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ABSTRACT
Although the presence of a schema enables many optimiza-
tions for operations on XML documents, recent studies have
shown that many XML documents in practice either do not
refer to a schema, or refer to a syntactically incorrect one.
It is therefore of utmost importance to provide tools and
techniques that can automatically generate schemas from
sets of sample documents. While previous work in this area
has mostly focused on the inference of Document Type Def-
initions (DTDs for short), we will consider the inference of
XML Schema Definitions (XSDs for short) – the increasingly
popular schema formalism that is turning DTDs obsolete.
In contrast to DTDs where the content model of an element
depends only on the element’s name, the content model in
an XSD can also depend on the context in which the ele-
ment is used. Hence, while the inference of DTDs basically
reduces to the inference of regular expressions from sets of
sample strings, the inference of XSDs also entails identifying
from a corpus of sample documents the contexts in which
elements bear different content models. Since a seminal re-
sult by Gold implies that no inference algorithm can learn
the complete class of XSDs from positive examples only, we
focus on a class of XSDs that captures most XSDs occurring
in practice. For this class, we provide a theoretically com-
plete algorithm that always infers the correct XSD when a
sufficiently large corpus of XML documents is available. In
addition, we present a variant of this algorithm that works
well on real-world (and therefore incomplete) data sets.

1. INTRODUCTION
The advantages offered by the presence of a schema ac-

companying a collection of XML documents are numerous.
Indeed, the presence of a schema facilitates automation and
optimization of search, integration, translation and process-
ing of XML data (cf., e.g., [14, 19, 23, 29, 6, 18, 30, 31,
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41, 47]). Various software development tools such as Cas-
tor [1] and SUN’s JAXB [3] rely on schemas as well to per-
form object-relational mappings for persistence. Addition-
ally, the existence of schemas is imperative when integrating
(meta) data through schema matching [44] and in the area of
generic model management [7, 34]. Unfortunately, schemas
are scarce and faulty in practice. For instance, Barbosa et
al. [5, 35] have shown that approximately half of the XML
documents available on the web do not refer to a schema.
Furthermore, Bex et al. [8, 10] have noted that about two-
thirds of the XML Schema Definitions (XSDs) gathered from
schema repositories and from the web are not valid with re-
spect to the W3C XML Schema specification [46], rendering
them essentially useless for immedidate application.

Based on the above described benefits of schemas and
their unavailability in practice, it is essential to devise al-
gorithms that can infer a schema for a given collection of
XML documents when none, or no syntactic correct one, is
present. The latter problem is also acknowledged by Flo-
rescu [22] who emphasizes that in the context of data inte-
gration “We need to extract good-quality schemas automat-
ically from existing data and perform incremental mainte-
nance of the generated schemas”. In this paper, we address
the problem to automatically infer a concise XML Schema
Definition describing a given set of XML Documents.

Previous research on schema inference for XML data has
mainly focused on the inference of Document Type Defi-
nitions (DTDs) [9, 25, 15]. To appreciate the difference
between inferring DTDs and XSDs, consider the XML doc-
ument in Figure 1 that contains information about store
orders and stock contents. Orders hold customer informa-
tion and list the items ordered, with each item stating its id
and price. The stock contents consists of the list of items in
stock, with each item stating its id, the quantity in stock,
and – depending on whether the item is atomic or composed
from other items – some supplier information or the items
of which they are composed, respectively. It is important
to emphasize that order items do not include supplier infor-
mation, nor do they mention other items. Moreover, stock
items do not mention prices.

DTDs are incapable of distinguishing between order items
and stock items because the content model of an element can
only depend on the element’s name in a DTD, and not on
the context in which it is used [37]. For example, although
the DTD in Figure 2 describes all intended XML documents,
it also allows supplier information to occur in order items
and price information to occur in stock items.

XML Schema, in contrast, is based on type definitions,
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<store>

<order>

<customer>

<name>John Mitchell</name>

<email> j.mitchell@yahoo.com </email>

</customer>

<item> <id> I18F </id>

<price> 100 </price>

</item>

<item> ... </item> ... <item> ... </item>

</order>

<order> ... </order> ... <order> ... </order>

<stock>

<item>

<id> IG8 </id> <qty> 10 </qty>

<supplier> <name> Al Jones </name>

<email> a.j@gmail.com </email>

<email> a.j@dot.com </email>

</supplier>

</item>

<item>

<id> J38H </id> <qty> 30 </qty>

<item>

<id> J38H1 </id> <qty> 10 </qty>

<supplier> ... </supplier>

</item>

<item>

<id> J38H2 </id> <qty> 1 </qty>

<supplier> ... </supplier>

</item>

<item> ... </item> ... <item> ... </item>

</item>

...

<item> ... </item>

</stock>

</store>

Figure 1: Example XML document.

and therefore does allow the content model of an element
to depend on the context in which it is used [32, 37]. For
instance, it can be specified that an item is an order item
when it occurs under an order element. In particular, XML
schema can exactly describe the set of all intended docu-
ments, as we will show in Section 3. It is precisely this
ability that makes inferring XSDs significantly more diffi-
cult than inferring DTDs. Indeed, whereas DTD inference
basically reduces to the generation of regular expressions
from sets of sample strings [9], inferring XSDs also entails
identifying from a corpus of XML document the contexts
in which elements bear different content models. Existing
DTD inference engines do not identify such contexts and
therefore always returns schemas like the one in Figure 2
that are too general with regard to the target schema.

To the best of our knowledge, we are the first to consider
XSD inference in the presence of contexts identification. In-
deed, although approaches like [16, 28] do infer schemas in
XSD syntax, the obtained schemas are always structurally
equivalent to DTDs.

Setting. It is unfortunate that the class of all XSDs cannot
be learned from positive examples only. Indeed, a seminal
result by Gold [26] implies that no matter how many ex-
ample documents from a target XSD D are provided, no

<!ELEMENT store (order∗, stock)>
<!ELEMENT order (customer, item+)>
<!ELEMENT customer (first, last, email∗)>
<!ELEMENT item (id, price + (qty, (supplier + item+)))>
<!ELEMENT stock (item∗)>
<!ELEMENT supplier (first, last, email∗)>

Figure 2: A DTD describing the document in Fig-
ure 1.

algorithm exists that will always retrieve D given only the
examples. As the framework for XML schema inference is
exactly such that only positive example documents are pro-
vided, it is unrealistic to develop inference algorithms for the
class of all XSDs. One of the main challenges therefore is to
identify subclasses of XSDs that are widely used in practice
and that can be learned efficiently from positive data only.

An examination of 225 XSDs gathered from the Cover
Pages [17] (including many high-quality XML standards) as
well as from the web at large, reveals that in more than 98%
of the XSDs occurring in practice the content model of an
element depends only on the label of the element itself, the
label of its parent, and (sometimes) the label of its grand-
parent [32]. In Figure 1, for example, an item is an order
item only if it is occurs in an order element. It is a stock
item only if it occurs in a stock element or in an item ele-
ment. We say that an XSD is k-local if its content models
depend only on labels up to the k-th ancestor.

Although the class of k-local XSDs by itself is still too
general to be learned from positive examples only, we show
in this paper that the class of local XSDs with content mod-
els given by regular expressions in which each element name
occurs at most once, can be learned efficiently from positive
data only. The restriction to such single occurrence regular
expressions (SOREs for short) is motivated by the same ex-
amination as above, which reveals that more than 99% of
XSDs in practice consist solely of SOREs [32]. Furthermore,
as shown in our earlier work [9], SOREs can be learned effi-
ciently from positive data only, in contrast to the class of all
regular expressions. Also, SOREs have the added benefit of
succinctness: since every element name can occur only once,
the size of a SORE is always linear in the number of differ-
ent element names occurring in the corpus. The inferred
content models are therefore naturally comprehensible.

Contributions. The contributions of this paper can be
summarized as follows:

• We present a theoretically complete inference algo-
rithm iLocal that can infer any k-local and single
occurrence target XSD from a corpus of XML docu-
ments, provided that this corpus is ‘sufficiently large’,
a notion formally defined in Section 4. Furthermore,
we show how standard tree automata techniques can
be applied to minimize the derived schema’s [33], an
important post-processing step for obtaining compre-
hensible schema’s. This minimization amounts to uni-
fication of unique types. That is, two types can be
combined when they define the same set of XML frag-
ments.

• Real world data is scarce and incomplete. Application
of iLocal on such data results in overly specific and
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therefore meaningless schema’s. Furthermore, mini-
mization will only allow to combine types when they
are equivalent. However, due to lack of data, types
that actually represent the same context often have
different inferred content models, prohibiting their uni-
fication. We therefore present a smoothing algorithm
Reduce that in addition to unifying equivalent types,
also unifies types that are ‘sufficiently similar’ – a no-
tion which is formally defined in Section 5. It is im-
portant to note that Reduce is a general method,
not specific to iLocal, that can be used as a post-
processing step to smooth any XSD obtained through
any method.

• We call iXSD the algorithm that first applies iLocal
and then smoothens the obtained XSD by applying
Reduce. We illustrate the effectiveness of iXSD by
means of a detailed experimental analysis on both real-
world and synthetic data. First, we show that iXSD
greatly outperforms iLocal on incomplete data. Fur-
ther, we assess the high quality of the schema’s in-
ferred by iXSD . We show that iXSD generalizes well,
is conservative for DTDs and gives an approximation
for non-local XSDs. Finally, we show that runtime
performance is acceptable for real world applications.

Outline. This article is further organized as follows. We
discuss related work in Section 2 and provide the necessary
background on XML Schema Definitions in Section 3. Our
algorithms iLocal and Reduce are given in Section 4 and
5, respectively. Their experimental validation is given in
Section 6. Finally, we conclude in Section 7.

2. RELATED WORK
Schema inference. Schemas for semi-structured data have
been defined in [12, 20, 42] and their inference has been ad-
dressed in [27, 40, 39]. The methods in [27, 40] focus on
the derivation of a graph summary structure (called full
representative object or dataguide) for a semi-structured
database. This data structure contains all paths in the
database. Approximations of this structure are considered
by restricting to paths of a certain length. The latter then
basically reduces to the derivation of an automaton from a
set of bounded length strings. Naively restricting the algo-
rithms to trees rather than graphs is inappropriate since no
order is considered between the children of a node so that
XSD-like schemas cannot be derived. However, even the
use of more sophisticated encodings of the XML documents
using edges between siblings would be to no avail since no
algorithms are given to translate the obtained automata to
regular expressions. In [39], a schema is a typing by means
of a datalog program. The complexity of optimal schema
inference is NP-hard. Again, no algorithms are given to
transform datalog types into regular expressions. So, these
approaches can therefore not be used to derive XSDs, not
even when the semi-structured database is tree-shaped.

DTD inference. As explained in the Introduction, tech-
niques for DTD inference cannot be applied directly to gen-
erate XSDs. Indeed, whereas DTD inference reduces to the
derivation of a content model for each element name, in an
XSD the content model depends on the context in which
the element name appears. Several approaches for DTD

inference have been proposed. XTract [25, 36] generates
candidate regular expressions for each element name select-
ing the best one using the Minimum Description Length
(MDL) principle. In contrast, the methods in [9] first gen-
erate a finite automaton for each element name which in a
second step is rewritten into a concise regular expression. In
[45], several approaches to generate probabilistic string au-
tomata representing regular expressions are proposed. Un-
fortunately, no methods are presented to transform these
into corresponding regular expressions.

XSD inference. Trang [16] is state of the art software
written by James Clark intended as a schema translator for
the schema languages DTDs, Relax NG, and XML Schema.
In addition, Trang allows to infer a schema for a given set of
XML documents for either of the three schema languages.
However, on a structural level (ignoring data values), the
expressiveness of the generated schema’s does not go be-
yond that of DTDs. So, when applying Trang on the data
in Figure 1, it would derive the DTD of Figure 2 in XSD
syntax, rather than the intended XSD in Figure 4. Simi-
larly, XStruct [28] focuses on scalable derivation of schema’s
in XSD syntax (including data types) but does not incor-
porate expressiveness beyond DTDs. Another class of tools
provided in JAXB [3] and the .NET [2] framework derive
DTDs or XSDs from class files and vice versa,

Learning of tree automata. Fernau [21] proposed a gen-
eral framework of function distinguishability to learn tree
automata for ranked trees. In essence, the framework gives
a learning algorithm for the settings where a function is
given which determines how to merge states. As XSDs
constitute a subset of the regular unranked tree languages
[32], our approach can be seen as an instantiation of that
framework generalized to unranked trees. In contrast to
the ranked setting, our algorithm has to deal with regular
expressions inference as well. Unranked tree language in-
ference received recent interest in the context of wrapper
induction [13]. However, this setting considers the inference
of node-selecting queries in the presence of both positive
and negative examples which makes the problem entirely
different. The most related to our work is [43], where it is
shown that unranked (m, n)-contextual tree languages can
be learned from positive data only. Basically, an algorithm
is presented that learns a tree language from the sets of
(m, n)-forks appearing in sample trees. Here, an (m, n)-fork
is a subtree of depth n and width m. The (m, n) contextual
languages form a strict superset of local SOXSDs. It hence
follows immediately that local SOXSDs can be learned from
positive data only. Our Theorem 1 shows, however, that for
local SOXSDs we do not need to resort to general (m, n)-
forks but that already path-shaped forks suffice. In addition,
the techniques of [43] are geared towards inferring queries,
not XSDs. As such, no optimizations in the direction of
schema inference have been attempted.

3. BACKGROUND

XML fragments. For our purposes, an XML fragment is a
(possibly empty) sequence <a1> f1 </a1> . . . <an>fn</an> of
elements where a1, . . . , an are element names, and f1, . . . , fn

are themselves XML fragments. In particular, we ignore at-
tributes (as these can straightforwardly be added) and data
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<store>

<order>

<customer> <name/> <email/> </customer>

<item> <id/> <qty/> <price/> </item>

<item> <id/> <qty/> <price/> </item>

</order>

<order>

<customer> <name/> <email/> <email/> </customer>

<item> <id/> <qty/> <price/> </item>

</order>

<stock>

<item>

<id/> <qty/>

<supplier/> <name/> <email/> </supplier>

</item>

</stock>

</store>

Figure 3: A sample XML fragment for the XSD in
Figure 4.

values (as the inference of atomic data types has already
been studied [28]).

As usual we abbreviate <a> </a> by <a/>. Furthermore, if
f is an XML fragment, then we write paths(f) for the set of
all labeled paths starting at a root element in f . For exam-
ple, for the XML fragment in Figure 3, paths(f) includes the
empty path λ, the path store, the path store order, the
path store stock, the path store order customer, and so
on. We write strings(f, p) for the set of all strings of element
names occurring below an occurrence of path p in f . For
example, for the XML fragment in Figure 3, strings(f, λ) =
{store}, strings(f, store) = {order order stock}, and

strings(f, store order) = {customer item item,
customer item}.

The first order element in Figure 3 ensures the presence of
customer item item, while the second order element ensures
the presence of customer item. For paths like store order

customer name that end in a leaf of f , strings(f, p) always
includes the empty string λ.

XML Schema Definitions. The W3C specification [46]
essentially defines an XSD D to be a collection of type defi-
nitions, which, if we abstract away from the concrete XML
representation of XSDs, are rules like

store → order[order ]∗, stock[stock ] (?)

that map type names to regular expressions over pairs a[t]
of element names a and type names t. Throughout the ar-
ticle we use the convention that element names are typeset
in typewriter font, and type names are typeset in italic. In-
tuitively, this particular type definition specifies an XML
fragment to be of type store if it is of the form

<order> f1 </order> . . . <order> fn</order>

<stock> g </stock>

where n ≥ 0; f1, . . . , fn are XML fragments of type order ;
and g is an XML fragment of type stock . Each type name
that occurs on the right hand side of a type definition in an

root → store[store]
store → order[order ]∗, stock[stock ]
order → customer[person], item[item1]

+

person → name[emp], email[emp]+

item1 → id[emp], qty[emp], price[emp]
stock → item[item2]

+

item2 → id[emp], qty[emp],
(supplier[person] + item[item2]

+)
emp → λ

Figure 4: An XSD describing the XML document in
Figure 1. The symbol λ denotes the empty string.

XSD must also be defined in the XSD, and each type name
may be defined only once.

It is important to remark that the ‘Element Declaration
Consistent’ constraint of the W3C specification [46] requires
multiple occurrences of the same element name in a single
type definition to occur with the same type. Hence, type
definition (?) is legal, but

persons → (person[male] + person[female])+

is not, as person occurs both with type male and type
female. Of course, element names in different type defini-
tions can occur with different types (which is exactly what
yields the ability to let the content model of an element
depend on its context). For example, Figure 4 shows a
legal XSD describing the intended set of store document
from the Introduction. Notice in particular the use of the
types item1 and item2 to distinguish between order items
and stock items.

Due to the ‘Element Declaration Consistent’ constraint,
each element name a occurring in the type definition of a
type t is associated with a unique type τ(t, a) in this type
definition. For example, for the XSD in Figure 4 we have

τ(root , store) = store, τ(store, order) = order ,

τ(store, stock) = stock , τ(order , item) = item1,

τ(item1, id) = emp, τ(stock , item) = item2,

and so on. Then let ρ(t) stand for the ordinary regular
expression over element names only that we obtain by re-
moving all types names in the definition of t. For example,
for the XSD in Figure 4 we have

ρ(root) = store ρ(store) = order
∗, stock

ρ(order) = customer, item+ ρ(person) = name, email+

and so on. Then we can view an XSD D simply as a triple
consisting only of (1) the set of types T being defined, (2)
the mapping τ , and (3) the mapping ρ. Indeed, observe that
the type definition of for example order ,

order → customer[person], item[item1]
+

is easily obtained by replacing every element name a in the
regular expression ρ(order) = customer, item+ by the pair
a[τ(order , a)]. Since this view is more amenable to algo-
rithmic manipulation, we will take it as the definition of an
XSD, although for presentation purposes we will continue
to represent XSDs as in Figure 4.

Definition 1. An XSD is a triple D = (T, ρ, τ) consist-
ing of a finite set of types T ; a mapping ρ from T to regular
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expressions r as given by the syntax

r ::= λ | a | r, r | r + r | r∗ | r+ | r?

where λ denotes the empty string and a ranges over element
names; and a mapping τ that assigns a type to each pair
(t, a) with the element name a occurring in ρ(t).

We remark that the W3C specification also requires reg-
ular expressions to be deterministic [46]. We do not go into
details here, as the regular expressions for the classes of
XSDs we will be inferring are deterministic by definition.

The semantics of an XSD is given by the following simple
algorithm to validate an XML fragment f = <a1>f1</a1> . . .
<an>fn</an> against a type t in an XSD D = (T, ρ, τ) [32,
37]. First, we check that the string of element names a1 . . . an

is matched by the regular expression ρ(t). For example,
when t = order as defined in Figure 4, a1 . . . an would be
matched against customer, item+. If this check fails, then
the fragment is rejected. Otherwise, we validate each fi

against the type τ(t, ai) of ai in t, and accept the fragment
if all these validations succeed. For example, when t = order
as defined in Figure 4 and ai = item, fi would be validated
against τ(order , item) = item1. We write F(D, t) for the
set of all XML fragments of type t in D.

Contextual power. The validation algorithm above ac-
tually implies that the content model of an element occur-
ring in f ∈ F(D; t) is completely determined by the la-
beled path from the root to that element – a property of
XSDs first noted by Martens et al. [32]. Indeed, for f =
<a1>f1</a1> . . . <an>fn</an> to be of type t, each fi must
be valid w.r.t. τ(t, ai). This is true only if fi = <b1>g1</b1>

. . . <bm>gm</bm> and every gj is valid w.r.t. τ(τ(t, ai), bj).
We can continue this reasoning until we reach the desired
element, where we see that its child fragment h must be
of type τ(. . . τ(τ(t, ai), bj) . . . , c) with aibj . . . c the labeled
path from the root to the element. This leads us to the
following alternative view on validation, which forms the
cornerstone of our inference algorithms. Let, for a path
p = ab . . . c, τ(s, p) → t denote that τ(. . . τ(τ(s, a), b) . . . , c)
is defined and equals t. Let L(r) denote the set of all strings
matched by regular expression r.

Proposition 1. ([32]) An XML fragment f has type s
in an XSD (T, ρ, τ) iff for every path p ∈ paths(f) there
exists t such that τ(s, p) → t and strings(f, p) ⊆ L(ρ(t)).

Locality. The content model of an element in more than
98% of XSDs in practice turns out not to depend on the
whole labeled path from the root to the element, but only
on the k last element names in that path, with typically
k ≤ 3 [32]. The formal definition of such k-local XSDs is
as follows. Let p|k stand for the path formed by the k last
element names of a path p (if length(p) ≤ k then we take
p|k = p). Two paths p and q are k-equivalent if p|k = q|k.
In particular, when length(p) < k, p is only k-equivalent to
itself.

Definition 2. A pair (D, s) with D an XSD and s a type
in D is called k-local if for all k-equivalent p and q such that
τ(s, p) → t and τ(s, q) → t′ we have t = t′.

For example, (D, root) with D as in Figure 4 is 2-local but
not 1-local since p = store order item and q = store stock

item are 1-equivalent, yet

τ(root , p) → item1 and τ(root , q) → item2.

id qty supplier

item

Figure 5: The SOA accepting the same language as
the SORE id, qty, (supplier + item+).

Observe that the 1-local XSDs are in fact just DTDs.

Single occurrence. As already explained in the Introduc-
tion, a seminal result by Gold [26] implies that the class of
k-local XSDs is still too large to be learned from positive
examples only. Fortunately, the regular expressions in more
than 99% of XSDs in practice are of a very specific form:
each element name occurs at most once in them [32].

Definition 3. A regular expression r is single occurrence
if every element name occurs at most once in it. An XSD is
single occurrence if it contains only single occurrence regular
expressions.

For instance, customer, item+ and (school + institute)+

are both single occurrence, but id, (qty + id) is not as id

occurs twice. We abbreviate ‘single occurrence regular ex-
pression’ by SORE and ‘single occurrence XSD’ by SOXSD.

4. INFERENCE OF LOCAL SOXSDs
Our goal in this section is to infer a k-local SOXSD (D′, t′)

equivalent to a target k-local SOXSD (D, t) given only a fi-
nite corpus of XML documents C ⊆ F(D, t). This entails
identifying from C the contexts (i.e., types) in which ele-
ments may bear different content models, as well as these
content models (i.e., single occurrence regular expressions)
themselves. Intuitively, we will use the paths occurring in C
to identify types and the strings in C occurring below these
paths to identify the SOREs. The latter essentially boils
down to inferring a SORE from a set of sample strings, which
can be done as follows [9].

Inferring SOREs. To infer a SORE from a set of sample
strings S, we first learn from S a single occurrence automa-
ton (SOA for short). A SOA is a specific kind of determin-
istic finite state automaton in which all states, except for
the initial and final state, are element names. Figure 5 gives
an example. Note that in contrast to the classical definition
of automata, no edges are labeled: all incoming edges in a
state a are assumed to be labeled by a. As such, a string
a1, . . . , an is accepted if there is an edge from the initial state
to a1, an edge from a1 to a2,. . . , and an edge from an to the
final state. In other words, the SOA in Figure 5 accepts the
same language as id, qty, (supplier + item+).

Definition 4. Let in and out be two special symbols, dis-
tinct from the element names, that will serve as the initial
and final state, respectively. A single occurrence automaton
is a graph A = (V, E) where all states in V − {in, out} are
element names, and E ⊆ (V − {out}) × (V − {in}) is the
edge relation.

We write L(A) for the set of all strings accepted by A. Al-
gorithm 1, iSOA, due to Garcia and Vidal [24] then learns
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Algorithm 1 iSOA

Input: a finite set of sample strings S
Output: a SOA A such that S ⊆ L(A)
1: Let V be the set of states consisting of all element names

occurring in S plus the initial state in and final state out
2: Initialize E := ∅
3: for each string a1 . . . an in S do
4: add the edges (in, a1), (a1, a2), . . . , (an, out) to E
5: Return A = (V, E)

a SOA A from a finite set of sample strings S. For in-
stance, Figure 5 shows the result of running iSOA on S =
{id qty supplier, id qty item item}.

It is clear that iSOA is sound: S ⊆ L(iSOA(S)) for each
S. Moreover, iSOA is complete when S is sufficiently large,
in the following sense.

Proposition 2. ([9]) If r is a SORE and S ⊆ L(r) is
a set of sample strings that includes all strings in L(r) of
length at most 2n where n is the number of different element
names occurring in r, then L(iSOA(S)) = L(r).

Having learned the SOA iSOA(S) for S, we can transform
it into a SORE using the ToSore algorithm of [9].1 This
algorithm has the following desirable properties.

Proposition 3. ([9]) If A is a SOA that is equivalent
to a SORE r, then L(ToSore(A)) = L(A). If A is not
equivalent to a SORE, then L(A) ⊆ L(ToSore(A)).

We refer to [9] for examples of SOAs that are not equiva-
lent to a SORE. It immediately follows that if S contains all
strings in L(r) of length 2n where n is the number of differ-
ent element names occurring in r, then ToSore(iSOA(S))
returns a SORE equivalent to r.

The algorithm. Inference of k-local SOXSDs can now be
done as follows. Let paths(C) stand for the set of all paths
occurring in fragments in the corpus C. Let k-strings(C, p|k)
stand for the set of all strings in C that occur below paths
that are k-equivalent to p:

k-strings(C, p|k) :=⋃
{strings(f, q) | f ∈ C, q ∈ paths(f), p|k = q|k}.

Algorithm 2, iLocal, then infers a k-local SOXSD from a
finite corpus of XML fragments C.

Let us illustrate iLocal’s operation by running it on the
corpus C consisting of the XML fragments of Figure 3 and
6, which both adhere to the target XSD in Figure 4. In
line 1, iLocal constructs a type p|k for each path p in
paths(C). For k = 2, this yields the set of types shown
in Figure 7. Next, iLocal constructs the content models
for these types in lines 3 and 4. It does so by first learning
a SOA for the set k-strings(C, p|k) of all strings occurring in
C below a path q that is k-equivalent to the type p|k under
inspection, and subsequently transforming this SOA into a
SORE. For k = 2 and p|k = stock item, this set of strings

1Unfortunately, ToSore is called iDTD in [9], although its sole
purpose is to transform SOAs into single occurrence regular ex-
pressions, not DTDs. We call it ToSore in this paper to avoid
confusion.

Algorithm 2 iLocal

Input: a natural number k and corpus C
Output: a k-local SOXSD (D, t) such that C ⊆ F(D, t)
1: Let the set of types T consist of all p|k with p ∈ paths(C)
2: Initialize the mappings ρ and τ to empty
3: for each type p|k in T do
4: add p|k 7→ ToSore(iSOA(k-strings(C, p|k))) to ρ
5: for each path pa in paths(C) do
6: add (p|k, a) 7→ (pa)|k to τ
7: Return (D, t) with D = (T, ρ, τ) and t = λ

is {id qty supplier, id qty item item} as the only path
2-equivalent to stock item in C is store stock item. Hence,
for stock item, iLocal will first learn the SOA from Fig-
ure 5, which is subsequently transformed into the SORE
id, qty, (supplier + item+). Note that iLocal hence cor-
rectly infers that stock items do not contain price elements.
After termination of the for loop in line 3 we have hence in-
ferred the content models for all types as shown in Figure 8.

Finally, in lines 5 and 6 iLocal determines the types
associated with the element names in these content models.
It does so by adding (p|k, a) 7→ (pa)|k to τ , for every element
name a occurring in the content model of type p|a. For k = 2
this yields, among others,

(λ, store) 7→ store,

(store, stock) 7→ store stock,

(store stock, item) 7→ stock item,

(stock item, item) 7→ item item,

(item item, item) 7→ item item.

Note in particular the recursion introduced in the last rule.
A careful analysis shows that for this specific example

corpus, iLocal has successfully inferred the target XSD D
from Figure 4: F(D, root) = F(iLocal(2, C)). This is ac-
tually not a coincidence, as iLocal is complete on corpora
that are “sufficiently large” in the following sense.

Definition 5. Let D be an XSD, let t be a type in D, and
let m be the number of types in D. A corpus C is called k-
complete for (D, t) if (1) C ⊆ F(D, t); (2) paths(C) contains
all paths p of length at most m + k + 1 such that τ(t, p) →
t′ for some t′; and (3) for each such path, k-strings(C, p)
contains all strings in L(ρ(t′)) of length at most 2n, where n
is the number of different element names occurring in ρ(t′).

Theorem 1. If (D, t) is a k-local SOXSD and corpus C
is k-complete for (D, t), then F(iLocal(k, C)) = F(D, t).

Using Proposition 1 it is not difficult to see that iLocal
is always sound, even on incomplete corpora.

Proposition 4. C ⊆ iLocal(k, C), for every C and k.

Proof. By Proposition 1 it suffices to show that for each
XML fragment f ∈ C and each path p ∈ paths(f) there
exists a type t in ((T, ρ, τ), λ) = iLocal(k, C) such that
τ(λ, p) → t and strings(f, p) ⊆ L(ρ(t)). It is not difficult to
see that it suffices to take p|k for t. Indeed, τ(λ, p) → p|k
by construction, and

strings(f, p) ⊆ k-strings(C, p|k)

⊆ L(ToSore(iSOA(k-strings(C, p|k)))

= L(ρ(p|k)),
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<store>

<stock>

<item>

<id/> <qty/>

<supplier/>

<name/> <email/> <email/>

</supplier>

</item>

<item>

<id/> <qty/>

<item>

<id/> <qty/>

<supplier> <name/> <email/> </supplier>

</item>

<item>

<id/> <qty/>

<item>

<id/> <qty/>

<supplier> <name/> <email/> </supplier>

</item>

<item>

<id/> <qty/>

<supplier> <name/> <email/> </supplier>

</item>

</item>

</item>

</stock>

</store>

Figure 6: Another sample XML fragment the XSD
in Figure 4.

λ, store, store order,
order customer, customer name, customer email,
order item, item id, item qty,
item price, store stock, stock item,
item supplier, supplier name, supplier email,
item item

Figure 7: The types inferred when running iLocal
on the corpus consisting of the XML fragments in
Figure 3 and 6, for k = 2.

by Propositions 2 and 3. Hence, f ∈ F(iLocal(k, C)).

Minimization. Although iLocal is complete on suffi-
ciently large corpora, it has the disadvantage that the in-
ferred XSDs may have more types than necessary. For in-
stance, the inferred XSD of Figure 7 consists of 16 types, 8
types more than target XSD of Figure 4. In the worst case,
iLocal(k, C) may return an XSD with O(nk) types where
n is the number of different element names appearing in C.
For subsequent processing and presentation to the user, it
is hence desirable to minimize the results of iLocal.

The algorithm Minimize due to Martens and Niehren [33]
shown in Algorithm 3 minimizes an XSD D by unifying
equivalent types in D. Here s is said to be equivalent to
t if F(D, s) = F(D, t).

Note that Minimize updates D during its execution. Lines
2 and 3 perform the actual unification of s and t by replac-
ing t by s. The condition t 6= r in line 1 ensures that the

λ → store

store→ order
∗, stock

store order→ customer, item+

order customer→ name, email+

order item→ id, qty, price

store stock→ item
+

stock item→ id, qty, (supplier + item
+)

item supplier→ name, email+

item item→ id, qty, (supplier + item
+)

Figure 8: The content models inferred when run-
ning iLocal on the corpus consisting of the XML
fragments in Figure 3 and 6, for k = 2. The types
with empty content model λ have been omitted for
space efficiency.

Algorithm 3 Minimize

Input: an XSD D = (T, ρ, τ) and type r ∈ T
Output: (D, r) with redundant types in D removed
1: while there are distinct types s and t in T with t 6= r

and F(D, s) = F(D, t) do
2: replace each (s′, a) 7→ t in τ by (s′, a) 7→ s
3: remove t 7→ ρ(t) from ρ and t from T

start type r is never removed. The equivalence condition
F(D, s) = F(D, t) in that line can be checked as follows.

Definition 6. For an XSD D = (T, ρ, τ), let elemsD(t)
denote the set of all element names a for which τ(t, a) is
defined. The set reachD(s, t) of pairs of types jointly reach-
able from (s, t) is the least set containing (s, t) such that
(s′, t′) ∈ reachD(s, t) and a ∈ elemsD(s′) ∩ elemsD(t′) im-
plies that (τ(s′, a), τ(t′, a)) ∈ reachD(s, t).

Clearly, reachD(s, t) can be computed by a standard fixpoint
algorithm. Intuitively, reachD(s, t) is the set of all pairs
(s′, t′) for which there exists a path p such that τ(s, p) → s′

and τ(t, p) → t′.
By the following proposition we can check that F(D, s) =

F(D, t) by computing reachD(s, t) and verifying that ρ(s′)
and ρ(t′) match the same strings for every pair (s′, t′) ∈
reachD(s, t). The latter can be done in linear time for SOREs
by converting ρ(s′) and ρ(t′) to deterministic finite automata
(e.g. by the Glushkov construction [11]) and subsequently
checking equivalence.

Proposition 5. Let D = (T, ρ, τ) be an XSD and let s
and t be two types in D. Then F(D, s) = F(D, t) if, and
only if, L(ρ(s′)) = L(ρ(t′)) for all (s′, t′) ∈ reachD(s, t).

5. PRACTICAL HEURISTICS
Unfortunately, when iLocal is run on an incomplete cor-

pus, it will rarely happen that for distinct inferred types p|k
and q|k that actually represent the same type in the target
XSD we have F(D, p|k) = F(D, q|k). For instance, if k = 2
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(a) name email
1 1 1

(b) name email
2 2 2

1

Figure 9: Inference of SOAs with support. SOA (a)
is the result of iSOA({name email}). SOA (b) is the
result of iSOA({name email, name email email}).

and C consists solely of the XML fragment in Figure 3, then

2-strings(C, order customer)

= {name email, name email email},

while 2-strings(C, item supplier) = {name email}. Hence,
although order customer and item supplier both represent
the type person in the target XSD of Figure 4, we will infer

ρ(order customer) = name, email,

ρ(item supplier) = name, email+.

Since order customer and item supplier are hence not equiv-
alent, Minimize will fail to unify them.

This illustrates that on incomplete corpora, iLocal risks
identifying more types than that are present in the target
XSD. In practice, therefore, we need a minimization algo-
rithm that not only unifies equivalent types, but also unifies
‘similar’ types. Our goal in this section is to present such
an algorithm, called Reduce. Intuitively, Reduce mea-
sures the similarity of two types s and t in an inferred XSD
(D, λ) = iLocal(k, C) based on the SOAs learned for s and
t. For all s and t that are similar enough, Reduce sub-
sequently adapts D such that F(D, s) and F(D, t) become
equal. This adaption can be seen as generalizing the con-
tent models of s and t to compensate for missing data. Fi-
nally, the hence modified XSD D is minimized. Clearly,
since all similar s and t have already been made equivalent,
this causes all similar s and t to be unified.

Similarity. To define the notion of ‘similarity’ for types in
an inferred XSD (D, λ) = iLocal(k, C) we first adapt iSOA
such that for each edge (a, b) of the automaton A learned
for a sample S we also keep the support suppA(a, b) of (a, b).
This is the number of strings in S for which (a, b) needed to
be added to the edges of A. Figure 9 gives an example.

Next, we adapt iLocal such that for each inferred type
s we also keep the SOA soa(s) learned for s. That is, for
s = p|k,

soa(s) := iSOA(k-strings(C, p|k)).

Based on these extra data structures, we can define the
similarity of two types s and t in an inferred XSD (D, r) =
iLocal(k, C) as follows. Let dist(A, B) be the normalized
edit distance between the support-annotated SOAs A =
(V, E) and B = (W, F ):

dist(A, B) :=∑
(a,b)∈E−F suppA(a, b)∑

(a,b)∈E suppA(a, b)
+

∑
(a,b)∈F−E suppB(a, b)∑

(a,b)∈F suppB(a, b)
.

Intuitively, dist(A, B) measures the dissimilarity of A and
B by counting the number of edges present in A but not

Algorithm 4 Reduce

Input: an inferred XSD (D, r) = iLocal(k, C) for some k
and C, and a similarity threshold ε

Output: (D, r) with similar types in D merged, and redun-
dant types removed

1: let (T, ρ, τ) = D
2: initialize M := {(s, t) ∈ T 2 | 0 < distD(s, t) < ε}
3: while M is non-empty do
4: for each (s, t) ∈ M do
5: for each (s′, t′) ∈ reachD(s, t) do
6: set soa(s′) := soa(s′) ] soa(t′)
7: set soa(t′) := soa(s′)
8: for each a in elemsD(t′)− elemsD(s′) do
9: add (s′, a) 7→ τ(t′, a) to τ

10: for each a in elemsD(s′)− elemsD(t′) do
11: add (t′, a) 7→ τ(s′, a) to τ
12: recompute M := {(s, t) ∈ T 2 | 0 < distD(s, t) < ε}
13: for each type t in T do
14: replace each t 7→ ρ(t) in ρ by t 7→ ToSore(soa(t))
15: Minimize(D, r)

name email
3 3 3

1

Figure 10: Adjunction of the SOA in Figure 9(a)
with the SOA in Figure 9(b).

in B and the number of edges in B but not in A, weighted
by the support these edges have in the original sample. For
instance, for A the SOA in Figure 9(a) and B the SOA in
Figure 9(b) we have dist(A, B) = 0 + 1

7
= 1

7
. The smaller

the value of dist(A, B), the more similar A and B are. In
particular, L(A) = L(B) if dist(A, B) = 0.

The edit distance distD(s, t) between the inferred types s
and t is then defined as

distD(s, t) := max
(s′,t′)∈reachD(s,t)

dist(soa(s′), soa(t′)).

Again, the smaller distD(s, t) is, the more similar s and t
are. In particular, F(D, s) = F(D, t) when distD(s, t) = 0,
as L(ρ(s′)) = L(ρ(t′)) for all (s′, t′) ∈ reachD(s, t) in that
case.

The algorithm. Reduce then operates as shown in Al-
gorithm 4: it merges types whose edit distance is less than
some threshold parameter ε. Lines 4–10 are responsible for
the actual merging of the selected types s and t, and ensure
that F(D, s) becomes equal to F(D, t). In particular, the
operation soa(s′)] soa(t′) in line 6 stands for the adjunction
of soa(s′) with soa(t′). This the SOA we obtain by adding to
soa(s′) all states and edges in soa(t′) that are not in soa(s′)
and setting

suppsoa(s′)]soa(t′)(a, b) := suppsoa(s′)(a, b) + suppsoa(t′)(a, b),

(where for simplicity we assume that suppsoa(s′)(a, b) = 0 if

(a, b) is not an edge in soa(s′), and similarly for suppsoa(t′)).
For instance, Figure 10 shows the adjunction of the SOAs
in Figure 9(a) and Figure 9(b). Lines 13–14 converts the
updated SOAs into SOREs. Finally, line 15 minimizes the
resulting XSD.
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6. EXPERIMENTAL EVALUATION
In this section, we validate our approach by means of

an experimental analysis. Let iXSD be the composition
of iLocal and Reduce, i.e., let

iXSD(k, C) := Reduce(iLocal(k, C)).

We first asses iXSD’s precision in Section 6.2 by comparing
inferred XSDs with their corresponding target XSDs. We
next asses iXSD’s sensitivity to its parameters (the context
size k and the similarity threshold ε) in Section 6.3. We
subsequently assess iXSD’s capacity to generalize on cor-
pora with only a limited amount of data in Section 6.4. We
conclude in Section 6.5 with a short discussion of the runtime
performance. Let us begin with discussing the corpora used
in our experiments and their corresponding target XSDs.

6.1 The test corpora and their target XSDs
The first corpus we consider is CXSD, which itself consists

purely of XSDs in XML syntax. Hence when run on this cor-
pus, iXSD will attempt to infer the XSD for XML Schema
Definition documents as it is defined in the W3C specifica-
tion [46]. We assembled CXSD from XSD documents found
on the the Cover Pages [17], as well as from the web at large
using the Google and Yahoo! search engines, bringing the
total number of fragments in CXSD to 697.

An analysis reveals that XSD for XML Schema Defini-
tion is 2-local, and is therefore a suitable target schema.
The elements attributeGroup, group, and extension oc-
cur with different content models in two distinct contexts,
restriction in three. The XSD for XML Schema Defini-
tions contains a few more context dependent type defini-
tions, but those differ only with respect to attributes, which
we do not take into account here. All in all, this leaves us
with 48 type definitions to infer. The total number of ver-
tices in the corresponding SOAs is 202, while the number of
edges totals 1024.

To gauge the precision of iXSD on XML documents that
are described by a DTD, we reuse the real-world corpora
mentioned in our previous work on DTD inference [9].

In the context of our work on DTD inference [9], we have
already mentioned that very few corpora of XML documents
exist with an interesting schema. In the present setting,
this problem is aggravated by the fact that one requires an
schema with at least some type definitions that depend on
the context. Apart from CXSD, no suitable real-world corpus
could be obtained. Hence we resorted to synthetic XSDs and
XML corpora for additional experiments. We hand crafted
8 target XSDs to exhibit a specific set of features to test. All
XSDs are recursive and hence define tree languages of un-
bounded depth while most have at least one content model
that contains strings of unbounded length so that those tree
languages have unbounded width.

In this set of hand crafted XSDs, many of the features
that can make inference hard are present. In particular, all
of these XSDs were constructed such that the content models
of types in different contexts have the same alphabet as for
the types b1 and b2 in Figure 11. Note that this particular
XSD is 2-local. Our hand crafted set of XSDs, however, also
contains XSDs that are 3-local but not 2-local. Moreover,
one of the XSDs is 1-local, i.e., a DTD. Given that these
XSDs had to be crafted by hand, they contain between 12
and 23 types. Multiple types are associated with at least
two elements, while one grammar associates multiple types

root → a[a1]
a1 → ((b[b1], c[c]) + (d[d ], e[e])), f[f ]∗

a2 → ((b[b2], d[d ]) + (e[e], c[c])), f[f ]?
b1 → (c[c] + d[d ])+

b2 → c[c], d[d ]?
c → λ
d → b[b2]
e → b[b1]
f → a[a2]

Figure 11: A hand crafted 2-local XSD.

with six elements. For each of the XSDs, a corpus of 200
XML documents was generated using ToxGene [4]. These
corpora will be denoted by Ci for 1 ≤ i ≤ 8.

6.2 Precision
In order to assess iXSD’s precision we will compare, for

each of the corpora CXSD, C1, . . . , C8 described in Section 6.1,
the inferred types with their corresponding types in the re-
spective target XSDs. Here, “corresponding types” is de-
fined as follows. Let (D1, r1) and (D2, r2) be the inferred
and target XSD, respectively, and let D1 = (T1, ρ1, τ1) and
D2 = (T2, ρ2, τ2). Then clearly, type r1 in D1 corresponds
to type r2 in D2, as all fragments f valid w.r.t. r1 in D1

should also be valid w.r.t. r2 in D2 and vice versa. Now,
we know that for each such particular f = <a1>f1</a1>

. . . <an>fn</an>, each fi should be valid with regard to
τ1(r1, ai) in D1, and similarly should be valid with regard to
τ2(r2, ai) in D2. Hence, in this sense, τ1(r1, a) corresponds
to τ2(r2, a). Extending this reasoning further, we say that
a type t1 in D1 corresponds to a type t2 in D2 if there ex-
ists a path p such that τ1(r1, p) → t1 and τ2(r2, p) → t2.
We remark that it is straightforward to compute all pairs of
corresponding types by inspecting τ1 and τ2.

Now observe that there are four ways in which iXSD may
be imprecise.

1. There can be a type t in the target XSD that corre-
sponds to no type in the inferred XSD. This happens
only if the corpus does not contain fragments in which
type t is used.

2. There can be a type t in the target XSD that cor-
responds to multiple types s1, . . . , sn in the inferred
XSD. This happens when there are multiple distinct
paths p1, . . . , pn such that τ1(r1, pi) → si, whereas
τ2(r2, pi) → t for all i. In this case, iXSD has failed to
recognize that s1, . . . , sn actually represent the same
type t and we call s1, . . . , sn false positives of t.

3. Conversely, there can be a type s in the inferred XSD
that corresponds to multiple types t1, . . . , tm in the
target XSD. This happens when there are distinct paths
p1, . . . , pn such that τ1(r1, pi) → s for all i, whereas
τ2(r2, pi) → ti. In this case, iXSD has falsely merged
the types t1, . . . , tm into s, and we call s a false nega-
tive of t1, . . . , tn.

4. Finally, the content models inferred for corresponding
types s and t may differ.

No algorithm can hope to avoid imprecision (1) based
solely on positive examples. We will therefore not consider
this imprecision further.
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False positives/negatives. As far as imprecisions (2) and
(3) are concerned, iXSD produced neither false positives nor
false negatives when run on CXSD with k = 2. Hence the
algorithm was successful in identify all and only the types
in the target XSD for XML Schema Definitions. This is
quite remarkable as we will detail in the next paragraph the
high level of incompleteness of CXSD. The case k = 3 will be
discussed in Section 6.3. The XSD inferred by iLocal alone
contains 29 false positives, clearly illustrating the necessity
and indeed the power of Reduce.

On the synthetic corpora C1, . . . , C8, iXSD performs ex-
cellently, reproducing the target XSD in each case.

Comparison of content models. In order to asses impre-
cision (4) we first note that, although the XSD corpus CXSD

is fairly large, it nevertheless is not exhaustive. In partic-
ular, across the content models r of all target types in the
XSD for XML Schema Definitions actually used in CXSD,
there are 511 edges (a, b) in the SOA corresponding to r for
which no string in CXSD would actually add the edge (a, b)
when learning r by iSOA. This is a large amount compared
to 1024, the total number of edges.

To obtain a fair assessment, we therefore first compute
the adapted content model r′t for each target type t in the
XSD for XML Schema Definitions. This is the SOA we
obtain by transforming the content model r of t into a SOA,
and by subsequently removing all edges for which there is
no subfragment of type t in CXSD that would actually add
the edge (a, b). The similarity between the inferred content
model and r should be better than between r and r′t. Here,
similarity is simply the number of edges that are present
in the first SOA but not in the second plus the number of
edges present in the second but not in the first (not taking
supports into account).

The experiment for k = 2 then shows that the content
models of the derived XSD are at least as good (38 out of
47) or better than the baseline (9 out of 47), in five cases
by more than 10 %. The fact that iXSD exceeds the base-
line expectations is due to the combined effect of Reduce’s
smoothening and ToSore’s generalization capacity.

6.3 Sensitivity to parameters
An important consideration is the sensitivity of the al-

gorithm with respect to the choice of the parameters, the
context size k and the similarity threshold ε.

A low number of false positives implies good generaliza-
tion, while a low number of false negatives is a mark of pre-
cision. Ideally, neither should occur, but it is obvious that
trying to minimize the number of false positives will cause
an increase of the number of false negatives and vice versa.
The parameters fine tune iXSD’s performance. For increas-
ing context size k, the number of false positives will increase,
the same effect occurs for decreasing similarity threshold ε.

If the target schema of the corpus is a DTD, iXSD pro-
duces no false positives for k = 2. This is the case for the
real-world corpora and as well as the synthetic corpus men-
tioned in Section 6.1.

For context size k = 2, the XSD derived from CXSD has
neither false positives, nor false negatives, which confirms
the quality of the algorithm. For k = 3, 11 false positives
crop up in the derived XSD. For example, as illustrated in
Figure 12 for restriction, we have three types for k = 2,
which are subsequently refined into false positives for k = 3.

k = 1

k = 2

k = 3

1.000

0.971 0.013 0.016

0.969 0.001 0.002 0.013 0.016

Figure 12: Distribution of the number of examples
over types as a function of k for XSD’s restriction

element.

We note, however, that 2 of them can be identified as such
since they are caused by 0.5 % or less of the examples that
make up the corresponding type for k = 2 and hence are
very unlikely. We consider this a good rule of thumb for
the identification of false positives when the target schema
is not known. So, iXSD can be run for increasing values of
k until too large discrepancies are encountered.

The sensitivity of the algorithm with respect to the sim-
ilarity threshold ε is illustrated in Table 1 which shows the
number of false positives and false negatives as a function of
ε. It is clear that the algorithm is not overly sensitive to its
value: the target XSD is derived whenever 0.05 . ε . 0.15.
The results are similar for each of the synthetic corpora Ci.

ε false pos. false neg.
0.01 2 0
0.05 0 0
0.10 0 0
0.15 0 0
0.20 0 3
0.50 0 3

Table 1: Sensitivity of the algorithm with respect to
the similarity threshold ε for an 3-local XSD.

6.4 Generalization
In order to assess iXSD’s robustness with respect to miss-

ing data, we split one of the corpora Ci into two parts: the
first is used to derive an XSD, the second to validate that
XSD. The generalization is the number of XML documents
in the validation set that is valid with respect to the inferred
XSD. In Figure 13 we show the generalization as a function
of the training set size. Here the corpora for two of the
synthetic XSDs were used with k = 2, the second of which
(denoted by ×’s in Figure 13) has a content model contain-
ing a term of the form (a1+· · ·+a12)

+ which is quite hard to
derive. It is clear from the plot that the algorithm performs
well for even a relatively small number of XML documents
as training set, 50 and 200 in this case.

6.5 Runtime performance
Although the Java code is in a prototype stage and hence

not optimized for speed, the algorithm runs quite fast. The
process of parsing the 697 XSDs of the W3C XML Schema
Document corpus, a total of over 40 Mb, and the derivation
of its XSD for k = 2 takes less than 15 seconds on an off the
shelf laptop with a 1.73 GHz Pentium-M processor. Deriv-
ing a k = 3 XSD from the same set of data takes 17 seconds.
Given that the number of distinct ancestor strings is 136 for
k = 2 and 299 for k = 3, the algorithm’s scales well with
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Figure 13: Generalization as function of the corpus
size for two XSDs, one (×) with a large fan out.

the complexity of the target XSD. Even non-optimized, the
algorithm can be comfortably used for real world applica-
tions.

7. CONCLUSIONS
We introduced two novel algorithms for the inference of

concise XSDs. iLocal is theoretically complete in the sense
that it derives any target local SOXSD given enough data. A
second algorithm, iXSD , is the algorithm iLocal followed
by a smoothening of the obtained XSD through Reduce to
compensate for the lack of data. We have shown that iXSD
performance is excellent on both real world and synthetic
data. One of the main open issues in our framework is how
to determine the best value of k. Although, we provide a
rule of thumb which gave optimal results in our experiments,
it would be worthwhile to look into machine learning tech-
niques for parameter estimation. In future work, we want to
extend our algorithms to larger classes of XSDs and regular
expressions.
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Kossmann, Renée J. Miller, José A. Blakeley, and
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