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ABSTRACT
In this article, we propose a new approach for querying and
indexing a database of trees with specific applications to
XML datasets. Our approach relies on representing both the
queries and the data using a sequential encoding and then
subsequently employing an innovative variant of the longest
common subsequence (LCS) matching algorithm to retrieve
the desired results. A key innovation here is the use of a se-
ries of inter-linked early pruning steps, coupled with a simple
index structure that enable us to reduce the search space and
eliminate a large number of false positive matches prior to
applying the more expensive LCS matching algorithm. Ad-
ditionally, we also present mechanisms that enable the user
to specify constraints on the retrieved output and show how
such constraints can be pushed deep into the retrieval pro-
cess, leading to improved response times. Mechanisms sup-
porting the retrieval of approximate matches are also sup-
ported. When compared with state-of-the-art approaches,
the query processing time of our algorithms is shown to be
up to two to three orders of magnitude faster on several real
datasets on realistic query workloads. Finally, we show that
our approach is suitable for emerging multi-core server ar-
chitectures when retrieving data for more expensive queries.

1. INTRODUCTION
Recently, the use of structured and semi-structured data

has been increasing at a tremendous pace. A wide range
of applications ranging from bioinformatics to social net-
works, from the World Wide Web to computational linguis-
tics, are now generating and processing a large amount of
semi-structured data. Languages such as XML have be-
come a de-facto standard for semi-structured information
exchange in many commercial and scientific applications.
With standards like MPEG-7, a variety of multimedia fea-
tures are now represented in a semi-structured form allow-
ing for a uniform representation and content based image
retrieval. With this increasing use of semi-structured data
the need for maintaining and querying such data efficiently
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is also growing. Much research has focused on the efficient
retrieval of semi-structured data from large databases. Sev-
eral query languages, such as XPath [9], XQuery [5], and
Quilt [6], have been developed with a view to specify com-
plex structured queries on structured data.

In the context of XML, the semi-structured nature of
the data and the queries themselves can often be modeled
as trees. As a result the problem of querying such semi-
structured datasets can be re-formulated as the one where
the objective is to match a query tree structure as an em-
bedded subtree within a database of trees. One approach
researchers have taken to address this problem is to break
down structured twigs into simple paths on which the datab-
ase is indexed[2, 7, 8, 12, 21]. A potentially expensive join
operation is then performed on the results from the path-
based queries. More recent research has focused on holis-
tic processing of the twig query[14, 26, 29]. Approaches
such as PRIX[26] and V iST [29] rely on a representation
that converts both the queries and the data into a sequence
based representation. These approaches rely on subsequence
matching of the query sequence with the database tree se-
quences to determine the candidate matches and then refine
the candidates until the exact matches are identified. The
key here is to minimize the number of false positive candi-
dates and to efficiently compute the matches, which is the
underlying principle motivating our work.

In this work, we explore new sequence-based methods for
indexing and querying a database of tree structures. We
propose two new tree encoding methods that are based on
Prüfer Sequences and Depth First-order Sequences. We
then modify the classic longest common subsequence (LCS)-
based dynamic programming approach to find the location
of all subsequence matches and use it for our purpose. We
develop a novel structure matching algorithm, to prune false
positive subsequence matches, that scans the twig only once.
We design and evaluate two optimizations to reduce the
overhead thereby making our algorithms efficient. We then
present a unified algorithm that intelligently performs both
the subsequence and structure matching simultaneously re-
sulting in the early pruning of potential false positive matches.
Additionally we also present mechanisms that enable the
user to specify constraints on the retrieved output and show
how such constraints can be pushed deep into the retrieval
process leading to improved response times. Mechanisms
supporting the retrieval of approximate matches are also
supported.

Unlike the state-of-the-art approaches, our LCS based
TRee Indexing and Matching (LCS-TRIM) algorithm op-
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erates on simple matrices that are built on-the-fly. Such an
approach results in small memory footprints, good locality,
and is amenable to parallelization on emerging multi-core
architectures. The optimizations we adopt and the way we
leverage our sequencing methods to efficiently find the sub-
sequences distinguish our approach from the classic simple
LCS problem. Our empirical analysis showed that our al-
gorithms are very efficient compared to the state-of-the-art
approach PRIX. In fact, we achieve up to three orders of
magnitude speedup compared to state-of-the-art holistic ap-
proaches on a range of datasets and query workloads.

To reiterate the key contributions of this work are: First,
we propose two new sequence representations for labeled
rooted trees that are more concise and space-efficient when
compared with other sequencing methods. Second, we de-
velop a new dynamic programming based approach for find-
ing all occurrences of a subsequence within a single sequence
and by extension within a database of sequences. Third, we
develop several novel optimizations, that eliminate false pos-
itive candidates early in the search process of likely matches
making our approach extremely efficient in finding the de-
sired set of twig matches. Fourth, we present several exten-
sions to the above, allowing the user to specify constraints
that can be pushed deep into the process thereby making the
search even more efficient, parallelizing the search thereby
facilitating the implementation of the approach on emerg-
ing CMP architectures and finally allowing for approximate
results to be returned when specified by the user to do so.

2. BACKGROUND
Most of the till date research on tree indexing can broadly

be divided into two main classes – path-based approaches and
holistic approaches. The path-based approaches first decom-
pose the given query into sub queries, which are usually in-
dividual root-to-leaf paths [2, 7, 8, 12, 21]. The solutions for
these sub queries are then merged to form the final answer.
A range encoding mechanism is usually employed to encode
each node by its positional representation within the XML
document such as (start, end, depth) [23].

Holistic approaches are typically shown to outperform the
path-based approaches as they avoid the expensive join op-
eration by treating the whole twig query as the base unit
for query processing. A subset from this class of algorithms
are based on TwigStack [4, 7, 16, 17, 20]. They maintain
a stack against each node in the twig query that stores the
partial results of some sub queries. They are often referred
to as holistic twig joins as they perform global query match-
ing. A variety of indexes such as B+Tree [7], XB-Tree [4],
XR-Tree [16, 17] are used to speedup the query processing.
Typical probes to the index are in the form of findAncestors
and findDescendants, which are answered efficiently by skip-
ping some of the unnecessary data. A comparative study on
the effectiveness of these indexes is done by Li et al [20].

Another subset of holistic algorithms recast the tree match-
ing problem in to a subsequence matching problem by en-
coding the trees as sequences and by operating on sequences
thereafter. In order to transform trees into sequences, these
algorithms rely on well-known tree traversals such as pre-
order and post-order. Since only the tree structure is cap-
tured by these traversals, they are supplemented with node
label information so that they uniquely represent the trees.
Resulting sequences with both structure and label informa-
tion are referred to as sequentures. The query processing

starts by finding the subsequence matches for the twig’s
sequence – the most important step in this class of algo-
rithms [23]. One or more post-processing steps are then
employed to filter the subsequence matches which do not
correspond to actual twig matches.

Wang et al proposed V iST [29] that relies on sequentures
derived from pre-order traversals. PRIX [26] proposed by
Rao et al uses Prüfer sequences which are constructed from
post-order traversals. Wang and Meng proposed various
performance-oriented principles to guide the tree sequencing
process [30]. A limitation here is that for dynamic datasets
the sequencing process cannot be determined apriori and for
large datasets computing the optimal (constraint) sequenc-
ing may be expensive. In order to find the subsequence
matches, these algorithms make use of B+Tree based in-
dexes. The tree nodes are indexed using positional repre-
sentation such as range encoding [26, 29]. A series of range
queries are then issued to the index to find the matches
where each range query obtains the set of all descendants of
a given node. Moro et al showed that PRIX and V iST
correspond to fixed plans of an Index Nested Loop Join
(INLJ) [23]. They then compared all plans of INLJ with
TwigStack and showed that TwigStack typically performed
better and more robustly. Our algorithm LCS-TRIM is also
a sequence-based holistic approach. Each tree in the data
set is represented using two sequences which capture mutu-
ally exclusive but complementing information, tree structure
and node labels. This leads to a space efficient representa-
tion when compared to competing sequencing methods (see
Section 3.1). In contrast to V iST and PRIX, we employ a
dynamic programming based approach that does not use any
index, in order to find the subsequences. We leverage the
index in reducing the search space in early stages of query
processing. Furthermore in order to filter out a false positive
subsequence, PRIX employs a sequence of post-processing
steps, each of which makes a complete pass on the query
sequence whereas LCS-TRIM makes a single pass to filter
out the false positive subsequence.

Zezula et al proposed methods which are based on tree
signatures, which are constructed from both pre- and post-
order traversals [35, 36]. While they also determine the
twig matches by employing a dynamic programming based
approach, LCS-TRIM differs from these methods in many
different ways. First, our sequences are much more com-
pact than their extended signatures because of firstFollowing
and firstAncestor nodes. Second, the way LCS-TRIM iden-
tifies the false positive subsequences is a major difference
from their method. Third, our simple inverted index com-
plements our tree matching algorithm in early-pruning of
the search space. Fourth, our novel optimizations in LCS-
TRIM greatly reduce the computation overhead. Finally,
embedding of pruning steps into the matching process is a
key innovation we have that is not in the methods proposed
by Zezula et al. These differences directly translate into
tremendous performance improvement in query processing
(see Section 4).

There exists few other indexing algorithms which are based
on structural indexes and navigational mechanisms. They
directly or indirectly rely on TwigStack algorithms. The
navigational methods navigates through the database trees
sequentially by using finite state machines, which store the
partial results [1, 23, 34]. Structural indexes provide concise
summaries for path structures and frequent query patterns
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T Database tree with n nodes
Q Twig query with m nodes
NPST Numbered Prüfer sequence of T
LST Label sequence of T

NPST [k] kth entry in NPST (similarly LST [k])
CPS(T ) (NPST , LST )
R[i, j] An entry in the LCS matrix R
SM A subsequence match (i1,...,im)

Table 1: List of notation

with branches and wildcards (‘*’, ‘//’) [8, 10, 12, 19]. How-
ever, a twig query that is not in the indexed paths and query
patterns has to again rely on the join operation.

3. APPROACH
Our approach for indexing and querying the tree databases

has three main parts: data representation, tree matching,
and tree indexing. First, the database trees and the given
queries are represented as sequences. We show two differ-
ent tree sequencing methods (see Section 3.1). The tree
matching algorithm then finds the set of all matches for a
given query in the database (see Section 3.2). The entire
process of querying is made efficient by employing an index
(see Section 3.3) and few optimizations to the tree matching
algorithm (see Section 3.4).

3.1 Data Representation
We now describe two tree sequencing methods, which pro-

vide a bijection between rooted, ordered, labeled trees and
sequences. Both prüfer sequences and depth first sequences
are constructed in a similar manner and are based on tree
traversal mechanisms.

Figure 1: Example Database

Consolidated Prüfer Sequence (CPS): This represen-
tation is inspired from classic Prüfer sequences proposed by
Heinz Prüfer in [27]. CPS of a tree T consists of two se-
quences – Numbered Prüfer Sequence NPST and Label Se-
quence LST (see Table 1). They are constructed by do-
ing a post-order traversal that tags each node in the tree
with a unique traversal number. NPS is then constructed
iteratively by removing the node with the smallest traver-
sal number and by appending its parent node number to
the already constructed partial sequence. LS is constructed
similarly but by taking the node labels of the deleted nodes
instead of their parent node numbers. Both NPS and LS
convey completely different but complementary information
– NPS that is constructed from unique post-order traversal
numbers gives the tree structure and LS gives the labels for
each tree node. CPS representation thus provides a bijection
between rooted ordered trees and sequences, as captured in

Lemma 3.1. Note that each entry in the CPS corresponds
to an edge in the tree. For simplicity, we refer to CPS as
prüfer sequence in the rest of the paper.

Lemma 3.1. CPS=(NPS, LS) uniquely represents a rooted,
ordered tree.

Few example sequences are shown in Figure 1. Adjacent
to each tree node its post-order traversal number and its
label are shown. The figure also shows Regular Prüfer Se-
quence (RPS) and Extended Prüfer Sequence (EPS) repre-
sentations proposed in PRIX [26]. Note that unlike CPS’s
label sequence, RPS stores a Labeled Prüfer Sequence (LPS)
that is constructed by taking the parent node labels of the
deleted nodes. Since both the sequences in RPS (i.e., NPS
and LPS) include only the information of parent nodes, RPS
can not represent the leaf nodes. In order to incorporate
them, PRIX extends each leaf with a dummy node and then
constructs NPS and LPS on top of the extended tree, re-
sulting in an Extended Prüfer Sequence (EPS). Though the
extended sequences represent the leaf nodes, they can po-
tentially be longer in size (T2 in Figure 1). The RPS takes
as much space as CPS but it can not represent the leaf nodes
and the EPS incorporates the leaf nodes but can result in
longer sequences – CPS is thus more space efficient when
compared to both RPS and EPS.
Depth First Sequence (DFS): Depth first sequences are
constructed in a similar manner to Prüfer sequences except
that they are based on pre-order traversal instead of post-
order. The Parent sequence is similar to NPS and stores the
pre-order numbers of the parent nodes. Every property that
holds for CPS also holds for depth first sequences. For ex-
ample, DFS also uniquely represents a rooted, ordered tree.
Therefore, any algorithm that is designed for CPS can be
adopted for depth first sequences. The DFS representation
for example trees T1 and T2 is shown in Figure 1.

3.2 Tree Matching Algorithm
The tree matching algorithm operates on the sequential

representations of a database tree T and a given query Q
and enumerates the set of matches of Q in T . Without loss
of generality, let the number of nodes in Q and T is m and
n, respectively. Tree matching is done in three phases –
checking for subsequence, subsequence matching, and struc-
ture matching.

3.2.1 Checking for Subsequence

Definition: 3.1. A sequence X = {x1,...,xm} is said to
be a subsequence of another sequence Y = {y1,...,yn} if xj

= yij
, 1 ≤ j ≤ m, 1 ≤ ij ≤ n, and i1 < i2 < ... < im.

Theorem 3.1. Consider a tree T and a twig query Q with
their label sequences LST and LSQ, respectively. If Q is a
subtree of T then LSQ is a subsequence of LST .

Proof. If Q is a subtree of T then for each node vi ∈ Q
there exists a node ui ∈ T such that each edge (vi, vj) in
Q corresponds to an ancestor-descendant or a parent-child
relationship between ui and uj in T . Moreover, the order
among the child nodes of vi in Q is preserved from T . There-
fore, the order in which vi’s are deleted while constructing
LSQ is same as the order in which ui’s are deleted when
constructing LST . The label sequence of twig query Q is
thus a subsequence of the label sequence of tree T .

65



Theorem 3.1 provides a necessary but not sufficient con-
dition for twig matching. This theorem can be leveraged to
recast the problem of subtree isomorphism into the problem
of subsequence matching. We thus evaluate the necessary
condition for twig match i.e., we check whether or not the
sequence LSQ is a subsequence of LST .

Property 3.1. If a label sequence LSQ is a subsequence
of another label sequence LST then LSQ is the longest com-
mon subsequence of LSQ and LST .

From the above property, in order to check if LSQ is a
subsequence of LST , it is sufficient to check their longest
common subsequence (LCS). Finding a longest common sub-
sequence is a well-addressed problem in the literature. A
large number of algorithms have been proposed for this pur-
pose [3, 15, 28]. We employ a traditional dynamic program-
ming based approach where the LCS length between two in-
put strings LSQ[1..m] and LST [1..n] is computed by finding
the LCS lengths for all possible prefix combinations of LSQ

and LST . Computed LCS lengths are stored in a matrix and
are used later in finding the LCS length for longer prefixes
– dynamic programming. Equation 1 gives the recurrence
relation for extending the LCS length for each prefix pair
(LSQ[1..i], LST [1..j]) [28].

R[i, j] =

8

<

:

0, if i = 0, j = 0
R[i − 1, j − 1] + 1, if LSP [i] = LST [j]
max(R[i − 1, j], R[i, j − 1]), if LSP [i] 6= LST [j]

(1)
An entry R[i, j] gives the LCS length for a prefix pair

(LSQ[1..i], LST [1..j]). The bottom-right corner entry R[m,n]
gives the overall LCS length. If that is different from m then
Q is not a subtree of T , from Property 3.1 and Theorem 3.1.
Complexity Analysis: The recurrence in Equation 1 scans
every entry in R exactly once. Therefore the run time com-
plexity of this algorithm is Θ(mn).

3.2.2 Subsequence Matching
Given that LSQ is a subsequence of LST from previous

step, Algorithm 1 enumerates the set of all subsequence
matches of LSQ in LST . An initially empty subsequence
match is progressively constructed by recursing on the R-
matrix. The match is extended whenever the label sequences
match at positions given by Qind and T ind (line 1). If they
do then the position of the match in T i.e., T ind is recorded
in line 2 and the backtracking is continued towards R[1, 1]
(lines 6-9). Since R is processed from the bottom-right cor-
ner to the top-left corner, subsequence match is established
from right to left. Furthermore, each subsequence match is
generated exactly once in the process.

Algorithm 1 Subsequence Matching Algorithm

naiveBacktrack (Qind, T ind)

Input: LST , LSQ, R-matrix
1: if LSQ[Qind] = LST [T ind] then

2: record the match for LSQ[Qind]
3: naiveBacktrack ( Qind-1, T ind-1 )
4: naiveBacktrack ( Qind, T ind-1 )
5: else

6: if R[Qind-1, T ind] > R[Qind, T ind-1] then

7: naiveBacktrack ( Qind-1, T ind )
8: else

9: naiveBacktrack ( Qind, T ind-1 )

Each of the resulting subsequence match (SM) is de-
noted by the list of positions at which the match is found –
(i1,...,im) i.e., LSQ[k]= LST [ik], 1 ≤ k ≤ m. Alternatively,
SM is represented as a sequenture that is formed by the
entries of CPS(T ) taken from the matching positions. More
formally,

SM = ((NPST [i1], LST [i1], i1)...(NPST [im], LST [im], im))
(2)

Note that, the sequenture representation in Equation 2 is
an alternative representation to the sequence of matching
positions (i1, ..., im).

Recall that Theorem 3.1 is only a necessary condition and
hence a subsequence match found in this step may not match
the given twig structurally. Such false positive subsequence
matches are pruned in the next step, structure matching.
Complexity Analysis: Algorithm 1 is clearly exponential
as the potential number of subsequence matches enumer-
ated by it is exponential. We thus analyze its complexity in
terms of the total number of recursive calls made. Consider
a worst case scenario where each node in the tree and the
twig has the same label. In this case, only the recursions in
lines 3 and 4 are executed. Say that am,n is the number of
recursions made by Algorithm 1 in the worst case and bm,n

is the number of matches in the worst case, where m and n
are the input parameters Qind and T ind, respectively. The
recurrences to derive the values of am,n and bm,n are shown
in Equation 3 and Equation 4. The exponential nature of
am,n is evident from the second condition in Equation 3.
The recurrence of bm,n has a nice closed form

`

n

n−m

´

. As
an example, for a twig of size 5 and a tree of size 10, the
algorithm makes a5,10=1, 275 number of recursions to find
b5,10=252 subsequence matches.

am,n =

8

<

:

1 + am−1,n−1 + am,n−1, if n > m
1 + 2 ∗ an−1,n−1, if n = m
1 + 2 ∗ n, if m = 1

(3)

bm,n =

8

<

:

Pn−m+1

i=1
bm−1,n−i, if n > m

1, if n = m
n, if m = 1

(4)

3.2.3 Structure Matching
The subsequence matching algorithm considers only the

label information and ignores the structural information.
There can exist multiple twig patterns which differ in struc-
ture but with the same label sequence. Recall that Theo-
rem 3.1 provides only a necessary condition for twig match-
ing. Our structure matching algorithm prunes these false
positive subsequences by considering the structure given by
NPS.

Definition: 3.2. Structure Agreement: Consider two
sequentures, derived from two trees T1 and T2, S1 = ((A1,
B1) ... (Am, Bm)) and S2 = ((C1, D1) ... (Cm, Dm)),
where Ai’s and Ci’s define the structure; Bi’s and Di’s pro-
vide the labels. Both S1 and S2 are said to agree on struc-
ture at position i if and only if the following three condi-
tions hold:

i) 1 ≤ i ≤ m,
ii) Bi is equal to Di,
iii) If Ai is the parent of Bi in T1 then Ci is the parent
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of Di or the nearest ancestor of Ci that is in S2 must
agree on structure with S1 at position Ai

1.

Theorem 3.2. A twig query Q is a subtree of T if and
only if its Prüfer sequence CPS(Q) and its subsequence match
SM at locations (i1, ..., im) in T agree on the structure at all
positions k, ∀k, 1 ≤ k ≤ m.

Proof. IF: From the definition of a subsequence, the
first two conditions of Definition 3.2 trivially hold true for
CPS(Q) and SM . Consider an entry in the twig’s prüfer
sequence (NPSQ[k], LSQ[k]) and its corresponding entry
(NPST [ik], LST [ik]) in its SM . Recall that each entry in
a Prüfer sequence is an edge. NPSQ[k] is thus the parent
of the query node at position k. Since Q is an embedded
subtree of T , this edge corresponds to a parent-child relation
in SM (i.e., NPST [ik]=NPSQ[k] – first part of condition
iii) or an ancestor-descendant relation SM (second part of
condition iii).
ONLY IF: An isomorphism between Q and its subsequence
match is a bijective label-preserving function f that maps
every vertex vk in Q to a vertex f(vk) in T in such a way
that the adjacencies are preserved. In other words, for every
node vj that is adjacent to vk there is a node f(vj) that is
adjacent to f(vk).

Now consider a function g : Q→SM such that g(vk) =
uik

, vk’s and uk’s are vertices in Q and T , respectively. Fur-
thermore, assume that g satisfies all the conditions in Defini-
tion 3.2 at each k. First two conditions infer that g is a label-
preserving function. The third condition infers that g maps
every edge in Q to an parent-child or ancestor-descendant
relation in T . Since the node relationships are determined
by edges, we can deduce that g preserves the adjacencies
among vertices in Q. Therefore, g defines an isomorphism
between Q and the subtree formed by its subsequence match
in T .

From the above theorem, it is sufficient to check for the
structure agreement between Q and its subsequence match
SM at all positions in order to find whether Q is a subtree
of T or not. The structure matching algorithm based on this
theorem is shown in Algorithm 2.

Algorithm 2 Subtree matching

Input: CPS(Q), CPS(T ), SM=(i1, .., im)
Output: mapping: positions at which Q matches to a subtree

in T
1: mapping[m] ← im
2: for k = m− 1 to 1 do

3: pq ← NPSQ[k]
4: pt ← NPST [ik]
5: if mapping[pq ] is equal to pt or is an ancestor of pt in T

then

6: mapping[k] ← ik
7: else

8: Report that Q is not an embedded subtree of T
9: Report that Q is an embedded subtree of T

Algorithm 2 iteratively process the nodes in Q and stores
the structure match found so far in mapping array. The
structure agreement check at a node is performed only af-
ter processing all of its ancestors. The nodes in the twig
are thus processed from right-to-left i.e., from root to leaves

1
For an induced subtree match, the condition (iii) checks only the

first part i.e., parent-child relationship.

(line 2). Since the root node does not have any ancestors, it
is mapped without performing any checks (line 1). As soon
as the check at position k is successful, the matching node
in T at position ik is recorded in mapping array (line 6).
To perform such a check, the algorithm considers the parent
node numbers from kth entry in both the prüfer sequence
of Q and its subsequence match SM (lines 3-4). The algo-
rithm checks if the node mapped to pq is same as pt or is
an ancestor of pt (line 5). By doing so, the algorithm makes
sure that a parent-child relation in Q is translated into an
ancestor-descendant relation in T . If the check fails at any
position, it can be concluded that Q is not a subtree of T .
Since SM is a label match to Q, Algorithm 2 does not check
for labels. Note that, mapping[pq] in line 5 will always have
a value as the structure match is established from right to
left.
Complexity Analysis: Algorithm 2 accesses each node in
the twig exactly once (line 2). This scan takes Θ(m) time.
The structure agreement check at each position traverses the
path from ik to mapping[pq] (line 5). In the best case where
pt = mapping[pq], the traversal takes Θ(1) time. In the
worst case, pq is mapped to the root of T in which case the
traversal time is in the order of the tree’s depth. The com-
plexity of line 5 in such cases is O(n) because the maximum
depth of a tree is equal to the number of nodes. Therefore,
Algorithm 2 has a best case run time complexity of Ω(m) (in
case of induced subtrees 2) and a worst case complexity of
O(mn). The constant factor involved is usually small be-
cause in the worst case scenario (a single long path), if the
check at a node A traverses till the root then the checks for
all A’s descendants will at most traverse up to A and never
hence reaches the root node.

Figure 2: Example: R-Matrix and Matches

Example: Figure 2 shows the 6 matches of the twig Q1

in trees T1 and T2, which are shown in Figure 1. Every
match represents a sequenture. For example, the sequen-
ture for M1 is ((B, 9, 2) (D, 4, 3) (A, 8, 7)) and for M3 it
is ((B, 7, 4) (D, 5, 6) (A, 8, 7)). Algorithm 2 detects both
M1 and M2 as false positives because they fail the struc-
ture agreement check at position 1. For example, for M1,
(i1,i2,i3)=(2,3,7). The structure matching algorithm maps
the root node A (node# 3) in Q to node 7 in T1 and maps
D (node# 2) in Q1 to node 3 in T1. Now consider the
check at position 1. The parent of node# 1 (B) in Q1 is
3 i.e., pq=3 and pt=NPST1

[i1]=9. The mapped node for
pq, mapping[pq]=7, is not same as pt and it is not an an-
cestor of pt. Therefore, the check at position 1 fails for M1

and hence it is not a structure match. Similarly, M2 does

2
Twig queries with no wildcards result in induced subtree matching.
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not agree on structure at position 1. In T2, Both the sub-
sequence matches, M7 and M8, can be shown to be actual
twig matches for Q1.

As noted earlier, the ancestor check in line 5 can traverse
till the root node, in worst case. Approaches such as scop-
ing [32] and range encoding [23, 29] are known for making
fast ancestor checks. They take O(1) time as we just need
to check if pt ∈ Scope(mapping[pq]) or not. However, this
seemingly accurate approach cannot find all the embeddings
of Q and it can potentially generate false positive struc-
ture matches. For example, consider the twig query that is
matched with the nodes 2, 6, 8, and 9 in T1. The scope-
based approach incorrectly flags the subsequence match (4,
6, 8, 9) as a valid structure match. Therefore the traversal
in line 5 is mandatory for the correctness of Algorithm 2.

3.3 Indexing Method
The tree matching algorithm in previous section is defined

for a given database tree. In order to find the matches in the
database D, every tree in D has to be processed – an inef-
ficient approach. Instead, we make use of a simple inverted
index on distinct labels in D to restrict the number of trees
for which the matching is made. Against each unique label
l in D, we store a list of tree identifiers (Sl) in which l oc-
curs. The tree matching algorithm is applied on those trees
in which every query label occurs i.e.,

T

Sl, ∀ l ∈ Q. As a
heuristic, one can simply choose a list with the smallest size
to avoid the potentially expensive intersection step. Such
an index structure is independent of the tree matching algo-
rithm as the index is probed before the algorithm is applied.
On a contrary, most of the state-of-the-art methods leverage
the index structure during the subsequence matching phase.
Index Maintenance: In any case of insert, delete, or up-
date the changes to be made to the index are minimal as
only the lists of modified nodes are affected. However, in
the case where a tree is updated by adding or deleting the
nodes, few NPS entries might have to be changed to reflect
the new post-order traversal numbers. In the worst case,
when the change is at the left-most-leaf, the entire NPS
needs to be updated. To reduce the impact of such cases, a
batched lazy-update approach can be employed where a set
of updates are grouped and applied on the database as a
batch.
Index size: The size of our index structure is completely
dependent on the distribution of labels in the database. If
the database trees are highly associative then the size of each
list is approximately equal to the database size. However,
we observed that most of the real datasets exhibit a highly
skewed distribution i.e., very large number of labels have
small lists and very few labels have large lists. To reduce
the index size, we propose an α-infrequent index.

Definition: 3.3. An index is called α-infrequent if it stores
the tree identifier lists for only those labels which appear in
less than a fraction of α trees in the database.

For example, a 0.8-infrequent index does not store lists
for labels which appear in more than 80% of trees. A 1-
infrequent index maintains lists for every label in the database
and a 0-infrequent index is an empty index with no lists. If
the list for a particular label of interest is not available then
we consider the entire set of database trees. Furthermore,
our α-infrequent index can easily be made out-of-core by
storing few large lists on the disk.

3.4 Optimizations
As shown in section 3.2.2, the number of recursions can

be quite high when compared to the number of subsequence
matches. We now present a series of inter-linked filtering
and pruning optimizations which speed up the tree matching
process by reducing the unwanted overhead.

3.4.1 Label Filtering (LF)
This optimization relies on the distribution of labels in a

database tree (T ) over the nodes in the given twig query
Q. It is based on the observation that the number of dis-
tinct labels in T is usually a lot higher than the number in
Q. Consider a partitioning of labels in T into two mutu-
ally exclusive subsets, V1 and V2, such that V1 = {l|l ∈ T ,
l ∈ Q} and V2 = {l|l ∈ T} - V1. The values in R-matrix
columns corresponding to the labels in V2 simply carry the
values of LCS values from one column to another and thus
do not contribute in building the subsequence match and
hence they can safely be excluded. In other words, LST can
be pruned from the labels in V2 before constructing the R-
matrix. For example in Figure 2, the columns corresponding
to labels C, E, and F are removed. This pruning process is
called as Label Filtering. The advantages of label filtering
are two-fold. First, it reduces the size of R-matrices thereby
making them fit in few cache lines. Second, it reduces the
recursion overhead in Algorithm 1 as the irrelevant entries
in R-matrix are now discarded.

3.4.2 Dominant Match Processing (DM)
In cases where the set of all distinct labels in both the

query tree and the data base tree are almost same, the ben-
efits from label filtering would be marginal. This optimiza-
tion is designed to further reduce the number of recursions
by limiting the backtracking to a very few entries, called as
dominant matches, in the R-matrix.

Based on the values, the entries in R can be partitioned
into classes: Ck = {(i, j)| R[i, j] = k}, 1 ≤ k ≤ m. For
the example matrix in Figure 2, C3 is {(3, 7), (3, 8), (3, 9)}.
Algorithm 1 accesses the matrix elements in the decreasing
order of their class because the match is constructed from
right to left. Backtracking from R[i, j] proceeds into two
regions of the matrix – R1: from R[1, 1] to R[i-1, j-1] and
R2: from R[1, 1] to R[i, j-1]. Therefore, while extending the
match from R[i, j] ∈ Ck only those elements from these two
regions which belong to Ck−1 need to be considered. For
example in Figure 2, recursive calls from R[3, 6] need not
be made for elements with value same or more than R[3, 6]
(e.g, R[2, 4]).

Furthermore, only few elements of R, for which the second
condition in Equation 1 holds true, contribute towards the
subsequence match. These entries are identified at line 2 in
Algorithm 1. Other elements, which satisfy the third con-
dition in Equation 1, simply carry forward the LCS length
through recursive calls. Say R[i, j] and R[k, l] (i < k,j < l
are two entries at which the LCS length is increased. Fur-
thermore, assume that @x such that j < x < l, and LSQ[k]
= LST [x]. In Algorithm 1, backtracking from R[k, l] can di-
rectly jump to R[i, j] as the intermediate cells simple carry
the LCS value from R[i, j] to R[k, l]. We refer to the cells
R[i, j] and R[k, l] as dominant matches. In Figure 2, dom-
inant matches for Q1 in T1 are encircled. Entries R[2, 6],
R[3, 5], and R[3, 6] can be ignored from processing as they
just carry the LCS value from R[3, 7] to R[2, 5].
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Considering only the dominant matches imply that ele-
ments need to be considered in the decreasing order of their
row & column indices (i.e., region R1). The decreasing or-
der is because the match is constructed from right to left.
Therefore, backtracking from R[i, j] ∈ Ck can now be limited
to just dominant matches in R1 which belong to Ck−1. Such
a stringent condition drastically reduces the number of re-
cursions while matching the subsequence (see Section 3.5 for
analysis). Furthermore, no special data structure is needed
to implement this optimization – dominant matches can just
be stored as negative numbers in R.

In Figure 2, backtracking from R[2, 5] ∈ C2 needs to con-
sider both R[1, 4] and R[1, 2] from C1 in that order whereas
processing from R[2, 3] ∈ C2 needs to consider a single ele-
ment R[1, 2] from C1.

3.4.3 Simultaneous Subsequence and Structure Match-
ing

Both the optimizations LF and DM are targeted at the
subsequence matching phase. They do not try to reduce the
number of false positives fed into the structure matching
phase. For Q1 and T1 in Figure 2, only 4 of the 6 subse-
quence matches are actual subtree matches. These false pos-
itives are identified and filtered only in the structure match-
ing phase. They, when in large number, add a significant
filtering overhead and may hence hinder the performance.
This overhead is alleviated by detecting the false positives
as early as possible. It is accomplished by integrating the
structure matching into the process of subsequence matching
i.e., both are done simultaneously. Such unification is feasi-
ble due to two reasons: First, both the matching algorithms
operate on the the nodes in the same order, right-to-left.
Second, a structure agreement check for a node at position
i needs only its ancestors, for which the structure match is
already established. As soon as a label match at ith posi-
tion (i.e., for LSQ[i]) is found by the subsequence matching
algorithm, the structure agreement check at that position
is conducted by the structure matching algorithm 3. By
pushing the structure constraints deep into the process of
subsequence matching the unified approach yields a better
performance [24].

3.5 Putting it all together
Our complete unified tree matching algorithm to find the

set of all twig matches for Q in T is shown in Algorithm 3.
T ’s label sequence is first filtered from labels which are
not in Q, using LF. Equation 1 is then used to construct
the R-matrix. While constructing the matrix, the domi-
nant matches are marked whenever both the label sequences
match as per the second condition in Equation 1. The func-
tion processLCS is invoked to enumerate the set of all twig
matches.

For a given position Qind in the twig, processLCS tries
to find a label match in T (line 3). As soon as a match
is found, Algorithm 2 is executed at the matched location
by the function isInAgreement() (line 5). The resulting
structure match is recorded in SM at line 6. If the user is
aware of the exact document structure then the user can pro-
vide the exact level difference between a node and its parent
node. Such level-wise constraints, which can easily be incor-

3
In case of DFS, either the backtracking has to start from the top

left corner of R or the matrix has to be constructed on the reversed
label sequences.

Algorithm 3 The unified subtree matching algorithm

Input: A database tree T and a twig query Q
labelFilter ( T , Q ) {T contains the filtered sequence}
R ← computeLcsMatrix ( T , Q )
if R[m,n] ! = m then

Report that Q is not a subtree of T
SM ← null
processLCS ( m, n, m )

Function:
processLCS ( Qind, T ind, matchLen )

1: if matchLen = 0 then

2: Report SM as the twig match
3: for i = T ind to 1 do
4: if R[Qind][i] is dominant & R[Qind][T ind] = matchLen

then

5: if isInAgreement(CPS(Q), SM , Qind) then
6: SM [Qind] ← CPST [T ind]
7: processLCS ( Qind-1, T ind-1, matchLen-1 )

porated in to isInAgreement(), extend the capabilities of
standard wildcards (‘//’ and ‘*’) and improve the matching
process significantly. The twig match is recursively extended
by backtracking in line 7 and is reported in line 2.
Complexity Analysis: As mentioned before since the enu-
merated twig matches are exponential in number, the over-
all time complexity of the algorithm would be exponential.
Similar to the section 3.2.2, we now analyze the number of
recursions made by our unified algorithm in a worst case sce-
nario where all the tree nodes have the same label. Similar
to am,n, define cm,n to be the number of recursions made
by the unified algorithm in the worst case. Since only the
dominant matches from region R1 are processed, Equation 5
involves just one term cm−1,n−1. cm,n has a closed form of
`

n+1

n−m+1

´

. Clearly, label filtering and dominant match pro-
cessing significantly reduces the the number of recursions.
For example, while finding matches for a twig of size 5 in
a tree of size 10, the unified algorithm makes 462 recursive
calls where as the naive algorithm makes 1, 275 number of
recursions.

cm,n =



1 +
Pn−m+1

i=1
(1 + cm−1,n−1), if n > m

n, if n = m ∨ m = 1
(5)

In summary, we leverage a dynamic programming based
approach instead of a traditional index-based approach for
finding the set of all subsequence matches. Our novel uni-
fied matching algorithm and employed optimizations are ex-
pected to significantly reduce the query processing time.
The nature of our approach and its reliance on sequen-
tial encoding and matrix or array based data structures
reflects a cache conscious design with small memory foot-
prints. Furthermore, the avoidance of pointer-based data-
structures ensures that the instruction level parallelism of
the approach will not be affected. Finally, our algorithm
is trivially adaptable in a data-parallel setting. Essentially
the database of trees is partitioned and each processor com-
putes the matches from one partition and the results are
combined at the end. Such designs are quite important and
relevant when placed in the context of emerging multi-core
architectures (see Section 4.3).
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4. RESULTS
We now evaluate the performance of our algorithm LCS-

TRIM against PRIX and three different TwigStack algo-
rithms: TwigStack (uses no index), XBTwigStack (uses XB
tree), and XRTwigStack (uses XR tree – TSGeneric+ in [17]).
We have obtained PRIX from its open source distribution4

and TwigStack algorithms from the authors of [17]. All the
experiments, unless otherwise noted were performed on a
system with dual AMD 250 Opteron processors and 8 GB
of main memory. We have found that the performance of
LCS-TRIM using DFS is quite similar to the results ob-
tained using Prüfer sequences, the ones we present here.

Dataset # of Trees Max
Depth

Swissprot 50, 000 5
Treebank 52, 851 36
DBLP 328, 858 6
Cslogs 59, 691 85
NLM 450K-1M 8

Table 4: Datasets

Datasets: We consider five different data sets – Swissprot,
Treebank, DBLP, Cslogs, and NLM (see Table 4). These five
datasets are derived from five different application domains
and have different characteristics. Swissprot (curated pro-
tein), Treebank (syntactic structure of English sentences),
and DBLP data sets are obtained from the University of
Washington XML data repository5. Cslogs data set, that
represents the website access patterns, is obtained from Dr.
Zaki’s website 6. Finally, NLM data set7 houses abstracts
from MEDLINE and other life science journals for biomed-
ical articles. These XML data sets are parsed using a SAX
parser 8 and the output is then converted into sequences
using methods in Section 3.1.
Query workload: Table 2 and Table 3 shows the query
workload we use in the evaluation. The queries are carefully
chosen such that each one has different characteristics – large
and small queries, deep and bushy queries, low and highly
selective queries.
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Figure 3: Swissprot (a) Effect of optimizations (b)
PRIX run time split

Effect of optimizations: The performance of our algo-
rithm with and without optimizations on the Swissprot query
workload is shown in Figure 3a. The basic algorithm with
no optimizations is labeled as No Opt and the effect of subse-
quence matching optimizations is shown as LF & DM. Note
that our No Opt algorithm is similar in structure, and ex-
pected to exhibit comparable performance, to the methods
4
http://www.cs.arizona.edu/prix/

5
http://www.cs.washington.edu/research/xmldatasets/

6
http://www.cs.rpi.edu/~zaki/software/

7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed

8
http://www.saxproject.org/

proposed by Zezula et al [35] because one of the main differ-
ences between LCS-TRIM and these methods are the use of
our optimizations (see Section 2 for all the differences). The
recursion overhead is greatly reduced by both LF and DM .
They, for example on Q9, showed a 94-fold speedup that is
due to two reasons – the reduction in the average R-matrix
size from 28KB to 8KB and the reduction in the number of
recursive calls to Algorithm 1 from 16 billion to 5 million.
The optimizations targeting structure matching in conjunc-
tion with subsequence matching, denoted LSC-TRIM, are
very effective across the board. For example, looking at the
query Q9 again, we find that of the 3.2 million subsequence
matches only 17, 836 of them are actual structure matches.
A large majority of these false-positives are filtered out by
our unifying optimization in the early stages resulting in an
overall speedup of 345 for this query against No Opt.

4.1 Comparison with PRIX
Figures 4 and 5 demonstrate the performance differences

between LCS-TRIM and PRIX. LCS-TRIM achieves a sig-
nificant speedup over PRIX in enumerating all the twig
matches – on average, up to 3 orders of magnitude speedup
on DBLP and up to 2 orders on other data sets.

This huge disparity in run times is due to various reasons.
First, the subsequence matching step in PRIX is very ex-
pensive. Too many range queries issued during the process
increase the number of accesses to the index and the large
B+-tree index structures (see Figures 5 and 6) make those
accesses very costly. Second, once we factor in the need to
use the EPindex (index constructed over extended prüfer se-
quences) for value-based queries the number of accesses to
the index increases dramatically. For query Q4, there are
2, 041 subsequence matches requiring 690 accesses to the in-
dex. PRIX then further refines these 2, 041 matches using
a series of post-processing steps to determine that all but
only 9 of them are false positives. In contrast, LCS-TRIM
filters these the false positives very early by combining the
subsequence and structure matching phases. Third, by way
of comparison our approach relies on an inverted tree index
to identify candidate trees and for each candidate tree we
rely on the processing of small R-matrices – which can of-
ten fit in a few cache lines – leading to excellent locality.
Drilling down on this disparity even further in Figure 3b we
see that in all of the queries the base subsequence match
step in PRIX is already more expensive than our method.
Factoring in the time for refinements (for PRIX to generate
the correct results) adds to the disparity. For example, con-
sider the fact that subsequence matching in PRIX for Q7

took 15, 300msec and refinements amount to an additional
29msec. For the same query our approach has taken just
about 2msec. The refinement time for queries Q4 and Q5 is
small due the fact that those queries are small in size and
also have a small number of matches. Our overall query pro-
cessing time is usually less than the time that PRIX spent
in refining the subsequence matches.
Effect of pivots and gap constraints: PRIX relies on
user-provided pivots and gap constraints in order to re-
duce the number of accesses to the index, while finding
the subsequences. PRIX leverages pivots in performing a
bi-directional subsequence matching that is done using two
separate indexes LIndex, RIndex [26]. The performance of
PRIX is highly dependent on the pivots chosen. Pivots
pointing to low selective nodes may actually increase the
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Qid XPath Expression Match-
es

Q1 //Entry[PFAM[@prim id=PF00304]][//SIGNAL/Descr] 3
Q2 //Entry[Org][PFAM[@prim id=PF00304]][//SIGNAL/Descr] 39
Q3 //Ref/Author=“Moss J” 38
Q4 //Entry [Species=“Glycine max”][Organe=“Chloroplast”] [Org=

“Glycine”]
9

Q5 //Features/DOMAIN[from=”165”][to=”171”] [Descr=”POLY-
PRO”]

1

Q6 //Features[/*/from][//”171”][//”POLY-PRO”] 14
Q7 //Features[//”165”][/*/to][//”POLY-PRO”] 51
Q8 //Entry/Features/DOMAIN 46, 566
Q9 //Entry[Org=”Eukaryota”][Org=”Metazoa”] [Org=”Chordata”]

[Org=”Craniata”]
17, 836

Q10 //Entry[/*/”Eukaryota”][/*/”Metazoa”][/*/”Chordata”] [/*/”Cra-
niata”]

17, 836

Qid XPath Expression Match-
es

Q25 //1/3[//545] 26
Q26 //2500[7695][2501] 72
Q27 //1155[//4525][/ ∗ /2613/5888] 82
Q28 //1155[//5996//7834][2586] 85
Q29 //1155[2586][//5996] 3, 742
Q30 //1/271/272/273//276//278/ ∗

/281//284//287/1552]
78

Q31 //5191[8650][8686][8685][8684][9400]-
[8680]

6

Qid XPath Expression (NLM)
Q32 //MedlineCitation[//Year=”1999”][/Article

[//Journal][//Author][//Author]]
Q33 //MedlineCitation[/DataCreated//1999]

[/DataRevised/2000]
Q34 //MedlineCitation[/Article//Volume=”153”]

Table 2: XPath queries for Swissprot, Cslogs, and NLM data sets

Qid XPath Expression Matches
Q11 //inproceedings/*/“Antonin Guttman” 2
Q12 //article/author=“Antonin Guttman” 3
Q13 //phdthesis[year][series][number] 1
Q14 //phdthesis[year][number] 3
Q15 //inproceedings/author=“E. F. Codd” 33
Q16 //book[//AA93][//AABM82][//AB87a]

[//AB87b][//AB88][//AB91][//ABD+89]
1

Q17 //article[year=1999] 7, 408

Qid XPath Expression Matches
Q18 //EMPTY/*/LS OR JJ 2
Q19 //S/*/RB OR JJ 8
Q20 //S/SBARQ-1 34
Q21 //NP/ADJP/IN OR RB 1
Q22 //S[PRT][NP] 2
Q23 //EMPTY//X/VP/PP/NP/S/VP/VP/NP 107
Q24 //EMPTY[/*/NP][/*/X[//VBN][//WRB]

[//S[/*/ NONE ][//VBG]]]
12

Table 3: XPath queries for DBLP and Treebank data sets

number of accesses to the index and thereby may hinder
the performance. For example, in queries Q18 and Q19, the
nodes EMPTY and S have low selectivity with 49, 416 and
50, 726 matches, respectively. When they are chosen as piv-
ots, the run time for Q18 and Q19 increased to 0.15sec and
0.8sec – a significant slowdown when compared to the best
pivot choice (0.3msec and 0.6msec as shown in Figure 4). All
the reported results for PRIX are based on the best choice.
Unfortunately, providing the best pivot value can be chal-
lenging for the user. The database engine can of course
provide some hints based on selectivity estimation but they
may not be optimal. Our methods on the other hand do
not depend on such choices. In fact, even when we process
the entire data set the retrieval times are not very high –
0.014sec, 0.018sec for Q18 and Q19, respectively.

Gap constraints are specified by the user based on the dis-
tance between two elements in the database sequence. For
example in Q22, occurrences of tag PRT in the database
is scattered over several documents. Only 2 of these doc-
uments have S as PRT ’s parent while in others, S is an
ancestor. PRIX, in this case, relies on gap constraints to
restrict the search to parent-child axis. With sub-optimal
gap constraints, the total number of index page transfers
for Q22 have increased from 1, 502 to 79, 177, reflecting a
significant increase in the number of index accesses. Fur-
thermore, inaccurate gap constraints can lead to inaccurate
results. In order to provide accurate gap constraints, the
user not only needs to know the database tree structure
but also its internal representation. Even though a level-
wise constraint is similar to a gap constraint, the former
depends on a high-level document structure where as the
latter depends on internal representation. We now consider
the workload characteristics in evaluating the performance.
Effect of query size: The number of nodes in the query
tree directly affects the size of R-matrix and hence the per-
formance of LCS-TRIM. In our workload, small sized queries
are Q3, Q11, Q12, Q19, Q20, and Q25 and large queries are
Q5, Q16, Q24, Q30, and Q31. We have observed an average

speedup of 60 and 400 on small and large queries, respec-
tively. Smaller queries will have smaller R-matrices, which
mostly fit in the L1 cache resulting in very good locality.
A higher speedup on large queries is due to the slowdown
in PRIX culminating from an increased number of index
accesses. Hence the query size does not affect our simple
matrix-based approach as much as it affects PRIX.
Effect of recursive structure: We now examine how a
twig’s recursive structure affects the performance. In order
to do that, consider the queries, Q23 and Q30, with a deep
structure and the queries, Q4, Q9, Q16, Q24, and Q31, which
are shallow and bushy. Note that the trees in both Swissprot
and DBLP data sets have a small depth (see Table 4). The
average speedup on deep queries (240 times) is a little more
than the speedup on bushy queries (190 times). This dif-
ference can again be attributed to a large number of index
accesses made by PRIX in case of deep queries. On query
Q24 alone LCS-TRIM achieved up to 3 orders of magnitude
speedup.
Effect of selectivity: The query workload has some highly
selective queries (Q5, Q16, Q21, Q22, and Q31) and some low
selective queries (Q8, Q9, Q17, Q27, and Q29) with many
matches. LCS-TRIM showed up to 2 orders of magnitude
speedup over PRIX on both the type of queries. For low
selective queries, PRIX spent a lot of time in accessing the
index while finding many subsequence matches. The perfor-
mance of PRIX is very sensitive to the selectivity of indi-
vidual nodes in the twig. When the subsequence matching
starts off with a low selective node, the performance gets
severely affected due to increased number of range queries
issued to the index. The effect of node selectivity on the per-
formance of our algorithm is relatively small because of the
way our inverted index is probed (before the matching pro-
cess starts) and the way we find the subsequence matches.
Effect of wildcards: Finally, we analyze the effect of wild-
cards on the query processing times of LCS-TRIM and PRIX.
The queries Q6, Q7, Q10, Q16, and Q24 have a high num-
ber of wildcards. As an example, consider the queries from
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Swissprot workload. The queries Q6 and Q7 are slight modi-
fications of the query Q5 with 3 wildcards introduced. These
simple modifications have increased the run time of PRIX by
more than 600 times. Such a drastic increase is due to three
reasons. First, wildcards increase the number of true and
false positive subsequence matches. Second, false positives
are detected only in the later stages of query processing.
Finally, the process of filtering out a subsequence is very
inefficient in PRIX – makes too many scans on the twig.
LCS-TRIM, on the other hand, embeds employs the unified
approach (detects the false positives as early as possible)
and makes a single pass on the twig to filter it out. Thus
the effect of wildcards on the performance of LCS-TRIM is
considerably small when compared to the effect on PRIX’s
performance. Due to these reasons, we have observed an av-
erage speedup of 2, 500 on the queries with many wildcards.
Results on the NLM data set: We now test the perfor-
mance of both the algorithms on large data sets by consid-
ering Q32, Q33, and Q34. We used a system with 2.8GHz P4
processor and 1.5GB of main memory for this experiment.
Figure 5 shows the performance differences as the data set
size (XML file size) is increased from 0.5GB to 2.5GB. An
α-infrequent (α=0.5) index is used for this experiment.

On all the queries, when the data set size exceeds the main
memory size (1.5GB), there is a significant increase in the
run time of LCS-TRIM. Note that the graphs may be a bit
misleading since the y-axis has a log-scale basis. For example
on Q34 when going from a data set size of 1.5GB to 2GB, it
appears as though LCS-TRIM suffers a significant slowdown
while PRIX only suffers a marginal slowdown. However in
reality the execution time of LCS-TRIM goes up to 0.1s
whereas the PRIX running time goes up from 1.5s to 2.5s.
Essentially once we go out of core the disk latency dominates
for both the methods and as a result of Amdahl’s law the
relative speedup of LCS-TRIM (10% CPU utilization) with
respect to PRIX is reduced. LCS-TRIM is still at least one
order of magnitude better on all the queries and in some 3
orders of magnitude better. Such huge speedup is observed
in case of queries with complex structure and many wild-
cards (e.g., Q32). We are currently investigating ways in
which the out-of-core performance can be further improved
using strategies based on data partitioning and tiling.
Index size comparison: In PRIX, the index is constructed
based on user-provided list of tags, which correspond to la-
bels in the query workload. A B+-tree is created for each
tag in the list. Therefore the total size of the index grows
linearly with the number of tags. Figure 6 shows the in-
dex sizes along with the number of tags used, for each data
set. The figure also shows the size of 1-infrequent index con-
structed by LCS-TRIM. The huge difference, between PRIX
and LCS-TRIM, in index size is clearly evident – compare
the 256MB DBLP index in PRIX with our index of size just
48MB. Furthermore, when a 0.5-infrequent index is created
the size has reduced to 35MB. Even for large data sets (last
graph in Figure 5), our α-infrequent inverted index is quite
small. In contrast, index structures in PRIX are very large
and are usually more than double the data set size – at
2.5GB data set the index size is almost 5GB. To build a
generic query processing engine, the tag list should contain
a large number of labels resulting in very large index struc-
tures. More importantly, each tid-list in our inverted index
is bounded by the number of trees in the data set whereas the
size of each B+-tree in PRIX is proportional to the selectivity

of labels, which is usually very high.

Cslogs Treebank Swissprot Dblp
0

50

100

150

200

250

300

350

Data Set

In
d
e
x 

S
iz

e
 (

M
B

)

 

 
PRIX
LCS−TRIM

35

25

33

21

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8

S
p

e
e

d
u

p

# of processors

Ideal
Achieved

Figure 6: (a) Index Size Comparison (b) Parallel
Query Processing

4.2 Comparison with TwigStack
In this section we compare the performance of LCS-Trim

with the TwigStack family of algorithms[4, 7, 16, 17]. We
should note that TwigStack based algorithms target un-
ordered matches whereas LCS-TRIM targets ordered matches.
Later in Section 4.4.1 we discuss some ideas on how to ex-
tend LCS-Trim to handle ordered matches. To ensure as fair
a comparison as possible, we follow the method employed in
PRIX [26], wherein for each query in our workload the num-
ber of ordered matches is exactly the same as the number of
unordered matches. This is because only one configuration
of the twig is present in the data set.

As found in [17], the performance of XR TwigStack is
marginally better than the other two algorithms 9 (see Fig-
ure 7). Note that the y-axis is shown in log-scale. LCS-
TRIM performed significantly better than XR TwigStack
on all queries – up to 3 orders of magnitude. The speedup is
very high, especially on queries with low selectivity, because
the TwigStack algorithms make a large number of scans on
huge element lists.

4.3 Parallel Query Processing
LCS-TRIM can be parallelized very easily, making it a

viable option for emerging multi-core architectures and for
very large distributed databases. It is fairly simple to adopt
it in a shared memory or a cluster environment. As a proof
of concept, we now present the results from a preliminary
analysis using a SMP system with 8 processors and 32 GB
of shared memory (see Figure 6). We consider the following
query from Cslogs to evaluate the parallel performance.

//1155[//5996][//5996][//5996][//5996][//5996]

This query has a very high number of matches (474, 716, 009
spread over 608 trees). Each processor in the SMP system
picks up a candidate tree from the list returned by the index
and finds the twig matches in that tree. We have observed
up to 6.3-fold speedup on 8 processors. The distribution
of 474 million matches over 608 trees is not uniform. The
skew present in the distribution results in load imbalance
and therefore a non-linear speedup. We are currently inves-
tigating for better load-balancing strategies.

4.4 EXTENSIONS

4.4.1 Unordered matching

9
We have run this experiment on a Windows PC with a 2.8GHz Intel

Pentium 4 processor and 1.5GB of main memory.
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Figure 4: Performance comparison with PRIX on different data sets
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Figure 5: Performance and Index size comparison on NLM data set

The sequencing methods in Section 3.1 are based on the
tree traversals and hence they preserve the order among sib-
ling nodes. Therefore, Algorithm 3 can only be applied to
process ordered twigs. A typical but naive method to sup-
port unordered matches is as follows [26]: First, the set of
all configurations (C) of the given twig is found. Second, for
each configuration in C, matches are found in each database
tree using Algorithm 3. The set C is potentially exponential
in the size of the query. However, twig queries are usually
small in size and hence processing all the configurations in
C may not be very expensive.

There exist several ways to reduce the number configu-
rations which are to be evaluated – by imposing the DTD
constraints, by a suitable preprocessing of the data set, and
by imposing an artificial ordering on node labels of both
the database tree and the query tree. DTD constraints for
example can determine that certain configurations are ille-
gal and can thus be eliminated from processing. In case of
artificial ordering, the data set is initially pre-processed by
rearranging the sibling nodes so that they respect the order-
ing. Nodes in the given twig query are also rearranged in a
similar manner so that the matching can be done. For ex-
ample, consider the query Q31 with 6 different child nodes.
There are a total of 6! = 720 different configurations to eval-
uate. When a label ordering, say a numerical ordering 8650
< 8680 < ... < 9400, is placed on both the data set and the
query then we need to evaluate only a single configuration.
In fact, the label ordering gave a single valid configuration
for every query in our workload.

Figure 8: Unordered matching - A heuristic

When the application of constraints and orderings is not
possible, one can employ some heuristics. For example, the

naive approach can be improved by doing a loop inversion
in the second step – for each tree in the database, process
all configurations in C to find their matches. A tiling-like
approach can then be used to exploit the fact that many con-
figurations are quite similar. For example, Figure 8 shows
two configurations S1 and S2. S2 can be eliminated from
processing because the position of mismatch in S1 is away
from the portion of the sequence that is changed in S2. Such
a heuristic complemented with a suitable ordering of config-
urations in C can greatly improve the performance. We
are currently investigating these and other ways to extend
LCS-TRIM to handle unordered matches.

4.4.2 NOT Predicates
Consider the twig query, NQ=//supplier/[NOT (//store-

)]//part [31]. It selects the part elements with an ancestor
supplier that has no descendant named store. There exist
several ways to incorporate such constraints in query pro-
cessing [18, 31] . A simple but inefficient approach is to
divide the query into two sub queries – one with the tag
(store) and one without the tag. Then take the difference
between the results from those two sub queries.

LCS-TRIM handles NOT predicates by first constructing
the R-matrix as described in Section 3.2.1, by ignoring the
NOT-predicate on store tag. It checks for following two
conditions to find a tree T that does not have the tag store.
i) the length of LCS between T and NQ should be m − 1.
ii) the number of dominant matches in the row, in R, corre-
sponding to store should be zero. Moreover, the structure
agreement checks ignore the store tag in NQ and proceed
to its parent nodes. More involved algorithms ought to be
designed to support nested NOT predicates.

4.4.3 Approximate Query Matching
In case a query does not have any matches, instead of

returning no results it would be nice to have a query engine
that can return approximate results. Approximation can
either be structural or content-oriented i.e., values. LCS-
TRIM can be modified with a simple cost-based model to
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Figure 7: Performance comparison with TwigStack based algorithms

retrieve such approximate results. Each mismatch (either in
structure or in content) is tagged with certain cost and the
tree matching, both subsequence and structure matching, is
continued as long as the total cost of mismatch is less than
a pre-defined threshold. A domain expert can define the
threshold and also the type and cost of mismatches.

5. CONCLUSIONS
In this paper, we have proposed a dynamic programming

based method for indexing and querying a database of trees
– with specific applications to XML data. Our approach
relies on novel sequence based representations and a vari-
ant of the classical longest common subsequence matching
algorithm to enumerate matches in the database. A series
of optimizations are also designed to prune out false candi-
date matches early in the search process enabling efficient
matching and retrieval. The simple array based data struc-
tures used by our approach are not only cache conscious
but also make our algorithms amenable for parallel process-
ing on emerging multi-core server architectures. The sim-
ple inverted tree index complements our efficient algorithms
in achieving up to three orders of magnitude speedup over
PRIX and TwigStack based approaches. We also present
various extensions where the user can specify constraints,
which can be pushed deep into the process to make the
search more efficient and specify a mechanism wherein ap-
proximate matches may be returned by the system. We are
currently examining how the out-of-core performance of our
approach can be improved through strategies such as parti-
tioning and tiling. We are also exploring new methods for
unordered matching, approximate matching, and for incor-
porating NOT predicates.
Acknowledgments: We would like to thank Prof. Vassilis
Tsotras and also the reviewers of this paper for their useful
comments and suggestions in improving this paper.
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Using Modified Prüfer Sequences. In CIKM, pages 288–299,
2005.

[15] Daniel S. Hirschberg. Algorithms for the Longest Common
Subsequence Problem. In J. ACM, 24(4):664–675, 1977.

[16] H. Jiang et al. XR-Tree: Indexing XML Data for Efficient
Structural Joins. In ICDE, pages 253–264, 2003.

[17] H. Jiang et al. Holistic Twig Joins on Indexed XML
Documents. In VLDB, pages 273–284, 2003.

[18] E. Jiao, T.W. Ling, and C.Y. Chan. PathStack¬: A Holistic
Path Join Algorithm for Path Query with Not-predicates on
XML Data. In DASFAA, 2005.

[19] R. Kaushik et al. Covering Indexes for Branching Path Queries.
In SIGMOD, pages 133–144, 2002.

[20] H. Li et al. An Evaluation of XML Indexes for Structural Join.
In SIGMOD Record, 33(3):28–33, 2004.

[21] Q. Li and B. Moon. Indexing and querying XML data for
regular path expressions. In VLDB, pages 361–370, 2001.

[22] J. Lu et al. Efficient processing of ordered XML twig pattern.
In DEXA, pages 300–309, 2005.

[23] M. Moro et al. Tree-pattern Queries on a Lightweight XML
Processor. In VLDB, pages 205–216, 2005.

[24] J. Pei et al. Pushing Convertible Constraints in Frequent
Itemset Mining. In DMKD, 8(3):227–252, 2004.

[25] S. Picciotto. How to Encode a Tree. Ph.D. thesis, UCSD, 1999.

[26] R. Praveen and M. Bongki. PRIX: Indexing and querying xml
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