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ABSTRACT

The recent upsurge in the interest in Semantic Web services
and the high-profile projects such as the WSMO, OWL-
S, and SWSL, have drawn attention to the importance of
logic-based modeling of the behavior of Web services. In
the context of Semantic Web services, the logic-based ap-
proach has many applications, including service discovery,
service choreography, enactment, and contracting for ser-
vices. In this paper we propose logic-based methods for
reasoning about service behavior, including the aforemen-
tioned choreography, contracting, and enactment. The for-
malism underlying our framework is Concurrent Transaction
Logic—a logic for declarative specification, analysis, and ex-
ecution of database transactions. The new results include
reasoning about service behavior under more general sets of
constraints and extension of the framework towards condi-
tional control and data flow—two crucial aspect that were
missing in previous logical formalizations.

1. INTRODUCTION
The idea and the promise of combining the Semantic Web

with Web services has attracted intense interest in the re-
search community and industry. The early projects like
OWL-S1 and SWSL2 were followed by bigger and more sus-
tained efforts like WSMO,3 which is at the center of a series
of large European integrated projects, such as DIP4 and SU-
PER.5 The research problems in this area are many and var-
ied in nature: ontology specification languages that must go
well beyond OWL, service discovery, service choreography
(i.e., specification of how autonomous client agents interact
with services), automated contracting for services, service
enactment, execution monitoring, and others. In this paper

1
http://www.daml.org/services/owl-s/

2
http://www.w3.org/Submission/SWSF-SWSL/

3
http://www.wsmo.org/

4
http://dip.semanticweb.org/

5
http://ip-super.org/
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we address a subset of the aforesaid problems: modeling,
contracting, and enactment.

Our approach is based on Concurrent Transaction Logic
(CTR) [6]. It continues the earlier line of research described
in [7, 16, 8]. The use of CTR for process modeling in work-
flows was first advocated in [7], where a scheduling algo-
rithm for executing workflows under temporal and causal-
ity constraints was introduced. The present work extends
those results fivefold. First, we allow a significantly more
complex set of constraints, which encompasses all the con-
straints available in the recently proposed language DecSer-
Flow [19]. Second, data flow, without which any descrip-
tion of a service of workflow is unrealistic, is now part of
the framework. Third, the framework now includes condi-
tional process controls. Fourth, the algorithms are greatly
improved by expanding the proof theory of CTR, which al-
lowed us to replace various ad hoc parts of the earlier ap-
proaches (such as the so-called knot elimination in [7, 8]).
Finally, we show how our framework applies to service chore-
ography and contracting—areas whose logical foundations
have not seen much research. In [8], CTR was extended to a
logic, called CTR-S, which was designed for modeling service
choreography and contracting. However, CTR-S turned out
to be a very complex formalism and the results were limited
to rather simple forms of contracting. The present paper
uses a much simpler logic, CTR, but complex patterns of
choreography and contracting can be modeled nonetheless.
Our new techniques significantly extend the kinds of service
contracts that can be handled, but it is not known whether
and how much is given up in terms of choreography. Finally,
[16] introduced techniques from constraint logic program-
ming to the problem of service enactment under aggregate
constraints (such as aggregate cost of service execution). We
incorporate some of those techniques to model the data flow
that arises in service choreography and contracting. Further
discussion of related work appears in Section 7.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the basic techniques from process modeling,
which includes control flow, data flow, and constraints. It
then outlines our framework in which service choreography
and the process of contracting for services can be handled
using these techniques.

To make the paper self-contained, Section 3 gives a short
introduction to CTR. Section 4 shows how the framework
outlined in Section 2 is formalized in CTR. Section 5 de-
scribes the verification procedure, which is the key compo-
nent of service contracting in our framework. Section 6 puts
the various parts of our framework together and summarizes
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the entire approach. Section 7 presents related work, and
Section 8 concludes this paper.

2. SERVICE BEHAVIOR: MODELING,

REASONING, AND ENACTMENT
Figure 1 depicts the main aspects of service behavior ad-

dressed in our work. The behavior of the service is described
through its choreography—a specification of how to invoke
and interact with the service in order to get results. This
is known as the WSMO model of choreography.6 The W3
Choreography group’s model includes both the service inter-
actions and the client interactions.7 This model is symmet-
ric and can be represented in our framework by including
the choreography, policy, and contract components on both
the client and the service side in the figure. This can be
further extended to multiagent interactions. However, these
issues are beyond the scope of this paper and are orthogo-
nal to the reasoning problems, which we consider here. One
way to describe the choreography interface of the service is
through the control and data flow graphs.

Figure 1: Elements of the reasoning architecture for
semantic Web services.

The service policy component in Figure 1 is a set of addi-
tional constraints imposed on the choreography and on the
input. The contract requirements included on the client side
of the figure, represents the contractual requirements of the
user, which go beyond the basic functions (such as selling
books or helping with travel arrangements) of the service.
Thus, in our framework, the choreography of a service is
described with control and data flow graphs, while service
policy and clients’ contract requirements are described with
constraints. We will now discuss these modeling tools in
more detail using a concrete scenario depicted in Figure 2.

Control flow graphs. Figure 2 depicts a fairly complex
pattern of interaction with a service that sells high ticket
items. It includes provisions for optionally giving rebates
to customers who fulfill certain requirements as well as a
possibility that customers might return the ordered items
and receive partial refund. Payment is allowed by credit

6
http://www.wsmo.org/TR/d14/

7
http://www.w3.org/TR/2006/WD-ws-cdl-10-primer-20060619/

cards or cheques and in some cases the service might re-
quire those payments to be secured by a credit card (if the
available limit exceeds the price) or by providing a guaran-
tor of payment. Under certain circumstances, the client may
get a rebate. The figure represents the pattern of interaction
with the service using so-called control flow graph.

Figure 2: A control-flow graph.

A control flow graph is typically used to specify local ex-
ecution dependencies among the interactions with the ser-
vice; it is a good way to visualize the overall flow of con-
trol. Such a graph has an initial and the final interaction,
the successor-interaction for each interaction in the graph,
and whether these successors must all be executed con-
currently or in some unspecified order (represented using
AND-split nodes), or whether only one of the alternative
branches needs to be executed non-deterministically (repre-
sented using OR-nodes). In Figure 2, all successors of the
initial interaction place order must be executed, but all
these successors are OR-split nodes. For example, the low-
ermost successor node of place order is an OR-node and
only one of its successors, pay chq or pay CC, is supposed
to be executed. The node delivery is also an OR-split, but
with a twist. The upper branch going out of this node repre-
sent a situation where a customer accepts delivery but then
returns the purchased item. The lower branch, however, has
no interactions, and it joins the upper branch. This means
that the upper branch is optional : the customer may or may
not return the item. Similarly, the rightmost segment of the
graph indicates that rebate is an optional interaction.

We note two more things about the graph in Figure 2:
the shaded boxes labeled with security and pay, and the
condition credit limit > price attached to the arc leav-
ing the node give CC. These boxes delineate control flow
subgraphs corresponding to complex interactions that are
composed of several sub-interactions (such as providing se-
curity). If a control graph represents a workflow then these
complex interactions are called subworkflows. The aforesaid
condition credit limit > price is called a transition condi-
tion. It says that in order for the next interaction with the
service to take place the condition must be satisfied. The
parameters credit limit and price may be obtained by query-
ing the current state of the service or they may be passed
as parameters from one interaction to another—the actual
method depends on a concrete representation. In general,
transition conditions are Boolean expressions attached to
the arcs in control flow graphs. Only the arcs whose con-
ditions are true can be followed at run time. In general, a
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control flow graph may contain additional elements, such as
loops. However, our main results apply only to cases when
constraints and loops do not interact. For simplicity, in Sec-
tion 4.2 we assume that our control flow graphs are acyclic.

Constraints. Control flow graphs are typically used to
represent local dependencies among interactions in a chore-
ography interface. Global dependencies often arise as part
of policy specification; they take the form of global temporal
and causality constraints. Yet another situation when global
constraints arise is when a client has specific requirements
to interaction with the service. These requirements have
little to do with the functionality of the service (e.g., sell-
ing books), but rather with the particular guarantees that
the client wants before entering into a contract with the
service. We call such sets of client-side constrains client
contract requirements. Figure 3 gives an example of global
constraints that represent service policy and client contract
requirements for our running example.

Service policy
1. If pay CC (paying by credit card) takes place after accepting

delivery then giving security must precede delivery

2. If pay chq takes place after accepting delivery then

pay chq (paying by cheque) immediately follows delivery

3. If rebate is given then pay must precede accepting delivery

Client contract requirements
4. The interaction of accepting delivery must precede pay chq

Figure 3: Global behavioral constraints.

Data flow graphs. Any series of interactions with a ser-
vice typically involves passing data, and the flow of data
among these interactions is normally modeled using graphs.
A data flow graph is like a control flow graph except that the
arcs represent the routes along which data is passed from one
interaction to the other. These arcs are labeled with data
items that are being passed around. Since, in many cases,
control flow is accompanied by passing data, a data flow
graph often has many arcs inherited from the control flow
graph. However, the nodes in a data flow graph do not need
to be labeled as AND- or OR-splits. A data flow graph for
our running example is depicted in Figure 4.

Figure 4: A data-flow graph.

The parts inherited from the control flow graph are shaded
to help focus attention on the new elements. The data flow
graph has two new arcs, which represent non-local passing
of the credit card information. Also, the arcs going out
of the initial interaction place order are labeled with the
Order# item to indicate that this item is being passed along

those arcs. In fact, this item (and some others) are passed
along almost all arcs in the graph and to avoid cluttering
the picture we did not include them.

One important observation is that the interactions at the
ends of the arcs in the data flow graph must be ordered in
time, since generally the interaction that receives an item
must wait for the interaction that produces the item. How-
ever, this interaction is not only temporal but also condi-
tional. For instance, the interaction partial refund re-
ceives the credit card number from give CC only if the
client gives a credit card. Such features must be repre-
sentable in the underlying formalism.

Service enactment. Service enactment deals with the
execution of the process underlying the service. Interactions
in the choreography interface must be first scheduled (i.e.
ordered) according to the model specified by the control and
data flow graphs, the service policy, etc., and then executed.
Process scheduling is a non-trivial problem and solutions
have typically high computational complexity [13]. Existing
approaches to process scheduling can be classified as passive
and proactive.

Passive schedulers receive sequences of events from an ex-
ternal source, such as a process or a transaction manager,
and verify that these sequences satisfy all global constraints
(possibly after reordering some events in the incoming se-
quences). Several such schedulers are described in [17, 2,
12]. In passive scheduling, an unspecified external system
is supposed to ensure that scheduling complies with all the
constraints, that liveness of the scheduling strategy is ob-
served. The known algorithms for these tasks are worst-case
exponential and constraints are enforced at run time.

Proactive scheduling does not rely on external systems.
Instead, it constructs a concise (as much as possible) ex-
plicit representation of all allowed executions (executions
that satisfy all constraints)—either in advance or dynami-
cally. The representation of all valid schedules is then used
by the scheduler. Depending on the expressiveness of the
framework, such scheduling can be linear at run time, since
there is no need to verify constraints after the construction
stage. In a sense, all constraints get compiled into the afore-
said concise representation. One such proactive approach is
described in [7]. Although [7] proposes a linear run-time
scheduler this is achieved by placing limits on process mod-
eling, which does not permit transition conditions in control
flow graphs and does not consider data flow.

3. THE BASICS OF CTR
The formalism used in this paper to model, reason, and

enact service choreographies is Concurrent Transaction Logic
or CTR [6]. This section is a short summary of the relevant
parts of CTR’s syntax and an informal explanation of its
semantics. Due to space limitation, we cannot expand on
these issues, but details can be found in [6].

CTR is a conservative extension of the classical predicate
logic in the sense that both its proof theory and the model
theory reduce to classical logic for formulas that do not cause
state transitions (but only query the current state).

Basic syntax. The atomic formulas of CTR are identical
to those of the classical logic, i.e., they are expressions of
the form p(t1, . . . , tn), where p is a predicate symbol and
the ti’s are function terms. More complex formulas are built
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with the help of connectives and quantifiers.
Apart from the classical ∨, ∧, ¬, ∀, and ∃, CTR has two

additional connectives, ⊗ (serial conjunction) and | (concur-
rent conjunction), and a modal operator ¯ (isolated execu-
tion). For instance, ¯(p(X)⊗ q(X)) | (∀Y (r(Y )∨ s(X, Y )))
is a well-formed formula.

Informal semantics. Underlying the logic and its seman-
tics is a set of database states and a collection of paths. For
the purpose of this paper, the reader can think of the states
as just a set of relational databases, but the logic does not
rely on the exact nature of the states—it can deal with a
wide variety of them.

A path is a finite sequence of states. For instance, if
s1, s2, ..., sn are database states, then 〈s1〉, 〈s1, s2〉, and 〈s1,

s2, ..., sn〉 are paths of length 1, 2, and n, respectively.
Just as in classical logic, CTR formulas assume truth val-

ues. However, unlike classical logic, the truth of CTR for-
mulas is determined over paths, not at states. If a formula,
φ, is true over a path 〈s1, ..., sn〉, it means that φ can execute
starting at state s1. During the execution, the current state
will change to s2, s3, ..., etc., and the execution terminates
at state sn.

With this in mind, the intended meaning of the CTR con-
nectives can be summarized as follows:

• φ ⊗ ψ means: execute φ then execute ψ. Or, model-
theoretically, φ ⊗ ψ is true over a path 〈s1, ..., sn〉 if φ

is true over a prefix of that path, say 〈s1, ..., si〉, and
ψ is true over the suffix 〈si, ..., sn〉.

• φ | ψ means: φ and ψ must both execute concurrently,
in an interleaved fashion.

• φ ∧ ψ means: φ and ψ must both execute along the
same path. In practical terms, this is best understood
in terms of constraints on the execution. For instance,
φ can be thought of as a transaction and ψ as a con-
straint on the execution of φ. It is this feature of the
logic that lets us specify constraints as part of process
specifications.

• φ∨ψ means: execute φ or execute ψ non-deterministically.

• ¬φ means: execute in any way, provided that this will
not be a valid execution of φ. Negation is an important
ingredient in temporal constraint specifications.

• ¯φ means: execute φ in isolation, i.e., without in-
terleaving with other concurrently running activities.
This operator enables us to specify the transactional
parts of process specifications.

Concurrent-Horn subset of CTR. Implication p ← q

is defined as p ∨ ¬q. The form and the purpose of the im-
plication in CTR is similar to that of Datalog: p can be
thought of as the name of a procedure and q as the defini-
tion of that procedure. However, unlike Datalog, both p and
q assume truth values on execution paths, not at states.

More precisely, p← q means: if q can execute along a
path 〈s1, ..., sn〉, then so can p. If p is viewed as a subroutine
name, then the meaning can be re-phrased as: one way to
execute p is to execute its definition, q.

The control flow parts of service choreographies are for-
mally represented using concurrent-Horn goals and concur-
rent Horn rules. A concurrent Horn goal is:

• any atomic formula is a concurrent-Horn goal;

• φ ⊗ ψ, φ | ψ, and φ ∨ ψ are concurrent-Horn goals, if
so are φ and ψ;

• ¯φ is a concurrent-Horn goals, if so is φ.

A concurrent-Horn rule is a CTR formula of the form
head← body, where head is an atomic formula and body
is a concurrent-Horn goal.

Observe that the definition of concurrent-Horn rules and
goals does not include the connective ∧. In general, ∧ repre-
sents constrained execution, which is usually hard to imple-
ment, since constraints must be checked at every step of the
execution. If a constraint violation is detected, a new exe-
cution path must be tried out. In contrast, the concurrent-
Horn fragment of CTR is efficiently implementable, and
there is an SLD-style proof procedure that proves concurrent-
Horn formulas and executes them at the same time [6].

The efficiency gap between concurrent-Horn execution and
constrained execution is the main motivation for our results.
In a previous work by one of the authors [7], it was shown
that for a certain class of constraints, formulas of the form
ConcurrentHornGoal ∧ Constraints, have an equivalent
concurrent-Horn representation (which, therefore, does not
use the connective ∧). This enabled the use of the proof the-
ory for Horn CTR as a means of obtaining a linear run-time
scheduling algorithm (as opposed to, for example, exponen-
tial run-time scheduling in [18, 19]).

In the present work, we consider a larges class of con-
straints than in [7], and this precludes the strategy used in
[7]. We can still borrow some of the ideas from that early
work and transform ConcurrentHornGoal ∧ Constraints

into a conjunction that uses a smaller set of special kind
of constraints. Although this conjunction cannot be further
reduced to a concurrent Horn goal, we extend the proof the-
ory of CTR to obtain a gain similar to [7]. Furthermore,
we eliminate the need for having to compile away certain
precedence constraints, which in [7] were handled in an ex-
pensive way. Instead, these constraints are now handled by
an extended proof theory.

Elementary updates. We complete our informal intro-
duction to CTR by explaining how execution of (some) for-
mulas may actually change the underlying database state.
Most of the machinery has already been introduced (albeit
very informally). What is missing is the notion of elemen-
tary updates.

In CTR, elementary updates are represented by ordinary
atomic, variable-free formulas. Syntactically, CTR does not
distinguish elementary updates in any way, but the user may
want to do so by adopting a syntactic convention (e.g., a
convention could be that insert.p(t) represents the act of
insertion of tuple t into the relation p).

What distinguishes elementary updates is their seman-
tics. Through some black magic, called transition oracle,
CTR arranges that each elementary updates is always true
along certain arcs, i.e., paths of the form 〈s1, s2〉. Infor-
mally, one can think of an elementary update as a binary
relation over states. For instance, if 〈s1, s2〉 belongs to the
relation corresponding to an elementary update u, it means
that u can cause a transition from state s1 to state s2. Note
that an update can be non-deterministic (any one of a num-
ber of alternative state transitions might be possible) and it
is possible for an update to be inapplicable in certain states
(for instance, delete.p(t) may be applicable only if p(t)
is true in the current state).
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This mechanism is very general. It accounts for a wide
variety of elementary state changes: from simple tuple in-
sertions and deletions, to relational assignments, to updates
performed by legacy programs, to whatever workflow ac-
tivities might do. The connectives of CTR are then used
to build more complex updates from the elementary ones
and then to combine these complex updates into even more
complex update programs. This process of building CTR
programs from the ground up is very natural and powerful.
The reader is referred to [3, 5, 6] for concrete examples.

4. MODELLING SERVICES WITH CTR
We now use CTR to represent the control flow, constraints,

and the data flow aspects of service choreographies.

4.1 Control Flow
In [7], it was shown that concurrent Horn goals are natu-

ral formalizations of so called structured control flow graphs.
Nodes in such graphs can be represented by atomic formulas
with parameters that are used for representing data flow.
When concrete values are substituted for the parameters,
these formulas act as elementary state transitions of CTR
(see the end of the previous section). The connective ⊗
represents sequential composition of interactions and is re-
flected by the arcs connecting adjacent nodes. The connec-
tive | is used to specify interactions that can be done in
parallel; it is represented by the AND-split nodes in the
graph. Classical disjunction ∨ represents non-deterministic
choice and corresponds to the OR-split nodes in the graphs.
Transition conditions between adjacent nodes are modeled
as queries that are sequentially composed with the formu-
las that label the nodes in question. Subworkflows (or com-
plex interactions in service choreography—see Section 2) are
modeled with rules. The head of such a rule represents the
subworkflow’s name (the name of a shaded box in Figure 2)
and the body represents the subgraph corresponding to the
subworkflow.

In this paper we model not only control flow but also
data flow, so the nodes in the control graph are no longer
propositions, but predicates with variables. These variables
is one mechanism for specifying the data flow. Other data
exchanges may happen through the database state. In this
case, the producer inserts a data item into the shared database
state, and the consuming interaction retrieves it. To illus-
trate, we use CTR to represent the flow of control and data
for our running example (cf. Figures 2 and 4).

The CTR representation (1) uses a special proposition,
path, to indicate optional actions. It is defined as φ ∨ ¬φ,
for some (does not matter which) formula φ. This means
that path is true on all possible execution paths. It is a
counterpart of the proposition “true” in classical logic. The
proposition path will also be used to represent temporal
constraints in our framework.

One can see that in (1) rules are used to represent sub-
workflows and variables (such as Order#) to pass data among
choreography interactions. Other instances of data flow,
such as passing the credit card number from give CC to
partial refund is done through the underlying state: the
credit card number is inserted into the state by give CC
and queried by partial refund.

4.2 Events and Constraints

place order(Order#, Price) ←
( ( delivery(Order#) ⊗ (refund(Order#) ∨ path) )
| ( security(Order#, Price) ∨ path )
| pay(Order#, Price)

) ⊗ (rebate(Order#) ∨ path) ⊗ end
security(Order#, Price) ←

give guarantor(Order#) ∨
( give CC(Order#, CC#)⊗

credit limit(CC#, Limit) ⊗ Limit > Price )
pay(Order#, Price) ←

pay chq(Order#, Price) ∨ pay CC(Order#, Price)
refund(Order#) ←

return(Order#) ⊗ partial refund(Order#)
partial refund(Order#) ←

( payment(Order#, cc, CC#)⊗
refund amount(Order#, Amount)⊗
issue credit CC(CC#, Amount) )

∨
( payment(Order#, cheque, Cheque#)⊗
refund amount(Order#, Amount)⊗
send check(Order#, Amount) )

give CC(Order#, CC#) ←
insert.payment(Order#, cc, CC#)

pay chq(Order#, Price) ←
get cheque(Price, Cheque#)⊗
insert.payment(Order#, cheque, Cheque#)

pay CC(Order#, Price) ←
payment(Order#, cc, CC#) ⊗ charge(CC#, Price)

(1)

In process-oriented information systems, tasks are typi-
cally modeled in terms of their externally observable events,
such as start , commit , precommit , abort, terminated, etc.
Such events can be directly incorporated as nodes in a con-
trol flow graph. (For brevity, our running example collapses
all significant events for the same task into one event.) Tem-
poral and causality constraints among nodes of the graph
are then expressed in terms of these events. For simplicity,
we restrict choreographies to be non-iterative, which means
that we do not use recursive CTR rules. This generalizes
easily to iterative processes and recursive rules as long as
the constraints do not involve the events that occur inside
the loops.

Definition 4.1 (Assumptions). We make the following
assumptions, which simplify the discussion, but do not limit
the generality of the approach.

• No significant event occurs twice during the execution.

• Each significant event is represented as an elementary
update that applies in every state.

The first assumption does not limit generality, since we are
dealing with non-iterative processes and can always rename
different occurrences of the same type of event. The second
assumption means that we require each significant event to
leave a footprint in the underlying database state. This is
commonly done by maintaining a system log where foot-
prints are recorded. 2

The first assumption above translates into the following unique
event property.

Definition 4.2 (Unique Event Property). A concurrent-
Horn goal G has the unique event property if and only if ev-
ery significant event occurs at most once in every execution
of G. In such cases, we shall also say that G is a unique-
event goal. 2

Unique-event goals can be recognized in linear time in the
size of the goal. It is easy to see that the unique event
property implies the following:
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• If G = E1 ⊗E2 is a unique-event goal and α occurs in
E1 then it cannot occur in E2.

• If G = E1 | E2 is a unique-event goal and α occurs in
E1 then it cannot occur in E2.

• If G = E1 ∨ E2 then G is a unique-event goal if and
only if so are both E1 and E2.

In the rest of this paper, all concurrent-Horn goals are as-
sumed to have the unique event property.

Transaction Logic can express a wide variety of tempo-
ral constraints [4], but in this paper we are looking for sets
of constraints that are general enough to be used for ser-
vice policies and client contracts and yet the computational
complexity of reasoning about such constraints must be bet-
ter than what follows from known results. In [7] we studied
reasoning about set of constraints, which subsume Singh’s
Event Algebra [18]. In this paper, we extend this set to
cover all constraints of the DecSerFlow language [19]. Us-
ing these constraints we can specify that one task must start
before some other task, that some task must start right after
another one has finished, that execution of one task causes
some other task to be executed or not executed, etc. The
DecSerFlow constraints [19] are believed to be sufficient for
the needs of process-aware information systems.

We specify all significant events in the system as formu-
las drawn from a set denoted by EVENT . Unlike [7], we use
predicates with variables— not just propositions—to repre-
sent control and data flow. In [7], the events could be simple
propositions, but in our case they are existentially quantified
atomic formulas of the form

∃DataF lowV ars eventName(DataF lowV ars)

Here eventName is the event (or interaction) that is sup-
posed to happen (or not happen), and DataFlowVars are
the data flow parameters used in modeling this event (see
(3), for example).

Definition 4.3 (Constraints). The basic building blocks
of CONST R are formulas of the form path⊗e⊗path, path⊗
e, and e ⊗ path, where e ∈ EVENT . Then the following
constraints form the constraint algebra CONST R:

1. Primitive constraints: If e ∈ EVENT then path⊗e⊗
path (event e must happen) and ¬(path ⊗ e ⊗ path)
(event e must not happen) are primitive constraints in
CONST R. For convenience we use a shorthand nota-
tion Oe for path ⊗ e ⊗ path. Then we say that Oe is
a positive primitive constraint and ¬Oe is a negative
primitive constraint.

2. Immediate serial constraints: If e1, ..., en ∈ EVENT ,
then path ⊗ ¯(e1 ⊗ · · · ⊗ en) ⊗ path (events e1, ..., en

must happen next to each other with no other events
in-between) is a (positive) immediate serial constraint
in CONST R. We use the shorthand O¯ (e1 ⊗ · · · ⊗ en)
to represent path⊗ e1 ⊗ · · · ⊗ en ⊗ path.

This type of constraints is quite hard to enforce, and
it was not allowed in [7]. We will see an interesting use
for such constraints in our running example.

3. Serial constraints: If s1, ..., sn ∈ CONST R are posi-
tive primitive constraints or positive immediate serial
constraints, then s1 ⊗ · · · ⊗ sn ∈ CONST R is a serial
constraint. We will also sometimes call constraints of

the form Oa ⊗ Ob plain serial constraints (as opposed
to the immediate ones).

4. Complex constraints: If C1, C2 ∈ CONST R then so
are C1 ∧ C2, and C1 ∨ C2.

Nothing else is in CONST R. 2

To get a better picture of what can be expressed using
CONST R, we show some examples.

• Oe ∧ Of — events e and f must both occur (in any order).

• ¬Oe∨¬Of — it is not possible for e and f to happen together.

• ¬Oe ∨ Of — if event e occurs, then f must also occur (be-
fore or after e). This can be more naturally represented using
implication: Oe → Of .

• ¬Oe∨ (Oe⊗Of) — if event e occurs, then f must occur later.
Equivalently: Oe → (Oe ⊗ Of).

• ¬Of ∨(Oe⊗Of) — if event f has occurred, then event e must
have occurred some time prior to that.

• ¬Oe∨¬Of ∨ (Oe⊗Of) — if both e and f occur, then e must
come before f . Equivalently: (Oe ∧ Of) → (Oe ⊗ Of).

• ¬Oe ∨ O ¯ (e ⊗ f) — if event e occurs, then f must occur
right after e with no event in-between.

• ¬Ok ∨ ¬Od ∨ O ¯ (k ⊗ d) — if k and d both occur then
d must happen right after k with no other event in-between.
Equivalently: (Ok ∧ Od) → O ¯ (k ⊗ d)

It was also shown in [7] that the constraints in CONST R

(without the immediate serial constraints) can be converted
to the following normal form:

∨i(∧jserialConstri,j) (2)

where each serialConstri,j is either a primitive constraint
or a serial constraint composed of two positive primitive
constraints. This result generalizes to the constraints of
the form O ¯ (...) quite easily, because any immediate se-
rial constraint of the form O ¯ (a ⊗ b ⊗ c) is equivalent to
O ¯ (a ⊗ b) ∧ O ¯ (b ⊗ c). Therefore, any immediate se-
rial constraint can be replaced with a conjunction of binary
immediate constraints.

Although Definition 4.3 does not say that CONST R is closed
under negation, it was shown in [7] that (without the imme-
diate serial constraints) it is. This makes it possible to ex-
press some constraints easier than otherwise. For instance:

• ¬(Oe ⊗ Of) — it is not possible for f to occur after e (and
for e before f). Without direct negation of a serial constraint,
this would be much more complex: ¬Oe ∨ ¬Of ∨ (Of ⊗ Oe).

• ¬(Oe ⊗ Of ⊗ Og) — if e happens and then f , then g cannot
come later.

The result of [7] that CONST R is closed under negation can
be extended to include constraints of the form O¯ (...), but
this requires a new construct: existential events, denoted
O?i, for i = 1, ..., n, .... A constraint of the form O?i ⊗ Ob

means that some event from EVENT must occur before b. A
constraint (O?i ⊗ Ob) ∧ (Oa ⊗ O?i) means that some event
must occur before b and the same event must occur after a.
That is, it must occur in-between a and b. By the unique
event property, this event must be different from both a and
b and, therefore, a cannot be immediately followed by b.

We will now extend EVENT with symbols ?1, ?2, ..., where
each ?i represents some concrete, but unknown event from
EVENT . With this in mind, we can see that negation of any
binary immediate serial constraint O ¯ (a ⊗ b) is equivalent
to a constraint where negation is applied only to primitive
events: ¬Oa ∨ ¬Ob ∨ (Oa ⊗ O?i) ∨ (O?i ⊗ Ob), for some ?i
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that does not occur elsewhere in CONST R. Since general
immediate serial constraints can be split into binary ones, it
shows that CONST R is closed under application of negation
to immediate constraints.

We can now show that CONST R is sufficiently expressive to
formalize the policy and contract constraints for our running
example (see Figure 3). For readability, we use implication
instead of the disjunctive form (2):

1. ∃ Order# ∃ Price
(

(Odelivery(Order#) ⊗ Opay CC(Order#, Price)) →
(Osecurity(Order#, Price) ⊗ Odelivery(Order#))

)

2. ∃ Order# ∃ Price
(

(Odelivery(Order#) ⊗ Opay chq(Order#, Price)) →
O ¯ (delivery(Order#) ⊗ pay chq(Order#, Price))

)

3. ∃ Order# ∃ Price
(

Orebate(Order#) →
(Opay(Order#, Price) ⊗ Odelivery(Order#))

)

4. ∃ Order# ∃ Price
(

Odelivery(Order#) ⊗ Opay chq(Order#, Price)
)

(3)

4.3 Data Flow and Conditional Control Flow
As explained in Section 4.1 and illustrated using the run-

ning example (see the representation (1)), data flow in CTR
can be represented through shared variables or through the
underlying database state. This captures all the usual forms
of data flow in real systems, which occur through passing of
parameters, messages, and through a shared persistent state.

From the service enactment point of view, data flow in-
duces certain order constraints on the interactions speci-
fied in the choreography interface. These constraints can be
culled directly from the data flow graph, and added to the
set of constraints that constitute the policy of the service
and the contract requirements of the user.

These constraints are constructed as follows. Consider
an arc in the data flow graph that leads from node f to
node g and suppose f(U) and g(V) are the predicates (with
the associated variables) that represent these nodes in CTR
(see the representation (1) for a concrete example). The
constraint that is induced by that arc has to state that if
both events ∃U f(U) and ∃V g(V ) occur then the first must
precede the second. Denoting the above events with f and g
respectively, we can write the above as ¬Of ∨ ¬Og ∨ (Of ⊗
Og). Note that this is a conditional constraint. For instance,
in our example the client may never provide a credit card
number and, in this case, the interaction partial refund
does not need to wait for the interaction pay CC.

In practice, we only need to add the constraints that cor-
respond to the new arcs in the data flow graph. In Figure 4,
these are the depicted as non-shaded arcs. This is because
the constraints that correspond to the arcs that were inher-
ited from the control flow graph (the shaded arcs on Fig-
ure 4) are already accounted for implicitly by the control
flow graph itself.

Thus, the data flow constraints for our running example
are as follows:

1. ∃ Order# ∃ CC# ∃ Price
(

(Ogive CC(Order#, CC#) ∧ Opay CC(Order#, Price)) →
(Ogive CC(Order#, CC#) ⊗ Opay CC(Order#, Price))

)

2. ∃ Order# ∃ Price
(

(Ogive CC(Order#, Price) ∧ Opartial refund(Order#)) →
(Ogive CC(Order#, Price) ⊗ Opartial refund(Order#))

)

Conditions in the control graph can take many forms (e.g.,
linear, equality) and are typically over some specific domains
(e.g., integer, real, finite). In control flow graphs, the condi-
tions attached to arcs usually take the form of tests on the

values of the variables that are passed between the nodes.
In general, these conditions can be checked only at run time,
during enactment, but in some cases inferences can be made
ahead of time. For instance, if the conditions are constraints
for which solvers are available (e.g., linear constraints over
the domain of reals) then certain parts of the control graph
can be eliminated if we can show that the set of conditions
attached to the arcs of some branch is unsatisfiable.

We now describe an algorithm, which traverses the con-
trol flow graph and cuts off the parts that cannot be en-
acted because their associated constraints are cumulatively
unsatisfiable. The algorithm is based on a subroutine, called
CheckNode, which operates directly on the underlying con-
trol flow graph; this graph is not passed as a parameter. The
input parameters are a node, N , in the graph and a con-
straint, which represents the cumulative constraint on the
arcs that lead from the starting node in the graph to N . The
algorithm starts simply by calling CheckNode(startNode,

true) and when this call returns the control flow graph is
reduced by cutting off dead branches.

The algorithm assumes that there is a constraint solver for
the conditions attached to the arcs; it is invoked by calling a
subroutine simplify, which takes a constraint and returns an
equivalent constraint in a simplified form. If it detects that
the input constraint is unsatisfiable, it returns false. Note
that each node in the control graph is visited at most as
many times as there are incoming edges. So, the algorithm
is linear in the size of the graph. The real work is performed
by the constraint solver when simplify is called. The com-
plexity of this operation depends on the complexity of the
constraints.

The other two operations in the algorithm delete parts
of the underlying graph. The operation deleteSubgraphAt
removes the part of the graph that starts at node N . This
is done by first deleting the edges of that subgraph and then
deleting the isolated nodes (i.e., nodes that have no adjacent
edges). The operation deleteBranchAt(N,S) takes an OR-
split node N and a successor node S. The successor node
determines the OR-branch at node N to be deleted. The
branch is deleted from node N to the corresponding OR-
join node. The deletion is done similarly to deletion of a
subgraph: first the edges of the branch are removed and
then the isolated nodes are eliminated.

Algorithm CheckNode(N, Constr)

1. if successors(N) == ∅ then return Constr endif
2.

3. foreach successor S of N do
4. // c is the condition on the arc <N,S>

5. cond[S] = checkNode(S, Constr ∧ c)

6. endfor
7.

8. if N is not an OR-split node then
9. c = simplify(∧S cond[S])

10. if c == false then
11. deleteSubgraphAt(N)
12. return false

13. else return c

14. endif
15. else // N is an OR-node

16. foreach successor S of N do
17. c[S] = simplify(cond[S])
18. if c[S] == false then
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19. deleteBranchAt(N,S)
20. endfor
21. return ∨S c[S]

22. endif

Figure 5 shows the result of applying CheckNode to the
control flow graph 5(a). Although the conditions on the
branch b-g-h in the graph are satisfiable, the conditions
on b-c-e-f-h and b-c-d-f-h are (separately) unsatisfiable.
Thus, the b-branch of node a is deleted. The same happens
to the i-branch of a. On the other hand, the m-branch of
node a is satisfiable, so it is left alone. The resulting graph
with the dead parts cut off is shown in Figure 5(b).

Figure 5: (a) A control-flow graph with conditions
attached to arcs. (b) Reduced graph with dead
branches eliminated.

5. REASONING ABOUT CHOREOGRAPHY

AND CONTRACTS
The problem we are now considering is scheduling the

choreography interactions in a way that satisfies both the
service policy and the client contract requirements. For-
mally, these problems can be formulated as follows.

Let C be a set of constraints from CONST R, which includes
the policy, contract, and data flow constraints, as discussed
in Section 4. Let G be a concurrent-Horn goal that rep-
resents the control flow graph of the service choreography,
and let R be the set of concurrent-Horn rules that define the
subworkflows of the control flow graph. Then

1. Contracting: The problem of determining if con-
tracting for the service is possible is the problem of
finding out if there is an execution of the CTR formula
G∧C given the set of definitions R, i.e., checking that
there is a path s1, ..., sk such that R, s1, ..., sk |= G∧C.
This means that for any model M of R, G ∧ C is true
in M on the path s1, ..., sk.8

2. Enactment: The problem of enactment is formally
defined as finding a constructive proof that R, s1, ..., sk |=
G∧C for some path s1, ..., sk. A constructive proof is

8Due to space limitation, we define this only informally. The
reader is referred to [6] for the details.

a sequence of inference rules of CTR that starts with
an axiom and end with the formula G ∧ C.

Each step in such a proof is either a query that is
checked against the current state of the system or a
transition, which changes the current state. In our
case, queries are the conditions attached to the arcs
in the control flow graph and transitions are the in-
teractions in the service choreography interface that
correspond to the nodes of the graph.

Thus, each such proof gives us a way to execute the
choreography so that all constraints are satisfied.

A more complete version of the enactment problem is
finding all such proofs—at least, all different sequences
of interactions that are extracted from the proofs.

In this paper, we solve the above problems as follows.
In the first phase, we translate the formula G ∧ C into an
equivalent formula ∨i(Gi ∧j serialConstri,j), where each
serialConstri,j is either an immediate serial constraint or a
(plain) serial constraint, and Gi is a concurrent-Horn goal.
In this step we get rid of primitive constraints and distribute
disjunctions. This transformation builds on the results from
[7]. Each step in this transformation can be viewed as an
inference rule in a proof theory. We present these transfor-
mation steps in Section 5.1. In the second phase, we ex-
tend the proof theory of Horn CTR to formulas of the form
G∧j serialConstrj , which result from the Phase 1 transfor-
mation, and then use that theory on these formulas. If we
find a proof, it means that enactment of the service is pos-
sible. This extended proof system of Phase 2 is presented in
Section 5.2.

In Phase 2, finding a proof and thus a possible enactment
takes time linear in the size of the execution path. Unfortu-
nately, [7] shows that the problems of contracting and enact-
ment are NP-complete, and this issue arises in Phase 1: the
transformation is worst-time exponential in the size of the
largest number of disjuncts in a constraint in C. However,
this is still better than the standard verification techniques,
which are exponential in the size of G ∪ C [14].

5.1 Phase 1: Transformation
The series of equivalence transformations, below, elimi-

nates disjunctions and primitive constraints by “compiling”
them into the concurrent-Horn goal. More precisely, we take
formulas of the form G∧C, where C = ∨i(∧jconstri,j) and
each constri,j is either a primitive constraint, an immedi-
ate serial constraint, or a plain serial constraint and trans-
form them into equivalent formulas of the form ∨i(Gi ∧j

serialConstri,j), where serialConstrj is an immediate se-
rial constraint or a plain serial constraint (no primitive con-
straints and disjunctions are distributed through CTR goals).
Although each transformation is an equivalence, we will use
the symbol ` to indicate the direction of the transformation
and the fact that we treat these transformations as inference
rules.

Definition 5.1 (Applying Complex Constraints).
Let T be formula of the form G∧C where G is concurrent-
Horn goal, and C is in the normal form. Then:

T ∧ (C1 ∨ C2) ` (T ∧ C1) ∨ (T ∧ C2)
T ∧ (C1 ∧ C2) ` (T ∧ C1) ∨ (T ∧ C2)
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Definition 5.2 (Applying Primitive Constraints).
Let α, β ∈ EVENT . Then:

(α ∧ Oα) ` α

(β ∧ Oα) ` ¬path if α 6= β

(α ∧ ¬Oα) ` ¬path
(β ∧ ¬Oα) ` β if α 6= β

We remind that ¬path means inconsistency so if a conjunct
reduces to ¬path then the whole conjunction is inconsistent
and if a disjunct is found to be inconsistent then it can be
eliminated.

Let T and K be concurrent-Horn goals and let σ stand for
Oα or ¬Oα. Then we have the following transformations:

(T ⊗ K) ∧ Oα `

{

(T ∧ α) ⊗ K if α occurs in T

T ⊗ (K ∧ α) if α occurs in K

T ⊗ K ∧ ¬Oα ` (T ∧ ¬Oα) ⊗ (K ∧ ¬Oα)

(T | K) ∧ α `

{

(T ∧ α) | K if α occurs in T

T | (K ∧ α) if α occurs in K

(T | K) ∧ ¬Oα ` (T ∧ ¬Oα) | (K ∧ ¬Oα)

¯T ∧ σ ` ¯(T ∧ σ)

(T ∨ K) ∧ σ ` (T ∧ σ) ∨ (K ∧ σ) 2

The above series of transformations either leads to ¬path

(i.e., inconsistency) or to a formula of the form ∨i(Gi ∧j

serialConstri,j), where each serialConstri,j is either an im-
mediate serial constraint or a (plain) serial constraint. If the
result is ¬path, then enactment is not possible. If the re-
sult is a formula of the form ∨i(Gi ∧j serialConstri,j), then
scheduling might be possible. To check this, we need to use
the inference rules introduces in the next section and ap-
ply them to each disjunct Gi ∧j serialConstri,j separately.
These inference rules extend the proof theory for Horn CTR
to formulas of the form G ∧ C, where C is a conjunction of
serial constraints.

5.2 Phase 2: Extended Proof Theory
This section develops a proof theory for formulas of the

form G∧jserialConstrj . This is done in two steps. First, we
check constraints for internal consistency and also eliminate
some redundancy. If the constraints are consistent, then we
go to step 2, which is based on inference rules. The first step
is described in Section 5.2.1 and the second in Section 5.2.2.

5.2.1 Constraint Graphs

Let C be the set of constraints of the form ∇x1⊗∇x2⊗...⊗∇xn

or ∇¯(x1⊗x2...⊗xn), where xi represents an event from
EVENT (including possibly the existential events ?i).

Definition 5.3 (Consistency of Constraints). The set of
constraints C is said to be consistent if there is a path s1, ...,
sn of states that satisfies all constraints in C. (See Section 3
for an informal account of the semantics.) 2

To help us harness the complexity of the interaction among
the different types of serial constraints, we introduce the no-
tion of a constraint graph.

Definition 5.4 (Constraint Graph). A constraint graph
for a set of serial (immediate and plain) constraints C is
a directed graph where the nodes represent the events from
EVENT appearing in the constraints. The graph has two kinds
of edges: dashed and solid; they are defined as follows:

Edgessolid = {(xi, xj) | i 6= j, ∇¯(xi⊗xj) is in C}
Edgesdashed = {(xi, xj) | i 6= j, ∇xi⊗∇xj is in C}

Note that edges are defined using binary constraints, since
more general serial constraints can be split into the binary
ones. Graphically, an arc from xi to xj is solid if (xi, xj) ∈
Edgessolid, and dashed if (xi, xj) ∈ Edgesdash. 2

Figure 6 gives an example of a constraint graph for the
constraints set {∇¯ (c⊗ d⊗ e), ∇¯ (f ⊗ g), ∇a⊗∇b⊗∇d,
∇h ⊗ ∇i ⊗ ∇k, ∇e ⊗ ∇?1 ⊗ ∇k}. Note that the last con-
straint involves an existential event ?1. These events were
introduced in Section 4.2 to express constraints where some
events are precluded from immediately following others.

Figure 6: A constraint graph.

Definition 5.5 (Consistency of Constraint Graphs).
A constraint graph is consistent if and only if it was gener-
ated from a consistent set of constraints. 2

We identify several inconsistency patterns below. It turns
out that a constraint graph is consistent if and only if it has
no inconsistency patterns.

Inconsistency pattern 1. Constraint graph has a cycle.
Figure 7(a) shows a set of constraints {∇¯(a⊗c),∇¯(c⊗e),

∇e⊗∇b⊗∇a, ∇d⊗∇a}, whose graph has a cycle. A cycle in
a constraint graph implies that every execution that satisfies
the constraints must have multiple occurrences of the same
event, which violates the unique event property.

Figure 7: Examples of inconsistent patterns: (a)
Pattern 1; (b) Pattern 2; (c) Pattern 3.

Inconsistency pattern 2. More than one solid arc goes
into or out of a node.

Figure 7(b) illustrates this pattern for the constraints set
{∇¯(a⊗b),∇¯(a⊗c), ∇d⊗∇a}.

Constraints whose graphs have such a pattern cannot be
satisfied. For instance, in Figure 7(b) both c and b must
occur right after a. Since b and c are distinct tasks, the this
cannot happen because of the unique event property.

Inconsistency pattern 3. Any pair of nodes connected by
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a solid path (i.e. a path that consists solid arcs only) and
also by another path (solid or not) of length two or more.

Figure 7(c) illustrates this pattern for the set of constraint
{∇¯(c⊗d⊗b), ∇¯(a⊗e), ∇c⊗∇a, ∇e⊗∇b}.

Pattern 3 means that the tasks on the solid path cannot
be executed without being interrupted by the tasks on the
second path. This violates the meaning of solid constraint.

Lemma 5.6. The constraint graph has no inconsistency
patterns iff the corresponding set of constraints is consistent.
Proof (Sketch): Take a topological sort of the constraint
graph, which exists since the graph is acyclic (by the absence
of inconsistency pattern 1 above). This topological sort may
not be a valid execution of the events because the constraints
of the form ∇¯(a⊗b) are not necessary satisfied—there is
no guarantee that b occurs right next to a. However, taking
advantage of the fact that patterns 2 and 3 do not occur, we
can transform the topological sort into another topological
sort by moving b backwards until it is right next to a. Doing
so for every violated immediate serial constraint eventually
creates a topological sort that satisfies all constraints. 2

Definition 5.7 (Reduced Consistent Constraint Graph).
A consistent constraint graph is reduced if it does not have
a pair of nodes that are connected by a dashed arc and some
other path. 2

Lemma 5.8. Any consistent constraint graph has an equiv-
alent reduced graph.

Figure 8 shows how a consistent graph can be reduced by
deleting dashed arcs.

Figure 8: (a) A consistent graph; (b) Its reduction.

Definition 5.9 (Exclusive Nodes). An exclusive node is
any node that occurs on a solid path in a consistent con-
straint graph, except the node which is at the beginning of
that path. 2

Definition 5.10 (Well-formed Constraint Graph). A con-
straint graph is well-formed if it is consistent, reduced, and
has no dashed arcs pointing to an exclusive node. 2

Definition 5.11 (Well-formed Set of Constraints). A well-
formed set of constraints is a set of constraints whose con-
straint graph is well formed. 2

Lemma 5.12. Any consistent set of constraints has an
equivalent set of well-formed constraints.
Proof (Sketch): A reduced consistent constraint graph can
be transformed into a well-formed constraint graph as fol-
lows. Any dashed arc that points to an exclusive node in
such a graph can be redirected to point to the head of the
solid path of that exclusive node. Repeating this for every
dashed arc that violates well-formdness eliminates these vi-
olations. This is illustrated in Figure 9 for the constraints:
{∇¯(a⊗b⊗c), ∇d⊗∇b}. 2

Figure 9: (a) Consistent graph; (b) an equivalent
well-formed graph.

5.2.2 Extended Inference System

First, we recall the notion of hot components of a formula
from [6]: hot(ψ) is a set of subformulas of ψ which are “ready
to be executed.” This set is defined inductively as follows:

1. hot(ψ) = ψ, if ψ is an atomic formula

2. hot(ψ ⊗ φ) = hot(ψ)

3. hot(ψ | φ) = hot(ψ) | hot(φ)

4. hot(ψ ∨ φ) = ψ ∨ φ

Let ψ be a concurrent serial goal and C a set of constraints
with a well-formed constraint graph.

Definition 5.13 (Enabled Components). The set of en-
abled components of a set of constraints C is as follows: en-
abled(C) = {x | x is a root node of the graph of C or x is
not in C} 2

Definition 5.14 (Eligible Components). The set of eli-
gible components of CTR goal ψ with respect to a set of
constraints C is defined as follows:

eligible(ψ) =











x, if x ∈ hot(ψ) ∩ enabled(C)

and x is an exclusive node in C

hot(ψ) ∩ enabled(C), otherwise

It is easy to see that eligible(φ) ⊆ hot(φ). 2

Let P be a set of concurrent Horn rules. The extended
proof theory for constrained CTR goals manipulates expres-
sions of the form P, D --- ` (∃) ψ, called sequents, where P
is a set of Horn CTR rules and D is the underlying database
state. The informal meaning of a sequent is that the trans-
action (∃) ψ, which is defined by the rules in P, can suc-
ceed from D, i.e., it can execute along a path starting at
database D. Each inference rule has two sequents, one above
the other, and has the following interpretation: If the up-
per sequent can be inferred, then the lower sequent can also
be inferred. As in classical resolution, any instance of an
answer-substitution is a valid answer to a query.

The extended inference system is almost identical to the
inference system for Horn CTR in [6] except for two subtle
differences:

1. In the extended system, the inference rule 3 operates
on eligible occurrences of atomic formulas, while in the
inference system of [6] it was operating on a larger set
of hot occurrences.

2. Rules 1 and 3 also modify the set of constraints (which
was absent in [6]).
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Note that the new system reduces to the old one when the
set C of constraints is trivial.

Axioms: P, D ---` (), for any database state D.

Inference Rules: In rules 1-4 below, σ denotes a substi-
tution, ψ and ψ′ are concurrent serial goals, C and C′ are
constraint sets with well-formed constraint graphs, D, D1,
D2 denote database states, and a is an atomic formula in
eligible(ψ).

1. Applying transaction definitions : Let b ← β be a rule
in P, and assume that its variables have been renamed
so that none are shared with ψ. If a and b unify with
the most general unifier σ then

P , D ---` (∃) (ψ′ ∧ C′) σ

P , D ---` (∃) ψ ∧ C

where ψ′ is obtained from ψ by replacing a hot occur-
rence of a by β, and C′ is constructed as follows. Let
Y1, ..., Yk be the events mentioned in C, which appear
in β. Then

• for each arc from a to a node X in the graph of C,
delete the arc and replace it with the same kind
of arc form each Yi to X.

• for each arc from a node X in C to a, delete the
arc and replace it with the same kind of arc form
X to each Yi.

2. Querying the database: If (∃)aσ is true in the current
state D and aσ and G′σ share no variables then

P , D ---` (∃) (ψ′ ∧ C) σ

P , D ---` (∃) ψ ∧ C

where ψ′ is obtained from ψ by deleting a hot occur-
rence of a.

3. Executing elementary updates : If aσ is an elementary
state transition from state D1 to D2 then

P , D2 ---` (∃) (ψ′ ∧ C′) σ

P , D1 ---` (∃) ψ ∧ C

where ψ′ is obtained from ψ and C′ from C by

(a) deleting an eligible (not just hot) occurrence of a.

(b) deleting all eligible occurrences of the existential
events of the form ?i. (Existential events were
defined in Section 4.2.)

4. Executing atomic transactions: If ¯α is a hot compo-
nent in ψ then

P , D ---` (∃) (α⊗ ψ′) ∧ C

P , D ---` (∃) ψ ∧ C

where ψ′ is obtained from ψ by deleting an eligible
occurrence of ¯α.

Theorem 5.15. The above inference rules are sound and
complete for proving constraint CTR goals from a set of
CTR Horn rules.

Proof (Sketch): Let G∧C be a constrained goal where G is
a concurrent Horn goal and C a set of serial constraints with
a well-formed constraint graph. We can transform proofs of
G into proofs of G ∧ C by delaying the inference rules that
apply to hot, but ineligible components of G.

6. BIRD’S EYE VIEW OF THE APPROACH
We now give a global view of the framework and its place

as part of the bigger picture of Semantic Web Services.

• The Web service designer starts to build Web service
choreography by drawing a control flow graph, a data
flow graph, and specifying service policy using a GUI
tool. It should be clear from comparing the represen-
tation of these components. In Figures 1, 2, and 3
with their CTR representation in (1), (3), and (4.3)
that the logical representations can be constructed au-
tomatically from an appropriately instrumented GUI
tool.

• The designer then uses the algorithm in Section 4.3
to find un-enactable parts of the control flow graph.
Rather than removing such parts, the algorithm should
probably alert the designer to a potential problem.

• The designer uses the CTR reasoner-based algorithm
of Section 5 to make sure that the control graph is
consistent with the service policies. At this point, the
design phase is complete and the service is ready.

• The client submits the contract requirements to ver-
ify that a contract is possible. As before, verification
is done using the CTR reasoner, as described in Sec-
tion 5.

This framework fits well with the overall vision of semantic
Web services, which, in addition, includes support for data
and process mediation, service discovery and composition,
negotiation, execution, and monitoring.

7. RELATED WORK
Relation to our previous work [7, 8] has already been dis-

cussed in the introduction.
Much of the work in the area of service contracting fo-

cuses on defining frameworks, models, and architectures (see
[15] for a survey) trying to capture different aspects and
phases of e-contracting, such as negotiation, contract es-
tablishment, enforcement, violation detection, monitoring,
legal aspects, etc. In our paper we use a simple yet re-
alistic and useful framework for e-contracting and solve a
concrete problem that arises in establishing of contracts and
enacting Web services. In this spirit, the work [11] is the
closest to our approach. Here the problem of checking the
compliance of business processes with business contracts is
described and both processes and contracts are represented
in a formal contract language (FCL) [10]. To compare, our
language for constraints is more expressive than FCL. For
instance, immediate serial constraints are outside of FCL.
Second, [11] essentially gives a semantic definition for com-
pliance, but no practical algorithm. In contrast, our work
provides a proof theory for the logic and a number of algo-
rithms and optimizations whose complexity is better than
the known results.

Workflow/Process modeling has seen growing interest with
the emergence of the area of process-aware information sys-
tems (PAIS) [9]. In [1] a set of workflow patterns is ana-
lyzed and [20] proposed a concrete language, YAWL, based
on these patterns. Since YAWL was a procedural language,
the same authors later proposed a constraint-based, declar-
ative language DecSerFlow [19]. As mentioned, our frame-
work includes all the constraints used in DecSerFlow. It
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integrates them with conditional control flows, data flows,
and provides reasoning mechanisms.

In process modeling, the main tools are Petri nets, process
algebras, and temporal logic, while model checking has been
often used for process verification. The advantage of CTR
over these approaches is that it is a unifying formalism that
integrates a number of process modeling paradigms ranging
from conditional control flows to data flows to hierarchical
modeling to constraints, and even to game-theoretic aspects
of multiagent processes (see, for example, [8]). Moreover,
CTR models the various aspects of processes in distinct
ways, which enabled us to devise algorithms with better
complexity than the previously known general techniques
from the model checking area. For instance, the complexity
in the decision problems considered in this paper is polyno-
mial in the size of the control graph and exponential in the
size of the constraints. In contrast, the approaches that are
based on Petri nets, process algebras, and temporal logics
are exponential in the size of the control graph (which they
encode as part of the set of constraints) [19, 17, 18, 2, 12].

8. CONCLUSIONS
We have formulated the problems of choreography, con-

tracting, and enactment for semantic Web services using the
formalism of Concurrent Transaction Logic (CTR). We pre-
sented several reasoning techniques, which make it possible
to decide if automatic contracting for a service is possible,
find a choreography that obeys the policy of the service and
the conditions of the contract, and then enact the service.
Apart from semantic Web, these results also apply to work-
flow scheduling. They extend the work of [7] by incorpo-
rating data flow, conditional control transitions, and extend
the set of allowed constraints. This work also makes contri-
bution to CTR itself by extending its proof theory to handle
constrained concurrent Horn goals. Furthermore, the frame-
work presented in this paper also applies to multi-party ser-
vice contracts.

One possible extension of our approach might be to in-
clude more expressive workflow patterns [1], which dynami-
cally create and synchronize multiple instances of subwork-
flows. Another direction is to identify subsets of constraints
for which the verification problem has a better complexity.
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