
Context-Aware Wrapping: Synchronized Data Extraction ∗

Shui-Lung Chuang

schuang2@uiuc.edu

Kevin Chen-Chuan Chang

kcchang@uiuc.edu

ChengXiang Zhai

czhai@uiuc.edu

Computer Science Department, University of Illinois at Urbana-Champaign

ABSTRACT
The deep Web presents a pressing need for integrating large
numbers of dynamically evolving data sources. To be more
automatic yet accurate in building an integration system,
we observe two problems: First, across sequential tasks in
integration, how can a wrapper (as an extraction task) con-
sider the peer sources to facilitate the subsequent matching
task? Second, across parallel sources, how can a wrapper
leverage the peer wrappers or domain rules to enhance ex-
traction accuracy? These issues, while seemingly unrelated,
both boil down to the lack of “context awareness”: Current
automatic wrapper induction approaches generate a wrap-
per for one source at a time, in isolation, and thus inherently
lack the awareness of the peer sources or domain knowledge
in the context of integration. We propose the concept of
context-aware wrappers that are amenable to matching and
that can leverage peer wrappers or prior domain knowledge.
Such context awareness inspires a synchronization frame-
work to construct wrappers consistently and collaboratively
across their mutual context. We draw the insight from turbo
codes and develop the turbo syncer to interconnect extrac-
tion with matching, which together achieve context aware-
ness in wrapping. Our experiments show that the turbo
syncer can, on the one hand, enhance extraction consis-
tency and thus increase matching accuracy (from 17-83% to
78-94% in F-measure) and, on the other hand, incorporate
peer wrappers and domain knowledge seamlessly to reduce
extraction errors (from 09-60% to 01-11%).

1. INTRODUCTION

The emergence of structured databases online, the “deep
Web,” has created a pressing need for large scale information
integration. With the scale of the Web, in any domain of in-
terests (e.g., Books, Autos, Real Estate), there are usually a
large and increasing number of data sources that provide al-

∗
This material is based upon the work partially supported by NSF

Grants IIS-0133199, IIS-0313260, the 2004 and 2005 IBM Faculty
Awards. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do not
necessarily reflect the views of the funding agencies.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

ternative or complementary information. How can we enable
users to access these sources uniformly and effectively? Such
large scale integration, by bringing together data sources
for integrated access, will provide a crucial facility for users
to exploit the numerous online databases as a whole, or to
choose ones that are particularly useful for them. Many
useful applications such as domain portals, comparison shop-
ping, meta-search, and vertical search engines will need such
techniques to scale up. Clearly, to handle a large number
of evolving sources, large scale integration mandates more
automatic yet accurate techniques.

Where is the bottleneck towards scaling up? We believe
that wrapper construction is a central barrier– We need to
build a wrapper for every new source, to bring it into the in-
tegration system. A wrapper performs template-based data
extraction: It contains a set of template rules for converting
the HTML text of a source into structured records. For the
mandate of rapid construction, automatic wrapper genera-
tion techniques (e.g., [2, 5, 22, 23]), which do not require su-
pervised per-source labeling and training, have been studied.
They generate a wrapper for one given source, by inducing
its repetitive HTML structure into template rules. (Such
“template”-based extraction sets wrappers apart from in-
formation extraction, which focuses more on unstructured
text without clear templates– Section 6).

However, we observe that, for an integration system to
incorporate “many” sources, current techniques fall short in
several aspects: An integration system, as Figure 1 shows,
must perform some sequential tasks, i.e., querying, extrac-
tion, and matching, across a set of some n parallel sources.
In both “task” and “source” dimensions, current automatic
techniques are not geared for more accurate results:

• First , across sequential tasks, a wrapper (as an extraction
task) shall consider peer sources to facilitate the subsequent
matching task, to enhance matching accuracy. As we inte-
grate n sources, can we enhance such matching by making
wrapper i, ∀i, to extract data in “consistent” ways as all
others? E.g., can we build a wrapper for amazon.com to
be “consistent” with bn.com– say, both combining firstname
and lastname as one author, or both separating title and edi-
tion. Such consistency enables simple 1:1 matching, instead
of the challenging complex m:n matching.

• Second , across parallel sources, a wrapper shall leverage
other peer wrappers or domain rules to enhance extraction
accuracy. For domain-based integration, as we focus on the
same domain of sources (e.g., Books), can we supply some
domain “knowledge” as a reference model to guide wrap-
per k– e.g., regular-pattern rules specifying that isbn must
have 10 digits, or a statistical model describing title? Fur-

699

Wrapper W1Source S1

Wrapper WnSource Sn

Wrapper WkSource Sk Matcher

Querier

Querier

Querier

Querying Extraction MatchingTasks:

Integrated
Data

Figure 1: An integration system with n sources.

ther, as we incrementally build wrappers one after another,
after having k wrappers, can we build wrapper k+1 (say,
bn.com) by leveraging wrappers 1, · · · , k (e.g., amazon.com,
borders.com) to correct errors? The ability to leverage prior
knowledge or wrappers enables us to reuse preceding efforts
towards incrementally building up large scale systems.

Our Proposal: Context-Aware Wrapping. These is-
sues, while seemingly unrelated, boil down to the same lack
of “context awareness”: Current wrapping approaches gen-
erate one wrapper at a time, in isolation, fundamentally
lacking the awareness of peer sources or domain knowledge–
which we refer to as the context of integration. Without
context awareness, current wrappers can neither build upon
domain knowledge nor align with peer sources, resulting in
inaccuracies in both extraction and matching. How can we
exploit the rich context, in terms of the clear domain focus
and abundant peer sources, in large scale integration?

To visualize the opportunities, as Figure 2 shows, suppose
we are integrating a particular domain (e.g., Books), and
we want to build wrappers for some new peer sources (e.g.,
bn.com and buy.com). At this point, we may already have
wrappers for others, which we call reference sources (e.g.,
amazon.com, borders.com), and we may have a reference
model (e.g., isbn rules). Our objectives are to 1) leverage
reference sources and the reference model, and 2) consider
peer sources to form consistent extractions.

We believe the key to unifying both goals is to broadly ab-
stract “context” as a set of “generalized sources”– not only
the real peer sources (which we are to wrap consistently) but
also the reference sources and model (which we are to lever-
age). Note that a source is, for our purpose, capable of pro-
ducing data records in the domain of interest: e.g., bn.com
will generate, say, [title, price, ...]. To unify, we conceptually
view a reference source or model as also a “generator,” or
a generative model, of some fields (e.g., isbn). We can then
exploit the rich context by seeking the consistency between
all the “sources,” which will thus achieve both objectives.

With this view, this paper proposes a new problem: How
to realize context-aware wrapping? We identify context aware-
ness as a necessary concept for wrapper generation among
multiple sources, in order to enhance both extraction and
matching accuracy, as well as to reuse wrapping efforts.
While Section 3 will formally define the problem, we sketch
it as follows, referring to Figure 2:

• The Context-Aware Wrapping Problem: Given some new
sources N = {S1, · · · , Sn}, possibly some reference sources
R = {Sa, · · · , Sb}, and possibly a reference model Mγ , build
one wrapper Wk for each new source Sk, so that the extrac-
tions from all sources in the context (i.e., N ∪ R ∪ {Mγ}) are
the most consistent. ¥

Approach: Synchronized Extraction. Our goal is thus
to maximize context consistency in data extraction. As Fig-
ure 2 shows, in the wrapper generation process, starting with
sample data pages (e.g., query result pages to wrap) at step
1, if we can obtain consistent extractions, as step 3 shows,
we can then use these data records as labeled examples to

S1 Base Extractor I

Turbo
Syncer

Sn Base Extractor I

Wrapper Wa

Mγγγγ

Wrapper Wb

Sa

Sb

Template
Induction

Template
Induction

Wrapper W1

(..) (…)?

Wrapper Wn

<a>(..)(…)*

N
: N

ew
 S

ou
rc

es
R

: R
ef

. S
ou

rc
es

Ref. Model

Initial
Extractions

Consistent
Extractions

Generated
Wrappers

���� ���� ����
Sample

Data Pages
����

Figure 2: Context-aware wrapper generation.

perform template induction (e.g., [10]) to generate the tem-
plate rules of the final wrappers. The key challenge is: How
to form consistent extractions? (Step 2 to 3.)

While traditional wrapper generation works in isolation,
our approach is thus “synchronized extraction,” where each
wrapper should segment data fields consistently, or in sync,
with the context. Towards synchronization, can we also
leverage current “per-source” wrappers as the basis?

Our solution is thus a middle layer, as a syncer (Fig. 2), to
synchronize the initial extractions from some base extractors
I– which can be any current per-source wrapper– into a
consistent state, before feeding into template induction.

Insight: Turbo Decoding. In search of the insight, we
realize that such synchronized extraction can be regarded
as a multi-code communication process: As a source ren-
ders its data, or encode its message, our objective is to
extract the data, or decode the message. With this anal-
ogy, we draw our insight from turbo codes [3] in informa-
tion theory. The intuition is simple: In transmitting, the
turbo encoder will dispatch the same message through mul-
tiple error-independent “codes,” and thus, in receiving, the
turbo decoder will recover the message by synchronizing be-
tween these codes. We thus develop synchronized extrac-
tion, Turbo Syncer, as synchronized decoding, which then
imply an EM -style (Expectation-Maximization [8, 6]) iter-
ative optimization framework. Thus, by viewing sources as
encoding the same message, we enforce their extractions, as
in turbo decoding, to synchronize to the common message.

We have implemented the Turbo Syncer and extensively
evaluated it over 30 sources in 3 domains, using 4 base
extractors [2, 5, 22] and 3 matchers [18, 21], across var-
ious desired “context-aware” settings: Wrapping multiple
sources concurrently, and leveraging reference sources and
user-crafted reference models. It indeed reduces the extrac-
tion errors (from 9–60% to 1–11%) and raises the matching
performance (from 17–83% to 76–94%). Further, it is ro-
bust, raising the accuracy to a rather constant level, regard-
less of the base extractors.

In summary, this paper makes these contributions:

• Concept and Problem: We propose the novel concept of
context-aware wrapping and thus the new problem of
its realization, to support large-scale integration systems.

• Framework : We propose synchronized extraction and de-
velop the Turbo Syncer, inspired by turbo codes.

• Evaluation: We empirically validate that synchronized ex-
traction is effective in various context-aware settings.

In the rest of the paper, we start with motivating synchro-
nized extraction (Section 2), followed by the turbo frame-
work (Section 3), the detailed algorithm (Section 4), and
the empirical evaluation (Section 5). The related work (Sec-
tion 6) and conclusion (Section 7) are then drawn out.

700

S1: (b11) Gone with the Wind

Margaret Mitchell (Aug 1993)
$16.38

(b12) Romeo and Juliet
Shakespeare (Paperback Feb 1985)
$6.95

S2: (b21) The Art of Comp. Prog. D. Knuth
Hardcover $103.94

(b22) Modern Operating Systems A. Tanenbaum
Paperback $60.95

showing 1-2 of the results

Automatic
Wrapping

+3 +3

Automatic
Wrapping

+3 +3

(y11)
(y12)

Gone with The Wind Margaret Mitchell Aug 1993 $16.38

Romeo and Juliet Shakespeare Paperback Feb 1985 $6.95

f11 f12 f13 f14 f15

(y21)
(y22)

f21 f22 f23

The Art of Comp. Prog. D. Knuth Hardcover $103.94

Modern Operating Systems A. Tanenbaum Paperback $60.95

JJJJJJJ

±±
±±
±

AA
AA

AA

55
55

5

sss
sss

ss
wrapper for S1

<a>[f11]([f12])
?

[f13]"("[f14]")"

[f15]

À%
BBBB

wrapper for S2
<a>[f21][f22]

[f23] ;CÄÄÄÄ

Figure 3: A simple example of two book sources, each with two records.

2. MOTIVATION
This section motivates our thesis: the concept and real-

ization of context-aware wrapping. To start off, we reiterate
the two objectives: 1) Consider peer sources to enable con-
sistent extractions in order to enhance matching accuracy.
2) Leverage multiple “sources” to enable cross-correction in
order to enhance extraction accuracy. (Recall that Section 1
unifies both reference sources and models as such sources.)
As our motivation, we ask– First, does extraction inconsis-
tency indeed compromise the subsequent matching? Second,
how is cross-correction possible to achieve consistency and
accuracy? This section answers both questions.

2.1 Cause: Inconsistency
We address the first question on how extraction impacts

matching. We note that a template-based wrapper relies on
the structure regularity (or skeleton) to extract the potential
data fields of the source, using template rules (e.g., delim-
iter strings or regular expressions) induced from HTML tag
analysis. While wrappers themselves capture the page syn-
tax regularities which are source-dependent, the subsequent
matching is mainly determined based on their extracted con-
tent from the input pages. Hence, it is affected if the extrac-
tion has inconsistencies. To reveal the inconsistencies and
their impacts on matching, we conduct some preliminary
observations. We begin with an example:

Example 1 (Book Sources): Let’s suppose a simple sce-
nario of only 2 sources, each with 2 records (as Fig. 3). Also,
we suppose there is an automatic wrapper generator which
accepts input pages from a source, induces the wrapper, and
extracts the enclosed data records.

After wrapping, the two raw records b11|12 in source S1 are
extracted as structured records y11|12 with 5 fields f11–f15.
Similarly, b21|22 in S2 become y21|22 with 3 fields f21–f23.

The correspondence (i.e., best matching) between the data
fields of S1 and S2 (performed by human to match the fields)
is then shown as the links between f ’s in Fig. 3.

Notice that, to qualify the extracted fields (so human can
match the fields that have overlapping semantics), there ex-
ist basic concepts for the given domain. For example, a book
consists of title, authors, pub-date, format, etc. A concept
may have sub-concepts– e.g., an author has firstname and
lastname, and pub-date contains month and year. We regard
all these concepts (with different granularities) in mind as
semantic units. Ideally, the fields with overlapping semantic
units should be matched– e.g., in Example 1, f14 and f23

are matched because they both contain format.
A reasonable extractor seeks to split along the boundaries

of semantic units. However, it is often imperfect. A fragment
occurs when it splits a semantic unit into pieces that are not
sub-concepts (e.g., b11’s title is broken into “gone with the”
and “wind” in y11). A compound occurs when it does not
split at the boundary of two different semantic units (e.g.,
f14:format|pub-date in S1).

0.1

0.2

0.3

0.4

0.5

LL RR TA EA TA RR LL EA LL RR TA EA
 0

 0.2

 0.4

 0.6

 0.8

 1

in
co

ns
is

te
nc

y
ra

te

F
-m

ea
su

re
 (

m
at

ch
in

g)

extraction algorithms

Albums Books Cars

inconsistency rate matching performance

LL: LineSpliter ; RR: RoadRunner ; EA: ExAlg ; TA: TreeAlign

Figure 4: Inconsistency vs. matching.

While a fragment is always counted as an inconsistency
(against the semantic unit), a compound may cause an in-
consistency if the semantic units in it do not co-occur ad-
jacently in other sources. For example, the extracted field
f14:format|pub-date in S1 is considered inconsistent because
format in S2 is not adjacent to any pub-date information.

To show how inconsistencies affect matching in real situa-
tions, we conducted a preliminary experiment: We applied 4
automatic Web data extractors– LineSplitter (Sec. 5), Road-
Runner1[5], ExAlg2[2], and Tree-Align3[22]– on 3 domains,
each with 10 sources (see Sec. 5 for the detailed setup). We
checked the numbers of inconsistencies for every extracted
record. In addition, we manually compiled, for each domain,
an integrated table with no inconsistent fields, and then used
it to evaluate the result of doing best-matching on the ex-
tracted data. Figure 4 depicts, for the 3 domains with 4
extractors, the average inconsistency rate for a record, and
the final matching performance (via F-measure).

In Fig. 4, we observe that the existing extractors produce
many inconsistencies (22% in average, where 5% are frag-
ments and the rest 17% are compounds). They have a neg-
ative correlation with the matching performance– it usually
has a higher performance when there are less inconsistencies.

Hence, when we consider integration, the extraction should
not be considered in isolation. Because the inconsistencies
(which significantly impact the matching performance) can
only be determined in the context of all sources in integra-
tion, extraction of them should be considered together.

Intuitively, no matter how the data are extracted, a per-
fect subsequent matching can align related fields together
to form a correct integrated table– e.g., the fragment errors
f11 and f12 are merged (thus recovered) when matching to
f22 in Example 1. However, to do this requires complex m:n
matching, which has a much larger search space than simple
1:1 matching and so far remains difficult in practice. Fur-
thermore, for the inconsistent compounds, since matching

1
RoadRunner is a representative automatic wrapping algorithm that

exploits page layout structure and is publicly available online at http:
//www.dia.uniroma3.it/db/roadRunner/.
2
ExAlg builds a similar concept as RoadRunner, with more enhanced

representation. The program we used to perform the experiment is
obtained from its authors.
3
TreeAlign is our re-implementation of the idea using tree alignment

proposed in DEPTA [22].

701

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1 10 20 1 10 20 1 10 20

fie
ld

s

sources

Airfares Books Cars

Figure 5: Field growth on 3 domains.

only performs merging, the best it can achieve is to group
those fields with overlapping semantics, thus forming larger
compounds. This may produce a coarse integrated table–
e.g., some output field is mixed by many units. Hence, for
matching to produce a fine-grained integrated table, extrac-
tion of consistent fields is essential.

As implications, since inconsistencies bring in difficulties
to align fields and produce a fine-grained integrated table,
eliminating them should boost the overall integration.

2.2 Opportunity: Cross Correcting
We now move on to the second question on how cross-

correction can enhance consistency (and accuracy) of ex-
traction. While the existing approaches build wrappers iso-
latedly using the syntax regularities within each source, in
order for synchronization to align common semantic units
between sources to make them consistent, we attempt to
gain insight by examining what they share in common and
how they differ in their extraction.

First, we survey what they share in common:
Concerted Convention: We informally surveyed 3 domains
(airfares, books, and cars), each with 20 sources. We manu-
ally identified the fields that occurred consistently among all
sources. As a result, the average number of different fields
in a domain is 18, and in a source is 9.48 (9.48/18=53%).
There is 71% overlapping (∼6.72 same fields) between any
two sources. And, a field appears in 52% (10.48 out of 20)
of sources, in average. These observations indicate: From
the perspective of source, each source represents a medium-
size subset of the domain, and has high overlap with other
sources. From the perspective of field, same fields occur in
many sources, i.e., high field occurrence.

Figure 5 further plots the co-occurrence of sources and
fields– a “+” at (x, y) means that field y occurred in source x.
The curves show a rapid field convergence (e.g., fields found
after the first 5 sources are a:19, b:16, and c:14).

Then, we look at how they differ in their extractions:
Complementary Extraction: We examined the extraction re-
sults in our preliminary experiment (see Section 2.1). Fig-
ures 6a–c plot the results of three extractors on book sources–
a ◦ at (x, y) means that field x in source y is successfully
extracted, and a × means x is in a fragment or inconsistency.

Clearly, none can perform uniformly well for all sources.
Even we imagine there exists a perfect ensemble that accepts
the 3 approaches (e.g., merging Figure 6a–c as 6d) and takes
the best decision for each field (e.g., in 6d, a field with mark
⊗ could be regarded as correctly extracted)– still there are
many errors (those marked with × in Figure 6d).

Although neither sources nor fields can be perfectly pro-
cessed by current extractors, we observed that most sources
have some fields successfully extracted, and most fields can
have a successful extraction in some sources.

For our objective of synchronization, these observations
clearly imply: First, the sources share common fields that

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

so
ur

ce
s

fields

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

so
ur

ce
s

fields

(a) RoadRunner (b) ExAlg

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

so
ur

ce
s

fields

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

so
ur

ce
s

fields

(c) TreeAlign (d) A perfect ensemble

Figure 6: Existing extractors on 10 book sources.

..Hardcover $103.94

..Paperback $60.95..Paperback Feb 1985 $6.95

.. Aug 1993 $16.38Date = Mon Year
Year = 4-digits
Mon =

Ref. Model Mγγγγ Source S1 Source S2

����

���� ���� split

split

merge

All Sources Synced!����

Figure 7: Synchronization: Cross correction.

need to be synchronized. Second, the complementation be-
tween the extractions of sources makes synchronization pos-
sible by cross-referring multiple sources. Thus, can we cross-
correct the inconsistencies?

Example 2 (Cross Correction): Referring to Fig. 7, sup-
pose we want to synchronize records y12–y22 (of Fig. 3),
which we show only partially. To make the situation inter-
esting, we also assume a reference model Mγ that specifies
how date looks like. Fig. 7 shows the field “boundary” posi-
tions of the records in each source, and how these boundaries
are synchronized in three iterations. Step 1 first propagates
the price from S1 to S2, resulting in its split of the combined
field format+price. In Step 2, as now format is correct in S2,
it then feeds to S1 to similarly split its format+month. In
Step 3, the year and month are merged by the synchroniza-
tion triggered from the reference model. At this point, all
the “sources” (Mγ , S1, and S2) are in agreement with their
common fields, and thus the context is “synced.”

As this example shows, we believe the insight of cross cor-
rection is promising, by iteratively removing inconsistency
errors. As our survey indicates that there are high field
occurrence and overlap among sources– i.e., the chance to
have a correct cross reference is high. Overall, the implica-
tions show the possibility of synchronized extraction– e.g.,
an error in a source might be recovered by referring to other
sources. As the observations give us a promising insight, we
ask: What would be a principled framework to realize it?

3. TOWARDS TURBO SYNCER
In this section, we develop our approach to cross-correcting

the wrapping inconsistencies between different sources in a
turbo-decoding paradigm. We start with the formal problem
description (Section 3.1), draw the inspiration from turbo
decoding (Section 3.2), resolve the challenges (Section 3.3),
and develop our Turbo-Syncer framework (Section 3.4).

702

3.1 Problem Description
Upon the framework in Fig. 2, we seek a consistent wrap-

ping between all the sources through synchronization. Each
new source (source to construct wrapper) is first processed
by a base extractor, which any existing automatic approach
can serve as (e.g., [2, 5, 22]). Basically, the base extractor
applies sophisticated syntax analyses on the sample pages of
a source (obtained by submitting a few sample queries) to
identify the data records/fields, based on which wrappers are
generated. Our syncer takes this output (initial structured
records produced using per-source syntax regularities), re-
fines it (cross-corrects the boundaries by synchronizing the
contents with other peer sources), and generates the newly-
structured records for re-training the wrappers.

We now formalize this. Suppose the new sources to wrap
are N = {S1, S2, . . .}. The system may already have refer-
ence sources R = {Sa, Sb, . . .}, which have their own wrap-
pers (as {Wa,Wb, . . .}) to perform extraction. Also, there
may exist a reference model Mγ , storing any user-crafted
field knowledge (rules and templates). Notice that for ref-
erence sources R and model Mγ , while their fields are cor-
rectly identified, they may not be complete– i.e., not de-
scribing all fields in the domain (referring to Section 2.2, a
source contains a subset of fields in the domain). Generally,
as Section 1 mentioned, we refer all the input, N , R, Mγ ,
as sources, since they all generate contents of some fields.

For each source Ss, the appropriate extractor (if Ss is a
new source, the base extractor; if it is a reference source, its
own wrapper) is applied on the sample pages to obtain a set
of structured records.

The fields of a record can be specified by their boundary
positions. For a record xi with ℓxi tokens: xi = (xi,1, . . . , xi,ℓxi

),
if it has k fields, the boundary points are specified by a seg-
mentation yi = (b0, . . . , bk) where b0 = 1 (the start point),
bi−1 < bi, and bk = ℓxi + 1 (the end point). The j-th field
is the subsequence xi[bj−1:bj − 1].

Example 3 (Segmentation): The record b11 in Fig. 3 has
9 tokens x11 = (gone, with, . . . , $16.38). One possible seg-
mentation is y11 = (1, 4, 5, 7, 9, 10), which specifies 5 fields,
with the first field x11[1:(4-1)]=“gone with the.”

Since synchronization only changes the boundaries of the
extracted records, we separate the contents and boundaries:
A record is writen as (xi, yi) and the record set of each source
Ss is (Xs, Ys) where Xs = (x1, x2, . . .) and Ys = (y1, y2, . . .).

Given a content sequence xi, the total possible segmenta-
tions (at least k = 1 segment and at most k = ℓxi segments)
can be described as:

Yxi = {(b0, . . . , bk) : k ≥ 1 ∧ 1 = b0 < · · · < bk = ℓxi + 1}.

For an entire record set Xs, the segmentation space is:

Ys = {(y1, . . . , y|Xs|) : yi ∈ Yxi for each xi ∈ Xs}. (1)

While, for each new source Ss, the base extractor produces
the initial structured records (Xs, Ys), our syncer seeks a re-
segmentation Y ′

s so that the newly-structured records, i.e.,
(Xs, Y

′
s), are more consistent with other sources. Our prob-

lem is thus described as:

input: N = {(X1, Y1), . . .} R = {(Xa, Ya), . . .} Mγ

output:
{

Y ′
1 , Y ′

2 , . . .
}

s.t. max
Y ′

s∈Ys
s=1,2,...

G
(

(X1, Y
′
1 ,), (X2, Y

′
2), . . . , R,Mγ

)

, (2)

where G is an objective function measuring the consistency
between sources, which will be realized later (Section 3.4).

Message X

bits {X1, X2, . . .}

X σ1

σ2

Encoder 1

Encoder 2

C
h
a
n
n
e
l

Decoder 1

Decoder 2

σ̄1
σ1

σ̄2
σ2

(Iterations)

Decoded
Message

{X̂1, . . .}
Xσ1(i) //

Xσ2(i) //

//

//

//

//
²²

OO
//

oo

//
oo

//

oo

(σ1,σ2: permutations; σ̄1,σ̄2: reverses of σ1,σ2)

//

//

Figure 8: The framework of turbo codes.

3.2 Paradigm: Turbo Decoding
As mentioned in Section 1, wrapping can be regarded as a

communication process: It aims to decode the code (HTML
pages) produced by the encoder (data source). The infor-
mation to be decoded are the boundaries of the data fields
in the pages. To illustrate, we can view a segmentation as a
bit string indicating whether to split at a boundary point or
not, thus bringing in analogy to the conventional decoding.

Example 4 (Bit Rep.): For y11 in Example 3, we can view
it as a bit string (1,0,0,1,1,0,1,0,1,1), where a boundary point
is split if its bit is 1 and not if it is 0.

As we understand that wrapping is decoding in essence, in
order to cross-correct the decoding inconsistencies (as mo-
tivated in Section 2.2), how can decoding leverage its “con-
text,” instead of performing isolatedly?

With the data from multiple sources (codes from multiple
encoders), viewing them as concurrent decoding, we natu-
rally learn from multi-code decoding in information theory
and draw the insight from the success of turbo codes [3].
Fig. 8 depicts the framework for turbo codes: The trans-
mitted message bits are passed to two (or more) encoders to
produce two codes. Upon receiving, turbo decoders reinforce
their decision of each bit by synchronizing their decoding of
the received codes. Since the inputs to encoders have been
scrambled independently, the chance that both decoders si-
multaneously produce errors for the same bit is extremely
low, and thus the decoding achieves high accuracy.

In our problem, it is apparent that different sources share
concerted conventions (analogous to the common message)
and produce complementary extractions (analogous to inde-
pendent errors) (Section 2.2). Turbo decoding hence gives
us an encouraging direction.

3.3 Challenges: Message & Reinforcing
While turbo decoding sheds a new paradigm for our prob-

lem, to apply it, there are two requirements: First, in turbo
codes, there is, by design, a single identical message embed-
ded in different codes. Second, the correspondence between
the message units (bits) in different codes are prescribed,
based on which decoders can reinforce each other. These re-
quirements amount to two challenges in our problem:

• Message: The data records delivered from different sources
are far from identical. As the first challenge: What is the
message delivered?

• Reinforcing mechanism: The correspondence between the
fields (message units) in different sources is not clear. As
the second challenge: Without prescribed field correspon-
dence, how can decoders reinforce each other?

3.3.1 Message: Hidden Domain Model
To reveal what is the message delivered, we ask: What can

be the information shared among same fields across different
sources? Consider books b11–b22 in Fig. 3 and b13:

(b13): [Come with the Sand John Smith October 2010 $12.34]

703

It is not difficult to tell which subsequences look more like
title and authors, even when b13 is not a real book.

Inspired from the above examples, what constitutes our
recognition is the common information they share– e.g., title
is a sequence of words, and authors are personal names. We
thus regard such common sharing as the message.

To characterize this sharing (the message) so that similar
data can be identified, there have been many heuristics de-
signed, e.g., using character or word distributions, average
string length, data types, etc. Since these heuristics are var-
ious and ad-hoc in nature, to make our framework flexible,
we use a statistical model to unify them. Thus, we hypothe-
size a hidden schema model that probabilistically generates
data records, across all sources in a domain.

Definition 1 (Statistical Schema Model): A schema
model M is a finite set of fields {f1, f2, . . .}, where each fi

is a statistical model specifying how to generate an instance
for that field.

Example 5 (Book Model): A handcrafted book schema
model may look like M = {fti, fau, ffm, . . .}, where fti gen-
erates title instances (e.g., 2-20 randomly picked-up words),
fau generates author(s) instances (e.g., a few randomly picked-
up non-dictionary words), ffm generates format instances
(e.g., 1-2 words selected from a small vocabulary set {paper-
back, hardcover, ...}), and so on.

Notice that we are not proposing any new similarity analysis
for comparing fields. Instead, we plan to leverage existing
approaches in a principled statistical model.

While our hypothesis is conceptual, it is indeed reason-
able. As our observations (Section 2.2) shows, the fields in
a domain converge quickly to a limited set (the existence of
M) and each source is a subset of domain fields.

Thus, with this hypothesis, we can give a simple but fairly
principled abstraction of encoding records as pages. For a
source s: First, a subset of fields in the domain model M is
selected as a source model Ms. Second, data records Rs are
generated based on Ms. Finally, records are fed into Source
s to be rendered as a Web page. This procedure is sketched
as the encoding part (left part) of Fig. 9.

Our message is thus the “schema model.” The underlying
model is not itself the information transmitted, but implic-
itly carried through by its substantiated records.

3.3.2 Reinforcing Mechanism: Matching Measure
To reveal what can be the reinforcing mechanism, we ask:

How to determine the correspondence of fields (i.e., message
units) between sources? This question brings us to the sub-
sequent matching (Fig. 1). If the extracted fields between
sources cannot match well (using some matching measure)–
i.e., not consistent, then we have to refine them, which may
take several iterations in between sources (like Example 2).

This inspiration answers the challenge: For decoders to
reinforce each other, they must incorporate some matching
measure and exchange the degree of matching between their
outputs, so that their decisions can be further refined.

Note that the notion of matching here is not exactly the
standard schema matching problem, which aims at deter-
mining a hard decision of how fields are aligned. Instead, it
only requires producing the scores of how well fields between
sources are matched. With these scores, the framework will
iteratively “re-extract” to form new field boundaries for bet-
ter extraction, i.e., achieving better matching scores. (Note
that in standard schema matching, fields are given and will

Schema Model M
fields {f1, f2, . . .}

M

M1

M2

Ma

Mb

Mγ

Source 1

Source 2

Source a

Source b

B
a
s
e

E
x
t
r
a
c
t
o
r

I

(Segmentation)

Decoder 1

Decoder 2

Wrapper
Wa

Wrapper
Wb

(
It

e
r
a
t
io

n
s
)

(Model)

M̂1

M̂2

M̂a

M̂b

Mγ

M̂

Mp

Results

R1 //

R2 //

Ra //

Rb //

//

//

(X1,Y1) //

(X2,Y2) //

//

//

//

//

//oo

//oo

¢¢££
££

ªªµµ
µµ
µµ
µ

(Xa,Ya) //

(Xb,Yb) //

//

(X1,Y ′
1)//

(X2,Y ′
2)//

(Ri’s: sets of records generated from Mi’s.)

//

//

//

//

//•

•

•

•

•

(p
ro

je
c
tio

n
)

_ _ _ _ _ _ _ _Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

_ _ _ _ _ _ _ _

Turbo Syncer_ _ _ _ _ _ _ _Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

_ _ _ _ _ _ _ _

Encoding records as pages

Figure 9: Our framework of Turbo Syncer.

not be dynamically changed.) In this work, we will develop
a matching measure upon our assumption of an underlying
model (Sec. 4, Implementation 3). However, our abstraction
allows us to apply other matching techniques (e.g., [18]) that
are instance-based and can output a similarity score as such
matching (i.e., consistency) measure.

This insight naturally motivates an optimization process
of finding the extractions among sources to maximize a given
matching measure (that is, G in Eq.(2)). The detailed algo-
rithm will be presented later in Section 4.

3.4 Framework: Turbo Syncer
Realizing the message as schema model and the reinforc-

ing mechanism as matching, we now abstract out the prob-
lem of synchronization in our context-aware wrapper con-
struction as a turbo-decoding setting, and thus concretize
our framework, named Turbo Syncer.

Fig. 9 shows the framework. The data pages from sources
are viewed as generated by an encoding process from an un-
derlying model (Section 3.3.1). With this conceptual view,
we design Turbo Syncer to collaborate: First, the pages from
each new source (which has no wrapper yet) are processed by
the base extractor. For, if there is any, each reference source
(which already has wrapper), its pages are processed by its
own wrapper instead. Second, each new source Ss is associ-
ated with a Decoder s, which accepts the initial extraction
(from the base extractor) and decodes the source model M̂s

(as the initial decoding output for Ss, using the model train-
ing procedure stated in Section 4). The same procedure is

applied to construct the models {M̂a,M̂b, . . .} for reference
sources. Since the reference sources are correctly extracted
(by their own wrappers), their models are viewed as correct–
do not need to be refined. Third, each Decoder s takes these
models (including the correct models Mp = M̂a ∪ · · · ∪Mγ

and the uncertain models M̂ = {M̂1, . . .}) to reinforce the

extraction (by measuring its matching to Mp and M̂) and
update the corresponding source model. The whole process
may run for several iterations, to achieve a stabler result.

With the turbo-decoding abstraction, we thus develop an
EM-style optimization (the core decoding technique of turbo

codes), building upon two principles: (1) From models (M̂

and Mp) to a Decoder s: All the models in the context (M̂
and Mp) will drive s to refine its segmentation (i.e., adjust
its decoding). (2) From Decoder s to models: After refining

its segmentation, Decoder s will output a new model M̂s as
the decoding result. We then formulate the dual functions
of the Decoder in a probabilistic framework:

704

• Principle 1: (Model to Segmentation): Given models M ,
for a source Ss, Decoder s refines the segmentation as
finding a Y ∗

s with the maximum likelihood p(Xs, Y
∗

s |M):

Y
∗

s = arg max
Ys∈Ys

p(Xs, Ys|M) (3)

Conceptually, p(Xs, Ys|M) encodes how likely (Xs, Ys) is
generated by M , thus representing the consistency mea-
sure of (Xs, YS) and M (implemented in Section 4.1).

• Principle 2: (Segmentation to Model): Given a segmenta-
tion Ys, Decoder s decodes the model that best generates
(Xs, Ys) as finding a M̂∗

s with the maximum likelihood

M̂∗
s = arg max

m

p(m|Xs, Ys) (4)

Conceptually, p(m|Xs, Ys) denotes how likely a model m

is derived from (Xs, Ys). It is not explicitly computed but
implicitly embedded in the model training algorithm.

Upon this probabilistic framework, we hence can concretize
the objective function G in Eq.(2) as

G
(

(X1, Y
′
1 ,), . . . , R,Mγ

)

=
∑

s=1,2,...

p(Xs, Y
′

s |M̂,Mp) (5)

where each source model M̂s in M̂ is derived from records
(Xs, Y

′
s) (via Eq.(4)) and Mp combines models from the

reference sources R and model Mγ . The details of matching
measure p(Xs, Y

′
s |M) will be described in Section 4.

Overall, with the dual behaviors defining a Decoder, the
Turbo Syncer is simply a set of such Decoders 1, . . . , n, one
for each new source, to synchronize and decode iteratively
till stabilization (maximizing function G).

4. ALGORITHM
We now explain Turbo Syncer, as it is a set of decoders,

by developing the algorithm for each decoder. We study two
extreme cases: (1) wrapping one source with the prior model
given (from reference sources and model) (Section 4.1) and
(2) wrapping many sources without the prior (Section 4.2).
We then combine them as the general scenario (Section 4.3).

In the following, we derive the algorithm in a generic way,
while also interleaving the detailed implementation, in or-
der for readers to see how each abstract operation (such as
Eq.(3) and (4)) is concretized. Since this work is to investi-
gate the idea of source synchronization, as our implementa-
tion principle, we select reasonable implementation for the
components while keeping them as simple as possible.

4.1 One source with the prior model
We first study how to wrap one source given the refer-

ence sources and model as the prior, which mainly exercises
Principle 1, Eq.(3). This scenario often occurs in building
an integration system incrementally, by adding one source
at a time and constructing the wrapper for it to compromise
with the existing system.

In the context, we may have reference model Mγ , which
specifies how some fields are generated. Meanwhile, we may
have reference sources R = {Sa, Sb, . . .}. Although they are
not directly given as a “model,” their wrappers (Wa,Wb, . . .)
do generate records that can derive the underlying mod-
els (using “segmentation to model” principle which we will
present in Section 4.2). Because fields in these models are
correct, we combine them as a single prior model :

Mp = {f : f ∈ M where M ∈ {M̂a,M̂b, . . .} ∪ {Mγ}}.

•s
0 π1 //

π2

%%
L

1 a12 //

a11

EE V
2 a23 //

a22

EE •e
3

b1(·)

ii
i) i)

b2(·)

ii
i) i)

Figure 10: Modeling a field as a 2-state HMM.

Implementation 1: How to realize each field model? As
a schema model (message) is a set of fields (message units)
(Sec. 3.3.1), we need to design a scheme to model each field.

We first decide what features to use, in order to charac-
terize the input instances. In our current design, except the
literal words, we also adopt common data types, such as inte-
ger, float, month, date and time, as the features. These com-
mon data types are used across different domains and only
require one-time static setup– e.g., writing regular expres-
sion scripts to parse the input data and recognize the exis-
tence of each feature in the input.

For simplicity, we model a field as a 2-state HMM, based
on an intuition that a field instance (e.g., “Price: $20.99”)
usually consists of an optional label (e.g., “Price:”) followed
by a value (e.g., “$20.99”). Fig. 10 shows the model topol-
ogy, where state L corresponds to the label part, state V is
for the value, π’s are the initial probabilities, a’s are tran-
sition probabilities, and b’s are state emission probabilities.
Each state represents a distribution of features (including
literal words and additional features), which is specified as
bi. As HMM has been well-studied, we omit it here for
space reason. Readers, if interested, please refer to [17] for
the details. Note that any other modeling scheme, such as
CRF [11], can be used instead.

Thus, our schema model is a set of field models, and each
field model is a 2-state HMM.

Implementation 2: How can users create the reference model
Mγ to assist the system?

Since it is not intuitive for users to directly code an HMM
for a field, we currently support regular-expression field pat-
terns, e.g., specifying price with “L[((Our|List|Best)? Price:)?]
V [$〈float〉|〈float〉 USD]” (L, V correspond to the HMM states,
Fig. 10). Each field can have many patterns specified, and
these patterns will then be automatically translated as field
model(s) through training (Implementation 4).

As Principle 1 (model to segmentation) guides, we formu-
late the problem of forming a new segmentation given the
prior model as: For the new source S1, if the prior model
Mp is complete (i.e., it contains field models for all fields in
the domain or at least in the new source), find a Y ∗

1 ∈ Y1

most likely generated from the prior model Mp:

Y
∗
1 = arg max

Y ′
1∈Y1

p(X1, Y
′
1 |M

p), (6)

However, in real situations, the prior model may not be
complete– i.e., some fields in S1 do not correspond to any
model in Mp (e.g., the reference model Mγ may only have
isbn but not title and authors). In such cases, we would prefer
to retain the original segmentation (produced by the base
extractor) and only refine those segments strongly confirmed
by the prior model. To achieve it, we thus add the current
source model M̂1 (which favors the current segmentation)

and use the expected likelihood over M̂1 and Mp.

Y
∗
1 = arg max

Y ′
1∈Y1

∑

m∈{M̂1,Mp}

p(X1, Y
′
1 |m)f(m) (7)

where f(m) is a density function used to specify the weight
for each model. In our study, we fix it as a constant function–
i.e., the given models are treated equally.

705

For convenience, we will write the expected likelihood over
a set of models M, given a density function f(·) as:

∑

m∈M

p(X1, Y
′
1 |m)f(m) = E

[

p(X1, Y
′
1 |m)|M

]

Implementation 3: How to realize the consistency mea-
sure p(Xs, Y

′
s |m), for a given segmentation (Xs, Y

′
s) and a

schema model m? This is the core of our reinforcing mech-
anism (Section 3.3.2), used in Eq.(7).

By assuming that the data records, i.e., (xi, y
′
i) in (Xs, Y

′
s),

are conditionally independent given the model, we can ex-
pand the likelihood p(Xs, Y

′
s |m) to be:

p(Xs, Y
′

s |m) =
∑

xi∈Xs,y′
i
∈Y ′

s

p(xi, y
′
i|m)

Further, we adopt the best generating field model to corre-
spond each segment– i.e., for each field segment zj ∈ (xi, y

′
i),

we select its matched field model as the f ∈ m that has the
highest conditional likelihood p(zj |f). Thus, the overall like-
lihood of a record (xi, y

′
i) given m is computed as:

p(xi, y
′
i|m) =

∑

zj∈(xi,y′
i
)

max
f∈m

p(zj |f)

As zj is a sequence of tokens and f is an HMM, p(zj |f)
can be computed by an efficient dynamic programming tech-
nique, named Forward-Backward (see [17]). Our implemen-
tation thus follows this standard procedure.

4.2 Many sources without the prior model
We then study the opposite scenario: How to wrap multi-

ple sources consistently without given the prior model? This
scenario, which helps us to introduce Principle 2, Eq(4), into
our framework, occurs in building an integration system on
a few, say 5–10, sources, from scratch.

Without given the prior model, we formulate the problem
as iterative optimization of discovering models and segmen-
tation simultaneously. The idea is to start with an initial
segmentation for all peer sources (by the base extractor I),
and iteratively improve it using the models derived from the
current estimate.

Suppose there are n new sources N = {S1, . . . , Sn}. The
process takes the base extraction as the initialization:

Y
(0) = {Y

(0)
1 , Y

(0)
2 , . . .} where (Xs, Y

(0)
s) = I(Ss). (8)

As Principle 2 guides, it then trains the models that best
generate the current segmentation (t initialized as 0):

M̂(t)
s = arg max

m

p(m|Xs, Y
(t)

s) 1 ≤ s ≤ n, (9)

M̂(t) = {M̂
(t)
1 , . . . ,M̂(t)

n },
Using Principle 1, which has been described in Section 4.1, it
utilizes the current source models to form new segmentation.

Y
(t+1)

s = arg max
Y ′

s∈Ys

E
[

p(Xs, Y
′

s |m)|M̂
]

1 ≤ s ≤ n (10)

The process (Eq.(9) and (10)) repeats till stabilization.

Implementation 4: How to train a source model M̂s given
a segmentation (Xs, Ys)? This is abstracted as the optimiza-
tion function of Eq.(9).

To train a schema model, we actually train a set of field
models. The records (Xs, Ys) have been split into segments.
Thus, we train a field model for each group of aligned seg-
ments. Training a field consists of labeling the tokens in the
segments and learning the model parameters.

Labeling: Each token in each segment will be assigned as
L or V (Fig. 10). For initialization Eq.(8), we use:

The Algorithm TS: (N = {S1, . . . , Sn}, R = {Sa, . . .},Mγ)

• i-step (initialization) t = 0

(Xs, Y
(0)
s) = I(Ss) Ss ∈ N

(Xr, Yr) = Wr(Sr), M̂r = arg max
m

p(m|Xr, Yr) Sr ∈ R

Mp = M̂a ∪ M̂b ∪ · · · ∪Mγ

• m-step (Principle 2: segmentation to model)

M̂
(t)
s = arg max

m
p(m|Xs, Y

(t)
s) Ss ∈ N

M̂(t) = {M̂
(t)
1 , . . . ,M̂

(t)
n },

• e-step (Principle 1: model to segmentation)

Y
(t+1)
s = arg max

Y ′
s∈YsVVVVV

Y ′
s∈N(Y

(t)
s)

E
[

p(Xs, Y ′
s |m)|M̂(t),Mp

]

Ss ∈ N

The m- and e-steps are repeated until 1) the difference be-
tween two consecutive iterations is small, or 2) a pre-specified
number of iterations is reached.

Figure 11: The formal algorithm.

Colon-based labeling: The part before the colon is an-
notated as label (L) and the rest as value (V).

When in iterations, each segment is relabeled by the field
models (in M̂(t)) using standard Viterbi algorithm (see [17]).
Although the colon-based rule is primitive, the mislabeled
tokens might get recovered later, when relabeled by the mod-
els from other sources.

Learning: The parameters (π’s, a’s, and b’s) are learned
using standard maximum likelihood estimation (omitted here;
please see [17]). Note that the data are labeled automati-
cally (by the initialization or relabeling by other HMMs in
the previous iteration). Although learning parameters is it-
self supervised, with auto-labeled data as input, the overall
training process is unsupervised.

4.3 Putting Together: The General Scenario
With the two extreme scenarios above, we now combine

them for the general scenario of wrapping multiple sources
with the prior model given. The prior model Mp may not
be complete, while its field models are correct. If some data
fields in new sources do not correspond to any field in Mp,
we would prefer they are wrapped consistently across all
new sources (with models M̂). However, for data fields hav-
ing corresponding models in Mp, we would prefer they are
wrapped in the same way specified in Mp.

Therefore, the general algorithm is a combination of us-
ing the peer source models M̂ and the prior model Mp to
perform the segmentation. Combining Eq.(7) and (10), we
present the overall algorithm in Fig. 11. We emphasize that
algorithm TS is essentially a combination of the dual princi-
ples (of Models ⇔ Segmentations) in iterations to refine the
segmentations generated by the initial base extractors I. In
summary, TS defines the algorithm that each Decoder will
execute, overall achieving a turbo synchronized decoding.

Since the segmentation space Ys is large, directly maxi-
mizing over it is intractable. To make the algorithm practi-
cal, we further modify the e-step (Fig. 11) to search on the

neighbors of the current estimate– N(Y
(t)

s).

Implementation 5: How to generate candidate segmenta-
tions, instead of searching the whole solution space?

For efficiency, we adopt the nearest neighbors of the cur-

rent segmentation N(Y
(t)

s), by applying once any of the fol-
lowing two operations (as Fig. 7 illustrates):

706

• Merge: Given the current segmentation, merge attempts
to merge two adjacent segments as one.

• Split: Given the current segmentation, split attempts to
split one segment into two.

Theoretically, given any segmentation, we can derive any
other segmentation by these two operations– for example,
merging all segments as one and then splitting it into the
target segments. Thus, these two operations are complete
in terms of generating the solution space. This ensures that
the algorithm has a chance to reach a good convergence.

If a record consists of ℓ tokens, there are ℓ− 1 such neigh-
bors, which is linear to the record length and much smaller
than the whole space Ys.

The procedure shown in Fig. 11 can be regarded as an
EM algorithm [8, 6]: The i-step, preparing a solution guess,
corresponds to the initialization step in EM; the m-step, esti-
mating the distribution of the hidden variable (models), cor-
responds to the expectation step; and the e-step, maximizing
the expectation of the likelihood, corresponds to the max-
imization step. For the efficiency reason (Ys is too large),
the e-step is modified to search on the neighbors of cur-
rent estimation– N(Y (t)). This form of the algorithm corre-
sponds to Generalized EM (GEM) and is also guaranteed to
converge, probably with the cost of more iterations [6, 16].

As a remark, we note that it is natural to arrive at an EM-
like framework in our derivation. Because we resort to turbo
codes as our conceptual model, while we did not explicitly
follow the turbo decoding procedure, we naturally reach the
same EM-style algorithmic framework, which is essentially
how turbo decoders work [3].

Since the neighbors of the current estimation (N(Y (t))) is
bounded by a constant (in our observations in Section 2.2, a
record has around 10 fields– thus, the neighbors of a segmen-
tation are not many), the complexity of running the overall
algorithm depends on the number of sources and the number
of iterations. It is clearly linear to the number of iterations.
And it is quadratic to the number of new sources, as each
source is compared to all others.

Notice that our approach allows alternative implementation–
for example, instead of HMM, we can use simple unigram
models or more complex CRF [11, 19] to model a field. How-
ever, in this work, we focus on the turbo iterative process,
rather than the individual component. Thus, the compo-
nents are realized using various standard techniques.

5. EXPERIMENTS
Towards a more automatic integration system, we design

a synchronization layer to interconnect source wrapping and
matching (Fig. 1 and 2). For new online sources to be added,
they are processed by the automatic extractor, and then syn-
chronized with the existing system (new sources, reference
sources and model) to produce consistent wrappers and thus
facilitate the subsequent matching to integrate the wrappers
(i.e., aligned with the wrappers of other sources).

Accordingly, we evaluate: First, whether assembling with
the existing automatic extractors, our system can indeed re-
duce the inconsistency errors (Section 5.1). Second, whether
the outputs can facilitate the follow-up matcher to produce
better integrated results (Section 5.2).

To setup the experiments, we collected the data from three
domains: albums, books, and cars. For every domain, we col-
lected 10 sources from the deep-Web. They are all popular

sources– for example, book sources included famous ama-
zon.com and bn.com. For each source, we submitted three or
four queries. Example queries were {artist=“Enya”} for al-
bums and {title=“Harry Potter”} for books. For each query,
we collected the first response list page, which roughly con-
tained 10 records. Hence, for each domain with 10 sources,
there were 30–40 sample pages, containing 300–400 records
in them. We thus used this data set for experiments.

To run the experiments, we considered integrating sources
from scratch: We wrapped all sources together using an un-
supervised setting (without references). During evaluation,
we corrected the errors. We also examined the data, partic-
ularly those producing errors, and created assistant rules as
the reference model. Later, we used these correct data, and
the user-crafted model, to run a supervised setting (with
references). This scenario reflected a practical situation of
accumulating an integration system with more and more
sources and assistant knowledge.

5.1 Extraction
First, we did experiments to examine how our system can

reduce the extraction inconsistency errors.

Setup:
We adopted 3 automatic Web data extractors available in
the literature– RoadRunner(RR) [5], ExAlg(EA) [2], and
TreeAlign(TA) [22]. Because our ultimate goal is automatic
integration, we consider only the unsupervised automatic ex-
tractors, which need no tuning (or training) for the domain–
e.g., some traditional IE methods, like HMM and CRF, are
not in our consideration.

While the three extractors all involve sophisticated algo-
rithms to analyze the input pages, we would like to examine
whether our approach can benefit “weak” extractors. There-
fore, we design a simple segmentation rule that only uses line
break to segment the fields:

Line-based splitting: A record is splitted into fields by
line breaks (caused by tags
, <p>, <tr>, etc).

Let’s name this as LineSplitter (LL). It is undoubted that
this rule is simple, and thus enables us to see whether our
approach can benefit such a weak extraction approach.

In Section 2, we have already shown that these automatic
extractors did not perform well for the three testing do-
mains. In fact, from that experiment, we observe that books
is a hard domain (full of variations) for most existing meth-
ods; albums and cars are moderate, while different methods
work more uniformly in cars but still divergently in albums
(see Fig. 4).

By using different extractors with different situations from
the testing domains, we can examine whether our framework
is robust enough to cope with these divergent settings.

To measure the accuracy, we count the errors in every out-
put record and report the error rate– the average percentage
that a field is extracted incorrectly in a record.

Unsupervised Setting:
We first ran the experiments using an unsupervised setting:
For each domain, we used all 10 sources as the input (with-
out any reference source and model) and recorded the in-
termediate results of each iteration. The extraction output
generated by the existing extractors was recorded as itera-
tion 0 (meaning the results before applying our approach).
Fig. 12a depicts, for every domain and every extractor, the
error rate at each iteration.

To analyze the performance and behavior of our frame-

707

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

of iterations

albums

LineSpliter (LL)
RoadRunner (RR)

ExAlg (EA)
TreeAlign (TA)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

of iterations

books

LineSpliter (LL)
RoadRunner (RR)

ExAlg (EA)
TreeAlign (TA)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

of iterations

cars

LineSpliter (LL)
RoadRunner (RR)

ExAlg (EA)
TreeAlign (TA)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

of sources

variant sources

albums
books

cars

(a) Error rates of LL, RR, EA, and TA on 3 domains. (b) # of sources

Figure 12: Extraction performance in the unsupervised setting.

work, we examine the following factors: the cooperating ex-
tractors (LL, RR, EA, TA), the iterations, and the sources.

Extractors: To examine the results of the 4 cooperating
extractors (LL, RR, EA, TA), we first look at the error rates
they produced (iteration 0). From the curves, the original
performance of the existing extractors (RR, EA, TA) are
generally better than that of LL. For the 3 domains, RR
performs well in two of them (a:.10, c:.20 but b:.38); EA per-
forms well for three (a:.09, b:.15, c:.19); TA performs mod-
erately (a:.12,b:.35,c:.15); and LL performs relatively worse
(a:.35,b:.33,c:.60). This confirms that the public extractors
are indeed more sophisticated than the simple rule LL.

However, while comparing the final performance of adding
our framework (the last iteration), the results of the 4 ex-
tractors are comparable; the error rate declines from a:.09-
.35. to .03-.07, b:.15-.38 to .05-.06, and c:.15-.60 to .10-.11.
This phenomenon implies that the performance of apply-
ing our framework converges, independently on the existing
extractors invoked. And the final performance is indeed bet-
ter than that of each individual extractor, implying that the
source synchronization does help.

Iterations: In addition, the curves in Fig. 12a indicate
that the performance improves as the iterations increase.
This is most clear when the algorithm starts with a weak
extractor (e.g., LL). An exception is the curve for RR on
albums (the 1st curve in Fig. 12a), which rises at early it-
erations and drops later. The reason is that a few poorly-
extracted sources may have misled the algorithm in early
stages. But, it is interesting to see that, as more itera-
tions are performed, the poor sources get extracted better
and better, and the performance gets recovered. This phe-
nomenon indicates that our framework is rather robust.

Sources: We further examine how the number of sources
relates to the performance. For each domain, from number 1
to 10, we randomly picked up an equal number of sources as
the input and recorded the final performance. The process
was performed 30 runs for each number. Fig. 12b shows the
average performance.

The curves in Fig. 12b show that in general, the perfor-
mance improves as the sources increase. This is extremely
encouraging as it indicates that our approach can indeed
leverage multiple sources to improve the performance on in-
dividual sources. We notice an exception for albums, where a
sharp drop occurs at the 2-source case. It is because for two
sources, the reinforcing becomes tied– an error affects a cor-
rect extraction and vice versa, with equal effect. However,
the performance quickly recovers and continues to improve
as we have more sources available.

Supervised Setting:
With the extracted data from the unsupervised setting, we
corrected errors to obtain correct extraction for each source.
We then used this data set to evaluate our framework on uti-
lizing the previous extracted sources (as reference sources)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

of reference sources

incremental setting

albums
books

cars

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

of iterations

with reference model

albums
books

cars

(a) Incremental setting (b) With reference model

Figure 13: Extraction in the supervised setting.

Table 1: Comparison of error rates.
unsupervised setting supervised

domain LL RR EA TA ref. sources ref. model
albums .35ց.05 .10ց.03 .09ց.06 .12ց.07 .11 .05
books .33ց.05 .38ց.06 .15ց.05 .35ց.06 .04 .01
cars .60ց.11 .20ց.11 .19ց.10 .15ց.11 .02 .03

(The cells with improvement greater than 20% are highlighted.)

or the accumulated reference model to help the processing
of newly added sources.

Reference sources. We simulated an incremental wrapping
process by adding sources one by one until all 10 sources are
used up. At each step, a new source was randomly picked
up and added into the system with all previously-wrapped
sources used as the references. The performance of extract-
ing the new source was recorded. Then, the correct extrac-
tion of the new source was incorporated into the collection
of reference sources, as the prior for the next run. For each
domain, we repeated the whole process 30 times.

Fig. 13a depicts the result, where the x-axis is the number
of reference sources involved and the y-axis denotes the av-
erage error rate. The curves show, as we would expect, that
the performance consistently increases as we have more ref-
erence sources to work on. In addition, comparing Fig. 13a
and 12b, it is clear, perhaps not surprising, that the perfor-
mance converges quicklier using reference sources.

Reference model. We lastly examine how the framework
can cooperate with users to further improve the process. As
we have seen, even when the wrapped sources are added, the
performance is still not perfect. In an operational environ-
ment, we could let a user examine the results and possibly
create templates for problematic fields– e.g., price may be
supplemented by template “$〈float〉” and authors “Authors:
〈word〉+.” We added (a:1, b:7, c:5) such manually-crafted
field templates to be the reference model.

Fig. 13b shows the performance with LL as the base ex-
tractor. The final performance is better than that without
reference model. Also, it reaches convergence quicklier (i.e.,
with fewer iterations). To summarize, we lists all the error
rates in Table 1. For example, the unsupervised error rate
of using RR in books is .38 and the final is reduced to .06; it
achieves .04 using reference sources and .01 by adding ref-
erence model. Generally, importing user-crafted model can
raise the performance.

In summary, our approach indeed can cooperate with dif-

708

ferent extractors in different domains. It is robust, as achiev-
ing constantly good performance in different situations, even
starting with a weak extractor (like LL). Moreover, the spirit
of synchronization is indeed in action: The more sources it
handles (including reference sources and model), or the more
iterations (before convergence), the better the results are.

5.2 Matching
Then, we examine whether the new output can facilitate

matching to produce a better final result.

Setup:
Since our integration considers multiple sources, we design
several multi-source matching approaches (there is not much
work in this direction– most existing approaches are pair-
wise, i.e., consider merely two sources). First, we adopted
clustering [21]; let’s name it ClusMatch: Given all extracted
fields, ClusMatch first treats each field as a singleton cluster;
then it merges the two most similar clusters as a new one it-
eratively until a pre-specified cluster number is reached. The
fields grouped in the same cluster are considered matched.
Note that clustering naturally supports complex matching.

Second, we extended pairwise matching to work in a multi-
source manner; let’s name it ProgMatch: Given a sequence
of sources (e.g., 1-2-3-4), ProgMatch matches the first two
sources (e.g., 1-2), and “progressively” adds a source into
the current matching, one by one (e.g., becoming (((1-2)-3)-
4)); in each step, it uses the pairwise matching [18].

Third, we applied human to do best matching (like Exam-
ple 1); let’s name it BestMatch: Given all extracted fields,
we manually identify and match those fields with overlapped
semantics. Note that BestMatch just reacts to the given in-
put passively; it does not modify any input field– any com-
pound field will remain unchanged.

By using these different matching approaches, we can ex-
amine whether our framework is generally beneficial for any
reasonable matching approaches.

To measure the performance, we compare the result with
the manually-prepared integrated tables. The matching ac-
curacy is measured using F-measure [15, 21]– a combina-
tion of precision (how many matched field pairs are correct)
and recall (how many correct matched pairs are identified).
Let a be the set of matched field pairs produced by testing
matcher and b be the set of correct matched pairs; then the
precision P , recall R, and F-measure F are defined as

P =
|a ∩ b|

|a|
; R =

|a ∩ b|

|b|
; F =

2RP

R + P
.

Results and Analysis:
Following the extraction experiments (Sec. 5.1), we applied
the testing matchers on every extraction result we recorded
(for each extractor on each domain at each iteration). Fig. 14
summarizes the matching performance in a 3x3 grid, each
row for a domain, each column for a matcher, and each cell
plotting the F-measure for the matching obtained on the
extraction output of each extractor at each iteration.

The curves clearly show the trend of performance improve-
ment and convergence. To reveal it, we look at the perspec-
tives: the extractors and matchers.

Extractors: Looking at each subfigure in Fig. 14, we ob-
serve that the initial performances (of matching on the ex-
traction output produced purely by the cooperating extrac-
tors) are quite divergent. For example, in books+ClusMatch,
the range of initial performances (iteration 0) is .35-.66.
However, the final performances (the last iteration) gener-

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

F
-m

ea
su

re

albums + BestMatch

LL
RR
EA
TA 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

albums + ClusMatch

LL
RR
EA
TA 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

albums + ProgMatch

LL
RR
EA
TA

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

F
-m

ea
su

re

books + BestMatch

LL
RR
EA
TA 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

books + ClusMatch

LL
RR
EA
TA 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

books + ProgMatch

LL
RR
EA
TA

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

F
-m

ea
su

re

of iterations

cars + BestMatch

LL
RR
EA
TA 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10
of iterations

cars + ClusMatch

LL
RR
EA
TA 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10
of iterations

cars + ProgMatch

LL
RR
EA
TA

Figure 14: Matching performance.

Table 2: Matching performance improvement.
albums LL RR EA TA

BestMatch .24ր.81 .25ր.94 .71ր.81 .35ր.80

ClusMatch .51ր.84 .64ր.87 .82ր.84 .67ր.84
ProgMatch .45ր.77 .56ր.79 .73ր.77 .64ր.76

books LL RR EA TA
BestMatch .27ր.97 .17ր.99 .41ր.96 .27ր.99

ClusMatch .44ր.86 .35ր.82 .66ր.82 .45ր.84

ProgMatch .42ր.81 .40ր.82 .60ր.80 .43ր.80

cars LL RR EA TA
BestMatch .18ր.97 .19ր.97 .43ր.97 .59ր.97

ClusMatch .27ր.90 .64ր.85 .83ր.88 .84ր.91
ProgMatch .26ր.91 .61ր.86 .80ր.92 .84ր.89

(The cells with improvement greater than 20% are highlighted.)

ally converge to a better and much narrower range– e.g., .82-
.87 in books+ClusMatch. This indicates that incorporating
our framework into matching indeed produces a better and
stabler matching output, regardless of the extractors.

Matchers: While different matchers have different capa-
bilities (e.g., they use different techniques and might achieve
different performances), from the curves in Fig. 14, they all
behave in a similar way: Their performances improve as the
iterations increase. From our previous experiments of ex-
traction, we have observed that the extraction improves as
the iterations increase. This, perhaps not surprising, implies
that extraction and matching are positively correlated– i.e.,
matching can get improved better when fed with a more
consistent extraction output.

We provide a summary table showing the matching perfor-
mances for various combinations of domains, extractors, and
matchers (see Table 2). In each cell, we show two numbers,
which indicate the results before and after our framework is
applied, respectively. From the table, it clearly shows that
the matching performances get improved, by adding on our
framework to any extractor and any matcher.

In summary, for different domains and different matchers,
our framework can provide more feasible extraction outputs
for matching to produce better and stabler final matching
results, regardless of the cooperating extractors. This indeed
confirms our pursuit of synchronization to boost the overall
integration.

6. RELATED WORK
Wrapper construction, and also its broader area of data

extraction from the Web, is crucial for integration systems of
online sources and has been studied actively [10]. However,
most works address it as a standalone extraction task on a

709

single source, ignoring its contexts in an integration system.
Below, we briefly relate and contrast our work.

There are many works on extracting data from Web pages,
in different settings–manual, semi-automatic, and automatic
(see [10]). For manual and semi-automatic methods (e.g., [7,
20]), data fields are identified explicitly by human (program-
ming wrappers or labeling data to train wrappers). Thus, if
fields are identified or labeled consistently across sources, the
constructed wrappers have no inconsistency issue. However,
as they need “manual” efforts, these methods are hardly
scalable and also unsuitable for on-demand scenarios [23].

For automatic methods (e.g., [2, 5]), they identify data
fields using various regularities, e.g., the underlying page
templates (e.g., delimiters [9], tag tree [22], visual clues
[23]) and site structure (e.g., detailed pages [12]). While
these methods perform sophisticated page- or site-level anal-
yses, however, they are not context-aware– i.e., their output
among different sources may not be consistent (as we have
shown). By leveraging these existing methods (with their so-
phisticated syntax analyses), on top of them, our approach
explicitly considers the context-awareness of integration by
synchronizing the extracted content among sources.

While wrappers capture the page template and are highly
source-specific, there is a large and active area of informa-
tion extraction (IE) which focuses on unstructured text [4].
Their techniques are mostly statistical and focus more on the
content model, which will be valid across different format of
similar data and thus not source-specific. However, they
are not currently suitable for wrapper generation, because
they do not take the underlying page structure to generate
template for nearly-perfect and efficient extraction. In ad-
dition, we stress that, with our synchronized extraction, we
are in fact attempting to combine the “template”-strength
of current wrappers with the content synchronization across
sources, therefore a marriage of both merits.

Recently, several works also share the similar insight of us-
ing certain domain models or existing data in guiding extrac-
tion, and therefore apply more IE-based approaches. First,
to use domain models, [24] applies IE by training statisti-
cal models like HMM or CRF. Second, to leverage existing
data, [1, 14] convert the clean reference table(s) as extraction
models. In comparison, our work aims at a broader notion of
“context,” which accounts for not only prior knowledge (do-
main models and existing wrappers) but also current peer
sources. That is, our framework must handle, in an “unsu-
pervised” way, dynamic alignment between current sources
and prior models, while these existing techniques “pre-train”
a model and do not online adapt.

To enable data exchange and integration, while avoid dif-
ficult extraction, sources may provide Web services, such as
amazon.com and google.com, to deliver their data in a more
structured form, using XML. However, most current online
sources still present their results in legacy HTML formats.
Moreover, even the data are XML-tagged, they may not be
tagged in the right granularity of their semantics to compro-
mise with the integration system– e.g., a source tags publish
date as a single field 〈pub-date〉 while another tags it as two
fields 〈month〉 and 〈year〉. Thus integrating such structured
data still needs consistent re-extraction on them.

Also, we focus on the spatial context (i.e., peer sources,
reference sources, etc). The temporal setting, such as wrap-
per maintenance [13], in terms of our framework, can be im-
mediately regarded as temporal context using cached source
models to recognize format-changed sources.

7. CONCLUSIONS
In this paper, we propose synchronized extraction to fun-

damentally support context-aware wrapper construction for
integration systems. To realize it, we develop Turbo Syncer,
which incorporates existing automatic extraction techniques,
and on top of them, adds content synchronization, therefore
to directly benefit the follow-up matching task. The exten-
sive experiments show the promising of the framework.

8. REFERENCES
[1] E. Agichtein and V. Ganti. Mining reference tables for

automatic text segmentation. In Proc. of SIGKDD, 2004.

[2] A. Arasu and H. Garcia-Molina. Extracting structured data
from web pages. In Proc. of SIGMOD, 2003.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon
limit error-correcting coding and decoding: Turbo codes. In
Proc. of IEEE Int. Conf. on Commun., pages 1064–70, 1993.

[4] J. Cowie and W. Lehnert. Information extraction.
Communications of ACM, 39(1):80–91, 1996.

[5] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner:
Towards automatic data extraction from large web sites. In
Proc. of VLDB, 2001.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm. Journal
of the Royal Statistical Society, Series B, 39:1–38, 1997.

[7] J. Hammer, J. McHugh, and H. Garcia-Molina. Semistructured
data: the TSIMMIS experience. In Proc. of the 1st East-Euro
Symp. on Advances in DB and Info. Syst., 1997.

[8] H. Hartley. Maximum likelihood estimation from incomplete
data. Biometrics, 14:174–194, 1958.

[9] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper
induction for information extraction. In Proc. of IJCAI, 1997.

[10] A. Laender, B. Ribeiro-Neto, A. Silva, and J. Teixeira. A brief
survey of web data extraction tools. SIGMOD Record,
31(2):84–93, June 2002.

[11] J. Lafferty, A. McCallum, and F. Pereira. Conditional random
fields: Probabilistic models for segmentating and labeling
sequence data. In Proc. of ICML, 2000.

[12] K. Lerman, L. Getoor, S. Minton, and C. Knoblock. Using the
structure of Web sites for automatic segmentation of tables. In
Proc. of SIGMOD, 2004.

[13] K. Lerman, S. N. Minton, and C. A. Knoblock. Wrapper
maintenance: A machine learning approach. Journal of
Artificial Intelligence Research, 18:149–181, 2002.

[14] I. R. Mansuri and S. Sarawagi. Integrating unstructured data
into relational databases. In Proc. of ICDE, 2006.

[15] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding:
A versatile graph matching algorithm and its application to
schema matching. In Proc. of ICDE, 2002.

[16] R. M. Neal and G. E. Hinton. A view of the EM algorithm that
justifies incremental, sparse, and other variants. Learning in
Graphical Models, pages 355–368, 1998.

[17] L. R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. Proceedings of the
IEEE, 77(2):257–286, 1989.

[18] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. VLDB Journal, 10(4):334–350,
2001.

[19] S. Sarawagi and W. W. Cohen. Semi-markov conditional
random fields for information extraction. In Proc. of NIPS,
2004.

[20] S. Soderland. Learning information extraction rules for
semi-structured and free text. Machine Learning,
34(1-3):233–272, 1999.

[21] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive
clustering-based approach to integrating source query interfaces
on the deep web. In Proc. of SIGMOD, 2004.

[22] Y. Zhai and B. Liu. Web data extraction based on partial tree
alignment. In Proc. of WWW, 2005.

[23] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu. Fully
automatic wrapper generation for search engines. In Proc. of
WWW, 2005.

[24] J. Zhu, Z. Nie, J.-R. Wen, B. Zhang, and W.-Y. Ma. 2d
conditional random fields for Web information extraction. In
Proc. of ICML, 2005.

710

