E W(R~) N 'IAI(G) do

remove Wk from R~
endfor

endif
submit R/k to the LDBS

endprocedure SERVER_RTi

236

6. Related Issues

The previous section presented a decentralized concurrency control protocol capable
of coordinating execution orders of global and replica-update transactions. In this
section, issues related to the implementation and enhancement of this protocol will
be discussed.

6.1 Improving Performance

The performance of the protocol described in the previous section may be improved
in several ways. Here we suggest an approach to improving concurrency among
global transactions.

The algorithm executes global transactions sequentially by assigning a unique
number to each global transaction. As the following example illustrates, global
transactions need not be sequentially executed to ensure 1QSR.

Example 6.1. Consider an MDBS, ({ $1, $2, Sa }, { C1, G2 }), where Si = (Di, Pi).
Let Da = { a l } , D 2 = {ba},D3 = {Ca},P1 = {a~,bl} ,P2 = b12,a12} and

= b?}.

C , = { a l , C12}, where G I : wg,(al) and G12: wg,(a12).
= 3 (b l and {a2 , G 2}, where G~ : wa2

Regardless of the manner in which G1 and G2 are scheduled at three sites,
the global execution is always one-copy quasi-serializable. This holds true even in
presence of any local transactions. []

In general, the quasi-serialization order of a set of global transactions at a local
site is significant to the quasi-serializability of the global execution only if the global
transactions form a cyclic access graph (Due t al., 1991). The access graph of a set
of global transactions is defined as the union of the access graphs of each global
transaction, which in turn are defined as the acyclic graphs of sites accessed by the
transaction. For example, the access graph of {G1, G2} in the above example is
$1 - - $2 - - $3 , which is acyclic.

To take advantage of this property of global executions, the global scheduler
needs to maintain the access graphs for each active global transaction. Global
transactions that form an acyclic access graph can be executed concurrently at local
sites and therefore are assigned the same GID number. As far as concurrency control
is concerned, servers do not need to distinguish among global subtransactions that
share the same GID number.

6.2 Commitment of Replica-Update Transactions

Transaction atomicity in distributed database systems is generally ensured by a
two-phase commit protocol (Gray, 1978). The protocol requires that each LDBS
support a prepared state for transactions. A transaction is in the prepared state if

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 237

it can be neither unilaterally aborted nor committed by the LDBSs. Such a solution
may be precluded in MDBSs by the inability of LDBSs to support a prepared state.
This difficulty can be addressed by redoing writes of globally committed but locally
aborted subtransactions (Wolski and Veijalainen, 1990). Special attention must be
paid, because LDBSs treat the original subtransaction and redo subtransactions
separately, and they may interleave improperly with local transactions. Mehrontra
et al. (1991) discussed the problem by presenting sufficient conditions under which
the inconsistent interleaves can be avoided.

Under the restrictions outlined in the previous section, replica-update transac-
tions need not follow two-phase commit protocol because they access only data that
logically belongs to their host site and update only non-primary copies at remote
sites.

Consider a rep!ica-update transaction, Ri E RTi, that consists of two subtrans-
actions, R~ and R~ where j ~ i. The only purpose of R~ is to propagate updates
of _R~ to site Sj. The server at site Si can commit R~ as soon as it successfully

completes and before sending R~ to site Sj. This is possible because _R~ does not

depend on the execution of R!, and /~{ does not conflict with local and replica-
update transactions at site SSj (i.e., they do not update common data). Therefore,

R i can be executed and re-executed until it succeeds. The only transactions that

write-conflict with R i are global transactions and replica-update transactions from
the same site, and the correct execution order is guaranteed by the concurrency
control protocol.

Note that the above observation would not hold true if replica-update transactions
were allowed to read data at remote sites. In such an instance, R~ cannot be safely

committed until the successful ~mpletion of R~, because re-execution of R i may
result in the re-execution of R~.

6.3 Related Work

The approach presented in this article belongs to the class of protocols that update
local copies as soon aspossible without waiting for the completion of update propa-
gations. We now compare the proposed protocol with another protocol of the class,
one proposed for Tandem's EMPACT TJV' system.

EMPACT T M is a distributed database application system for manufacturing
information control (Norman and Anderton, 1983). There are two types of data
in the system: replicated global data and non-replicated local data. Requests to
access global and local data can be issued at all local sites. Local copies are updated
immediately by local servers, while updates to replicated data are also propagated
to remote sites.

While both protocols provide prompt update of local copies, they differ in
T M several respects. First, the system models are different; EMPACT is a traditional

distributed database and makes no distinction among global, local, and replica-update

238

transactions. A transaction can read/write all data, both global and local at the
site where it is issued. Transactions are managed by the TMF (transaction and
recovery manager), which is part of the system. In our model, transactions are
managed by the GTM and by a set of autonomous LTMs. Second, the objective
of the EMPACT T M protocol is site autonomy and rapid response time. It allows a
transaction to update local copies immediately but does not ensure the consistency
(i.e., serializability) of the execution. In contrast, the proposed protocol supports
both prompt and consistent updates to replicated data.

7. Conclusion

Replication is an important issue in both traditional database systems and multi-
database systems. Concurrency control, however, is more difficult in the latter. Due
to the constraints of local autonomy, there can be no central agent that controls all
transactions accessing replicated data. In this article, we presented a concurrency
control protocol that ensures quasi-serializability. The protocol is decentralized
in the sense that local servers coordinate with each other to prevent and resolve
inconsistent access to replicated data by delaying subtransactions that arrive too
early or by ignoring obsolete propagations that arrive too late.

It is generally impossible to guarantee a globally consistent execution order
of both global and local applications. Also, it is not always possible to resolve
inconsistencies. These obstacles have been addressed in this article by imposing
restrictions to accessibility on the global applications and those local applications
that update replicated data. TwO types of inconsistencies have been distinguished:
those that are resolvable by local servers and those that are not. Conditions are
then established to prevent the occurrence of unresolvable inconsistencies. These
restrictions are both strict enough to prevent all unresolvable inconsistencies and
acceptable with respect to local autonomy and availability requirements.

An important issue that has not been addressed in this article is the extension of
the protocol to survive failures. Much work in this area has been done in traditional
database environments (Bernstein, 1987; Davidson, 1985). Due to the demands of
local autonomy, these techniques may not directly transfer to multidatabase systems;
this question merits further investigation.

Acknowledgments

The authors would like to thank Prof. Andreas Reuter and anonymous reviewers
for their constructive comments. The work of the second author was supported
by the Indiana Corporation for Science and Technology (CST), a PYI Award from
the NSF under grant IRI-8857952, grants from the AT&T Foundation, Mobil Oil,
Tektronix, UniSQL, a David Ross Fellowship from the Purdue Research Foundation,
and a grant from the Software Engineering Research Center at Purdue University,

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 239

a National Science Foundation Industry/University Cooperative Research Center
(NSF Grant No. ECD-8913133).

References

Abbadi, A., Skeen, D., and Cristian, E Principles of Database Systems, Proceedings
of the Fourth ACM SIGACT-SIGMOD Symposium, Portland, OR 1985.

Alonso, R., Garcia-Molina, H., and Salem, K. Concurrency control and recovery
for global procedures in federated database systems. IEEE Data Engineering
Bulletin, 10(3):5-11, 1987.

Bernstein, P., Hadzilacos, V., and Goodman, N. Concurrency Control and Recovery
in Databases @stems. Reading, MA: Addison-Wesley Publishing Co., 1987.

Breitbart, Y. and Silberschatz, A. Multidatabase update issues. Proceedings of the
International Conference on Management of Data, Chicago, IL, 1988.

Davidson, S., Garcia-Molina, H., and Skeen, D. Consistency in partitioned networks.
ACM Computing Surveys, 17(3):341-369, 1985.

Du, W. and Elmagarmid, A. Quasi serializability: A correctness criterion for global
concurrency control in InterBase. Proceedings of the International Conference on
l~ry Large Data Bases, Amsterdam, 1989.

Du, W., Elmagarmid, A., and Kim, W. Maintaining quasi serializability in HDDBSs.
Proceedings of the International Conference on Data Engineering Kobe, Japan, 1991.

Du, W., Elmagarmid, A., Leu, Y., and Ostermann, S. Effects of autonomy on
global concurrency control in heterogeneous distributed database systems. Pro-
ceedings of the Second International Conference on Data and Knowledge Systems for
Manufacturing and Engineerin~ Gaithersburg, MD, 1989.

Georgakopoulos, D., Rusinkiewicz, M., and Sheth, A. Transaction management
in distributed heterogeneous database management systems. Proceedings of the
Seventh International Conference on Data Engineering~ Kobe, Japan, 1991.

Gray, J. Notes on database operating systems. In: Lecture Notes in Computer Science,
Operating System: An Advanced Course, Vol. 60, Berlin: Springer-Verlag, 1978,
pp. 393--481.

Mehrontra, S., Rastogi, R., Breitbart, Y., Korth, H., and Silberschatz, A. Ensuring
transaction atomicity in multidatabase systems. Proceedings of the Eleventh ACM
Symposium on the Principles of Database Systems, San Diego, CA, 1991.

Norman, A. and Anderton, M. EMPACT: A distributed database application. Pro-
ceedings of the National Computer Conference (AFIPS), 1983.

Papadimitriou, C. The Theory of Database Concurrency Control Montvale, NJ: AFIPS
Press, 1986.

Stonebreaker, M. Readings in Database Systems, Palo Alto, CA: Morgan Kaufmann,
1988.

Wolski, A. and Veijalainen, J. 2PC agent method: Achieving serializability in pres-
ence of failures in a heterogeneous multidatabase. Proceedings of PARBASE-90,
Miami Beach, FL, 1990.

240

Appendix A. Proof of Theorem 5.1

Let Ri E R 'Ti and Tj E ~:T U (Uj#iT~7"j). It is sufficient to show that any
inconsistency between Ri and Tj is either preventable or resolvable.

The proof consists of the following three sections.

. Tj precedes Ri at site Si, but follows Ri at other sites. Because Tj arrived
at site Si before Ri was submitted, the order (i.e., Tj ~ Ri) is included in
the local total order at Si. The server at another site (e.g., Sk) is informed
of this order by the arrival of R~ and will enforce it; for example, it will
delay R/k until T~ has finished.

. Tj follows Ri at site Si, but precedes Ri at other sites and Tj ~ ~ T .
Suppose that Ri precedes Tj at Si, but follows it at Sk, where k ~ i. There
are two subcases:

2.a T f directly conflicts with R/k at Sk. Because (T~(Tj k) f'l YV(R/k)) U

(W(T?)nR(R~)) = 0, there exit ws(do ~) e W(T?)andw,(do ~) e
}/V(R/k) so that wj(do k) precedes and conflicts with wi(dok).

k k Ek : wj(do)wi(do)
Because the server at Sk knows (from the local total order carried
by R~) that Tj precedes Ri at Si, it can detect the inconsistency

before submitting wi(do k) and can therefore resolve it by ignoring
the operation. The resulting execution is virtually equivalent to the
following execution:

irk: wi(dok)wj(do k)

2.b T~ indirectly conflicts with R~ at Sk. Because "R.(R/k) = ~} (see

Section 2), there exist oj C O(Tj k) and wi(do k) E Y~;(Rik) so that

oj precedes and indirectly conflicts with wi(dok). Therefore there exist

Ol, 02, ..., op so that oj ~ Ol ~ 02 ~ ... ~ Op ~ wi(dok).

There are three types of operations that may precede and conflict with
w,(do~) :

• wg(do ~) e W(V), where a e g:r;

• wr(do k) e W(R), where R e TCTi; and

• rt(do k) e n(L), where L e £Tk.

Suppose that o v = wa(dok): then Tj ~ G at Sk. This implies that Tj ~ G
at Si, and thus Ri ~ G at Si. As shown in 2.a, the server at Sk should
ignore wi(d0k), and the inconsistency is resolved.

VLDB Journal 2 (2) Du: Supporting Consistent Updates in Replicated MDBSs 241

.

Suppose that o v = w~(dok). Because R ---r Ri at Sk, R ~ Ri at Si. The
resolution of the inconsistency between Tj and Ri is therefore reduced to
resolving the inconsistency between Tj and R, but with fewer (i.e., p - 1)
intermediate operations.

Suppose o v = rt(dok); the local execution resembles
k k k

: os o p _ l r , (d o) W , (d o)

Suppose there exists Wto(do k) E VV(To) between oj and rt(dok); then
To E ~ ' T t..I P,J"i . The problem is now reduced to the previous two cases
with fewer intermediate operations.

Otherwise, the server is also able to ignore wik(d0 k) without changing the
semantics of the execution. The resulting execution is virtually equivalent to:

k k k
: r , (d o) W , (d o) O j o p _ l

In any case, the inconsistency is either resolvable or reduced to another
with fewer intermediate operations. Since p is finite, we conclude that any
inconsistency between oj and wi(do k) is resolvable.

Tj follows Ri at site Si, but precedes Ri at other sites, and Tj E RTj,
where j # i. First, we observe that Ti and Tj do not directly conflict,
because the replicated data sets of different sites are disjoint.

As with case (2.b), all inconsistencies that result from indirect conflicts between
Ti and Tj prove to be resolvable.

