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ABSTRACT

An increasing number of enterprises outsource their IT services to

third parties who can offer these services for a much lower cost

due to economy of scale. Quality of service is a major concern in

outsourcing. In particular, query integrity, which means that query

results returned by the service provider are both correct and com-

plete, must be assured. Previous work requires clients to manage

data locally to audit the results sent back by the server, or database

engine to be modified for generating authenticated results. In this

paper, we introduce a novel integrity audit mechanism that elimi-

nating these costly requirements. In our approach, we insert a small

amount of records into an outsourced database so that the integrity

of the system can be effectively audited by analyzing the inserted

records in the query results. We study both randomized and de-

terministic approaches for generating the inserted records, as how

these records are generated has significant implications for storage

and performance. Furthermore, we show that our method is prov-

able secure, which means it can withstand any attacks by an ad-

versary whose computation power is bounded. Our analytical and

empirical results demonstrate the effectiveness of our method.

1. INTRODUCTION
Recent advance of network technology allows an increasing num-

ber of enterprises to outsource their IT functions or business pro-

cesses to third parties that can provide these services for a much

lower cost due to economy of scale. According to a recent sur-

vey, IT outsourcing has grown by a staggering 79% as companies

seek to reduce costs and focus on their core competencies. Data

processing service outsourcing is a major component as most of IT

functions evolve around data processing.

Security is essential for outsourced data processing services. Be-

cause a third party service provider may not be trusted or may not
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be securely administrated, security properties must be assured at

the infrastructure level. In this paper, we focus on mechanisms that

provide security assurance for database services offered by third

parties.

Problem Setting. In the database outsourcing scenario, the database

owner stores data at a service provider, and the clients send queries

to the service provider (Figure 1). We assume data and commu-

nication are encrypted, the database system at the service provider

supports query processing over encrypted data, and the problem of

data privacy has been taken care of [5, 16].

Figure 1: System Model

In addition to data privacy, an important security concern in the

database outsourcing paradigm is integrity [11, 12, 15, 9]. When

a client receives a query result from the service provider, he wants

to be assured that the result is both correct and complete, where

correct means that the result must originate in the owner’s data and

has not been tampered with, and complete means that the result

includes all records satisfying the query. The goal of this paper is

to provide a simple and elegant protocol to monitor the integrity of

outsourced database services.

Providing integrity assurance is a new and challenging task. Tra-

ditional DBMSs do not have this issue because in-house data pro-

cessing is always trusted. Current approaches for this problem re-

quire either changes to be made in DBMS kernels, or a significant

subset of the data to be stored locally at the client site. Both of the

approaches are costly, hard to implement, and ineffective at least

in some scenarios. Particularly, a severe challenge is triggered by

a rising trend in mobile computing – more and more clients are

accessing database services from such devices as PDAs and cell

phones, which have limited storage capacity and processing power.

Thus, a protocol for integrity assurance needs to impose little stor-

age or computation overhead in the client side.
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Overview of our approach. In this paper, we propose a prob-

abilistic integrity audit method. We insert a small number of tuples

into the outsourced database. For a query issued against this aug-

mented database, there is certain probability that a small amount

of the inserted tuples are returned with the original data. The in-

tegrity of the system can be effectively monitored by analyzing the

inserted tuples in a reply.

To perform the analysis, the client must know what tuples have

been inserted into the outsourced database. If an inserted tuple that

satisfies the query is absent from the reply, then we know the in-

tegrity is breached; if all the inserted tuples that satisfies the query

does appear in the reply, we can deliver a probabilistic assurance

on query integrity.

We address several challenges to this task. First, in order to know

the set of the inserted tuples to be returned, the client must keep a

copy of the inserted tuples. This requires local data storage and

local query processing. In our approach, we use a deterministic

function to “describe” the inserted data. As the data generated by

the function is encrypted, it is impossible for a service provider to

differentiate the inserted data from any other data in the encrypted

database. As a result, we only need to store the definition of the

function at the client side instead of all the inserted data.

A second challenge is to ensure that our integrity monitoring

scheme is secure. If the adversaries or the untrusted service provider

can tell inserted tuples from original tuples, then our scheme will

fail. We must ensure that the query processing process does not

provide the adversaries any information that may lead to security

breach. To this end, we show that our scheme is provable secure,

which means it achieves the highest level of security when the ad-

versaries are assumed to be computationally bounded.

A third challenge is generality. Previous work has largely fo-

cused on simple selection queries. We show that our scheme pro-

vides integrity check for joins and updates.

Overall, our technique is applicable to a wide range of data pro-

cessing services including search engines, storage systems, backup

systems, etc. In the paper, we use database as an example as it

illustrates most of features in our approach.

Paper Organization. In Section 2, we review the previous work

related to security in outsourced databases. Section 3 introduces the

background information about query integrity assurance. Section 4

and 5 introduce our scheme for integrity monitoring, and Section

6 shows that it is provable secure. Section 7 extends our scheme

to support advanced queries, and Section 8 studies how to optimize

our scheme. We show empirical results of our approach in Section

9, and conclude in Section 10.

2. RELATED WORK
When we outsource database operations to an untrusted service

provider, we face two challenges: data privacy and query integrity.

Much work has been done to protect data privacy; this paper fo-

cuses on protecting query integrity.

Hacigümüs et. al. [8] first brought up security issues in the sce-

nario of database outsourcing. It focuses on the privacy aspect of

the outsourced database, in particular, efficiency of various encrypt-

ing schemes using both hardware and software encryption. That

work does not consider the problem of data integrity.

The pioneering work on the problem of integrity [6, 11] focuses

on the authentication of the data records, that is, the correctness as-

pect of the integrity. Devanbu et. al. [6] authenticates data records

using the Merkle hash tree [10], which is based on the idea of using

a signature on the root of the Merkle hash tree to generate a proof of

correctness. Mykletun et. al. [11] discussed and compared several

signature methods which can be utilized in data authentication, and

they identified the problem of completeness, but did not provide a

solution.

Some recent work [12, 9, 15] studied the problem of auditing the

completeness aspect of the integrity. By explicitly assuming an or-

der of the records according to one attribute, Pang et. al.[12] used

an aggregated signature to sign each record with the information

from two neighboring records in the ordered sequence, which en-

sures the result of a simple selection query is continuous by check-

ing the aggregated signature. But it has difficulties in handling

multipoint selection query of which the result tuples occupy a non-

continuous region of the ordered sequence. Besides, it can only

handle a subclass of join operations efficiently, the primary key/foreign

key join, because that the result of the join forms a continuous re-

gion of original ordered data can only be assured in this case. Other

work [6, 9] uses Merkle hash tree based methods to audit the com-

pleteness of query results, but since the Merkle hash tree also uses

the signature of the root Merkle tree node, a similar difficulty ex-

ists. The network and CPU overhead on the client side can be pro-

hibitively high for some types of queries. In some extreme cases,

the overhead could be as high as processing these queries locally,

which can undermine the benefits of database outsourcing. More-

over, to ensure freshness, an additional system is needed to deliver

the most up-to-date root signature to all the clients in a reliable and

timely manner. It is unclear where such a system can be placed

in an outsourced database environment, while the freshness prob-

lem could be solved naturally in our approach without additional

requirements. In our approach, we just need to vary the inserted

tuples according to the current time. We will prototype this func-

tionality in our future work.

Sion [15] introduces a mechanism called the challenge token and

uses it as a probabilistic proof that the server has executed the query

over the entire database. It can handle arbitrary types of queries

including joins and does not assume the underlying data is ordered.

But their scheme cannot detect all malicious attacks, for instance,

when the service provider computes the complete result but returns

part of it for sake of business profit from a competition rival.

Finally, one significant advantage of our scheme over previous

methods is that all previous methods must modify the DBMS ker-

nel in order to provide proof of integrity (e.g., the aggregated sig-

nature methods [6, 12, 9, 15], and the challenge token mechanism

in Sion’s work [15]). This requirement often renders these methods

impractical to deploy in real life. Our work audits query integrity

without requiring the database engine to perform any special func-

tion beyond query processing, as our integrity check relies on noth-

ing but the query results returned by the DBMS.

3. PRELIMINARIES
We audit query integrity by inserting a small number of fake tu-

ples into the outsourced database and then analyzing the fake tu-

ples that show up in the query result. Our approach has three basic

needs: data encryption, data authentication, and tuple authentica-

tion (i.e., telling fake tuples from real tuples). We describe these

preliminaries below.

Data Encryption. Data is encrypted to guarantee privacy. But, in

the scenario of database outsourcing, we have an additional re-

quirement for the encryption scheme, that is, it must be able to

support queries directly over encrypted data. This topic has been

studied by much recent work [7, 1]. The ultimate goal of the re-

search in this field is to prevent the adversary from learning any-

thing about the encrypted data and still preserving the ability to

processing encrypted queries efficiently. The research in this area
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complements our work described in this paper and our solution can

leverage progress in this area.

Data Authentication. For data authentication, we add a special

che- cksum or header column ah to the dataset. We compute ah

using Eq 3.1, where ⊕ denotes string concatenation and H is a

one-way hash function.

ah = H(tid ⊕ a1 ⊕ a2 ⊕ . . . ⊕ an) (3.1)

The one-way hash function H has the following property [2]. It

takes a variable length input string x and converts it into a fixed-

length (e.g., 128 bits) binary sequence H(x). However, it is dif-

ficult to reverse the process, in other words, given a value x′, it

is computationally infeasible for an attacker to find an x such that

H(x) = x′.

It follows that it is computationally infeasible for the attacker

to compute a valid header from the encrypted data, because the

encryption prevents the attacker from knowing the plain text ai,

which is the required input to the one-way hash function. Thus, any

modification to the original record or insertion of foreign records

will not pass header verification. Furthermore, the unique tid will

prevent adversary from inserting duplicate tuples into the dataset.

It is clear that the correctness aspect of query integrity can be

ensured by data authentication. Given a query q, its result Rq is

correct as long as each tuple t ∈ Rq is valid, and t satisfies q. The

major focus of our work is to ensure Rq is complete.

Tuple Authentication. We audit query integrity by inserting a sm-

all number of fake tuples into the outsourced database. The client

authenticates a tuple to tell whether it is a fake tuple or a real tuple.

To do this, we use Eq 3.2 to derive the checksum or the header of

a tuple t = (tid, a1, . . . , an).

ah =
{

H(tid ⊕ a1 ⊕ . . . ⊕ an) t is real

H(tid ⊕ a1 ⊕ . . . ⊕ an) + 1 t is fake
(3.2)

On receiving a result tuple from the service provider, the client

knows it is a real tuple if its header equals to H(tid⊕a1⊕. . .⊕an),

or a fake tuple if its header equals to H(tid ⊕ a1 ⊕ . . . ⊕ an) + 1.

Otherwise it is an invalid tuple. The server, on the other hand,

cannot tell a fake tuple from a real tuple because of the encryption

and the use of the one-way hash function. Tuple authentication will

not cause any storage overhead because the header is of fixed length

(128 bits), and the computation overhead of Eq 3.2 over Eq 3.1 is

negligible.

4. RANDOMIZED APPROACHES
We introduce an integrity auditing approach based on inserting

fake tuples. In this naı̈ve approach, fake tuples are randomly gen-

erated, and they are stored at the client side. In the next section,

we discuss an advanced approach which avoids storing fake tuples

by using a deterministic function to generate fake tuples. We start

our discussion with queries containing range predicates only, and

we will focus on joins and updates in later sections. The queries we

are concerned with have the following form:

SELECT * FROM T

WHERE T.A BETWEEN a1 AND a2 AND

T.B BETWEEN b1 AND b2 AND . . .

4.1 Method
Assume that the server returns RQ for a query Q and the client

knows in advance that RQ should include certain tuples. Then, if

any of them is absent, we know immediately that there is an attack.

Moreover, if there is an attack, we should be able to catch it with

a high probability. To be effective, we should have the ability to

catch any attack with a high probability. One naı̈ve approach is the

following: we randomly generate a set of fake tuples, insert them

into the outsourced dataset at the server side, and maintain a copy

of them at the client side. When the client obtains result RQ for

query Q from the server, it queries Q against its own copy of fake

tuples, and finds out what are the tuples that should appear in RQ.

To audit whether all fake tuples covered by Q appear in RQ can

be a costly process, for the client needs to join RQ with its own

copy of fake tuples to get the result. To alleviate the cost, we use

the header column information for each tuple t to easily find out

the total number of fake tuples returned by the server for query Q.

Let Cs(Q) be the set of fake tuples in RQ, and let Cc(Q) be the

tuples among the client’s copy of the fake tuples that satisfy Q. We

have the following conclusion:

THEOREM 1. If |Cs(Q)| = |Cc(Q)|, then Cs(Q) = Cc(Q).

PROOF. Assume to the contrary Cs(Q) 6= Cc(Q). As |Cs(Q)|
= |Cc(Q)|, ∃t ∈ Cs(Q) such that t 6∈ Cc(Q). But t ∈ Cs(Q)
means t is a fake tuple, whose authenticity is guaranteed by the

encryption and the one-way hash function, and since t satisfies Q,

t must appear in Cc(Q).

Theorem 1 enables the client to audit the completeness of RQ

by counting the tuples, which avoids the join operation. Now, if

|Cs(Q)| 6= |Cc(Q)|, we know immediately there is a problem. But

if |Cs(Q)| = |Cc(Q)|, how likely the server is problem-free?

4.2 Probabilistic guarantee
The randomized approach of completeness auditing is a proba-

bilistic approach. We analyze the probability of it being attacked.

As we have mentioned in Section 3, modifying tuple content or

adding new tuples are easily detected through data authentication.

Thus, the only attack is to delete tuples from the outsourced data or

from the query result. Assume we randomly insert K fake tuples

into the original data of N tuples. If an attacker deletes one tuple

from the original database, the probability that it is not a fake tuple

is N/(N + K). Thus, with probability N/(N + K), a deletion is

not caught. If an attacker deletes m tuples from the database, he

can avoid being caught with probability

m−1
∏

i=0

N − i

K + (N − i)
(4.3)

Figure 2 shows that for a dataset of N = 1, 000, 000 tuples, with

the number of fake tuples tuple ranges from 5% to 50% of N , the

probability of escaping detection when 1 to 100 tuples are deleted

from the database. It shows that the probability of escape decreases

sharply when the number of fake tuples or deletion increases. In

particular, when the fake tuples are more than 10% of the original

data, and more than 50 tuples are deleted, it is close to impossible

for the attacker to escape from being caught by the randomized

approach.

5. DETERMINISTIC APPROACHES
Randomized approaches provide good protection against attacks.

However, for many applications, it has one significant drawback: in

order to audit query completeness, it has to store all randomly gen-

erated fake tuples at the client side, and actually evaluate queries on

them. In this section, we introduce a novel approach to eliminate

this drawback.
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Figure 2: Escape analysis (N=1,000,000)

5.1 Overview
Instead of generating fake tuples randomly, we use some prede-

fined, deterministic functions to generate the fake tuples. Assume

a dataset T has n attributes. We consider function F : D1 ×D2 ×
· · ·Dn−1 → Dn where Di is the domain of the i-th attribute. In

other words, we first choose n − 1 attribute values, and then use

the function to derive the value of the remaining attribute. We then

form a fake tuple with the n attribute values, and add it into the

outsourced database. Figure 4 shows two possible functions for

generating fake tuples.

During query processing, we audit if the fake tuples returned by

the service provider are all the fake tuples that satisfy the query. To

make the auditing more efficient, we divide the feature space into

grids by discretizing each attribute (if the attribute is numerical).

We can regard the result of a range query as a set of fully covered or

partially covered grids in the feature space. Then, integrity auditing

boils down to counting how many fake tuples each fully covered or

partially covered grid contains.

The benefit of the deterministic method is obvious: instead of

storing a large set of fake tuples, we store a deterministic function

and a small grid data structure; instead of querying the fake tuples,

we ask how many tuples the deterministic function will produce

given a set of query predicates. In the following, we first discuss

how to audit query integrity using the deterministic method, and

then we describe the requirement of the deterministic function.

5.2 Deterministic completeness auditing
In randomized approaches, auditing query completeness for a

query Q takes 3 steps. First, we find Cs(Q), the fake tuples in

the query result of Q’s; Second, we evaluate query Q against the

client’s copy of fake tuples to derive the result Cc(Q); Third, we

check if |Cs(Q)| = |Cc(Q)|. Deterministic completeness audit-

ing only differs in the second step. Because the fake tuples are not

stored, instead of evaluating Q against the local data, we evaluate

it against the deterministic function F , to find out how many tuples

would have satisfied query Q if they had been generated, stored,

and queried. We use an example to illustrate the auditing process

and motivate the use of grids in auditing.

EXAMPLE 1. Assume a dataset has two attributes: Price and

Quantity, the range of each attribute is from 0 to 100, and each at-

tribute has been discretized into four subranges {[0, 25), [25, 50),
[50, 75), [75, 100]} to form a 4 × 4 grid, which is shown in Figure

3.

The query Q in Figure 3 searches for tuples whose Price, Quan-

SELECT * FROM expTable

WHERE Price between 30 and 80 and

Quantity between 30 and 80

Figure 3: Grids Covered by a Query

tity values are both in the range of [30, 80]. In order to find out how

many fake tuples are in this range, one approach is to generate all

the tuples in the range. However, this is rather inefficient. As we

can see from the figure, the query result involves 9 of the 16 grids.

Of these 9 grids, 8 are partially covered by Q, and 1 is fully covered

by Q. The total number of fake tuples that satisfy the query is:

n =
∑

g∈BF

ng +
∑

g∈BP

partial(g, Q) (5.1)

where BF is the set of fully covered grids, BP is the set of par-

tially covered grids, ng is the total number of fake tuples generated

in grid g, and partial(g, Q) is a function that counts the number

of fake tuples in g that satisfy query Q. It is clear that since ng is

irrelevant to query Q, and its value can be stored in the grid struc-

ture, all we need is an efficient way to compute partial(g, Q) for

each grid g in the partially covered area.

5.3 Deterministic generating functions
The core of our deterministic approach is the function F . We

want to use a function F so that completeness auditing can be per-

formed efficiently. More specifically, we explore necessary proper-

ties of F to speed up the evaluation of partial(g, Q).

First of all, any arbitrary function F such as sine, cosine, or

any polynomial functions can be used to generate the required set

of fake tuples for each grid. But in order to carry out integrity

auditing, we may have to regenerate all the fake tuples using F ,

which is not efficient.

We show that if the fake tuples generated by F in a grid g are

continuously covered by a range query Q, then we can evaluate

partial(g, Q) efficiently. We use an example to demonstrate what

it means by continuously covered. In Figure 4(a), there are two

points outside the query range, but their neighboring points on both

sides are inside the range. This is a case where points are not con-

tinuously covered by a range range. In contrast, the points gener-

ated by a monotonic function in Figure 4(b) are continuously cov-

ered.

It is easy to see that if fake tuples generated by F are always

continuously covered by a range query, then we do not have to

re-generate all fake tuples in partially covered grids for integrity

audit. Thus, an intuitive improvement to the method is that instead

of using arbitrary functions, we put a constrain on the function so

that the tuples it generated are continuously covered.

Let a and b be two vectors in a k-dimensional space. We say

a ≺ b if and only if a[i] ≤ b[i] for each dimension i. In our case,

we regard F as a function that maps an (n-1)-dimensional vector to

a single value. We say F is monotonic increasing (or decreasing)

if F(a) ≤ F(b) for any a and b where a ≺ b (or b ≺ a).
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THEOREM 2. Let R be the range predicates in a query. Let S
be a set of tuples generated by a monotonic function F where each

tuple tx ∈ S is in the form of tx = (x,F(x)). Then, for any

a ≺ b ≺ c, if ta and tc satisfy R, it must be true that tb satisfies R.

PROOF. Assume to the contrary that tb does not satisfy R, which

means there is at least one range [begin, end] on one dimension i
where begin ≤ tb[i] ≤ end does not hold. However, if 1 ≤ i ≤
n− 1, it contradicts the fact that a ≺ b ≺ c; if i = n, it contradicts

the fact that F(a) ≤ F(b) ≤ F(c).

Based on Theorem 2, we can guarantee that if two tuples are

covered by a query Q, then all tuples in-between the first and the

last covered tuple mush be covered by Q. Figure 4(b) is a simple

example that shows our intuition. As a result, to count the fake tu-

ples covered by Q, we only need to find the two intersection points

between the function F and the range of Q. We can use efficient

binary search algorithm to find the two intersection points and get

the count. We analyze an example below using linear generating

functions.

5.4 Linear generating function
In this section, we analyze an example where F specifies a line

segment in the feature space. We divide the whole n-dimension

feature space into grids. For each grid g, two points ~e and ~s in g’s

feature space defines a line segment, and hence defines F .

L = {~s + (~e − ~s) · t | t ∈ [0, 1]} (5.2)

Assume we generate k fake tuples in the grid. We generate the

tuples by uniformly selecting k points on the line segment from ~s
to ~e. Thus, the set of fake tuples are:

S = {~s + (~e − ~s) ·
j

k
| j ∈ {0, 1, · · · , k − 1}} (5.3)

We associate each grid with a 3-tuple (k,~s,~e) to indicate how fake

tuples are generated in the grid. Although ~s and ~e can be two arbi-

trary points in the feature space of the grid, we choose the points so

that they are as far apart as possible, so that the grid is better “cov-

ered” by the line segment1. We can simply set ~s = (l1, . . . , ln) and

~e = (u1, . . . , un), where (li, ui) is the range of dimension i for the

grid.

Note that although the fake tuples may exhibit a clear pattern

in the plain text data (e.g., here for a linear F , they are evenly

distributed on a line), neither the service provider nor the attackers

will be able to see the pattern, or utilize the pattern to break our

scheme. To show this, we conduct a detailed security analysis of

1We study the distribution of the fake points and its relationship to
the integrity assurance in detail in Section 8.

our scheme in Section 6, which shows that our scheme is provable

secure.

Using a deterministic function enables us to audit a query with-

out storing the faking tuples. For range queries, we do not even

have to re-generate the fake tuples in auditing. More specifically,

given a query Q, a client can figure out easily how many fake tuples

exist in a partially covered grid. This process is outlined by algo-

rithm partialLinear shown below. It first finds the two intersection

points ~ϕl and ~ϕh between the query rectangle and the line segment

using binary search (line 6-7), and then it computes the number of

fake tuples that lie between the two points (line 8-11).

Function partialLinear(g, Q)

Input: g : a grid partially covered by Q
Input: Q : a query

Output: ng : number of fake tuples in g that satisfy Q
begin1

(~s,~e, k) ← The parameters associated with g2

~ts ← ~s // First Fake Tuple in g3

~te ← ~s + (~e − ~s) · k−1
k

// Last Fake Tuple in g4

~ζ ← ~e−~s
k

// Gap Between Two Neighbor Fake5

Tuples in g

~ϕl = BSearchL(~ts,~te,~ζ,Q)6

~ϕh = BSearchH(~ts,~te,~ζ,Q)7

if ~s ≤ ~ϕl ≤ ~e AND ~s ≤ ~ϕh ≤ ~e AND ~ϕl ≤ ~ϕh then8

ng = (~ϕl == ~ϕh) ? 1 : (
k·(~ϕh−~ϕl)

~e−~s
)9

else10

ng = 011

return ng12

end13

5.5 Cost analysis
Let Q be an arbitrary query. Assume the outsourced data base

contains N fake tuples, out of which n satisfy Q. We analyze the

cost incurred by auditing the integrity of Q.

• COMMUNICATION COST: The extra cost of communica-

tion comes from sending the n fake tuples from the service

provider to the client. We denote this cost as n · ψN , where

ψN is the average cost of sending one tuple.

• COST ON THE SERVER SIDE: The extra cost comes from

evaluating Q on the fake tuples. We denote this cost as N ·
ψQ, where ψQ is the tuple average cost of processing Q.

• COST ON THE CLIENT SIDE: We decompose the cost into:

(i) ψD: per tuple cost of decryption; (ii) ψC : per tuple cost

of correctness auditing (the cost of analyzing the checksum

or the header); (iii) ψP : cost of completeness auditing for the

query. The extra cost at the client side is: n·ψD+n·ψC+ψP .

The completeness auditing consists of two tasks: (i) count

the number of fake tuples in the result of Q and (ii) de-

rive from F the number of fake tuples that satisfy Q. The

first task can be incorporated into tuple validation with vir-

tually no extra cost. For the second task, the cost is simply
∑

g∈BP
2 log ng for linear F , where BP is the set of par-

tially covered grids and ng is the number of fake tuples in

a grid. Since log ng << log N , the cost is dominated by

n · ψD + n · ψC .
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Thus, the total extra cost comes to:

N · ψQ + n · (ψN + ψD + ψC) (5.4)

It is clear that the extra cost for using fake tuples for integrity audit

is a linear function of N and n, the total number of fake tuples

in the outsourced database, and the number of fake tuples in each

query result. Thus, a criterion for our scheme is how many fake

tuples we need in order to reach certain accuracy in integrity audit.

We show in Section 9 that our scheme has good performance in this

regard.

6. SECURITY STATEMENT
In this section, we prove the security our system in an ideal set-

ting. Our data outsourcing scheme is a provably secure scheme

assuming that the underlying encryption function is a secure pseu-

dorandom permutation. We follow the standard notations as in the

practice-oriented provable security literature[4, 3].

We first introduce some necessary definitions for developing our

theorem and proof.

DEFINITION 1. Function family

A function family F is a finite collection of functions together with

a probability distribution on them. All functions in the collection

are assumed to have the same domain and the same range.

There is a set of “keys” and each key names a function in F .

We use Fk to denote the function selected by key k in the function

family F .

DEFINITION 2. ε-distinguisher

Suppose that F0 and F1 are two function families. Let ε > 0 and

let f0 and f1 be two functions selected from F0 and F1 uniformly

randomly. A distinguisher A is an algorithm; given a function, A
outputs 0 or 1 as it determines whether the function is from F0 or

F1. We use AdvA to denote A’s advantage in distinguishing F0

from F1.

AdvA = |Pr[A(f0) = 1] − Pr[A(f1) = 1]|

We say algorithm A is an ε-distinguisher of F0 and F1 if AdvA >
ε.

DEFINITION 3. (q, t, ε)-pseudorandom

A function family F : U → V is (q, t, ε)-pseudorandom if there

does not exist an algorithm A that can ε-distinguish a pseudoran-

dom function from a truely random function. Here A is allowed to

use Fk as an oracle for q queries, and use no more than t compu-

tation time.

Given a dataset T , we generate a dataset S. We encrypt S ∪ T
by applying Fk, where Fk is a (q, t, ε)-pseudorandom permutation.

We then store the result, X = Fk(S ∪ T ), at the service provider.

The highest level of security is achieved if any subset from F (T )
is indistinguishable from a random subset of X to attackers. Here

we use m to denote |T | and n to denote |S|.

THEOREM 3. There does not exist an adversary algorithm that

can succeed in selecting l tuples from X such that all the l tuples

are in T with a possibility bigger than ( m
n+m

)l + ε with t − c com-

putation and q − m − n queries.

PROOF. (Sketch) We prove this by contradiction. We assume

there exists an algorithm G that can successfully choose l tuples

from X such that the tuples are in T with a probability signifi-

cantly higher than ( m
n+m

)l + ε. We then construct an algorithm A

that breaks Fk, that is, we show Fk is not a (t, q, ε)-pseudorandom

function.

We construct an algorithm A that works as follows. Algorithm

A passes T ∪ S to its oracle, which generates an encrypted Xe.

Algorithm A then passes Xe to algorithm G, and G selects l tuples.

Algorithm A then checks the l tuples to see whether they are all in

T . If it is the case, it outputs 1, otherwise it outputs 0.

Clearly, if the underlying encryption is a random permutation R,

then we have Pr[A(R) = 1] =
(m

l
)

(n+m

l
)

. However, if the under-

lying encryption is Fk, then algorithm G has advantage larger than

ε over a random algorithm in selecting l tuples from T , in other

words, we have Pr[A(Fk) = 1] = ( m
n+m

)l + E, where E > ε.

Let c be the amount of computation taken outside of G. The total

amount of computation is (t−c)+c = t and the number of queries

is (q − m − n) + m + n = q.

Thus, we have

AdvA = Pr[A(Fk) = 1] − Pr[A(R) = 1]

= (
m

n + m
)
l

+ E −

(

m

l

)

(

n+m

l

)

>

(

m

l

)

(

n+m

l

) + E −

(

m

l

)

(

n+m

l

)

= E > ε,

which contradicts the fact that Fk is a (t, q, ε)-pseudorandom func-

tion.

7. BEYOND SIMPLE SELECTION QUERY
As in previous work [15], we have mainly focused on simple se-

lection queries. In this section, we study join operations and update

queries.

7.1 Integrity audit of join
Join is a very important operator in relational algebra. Previ-

ous work either cannot handle arbitrary join queries [12, 9] or need

an explicit proof which may make the scheme impractical to de-

ploy [15] for a service provider (see Section 2 for a detailed discus-

sion). In this section, we discuss how our scheme supports join op-

erations without any additional requirement on the service provider.

Without much loss of generality, we assume the join query has

the following form:

SELECT *

FROM T1, T2

WHERE T1.A op T2.A AND T1.B op T2.B AND ...

AND pred(T1) AND pred(T2) AND ...

where op is =, >,≥, <,≤ or 6=, and pred(Ti) is a predicate on ta-

ble Ti.

Join Decomposition

As in auditing simple selection queries, we use the special header

value in the result tuple (Note here we have two headers, one for

T1 and the other for T2) to check whether the results are valid and

correct. Here, we focus on the completeness aspect of the integrity.

Let us consider a join operation between two tables T1 and T2.

Let T1 = T1o ∪ T1c and T2 = T2o ∪ T2c, where T1o and T2o are

the real tuples, and T1c and T2c are the fake tuples in T1 and T2.

Thus, the result of T1 ./ T2 can be divided into four cases:

1. T1c ./ T2c

2. T1c ./ T2o
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3. T1o ./ T2c

4. T1o ./ T2o

In Figure 5, we assume that each of T1 and T2 contains 2 fake

and 2 real tuples, and their join results cover the above 4 cases. In

the figure, we use C in the header to indicate a fake tuple, and O a

real tuple.

1 2

Header1 Header2

Header2Header1

T1.B = T2.B

21

Figure 5: Decomposing a natural join between T1(A, B) and

T2(B, C) on column B into 4 parts.

Given the join query, the client can derive the fake tuples in T1

and T2 that satisfy the join condition. In other words, the client

derives T1c and T2c. Thus, if any tuple in T1c ./ T2c is missing

from the result of the join, we know that the service provider is

problematic.

However, for case 2, case 3, and case 4, we do not have such

guarantee, because the client does not know the content of T1o and

T2o. In other words it cannot derive the results of the join when the

join involves real tuples.

We show that, for case 2, case 3, and case 4, useful information

can be inferred from the join results to audit the join query. Con-

sider one of the tuples in the join result t = {1, 2, 2}, which falls

into case 4 (joined by two real tuples). It gives us the following

hint: At least one real tuple from T1 has value 2 in join column B.

(We can infer the same thing for T2). From this, we can further

infer that: All fake tuples in T2 whose column B value is 2 must be

in the join result (provided they satisfy all other predicates in the

query). Similar hints can be obtained from result tuples for case 2

and case 3.

In summary, we can use the value of join attributes in the result

of a join to audit the join query. Next, we formalize our analysis,

and develop an efficient algorithm to audit join queries using the

hints we described above.

Join Audit Algorithm

To audit join integrity, we use two pieces of information: the fake

tuples that satisfy the join condition (we obtain fake tuples through

the deterministic function FT ) and information derived from the

join result.

Indeed, using deterministic functions FT1
and FT2

, we can

easily obtain tuples in case 1: T1c ./ T2c. Then, we check if

T1c ./ T2c derived by the client really appear in the result. Ac-

cording to Theorem 1, we only need to check whether their count

match, which simplifies the operation.

To audit case 2, 3, and 4, we rely on the hints obtained from

the join attribute values in the join result returned by the service

provider. For each of the three cases, we find those fake tuples in

T1c and T2c that must join with at least one real tuple and hence

appear in the result of case 2 or case 3.

Let A be the set of join attributes. Let r.A op t.A denote the

join predicates. Let C2 and C3 denote the join results in case 2

and 3 respectively. We first obtain the set of fake tuples R and use

the corresponding auditing rules below to check whether integrity

condition is satisfied:

Rule A (Result tuple t is from case 2) :

R = {r|r ∈ T1c ∧ r.A op t.A}
Condition: ∀r(r ∈ R) → ∃o(o ∈ T2o ∧ r ./ o ∈ C2)

Rule B (Result tuple t is from case 3) :

R = {r|r ∈ T2c ∧ t.A op r.A}
Condition: ∀r(r ∈ R) → ∃o(o ∈ T1o ∧ o ./ r ∈ C3)

Rule C (Result tuple t is from case 4) :

R1 = {r|r ∈ T1c ∧ r.A op t.A}
R2 = {r|r ∈ T2c ∧ t.A op r.A}
Condition 1: ∀r(r ∈ R1) → ∃o(o ∈ T2o ∧ r ./ o ∈ C2)
Condition 2: ∀r(r ∈ R2) → ∃o(o ∈ T1o ∧ o ./ r ∈ C3)

For instance, case 4 corresponds to T1o ./ T2o. For any tuple

t ∈ T1o ./ T2o, the values of the join column A come from real

tuples in T1o and T2o. We then obtain R1 and R2, which are fake

tuples in T1c and T2c that will join with T2o and T1o respectively.

The two conditions in Rule C above basically checks if such join

results appear in C2 and C3. The correctness of the above rules can

be easily proved. We omit the proof here due to lack of space.

An efficient method to implement this auditing scheme for join

is to scan the join result once. For each result tuple, according to

which case it belongs to, we either count the tuples (Case 1) or

identify whether there are some result tuples inferred by this tuple

using the 3 rules above (Case 2, 3 and 4). The process can be

carried out by simply using the deterministic functions FT1
and

FT2
at runtime without any need to pre-store the fake tuples.

We use algorithm JoinAudit to audit a join operation. In the

algorithm, to audit the results from case 1, we count the number of

tuples in T1c ./ T2c both at the client side and in the result obtained

from the service provider (line 5-6, line 18-19). If the two count not

match we can alarm an attack (line 20-21). In order to use the hints

from the join results based on the above rules, we initiate a hash

table H which acts as a cache to temporarily memorize which fake

tuples should appear in the result, and every time we see a result

tuple t from case 2, 3 or 4, using one of the three rules, we generate

fake tuples needed to be checked, and insert them into the hash

table and check whether the integrity conditions are satisfied (line

7-17) (Given a result tuple t, let t.T1 be the tuple from T1 which

forms t, the same for t.T2). When we have processed all the result

tuples, we check all the entries of the hash table, if one entry of

hashtable is not marked with Checked, we know that some fake

tuples are missing in the result, so we alarm an attack (line 20-21).

7.2 Integrity audit of updates
Auditing the integrity of database updates is a challenging task.

The goal is to ensure that every update operation is really executed

at the server side. In previous works, there either lacks consid-

eration of the update operation or the auditing scheme has large

overhead [12, 15]. In this work, we focus on auditing INSERT and

DELETE operations2 in outsourced databases.

2
UPDATE is considered as a combination of INSERT and DELETE.

788



Function JoinAudit(Result)

Input: Result is result set from Server-Side

begin1

n ← 02

H ← A new hash table3

foreach tuple t ∈ Result do4

if t belongs to case 1 then5

n ← n + 16

if t belongs to case 2, 3, or 4 then7

/*Use FT1
, FT2

to generate fake tuples*/8

R ← generated fake tuples9

foreach r ∈ R do10

if r not in H then11

Insert r into H , Initiate Marker12

/*Using Infer Rules Condition to Check*/13

foreach i ∈ {1, 2} do14

if t.headeri is C then15

if t.Ti in HT but Not Marked then16

Mark the Entry Satisfied17

/*Count tuples in case 1 at the client side*/18

n′ ← |T1c ./ T2c|19

if n 6= n′ OR ∃ one entry in H not Satisfy then20

ALARM ATTACK21

end22

Insertion

To ensure that tuples are really inserted into the database, an intu-

itive auditing scheme is to insert some fake tuples along with the

real insertions. As a malicious attacker cannot distinguish a fake

tuple from a real tuple being inserted, we can provide probabilistic

integrity assurance for insert operations.

In our approach, the client maintains the number of points in

each cell of the grid. For each cell, if the increase of its den-

sity reaches a certain amount, insertion of fake tuples is triggered.

Additional fake tuples are generated by the same deterministic ap-

proach. Without loss of generality, we use linear functions as an

example to illustrate our approach.

As described in Section 5.4, using a linear function, fake tuples

generated for each cell uniformly distribute on a line segment de-

fined by the two points ~s and ~e in the cell. Assuming the cell cur-

rently has k fake tuples, we know that the gap between two neigh-

boring fake tuples on the line segment is |~ζ|, where ~ζ = ~e−~s
k

. In

other words, each fake tuple in the cell can be represented by ~s+~ζ·i,
where 0 ≤ i < k.

Our goal is to add new fake tuples without affecting the cur-

rent fake tuples. To increase the number of fake tuples on the

line segment, we shrink the gap ~ζ into ~ζ′, and at the same time,

we ensure the set of fake tuples defined by the new gap ~ζ′ con-

tains those generated by the old gap ~ζ. That is, we want to ensure

(∀i)(∃i′)(~s + ~ζ · i = ~s + ~ζ′ · i′), which leads to i′ =
~ζ
~ζ′

· i. Since

i′ is an integer, it must be true that ~ζ ≡ 0(mod ~ζ′). In other words,

if we choose ~ζ′ that can divide ~ζ exactly, we can guarantee the old

fake tuples can remain in the cell when new gap can also regener-

ate the set of previous generated fake tuples. Thus, our insertion

auditing scheme imposes only neglectable overhead.

We simply choose ~ζ′ = 1
2
· ~ζ. Assume we have k fake tuples

previously in a grid cell g. We generate the additional k fake tu-

ples, and insert them into the outsourced database, and modify the

current number of fake tuples of g from k to 2k.

If there are more than one client, we must ensure the other clients

know about the change. Once the inserted fake tuples are in the

database (at first, only the client that initiates the insertion can audit

the insertion), they will show up in queries issued by other clients.

To inform other clients of the change, we extended the header of

the newly inserted fake tuples to include some new information,

E(2k ⊕ t), which means the number of fake tuples in the grid cell

that contains the current fake tuple has increased to 2k since time t.
With the propagation of the information, any client will be auditing

with the up-to-date information about the fake tuples.

Deletion

There are two issues with deletions. First, a delete operation may

remove fake tuples in the outsourced database if fake tuples are

in the range of the delete operation. The problem has a straight-

forward solution because fake tuples are generated by determinis-

tic functions and the client has full knowledge of their generating

mechanism. Before sending out delete operations to the service

provider, the client can modify the delete statements to exclude fake

tuples.

Second, we need to audit whether delete statements are truthfuly

executed by the service provider. In the same spirit of auditing

insertion queries, we can first remove some fake tuples from a cell,

and then check whether they are indeed deleted in the database. We

describe the details of the audit below.

Removing fake tuples in a grid cell is equivalent to stretching

the gap between neighboring fake tuples. Moreover, in order not to

make the set of fake tuples defined by the new gap totally different

from the old fake tuples (which means we have to delete all the

old fake tuples in the grid and insert the new fake tuples generated

under the new gap), we ensure that fake tuples defined by the new

gap ~ζ′ form a subset of the fake tuples defined by the old gap ~ζ.

That is, we want to ensure (∀i′)(∃i)(~s+ ~ζ · i = ~s+ ~ζ′ · i′). Similar

in shrinking the gap, it leads to ~ζ′ ≡ 0(mod ~ζ). In other words,

the new gap ~ζ′ should be divided by ~ζ exactly. We simply choose
~ζ′ = 2 · ~ζ, which indicates that we have a half of fake tuples now

in the corresponding grid cell.

After the stretching, we can form the additional delete operations

to remove the deleted fake tuples from the outsourced database, and

then modify the current number of fake tuples in the corresponding

grid from k to b k
2
c.

8. DISTRIBUTIONGUIDED APPROACH
The feature space is partitioned into a grid of cells. In high

dimensional feature space, it may introduce two problems. First,

most cells will be empty and hardly queried. Fake tuples generated

into these cells are “wasted”. Second, maintaining a high dimen-

sional grid at a client may prove to be impractical. We address these

problems in this section.

8.1 HistogramBased method
We provide integrity assurance by analyzing the fake tuples in

the query result. The more fake tuples show up in the query re-

sult, the better assurance we can provide. This result is revealed

by Eq 4.3. On the other hand, the more fake tuples we add into

the outsourced database, the higher the cost of storage and query

processing. The question is then the following: where should we

put the fake tuples in the feature space so that they have higher

probability to be queried?

789



In our approach, we generate fake tuples that distribute uniformly

in the feature space. If queries also distribute uniformly in the fea-

ture space, then every fake tuple has equal probability to be queried.

Thus, the uniform distribution of the fake tuples maximizes the

overall quality of integrity assurance.

However, queries may not distribute uniformly in the feature

space. For example, in many real applications the distribution of

the query follows that of the data, which means more queries are

asked in denser regions. Assume the probability that a certain low

density region being accessed by a query is close to 0, then fake

tuples generated into this region are useless for providing integrity

assurance, because they will not show up in query results.

Our grid-based tuple generation scheme can easily be adjusted

in accordance with any query distribution. Without loss of general-

ity, let us assume the query distribution follows the distribution of

the data. We show how our scheme makes use of the distribution

information.

For each grid cell, we record its density, that is, the number of

tuples in the grid. The density information reflects the data dis-

tribution, and in our case, the query distribution as well. If the

number of fake tuples we generate for each grid is proportional to

its density, then we guarantee distribution match at the grid level.

In Figure 6, a 2-dimension data space is divided into a 4 × 4 grid.

We count the number of tuples in each grid cell, and generate fake

tuples using the deterministic method in an amount proportional to

the tuple counts.

Figure 6: Divide Data into Grid of Buckets

We show the advantage of the distribution-guided approach us-

ing an experiment. We use the lineitem table in the 1GB TPCH

data [17], and we randomly generate 10 batches of 100 test queries

using TPCH query Q6 as a template, which is a range query on

three attributes l shipdate, l quantity, and l extendedprice. E-

ach query is a “unit” query in the sense that its range has the same

volume as that of a grid cell. For the randomized approach, we

generate fake tuples randomly in the whole feature space. For the

distribution-guided approach, we divide the feature space of the 3

attributes into a 10× 10× 10 grid, for each cell in the grid we gen-

erate fake tuples in an amount that matches its density. The 1000

test queries are generated in such a way that the centers of their

query range follow the distribution of the data.

The experiment result in Figure 7 validate that the distribution

guided approach has more fake tuples covered in average when

query distribute following the distribution of original data.

8.2 Optimize the histogram structure
For high-dimensional data, the grid becomes very sparse and

many cells have very low density and contain no fake tuples. Such

cells are useless for integrity audit, but the grid itself may intro-

duce huge storage overhead at the client side. It is thus necessary

to shrink the grid structure.
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Figure 7: Fake Tuple Coverage

Instead of partitioning the feature space into grids which may

contain lots of useless cells, we create cells in an incremental way:

we first divide the space into a small number of cells, and then it-

erately split the cells whose density is above a upperbound thresh-

old θh, and eliminate cells whose density is below a lowerbound

threshold θl.

As an example, let θl = 12% and θh = 24% for the data shown

in Figure 6. In the first iteration, we divide the feature space on

dimension X into 4 cells: one cell’s density is between θ1 and θh,

and the other three all have density larger than θh, so we divide the

three cells into smaller cells on dimension Y in the second iteration.

Those cells with density smaller than θl (shown as dotted circle in

Figure 8) are deleted.
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Figure 8: Iterative Gridding

In our optimization, we split the dense cells along one attribute at

a time. Since our goal is to reduce the number of cells, a heuristic is

to pick the attribute that has the most skew distribution to split. The

reason is that dividing an attribute with uniform value distribution

creates less lower opportunity to eliminate low density cells. In our

approach, we simply use variance as a measure of the skewness of

the attributes.

Finally, to audit query completeness, we need to distinguish the

cells that are partially covered by the query from the cells that are

fully covered by the query. Since the cells are no longer regular,

coverage analysis becomes more difficult. Thus, we are actually

trading efficiency for storage. However, in the database outsource

scenario, the clients are often resource limited devices, which means

reducing storage overhead is more important.

9. EMPIRICAL STUDIES
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In this section, we evaluate the security assurance and perfor-

mance overhead of our integrity auditing scheme.

9.1 Experiment Environment
We use a Pentium IV D 2.8GHz PC with 512MB RAM and a

160GB SCSI hard disk as the server, and Pentium IV 1.6GHz PCs

with 256MB RAM and 40GB hard disks as clients. Clients and

the server are connected with a local Ethernet network running at

100MBps. We use IBM DB2 v8.2 to store data on the server side.

Code on the client side is developed in JAVA with the JDK/JRE 1.5

develop kit and Runtime Library.

Data setup. The data we used in our experiment is derived from

the TPC-H benchmark [17], which models decision support sys-

tems that store large volumes of data and process queries of a high

degree of complexity.

For auditing simple range queries, we generate a TPC-H bench-

mark database with a scale factor of 1 which has 1GB data. We

use the lineitem table for our experiment on range queries. This

table has roughly 6 million records. While the lineitem table has

many attributes, we are particularly interested in three numerical at-

tributes: l shipdate, l extendedprice and l quantity. We tailor

the data in the table by extracting the values of the three attributes

along with a tid value for each tuple. We form a derived table de-

fined as T (tid, l quantity, l extendedprice, l shipdate), which

is then encrypted using the scheme discussed in Section 3 to be

stored at the outsourced database server.

We create another TPC-H benchmark database with a scale fac-

tor of 0.1 for our experiment on join operations. We use table

customer and orders for our experiment and also experiment with

range queries. We encrypt and store the tailored tables customer(tid,

c custkey), orders(tid, o orderkey , o orderdate) at the server side.

Fake tuple setup. In our experiment, we assume that the queries

distribute according to the distribution of original data. As dis-

cussed in section 8, we use a Equal-Width Histogram to estimate

the original data’s distribution. (For the lineitem table. We divide

it into 10 × 10 × 10 grids using the three attributes l quantity,

l extendedprice, and l shipdate, and similarly for the other two

tables customer and orders). And we use the grids to guide the

process of fake tuple generation and integrity auditing with linear

function as discussed in Section 5.

Query setup. The type of queries for experiment with range query

is derived from TPC-H benchmark query Q6, which is shown as

follows:
SELECT *
FROM lineitem
WHERE l shipdate BETWEEN ’: d1’ AND ’: d2’

AND l extendedprice BETWEEN ’: p1’ AND ’: p2’

AND l quantity BETWEEN ’: q1’ AND ’: q2’

The quoted variables are all template parameters, and in our ex-

periments, we generate 100 Unit Queries which have the same

range as a grid in the Histogram by changing these template pa-

rameters. And to ensure that the set of queries following original

data’s distribution, we select the center of the query range(which

can be represented by ( d1+d2

2
, p1+p2

2
, q1+q2

2
)) according to the

distribution information from the Histogram(By signing a higher

probability to fall into a grid/bucket of the Histogram which has

higher density).

The type of queries for experiment with join is derived from

TPC-H benchmark query Q3 , which is in the following form:

SELECT *
FROM customer,orders
WHERE c custkey = o custkey
AND o orderdate BETWEEN ’: d1’ AND ’: d2’

The template parameters d1 are selected randomly in the domain

range of o orderdate, and we guarantees the value of d2 − d1

equals the range of a grid on dimension o orderdate to form a

Unit Selection Join Query.

9.2 Compare with existing methods
We first compare our method with existing integrity auditing

schemes: Merkle Hash tree [13] and Challenge Token [15].

Our scheme is more practical than the existing schemes because

our method is server transparent – we do not require changes of the

DBMSs of the service provider, while the Merkle Hash tree based

integrity auditing scheme need the server to maintain a Merkle

Hash tree for the data and the Challenge Token based scheme need

the service provider to be aware of the Challenge/Answer protocol.

This transparency of our integrity auditing scheme makes it more

easily deployable in database services.

In the experiment, we implemented the Merkle Hash tree as an

in memory tree structure with a fan-out of 50, and we use the most

commonly used public digital signature scheme RSA [14] as the

signature function, and MD5 [2] as the hashing function. For the

Challenge Token based scheme, we divide the data into 10 seg-

ments and use MD5 Hashing [2] to generate the challenge token.

In our experiment, we use an one dimension table and we generate

batches of simple range queries with same value range length.
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Figure 10: Server & Client Cost Analysis

From Figure 9, we see that our integrity auditing scheme has a
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very low setup cost because we only need to select the deterministic

functions and use them to generate the fake tuples. The construc-

tion cost of Merkle hash tree is very high because lots of signatures

and hash functions must be computed. The construction time for

Challenge Token is also very high because for each client we need

to pre-compute the hash value for each query that may need to be

sent to the server, which further makes this scheme not practical in

our application scenario where the clients are only small devices

with limited computing and storage resources.

The computation cost on the server shown in Figure 10(a) in-

dicates that our scheme poses little additional cost on the service

provider, if any. Indeed, the only overhead is additional scan cost

of the fake tuple. But, with our deterministic method, as shown in

Figure 10(b), we reduce the client’s computing cost, which is very

important for our outsourcing database scenario where the clients

are often small devices.

9.3 Simple selection query experiment

Security evaluation. As the correctness aspect of integrity has been

guaranteed by the special header column which is discussed exten-

sively in Section 3, we focus on analyzing the completeness aspect.

We simulate data deletion attacks by randomly deleting m tuples

from the original data. The only chance that an attacker can avoid

being caught is when none of the m tuples is a fake tuple. For

each m range from 1 to 30, we repeats the random deletion 100

times using 5 different random seeds. The averaged results and

confidential interval is shown in Figure 11(a). From the figure, we

can easily find that the escape probability decreases sharply as the

number of deletion increases. And specifically, with only 10% fake

tuples generated, we can guarantee an escape probability lower than

25% if more than 20 tuples are deleted, which is a small number

given that the total number of tuples is 6 million.
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Figure 11: Security Evaluation

We simulate query result deletion attacks by randomly deleting

m tuples from each of the 100 test unit queries’ results. For each m
range from 1 to 30, we repeat the experiment 5 times and find the

average probability of escaping detection among the 100 queries

(
Auditing Failed Query Number

Total Query Number
) and the confidential interval. The experi-

ment results are shown in Figure 11(b). We can see from the curves

in Figure 11(b), the probability of escaping from being caught with

a deletion attack approaches 0 rapidly as the number of deletion

increases. Additionally, by varying the percentage of fake tuples

from 5% to 50%, we can see from Figure 11(b) the more fake tu-

ples we have for the data the lower the escaping probability, which

coincident with our intuition.

Client performance analysis. We compare the client side perfor-

mance in the following two settings: (i) just as in the randomized

approach, storing the set of fake tuples in a relation table at the

client side; (ii) Instead of explicitly storing all the fake tuples, au-

diting the integrity against the deterministic function F. We repeat

the 100 Unit Queries at the client side 5 times and get the aver-

age which is shown in Figure 12. It can be see easily that auditing

the deterministic function cost nearly nothing compared to audit-

ing the table, which have a cost grow linearly with the increase of

fake tuples. So the experiment validates our scheme’s efficiency in

integrity auditing, which may benefit our scheme in the outsource

database scenario, as in such scenario we may have some mobile

devices as the client which have very limited computation capabil-

ity.
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Figure 12: Client Side Performance Analysis

Server performance analysis. Using our scheme for integrity au-

diting will introduce query overhead at the server side as the addi-

tional fake tuples need to be processed as discussed in Section 5.5.

In the experiment, we vary the percentage of fake tuples from 5%
to 50%. By submitting the 100 unit queries to the server, we collect

the average processing cost of these queries using the performance

monitor feature of DB2, we repeat the experiment 5 times and get

an averaged result shown in Figure 13.

Moreover, in this experiment, we compared the cost for three

cases: (i) Without integrity auditing scheme, which is shown as the

thick black line; (ii) Without fake tuples but having the authentica-

tion header and encryption scheme enabled, which is shown as the

thick red line; (iii) All features of the integrity auditing scheme are

enabled, which is shown as the bar chart. The result is shown in

Figure 13. From this figure, we can easily figure out that the cost

increases slowly as we increase the number of fake tuple stored at

the server side. And the additional fake tuples will not cause great

degradation of performance at the service side, which satisfies our

motivation to lower the cost at the server side.
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9.4 Join query experiment
We analyze the security of join auditing scheme by randomly

deleting from the 100 random join query’s result m tuples and

computing the average escape detection probability among the 100

queries.

As described in Section 7.1, we have two types of information

which can be utilized to audit a join query’s result: (i) the set of

fake tuples generated using the deterministic function; (ii) join at-

tribute value from a result tuple. In the experiment, we compare

the security performance when using only (i) with that when using

both (i) and (ii). We repeat the experiment 5 times with the num-

ber of fake tuples ranging from 10% to 40% of original data. The

averages are shown in Figure 14. From the Figure, we can easily

find out that using the information given by the join result tuple can

greatly increase the security level.
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Figure 14: Join Security Analysis

Moreover, the additional overhead at the client side when utiliz-

ing the information from both case (i) and case (ii) will not cause a

great performance degradation at the client side as being shown by

Figure 15.
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Figure 15: Join Efficiency Analysis

10. CONCLUSION
IT outsourcing has become critical to business operations and

vital for businesses to sustain their competitive advantages. Main-

taining security in IT outsourcing is important for maintaining the

growth of IT outsource services. As data processing is among the

most important components of IT services, we address the problem

of how to audit the integrity of database services in the paper. Previ-

ous approaches can only be effective when the verifier or the user of

the service maintains a copy of some outsourced data. However, the

overhead in maintaining such a copy undoes the benefit of database

outsourcing. Our approach uses deterministic functions to embed

fake tuples in the outsourced data. By simply keeping track of the

definition of the deterministic functions, the client keeps track of

all the fake tuples in the outsourced data, which enables efficient

auditing of the query integrity of the service provider.
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