
Sum-Max Monotonic Ranked Joins for Evaluating Top-K
Twig Queries on Weighted Data Graphs∗

Yan Qi
Arizona State Univ.
Tempe, AZ 85287

yan.qi@asu.edu

K. Selçuk Candan
Arizona State Univ.
Tempe, AZ 85287

candan@asu.edu

Maria Luisa Sapino
†

University of Torino
Torino, Italy

mlsapino@di.unito.it

ABSTRACT
In many applications, the underlying data (the web, an
XML document, or a relational database) can be seen as
a graph. These graphs may be enriched with weights, asso-
ciated with the nodes and edges of the graph, denoting ap-
plication specific desirability/penalty assessments, such as
popularity, trust, or cost. A particular challenge when con-
sidering such weights in query processing is that results need
to be ranked accordingly. Answering keyword-based queries
on weighted graphs is shown to be computationally expen-
sive. In this paper, we first show that answering queries
with further structure imposed on them remains NP-hard.
We next show that, while the query evaluation task can be
viewed in terms of ranked structural-joins along query axes,
the monotonicity property, necessary for ranked join algo-
rithms, is violated. Consequently, traditional ranked join al-
gorithms are not directly applicable. Thus, we establish an
alternative, sum-max monotonicity property and show how
to leverage this for developing a self-punctuating, horizon-
based ranked join (HR-Join) operator for ranked twig-query
execution on data graphs. We experimentally show the ef-
fectiveness of the proposed evaluation schemes and the HR-
join operator for merging ranked sub-results under sum-max
monotonicity.

1. INTRODUCTION
Many types of data, including the web, XML documents

or relational databases, can be modeled as graphs. For in-
stance, in a relational database, each node can represent a
tuple in the database and links may represent the foreign key
relationships. Discover [26] and DBXplorer [3] are examples
of systems, built on top of relational databases, that view the
underlying relational database as a graph. In many appli-
cations, these graphs are also enriched by weights denoting

∗
Supported by NSF Grant “Archaeological Data Integration for the

Study of Long-Term Human and Social Dynamics (0624341)”
†
This work was done while the author was at ASU on sabbatical leave.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Figure 1: An example weighted data graph segment
from FICSR [38]; the weight of a given edge denotes
the amount disagreement on the corresponding as-
sertion in a given set of taxonomies to be integrated

application specific desirability/penalty measures, such as
popularity, trust, or cost. For example, in FICSR [38], the
data graph represents an integrated set of (potentially) con-
flicting data models and edge weights represent the amount
of disagreement between these models (Figure 1).

When data have weights, not all results are equally desir-
able: results need to be ranked according to the underlying
cost model. For instance, [23] presents an XML query lan-
guage extended with IR-related features, including weight-
ing and ranking. XRank [25] and ObjectRank [6] compute
PageRank [8] style ranking results for keyword-based (IR-
style) database queries. XSEarch [17], a search engine for
XML data, relies on extended information retrieval tech-
niques for ranking. Retrieval by information unit (RIU) [34],
BANKS-I [7], BANKS-II[30], and DPBF [19] recognize that
in many cases a single node is not sufficient to answer user
queries. Instead, given a query consisting of a set of key-
words, they try to find small subtrees (in a given weighted
graph) containing all the query keywords. Finding mini-
mal trees answering keyword queries on weighted graphs is
computationally expensive [34]. Since users are usually in-
terested in not all but top-k results, [34, 7, 30, 19] rely
on efficient heuristics and approximations for progressively
identifying the smallest k trees covering the given keywords.

While answering keyword-based queries on graph data
is useful in various application domains, structural re-
lationships between the data elements are also impor-
tant and may need to be considered along with query
keywords or tags [39]. In XML databases, for exam-
ple, query processors are designed to exploit the tree-
like structure of the XML data. In fact, many exist-

507

ing (binary or holistic) structural join operators, including
TwigStack/PathStack [9], iTwigJoin [14], and Stack-Tree-
Desc/Anc [4], are structurally-informed variants of the stan-
dard sort-merge join algorithm: they require that the data
nodes are available in a structurally sorted order before the
join operation can be performed. To implement structural
join operations efficiently, most XML query processors rely
on index structures based on structurally-informed node la-
beling schemes (such as Dietz’s labeling [18], which assigns
interval-labels to nodes in such a way that descendant nodes
have intervals that are contained within the intervals of their
ancestors). This enables checking the ancestor/descendant
relationships quickly. Such structural labeling and sorting
are especially feasible when the underlying data has a tree-
structure, but becomes non-trivial when the queries have to
be evaluated on graph-data.

When the results need to be ranked based on the edge
weights of the matches, the weight-order of the (sub)matches
becomes as important as their structural ordering. In the
literature, there are a number of ranked-join algorithms for
top-k queries [21, 13, 12, 22, 32]. These rely on weight-
sorted input streams for pruning unpromising matches. In
particular, [22] presents an NRA algorithm which (a) consid-
ers data sources which can provide results only in (progres-
sively) descending order of desirability and which (b) enu-
merates top-k desirable join results (but does not compute
output grades, which would be needed for combining joins
in a complex query plan) without having to access all the
data from these sources. A common assumption behind all
these algorithms, including [22], is that the function which
evaluates the score of combined results is monotonic. Yet,
as we see in Section 3, in the case of evaluating twig queries
on weighted data graphs, a non-redundancy property of an-
swers makes such a monotonicity assumption impossible.

1.1 Contributions of This Paper
In this paper, we develop top-k twig query evaluation

algorithms for weighted data graphs. In particular, we

• introduce the top-k twig query evaluation problem on
weighted data graphs, present a cost model for the
query answers, and prove that answering twig queries
on weighted graphs is NP-hard (Section 2);

• show that, while this can be viewed as ranked
structural-joins along query axes, the monotonicity
property, necessary for ranked-join algorithms [21, 22,
13, 12, 27, 33], is violated (Section 3);

• establish a sum-max monotonicity property and lever-
age this for a self-punctuating horizon-based ranked
join (HR-Join) operator (also in Section 3);

• use HR-Join for optimal or sub-optimal top-k twig-
query evaluation plans(Sections 3.4 and 4.2); and

• develop algorithms for progressive sub-result enumer-
ation. These generate streams of sub-matches, com-
bined using HR-Joins (Section 4).

In Section 5, we evaluate the effectiveness of the proposed
schemes. We provide an overview of the related literature
in Section 6 and present our conclusions in Section 7.

2. PROBLEM FORMULATION
In this section, we first formally pose the problem of

ranked twig query evaluation on weighted data graphs. We
then prove that the problem is NP-hard through a reduction
from the group Steiner tree problem.

(a)A[//C]//B/D (b) cost=17 (c) cost = 24

Figure 2: An example query twig and two matches
on a weighted graph: the first match with weight
17 is more desirable and should be enumerated and
ranked before the second result

2.1 Preliminaries
Data model. We use, G(V, E), to denote a node- and
edge-labeled directed graph. Furthermore, we use tag(v) to
denote the data-label corresponding to the data node v ∈ V
and cost(e) to denote the cost-label for edge e ∈ E.
Query statement. We model queries as twigs (i.e., tree
patterns), possibly described in an XML query language,
such as XPath [44]1 or XQuery [45]. Tree patterns can
be visualized as trees, where nodes correspond to tag-
predicates and edges correspond to a parent/child or an-
cestor/descendant axes (Figure 2(a)). Thus, a given query,
q, can be represented in the form of a node- and edge-labeled
tree, Tq(Vq, Eq), where tag pred(qv) denotes the tag predi-
cate2 corresponding to the vertex qv ∈ Vq and axis pred(qe)
denotes the axis predicate associated with the edge qe ∈ Eq.
Answer to a query. We define an answer to q over graph
G as follows (Figures 2(a) and (b)):

Definition 1 (Answer to q Over the Graph G).
An answer to query, q = Tq(Vq, Eq), over the data graph,
G(V, E), is a pair, r = 〈µnode, µedge〉, of mappings:

• µnode is a mapping from the nodes of the query
tree to the nodes of the data graph, such that given
qv ∈ Vq and the corresponding data node, µnode(qv),
tag(µnode(qv)) satisfies tag pred(qv).

• µedge is a mapping from the edges of the query tree
to simple paths in the data graph, such that given
qe = 〈qvi, qvj〉 ∈ Eq, the path µqe, from µnode(qvi)
to µnode(qvj), satisfies axis pred(qe). Let E denote
the set of edges used in the answer to q:

E = {e ‖ e ∈ µedge(qe) for a query edge qe ∈ Eq}.
E does not define a cycle. Note that a path consist-
ing of a single edge can satisfy both parent/child and
ancestor/descendant axes, while a multi-edge path can
satisfy only ancestor/descendant axes. �

Cost of an answer. Given the above definition, we define
the cost of an answer as follows:

Definition 2 (Cost of An Answer). Given an an-
swer, r = 〈µnode, µedge〉, to query, q = Tq(Vq, Eq), over the
data graph, G(V, E), the cost, cost(r), of the answer is de-
fined in terms of the costs of the relevant edges in the graph.

1In XPath [44], only one of the query nodes is returned.
We are interested in the entire tree as the result. This is
analogous to the tree patterns in [5, 28]. XPath semantics
can be implemented as a projection on results.
2In this paper, we consider tag equality predicates. The
approach extends to other value predicates as well.

508

L = {A, B, C}
(a) (b) (c)

Figure 3: (a) A Steiner problem instance 〈G,L〉 consisting of a graph and a set of labels; (b) G′ constructed
from the instance; (c) the twig query T ′ constructed from the Steiner problem instance.

Let E be the set of edges that belong to any of the paths in
the answer. The cost is cost(r) =

∑
e∈E cost(e).

Non-redundancy property. When there are overlaps be-
tween paths matching query edges, the cost of the common
edges are counted only once (Figures 2(b) and (c)). We refer
to this as the non-redundancy property of the results.

2.2 Top-K Twig Queries over Weighted Data
Graphs

Given the definitions of data graph, query statement, an-
swers, and their costs, we formulate a top-k (least-cost)
query over G as follows:

Definition 3 (Top-k query over G). Given a query
statement, q = Tq(Vq, Eq), a data graph, G, and a positive
integer k, identify (and order in increasing order of cost) a
set, R, of k answers such that there are no other answers to
q over G cheaper than max{cost(r) ‖ r ∈ R}

If there are less than k answers to q in G, R includes all
existing answers (if any). �
2.3 Complexity of Top-k Twig Queries

We establish the complexity of evaluating top-k twig
queries over graphs by reducing the NP-complete group
Steiner problem [41] to the min-cost (top-1) twig query prob-
lem. Given a node- and edge- labeled graph G, and a set,
L, of node labels, let us consider the problem of finding the
min-cost tree, t, in G, such that for each label li ∈ L, t
contains at least one node labeled li. Since, there can be
multiple (i.e., a group of) data nodes with the same label,
li, this is known as the min-cost group Steiner tree problem
and is known to be NP-complete [41]. In the database lit-
erature, the min-cost group Steiner tree problem is used to
prove hardness of various problems, such as the information-
unit [34] and the min-cost keyword tree [19] problems.

Let us be given an instance, 〈G,L〉 of the min-cost group
Steiner tree problem. We reduce this to a corresponding
instance of the min-cost twig problem 〈G′, T ′〉 as follows:
(Step 1:) Construction of G′: For each node, ni, in G,
labeled with lj ∈ L, replicate the graph. Let us denote this
replica, Gi,j . For each replica, create a dummy vertex dvi,j

with the dummy label, “dummy”. Connect dvi,j to node ni

in replica Gi,j . The cost associated to the edge originating
from the dummy node is set to 1.

Create a new dummy vertex, dv0, with the label
“dummyroot”. Connect dv0 to each of the previously cre-
ated dummy vertices. The edge cost from dv0 to the other

dummy vertices is set to 1.
The resulting graph is called G′. Figure 3 (b) shows an

instance of the construction process. Note that the con-
struction time is polynomial in the size of G and L.
(Step 2:) Construction of T ′: The corresponding twig
query, T ′, is illustrated in Figure 3 (c). Note that the con-
struction time is polynomial in the size of L.

Given the above construction, an answer to the min-cost
twig query is a solution to the min-cost group Steiner tree
problem. Any answer to the min-cost twig query will in-
clude dv0 (labeled with “dummyroot”), exactly one dummy
vertex, dvi,j (labeled with “dummy”), and a tree, t, from the
subgraph Gi,j (identical to G). Due to the construction of
T ′, the tree, t, must include at least one node labeled lj for
each lj ∈ L. That is, the tree t is a min-cost group Steiner
tree in G for the set L. Since t is contained in an answer to
the min-cost twig query, t must be minimal in G.

Also, for every solution to the min-cost group Steiner tree
problem, there is a corresponding answer to the min-cost
twig query. This is true by the construction of G′ from G
and T ′ from L. In particular, the replication of the graph
ensures that the descendants of the query node “dummy” will
be constrained into one of the sub-graphs and will, in fact,
be a solution to the min-cost group Steiner tree problem.

3. EVALUATING TOP-K TWIG QUERIES
ON GRAPHS

Let us consider the query A[//C]//B/D, in Figure 2. On
XML data, this query can be implemented using structural
joins between the data nodes matching the individual query
nodes [9, 15, 29] or as a join between data paths satisfying
the individual branches [16, 35]. When dealing with top-k
queries on weighted data, we face two challenges: not only
there can be multiple paths, with different costs, between a
given pair of data nodes, but also the underlying join oper-
ators need to be rank-aware.

3.1 Sum-Max Monotonicity
Per Definition 2, the cost of an answer is the sum of the

costs of the edges involved in the answer, r = 〈µnode, µedge〉.
Since the paths described by µedge may overlap (i.e., share
edges on the graph), the cost of the answer described by
〈µnode, µedge〉 is not necessarily equal to, but is bounded
by, the sum of the path costs (Figures 2(b) and (c)). Con-
sequently, due to possible edge overlaps, cost-order of the
data paths matching query edges may not correspond to

509

(a) Horizon = ∞ (b) Horizon = 14

(c) Horizon = 11 (d) Horizon = 14

Figure 4: Ranked join by the sum-max monotonicity:
(a) no results yet; (b) first candidate with cost 14
is found; (c) a second candidate with lower cost of
11 is found; and (d) stopping sum-max condition is
reached for returning the current best candidate

the cost-order of the query results.
Existing ranked join algorithms (such as [21, 22, 13, 12,

27, 33]) rely on a monotonicity property, which requires that
a query plan with better sub-plans is always more desir-
able. However, since for twig queries sub-results (e.g., data
paths matching query axes) are not necessarily independent
from each other (i.e., data paths may overlap on edges), the
monotonicity property does not hold. Consequently, two
costly sub-results with large overlaps may provide a com-
bined result cheaper than two other individually less costly,
but non-edge overlapping sub-results.

While the monotonicity condition does not hold, we can
establish a range for the costs of query results in terms of
the costs of their sub-results.

Proposition 1 (Cost range of answers). Let q =
Tq(Vq, Eq) be a twig query and let r = 〈µnode, µedge〉 be a
corresponding answer. Let SR = {sr1, sr2, . . . , srm} be a
set of sub-results that give r. Then, the following is true:

max
sri∈R

(cost(sri)) ≤ cost(r) ≤
∑

sri∈R

cost(sri).

This proposition, which follows from the Definitions 1 and 2
(of answer, cost, and the non-redundancy property), enables
us to state a sum-max monotonicity property for twig results:

Property 1 (Sum-Max Monotonicity). Let q =
Tq(Vq, Eq) be a twig query and let r1 and r2 be two answers.
Let R1 and R2 be the corresponding sets of sub-results that
give r1 and r2 respectively. Then, the following is true:

⎛
⎝ ∑

sri∈R1

cost(sri) ≤ max
srj∈R2

(cost(srj))

⎞
⎠ → cost(r1) ≤ cost(r2).

Next, we leverage this property of twig queries to implement
a ranked join algorithm for cost-ordered inputs.

3.2 Progressive Result Enumeration based on
the Sum-Max Monotonicity Property

The sum-max monotonicity property of answers enables us
to leverage the cost evaluations of initial, candidate, matches
as horizons that limit the candidates that need to be ex-
plored before a confirmed result can be produced.

Example 1. Let us consider a twig query, q, which con-
sists of two path sub-queries, m1 and m2, that join on a
query node. Let us also assume that m1 and m2 can return
paths in cost-order, progressively. Figures 4(a)-(d) show the
various stages of the two path streams matching m1 and m2,
respectively. The individual paths are shown as rectangles,
each containing the id of the data vertex (matching the query
vertex common in m1 and m2) and the total cost of the path.
Each stream grows with sub-results arriving in ascending or-
der of cost. The stages of the process are as follows:

1. In Figure 4(a), we are seeing a state where none of
the sub-results, matching m1 and m2, can be joined.
At this stage, since there is no join, the upper bound
on the cost of the first result is ∞.

2. In Figure 4(b), a match is found. The cost of the com-
bined match is 14. Note that, although this is the first
discovered match, it is not necessarily the best one.
Per the sum-max monotonicity property (Property 1),
this first match sets the horizon for the best match
to 14. Thus, the process has to continue until all the
sub-results of cost up to 14 are considered.

3. In Figure 4(c), a second match, with cost 11, is found.
Per the sum-max monotonicity property (Property 1),
this match lowers the horizon from 14 to 11. Thus, the
process, now, has to continue only until all the sub-
results of cost up to 11 are considered.

4. In Figure 4(d), the stopping condition is reached: in
both sub-result streams, all the paths of cost less than
or equal to 11 have been considered. Thus, among the
two matches found so far, the best (with cost 11) can
be returned as the top-1 result.

5. When further results are required, the process contin-
ues by setting a new horizon. In this example, since
there is a known candidate match, the cost (14) of this
candidate will be used as the new horizon value.

Unlike the ranked join algorithms, such as [21, 13, 12], which
stop the sorted-access process as soon as k candidates are
found, the stopping condition of the above process is based,
not on the cardinality of initial candidates but, on their
costs. Next we present a horizon based ranked join operator
based on the above process.

3.3 HR-Join: Horizon based Ranked Join
In this section, we build a horizon based ranked join op-

erator (HR-Join), based on the progressive, ranked, result
enumeration process illustrated above. The HR-Join opera-
tor (Figure 5) takes as its input two data streams, in ascend-
ing order of data costs, and produces an output data stream
(of pairwise joined inputs) in ascending order of combined
costs. While internally HR-Join operator uses a standard
symmetric non-blocking hash-join, the inputs and outputs
to the HR-Join are regulated by (a) two horizon valves and
(b) a result sieve, respectively.

510

Figure 5: The self-punctuating HR-Join operator
consists of a hash-join operator sandwitched be-
tween two input regulating horizon valves and an
output controlling result sieve. The sieve communi-
cates with the valves through a horizon variable; the
valves communicate with the sieve through punctu-
ations inserted into the stream

horizonValve(ref S, ref horizon)

/* Controls the flow of cost-ranked data on stream S*/
/* Punctuates and blocks the stream, S, based on horizon */

begin
1. local avail=0;
2. repeat

(a) if (S.entry[avail + 1] �= ⊥) /* if there is more data*/
i. if (S.entry[avail + 1] �= ∅) /* if end-of-stream not

met*/
A. if (cost(S.entry[avail + 1]) > horizon)

S.punctuation = avail+1;

B. repeat until (S.entry[avail + 1] == ⊥) or
(cost(S.entry[avail + 1]) ≤ horizon)

C. S.punctuation = ∞;

D. avail++;

until S.entry[avail] = ∅ /* Until end-of-stream is met*/

end

Figure 6: Pseudo-code for the horizon valve: The
valve passes the input entries as long as their costs
are smaller than the current horizon. When the
horizon is met, the stream is punctuated. This con-
dition persists until the horizon value is relaxed3

3.3.1 Horizon Valve
Horizon valves control the data availability on a given

stream of cost-ranked data. The pseudo-code for the horizon
valve module is presented in Figure 6. The inputs to the
module are references to a stream, S, and a horizon variable,
horizon. The externally controlled horizon variable is used
for regulating the availability of the incoming data. Once
the horizon is met (i.e., data as costly as horizon is seen in
the input stream), the horizon valve punctuates the stream
and gets into a waiting state3. This state persists until the
value of the horizon variable is increased by an external
process (i.e., the result sieve).

3While the pseudo-code in Figure 6 uses busy-wait to im-
plement horizon-based blocking of the stream, the actual
implementation relies on more efficient signaling to imple-
ment this behavior.

resultSieve (ref C, ref horizon, ref O,)

/* (Incrementally) cost-ranks the candidate stream, C, and creates

a cost-ranked output stream, O*/
/* Sets the horizon value based on the best candidate available*/

begin
1. local Top=∅;
2. local Cand=∅; /* Implemented as a min-heap*/
3. local current=0; local numMatches=0;
4. while (C.entry[current + 1] �= ∅) and (numMatches < k) do

(a) if (C.punctuation > current + 1)

i. if (C.entry[current + 1] �= ⊥)

A. Cand=Cand ∪ {current + 1};
B. if (cost(C.entry[current + 1]) <= horizon)

• Top=current + 1;

• horizon = cost(Top);

C. current++;

(b) else /* if (C.punctuation == current + 1)*/

i. numMatches = numMatches + 1

ii. O.write(Top) /* Place the confirmed match to O

in cost-ranked order*/
iii. Cand=Cand − {Top}
iv. if Cand �= ∅

• Top=bestinMinHeap(Cand)

• horizon = cost(Top)

else

• horizon = ∞
v. C.punctuation = ∞

end

Figure 8: Pseudo-code for result sieve. The sieve
creates a cost-ranked output stream and maintains
unqualified candidates in a min-heap. As candidates
are identified, the sieve sets the horizon value

Example 2 (Horizon valve). Figures 7(a) through
(g) depict the operation of the horizon valve on a given cost-
ordered stream. Figure 7(a) shows a state where the stream
contains three data elements, two of which are already made
available to the hash-join. At this state, the value of the
horizon variable is ∞ and the stream is not yet punctuated
(i.e., the value of the punctuation variable on this stream
is ∞). Figure 7(b) shows a state where one more element
is made available to the hash-join; since there are no more
data, the valve has to wait until a new element or end-of-
stream marker is seen. Figure 7(c) shows a state where a
new element, with cost 21, has arrived. The value of the
horizon variable has been set to 25 (implying that a join-
result with cost 25 was generated). In Figure 7(d), the next
data entry, with cost 27, causes punctuation of the stream.
At this stage, the data availability is stopped by the valve un-
til the horizon is increased over 27 (Figures 7(e) and (f)).

This process is repeated until the end-of-stream marker (∅)
is reached (Figure 7(g)).

3.3.2 Result Sieve
Since monotonicity does not hold, results produced by the

symmetric hash-join are not guaranteed to be cost-ranked.
The result sieve module, depicted in Figure 8, takes an un-
sorted stream of results and (incrementally) creates a cost-
ranked output stream.

The process of sieving is related to the well-known heap-
sort algorithm, which leverages a min-heap data structure
to sort a given set of values. Unlike the regular heapsort,
which requires all the data to be available before the sorted
enumeration can start, result sieve leverages the sum-max

511

(a) (b) (c) (d) (e) (f) (g)

Figure 7: Operation of the horizon valve on a given stream is driven by the externally set horizon value. The
details are described in Example 2

(a) (b)

symmetricHashJoin(ref S1, ref S2, ref Sout, qv)

/* Joins the entries in S1 and S2 on query vertex, qv*/
/* When S1 and S2 are punctuated, it punctuates the

output stream. */
begin
. . .
end

Figure 9: Punctuation propagation by the
symmetric-hash join: (a) Punctuations are not yet
met in the input streams, thus the punctuation is set
to ∞ in the output stream. (b) When the punctua-
tions are met in the input streams of the symmetric
hash-join operator, a punctuation is created in the
output stream.

monotonicity property to generate early results. The re-
sult sieve operator achieves early result enumeration through
cooperation with the horizon valves. In particular, hori-
zon valves punctuate the input streams to the join operator
based on the horizon value set by the result sieve. The join
operator propagates these punctuations to the input of the
result sieve, marking a point suitable for early result enu-
meration (Figure 9).

Once the current best result is put in the output stream,
the result sieve pushes the horizon value forward, enabling
the horizon valves to pass more inputs to the join operator.

Example 3 (Result Sieve). Figures 10(a) through
(e) depict the operation of the result sieve on a given stream
of matches produced by the symmetric-hash join. Note that
the matches passed to the result sieve by the hash join are
not necessarily ordered in terms of their costs.

(a) (b) (c)

(d) (e)

Figure 10: Operation of the result sieve on a given
stream of matches produced by the symmetric-hash
join. The result sieve indirectly regulates its own
input stream by updating the horizon value. Details
are in Example 3

Figure 10(a) shows the starting state where the horizon
value is set to ∞. A match, with cost 25, is created by
the hash join but not processed by the result sieve yet. Fig-
ure 10(b) shows the state after result sieve processes this
match. Since this is the first match, it is also the best (top)
one and the horizon value is set to its cost, 25.

Figure 10(c) shows the state when a better match, with
cost 19, is found. This new match replaces the earlier top
and its cost, 19, becomes the new, tighter, horizon.

Figures 10(d) and (e) show what happens when a punctu-
ation is met in the match stream. The top entry when the
punctuation is met (Figure 10(d)) is removed from the set of
candidates and written to the output stream (Figure 10(e)).
The best entry in the remaining set is marked as the new top
and its cost (25) is used as the new horizon value. Since the
current punctuation is consumed, its value is set to ∞.

This process will be repeated until the next punctuation is
seen or until the end-of-stream marker (∅) is reached.

Let us consider mth output of the hash-join. Assuming that

512

subMatchGen(ref S, m, G)

/* Produces the ranked tree stream, S, for subquery, m*/
begin

1. local k=0;
2. repeat

(a) k ++;
(b) S.entry[k] := rankedSubQueryExec(m, G, k);

until S.entry[k] = ∅
end

Figure 11: Pseudo-code for generating ranked
stream of sub-matches. Details are in Section 4

(a) A query twig and sub-queries

ST1 ST2 ST3

Horizon

horizon
valves

ST4

qv1 qv2

qv3

O

Horizon

Horizon

horizon
valves

horizon
valves

result s ieve

result s ieve
result s ieve

subMatchGen(s1) subMatchGen(s2) subMatchGen(s3) subMatchGen(s4)

(b) An example query plan using HR-Join operators

Figure 12: (a) A sample query and its sub-queries
and (b) an example query plan consisting of four
input streams of sub-results (to the sub-queries) and
three HR-Join operators

k elements have already been extracted and placed into the
output stream, the cost of inserting the new entry to the
min-heap is O(log(m − k)).

3.4 Ranked Twig Query Processing using HR-
Join

Given a query, q, and a set, S = {s1, . . . , su}, of atomic
sub-queries, a plan for q conforms to the following outline:

• For each sub-query, si ∈ S, the system generates a
cost ranked stream, STi, of sub-results (Figure 11).

• The matches for the sub-queries in S are then joined,
using HR-Join operators, on the shared query nodes.

Figure 12 shows an example query twig, a possible sub-
query partitioning, and a corresponding query plan using
three HR-Join operators.

(a)match for A//C (b)match for A//B//D (c)match for A[//C]//B//D

(cost = 5+7 = 12) (cost = 5+3+2 = 10) (cost = 5+7+3+2 = 17)

Figure 13: Combination of sub-result within HR-
Join operator. Note that the output cost is less than
the sum of the input costs due to edge overlaps

Figure 14: Sub-result pruning by the sum-max
monotonicity: the sub-results beyond the cost of the
kth (overall) result are pruned.

3.4.1 Combining Sub-Results
As described above (and shown in Figure 12), each HR-

Join operator in a query plan joins its input stream of sub-
results based on the ids of the data nodes matching spe-
cific query nodes. Once the hash-join identifies a data node
match between two input sub-results, the sub-graphs corre-
sponding to the two sub-results are combined (Figure 13).
This is achieved by eliminating redundant nodes and edges
(based on the non-redundancy property of answers). The
cost of the output graph after combination is equal to the
sum of the remaining edges (i.e., less than or equal to the
sum of the sub-result costs). Using a data structure which
maintains the edges in the sorted order of edgeIDs, the re-
dundant edge elimination step can be implemented using a
sort-merge based scheme. Thus, given two sub-results, sr1

and sr2, the complexity of this step is O(|sr1| + |sr2|).
Results with cycles can be eliminated either early (i.e.,

before insertion into the sieve) or late (i.e., when they are
candidates for being selected as the top) using topological
sort in O(|sr1| + |sr2|) time.

3.4.2 Sub-Result Pruning
Let us consider a top-k query, q, a set of sub-queries

S = {s1, . . . , su} of q, and the sequence, a1, . . . , ak of k best
answers. The sum-max monotonicity property (Property 1)
implies that, before the kth answer is output by the algo-
rithm, for each sub-query si ∈ S, all the sub-results with
costs less than or equal to cost(ak) need to be considered.
Thus, the total number of input sub-matches that need to
be enumerated for the identification of the k best matches
for the twig query is

#necessary submatches =∑
si∈S

| {ai,j ‖ (ai,j ∈ answers(si)) ∧ (cost(ai,j) ≤ cost(ak))} |.

The rest of the input sub-results do not need to be con-
sidered and can be pruned. As illustrated in Figure 14,

513

Figure 15: Data overhead: some sub-results may
be unnecessarily considered due to an initially lax
horizon value

ST1 ST2 ST3

horizon
valves

ST4

qv1 qv2

qv3

O

Horizon

horizon
valves

result s ieve

subMatchGen(s1) subMatchGen(s2) subMatchGen(s3) subMatchGen(s4)

Figure 16: An alternative plan for the sample query
in Figure 12. In this plan, there is only one re-
sult sieve regulating all the valves of the four input
streams. We refer to this as the M-way HR-Join

the pruning power of the sum-max monotonicity property
is determined by the distribution of the costs of the incom-
ing sub-results. Note that, in the worst-case, for a sub-
query where all matches cost less than cost(ak), all of these
matches would need to be considered. On the other hand,
especially when (a) there are large degrees of overlaps be-
tween the sub-results returned by the sub-queries, leading to
lower overall costs and (b) when k is relatively low, sum-max
monotonicity provides significant opportunities for pruning.
In Section 5, we evaluate this sub-result pruning property.

3.4.3 Data Overhead
The above equation for the necessary sub-matches relies

on the fact that any sub-match beyond the final horizon
value (i.e., cost of the kth answer) cannot contribute to
a cheaper solution. However, as shown in Step 4(a)iB of
the result sieve module (Figure 8), horizon values are not
set once for all, but incrementally tightened as cheaper
matches are found. Consequently, there is a possibility that,
while the horizon is still lax, some sub-matches beyond the
tighter, final horizon will be passed to the join process (Fig-
ure 15). We refer to this as the data overhead of the plan:

dataoverhead =
#all submatches − #necessary submatches

#all submatches
.

Here #all submatches is the number of sub-matches passed
to the join process by any of the sub-queries of q. In Sec-
tion 5, we evaluate the data overhead of the HR-Join.

3.5 M-way HR-Join
The data overhead discussed in the previous subsection

occurs when the horizon values set by the result sieves are
not sufficiently tight to prevent leakages of unnecessary sub-
results to the HR-join operators. One way to tighten the

horizon values is to use M-way HR-Joins, as depicted in
Figure 16. In an M-way HR-Join, there is only one result
sieve regulating all the valves of the M input streams to the
join operator. Since the horizon values set by the (only) re-
sult sieve reflect the costs of the overall results more closely,
an M-way HR-Join is likely to leak smaller number of un-
necessary inputs into the join operator.

The performance of M-way HR-Join based query plans
also depends on other parameters. Consider the query plans
shown in Figures 12(b) and 16 for the query shown in Fig-
ure 12(a): the query plan in Figure 12(b) uses multiple
HR-Join operators (each with its horizon valves and result
sieve). The plan in Figure 16, on the other hand, has only
one global result sieve, controlling all the input streams (to
the 4-way join). While, in plan in Figure 12(b) those inter-
mediary results whose cost-orders cannot be confirmed are
kept at the intermediary result sieves, in plan Figure 16, all
the intermediary results are passed without any check to the
upper-most join operator. Consequently, the use of M-way
HR-Joins may increase the amount of work needed by the
upper join block and the (only) result sieve which needs to
maintain all the resulting candidates. In contrast, HR-Join
only plans tend to reduce the join work, but increase the
cost of the intermediary result sieves. In Section 5, we eval-
uate the effect of using M-way HR-Join operators in query
plans as opposed to using binary HR-Join operators.

4. PROCESSING OF PATH-BASED SUB-
QUERIES

Performance of a given query plan also depends on the
complexity of its atomic sub-queries. Let us reconsider the
example in Figure 12. The example twig query in the figure
is split into its sub-queries based on the branches on the twig.
While there are many schemes in the XML literature that
rely on such path-based query segmentation, data labeling,
and indexing [24, 16, 35], in the context of rank-ordered
twig query processing on graph data, these schemes are not
directly applicable. In particular, different paths between a
given pair of data nodes may have different costs and the
HR-join operator described in the previous section requires
ranked enumeration of input sub-results based on their total
edge costs. While, of course, it is possible to pre-compute
all paths between all pairs of data nodes and index them
for later use, such a scheme would have an exponential-size
storage cost. Instead, in this paper, we present algorithms
for run-time cost-ranked enumeration of data paths.

4.1 Cost-Ranked Enumeration of Paths
Per Definition 1, an answer, r = 〈µnode, µedge〉, to query,

q = Tq(Vq, Eq), involves a mapping, µedge, from the edges of
the query tree to the data paths in the graph. In other words,
each query edge/axis can be seen as a path sub-query. Thus,
given a query edge, cost-ranked enumeration of best k sub-
results matching this edge corresponds to the k-shortest sim-
ple paths problem, a classical problem in graph theory [46].
Due to its applications in various domains, such as network-
ing, this problem has been studied extensively. Among the
alternative solutions, Yen’s algorithm for k-shortest paths
is preferred due to its general and optimal nature [46, 37].
On a given data graph, G(V, E), this algorithm identifies
k shortest loopless paths in G in O(k|V |(|E| + |V |log|V |))
time. First the shortest path is obtained; then, this path is
deviated to obtain the 2nd shortest path. This is repeated,

514

one shortest path at a time, until k shortest paths are found.
To create the path-based sub-result input streams for HR-
Joins, we use a version of Yen’s algorithm presented in [37].

Since we do not know in advance the number of sub-results
that would be needed for a given sub-query, we run the
path-enumeration algorithm to return all sub-results pro-
gressively, until instructed to stop. Since Yen’s algorithm’s
enumeration cost is linear in the number (k) of shortest
paths returned, the algorithm ensures a relatively constant
sub-result inter-arrival time. This is important as it enables
regular (and predictable) sub-result arrival to the HR-Join
operators and, thus, makes optimization easier.

The inter-result time, O(|V |(|E| + |V |log|V |)), is a func-
tion of the number of nodes and edges in the data graph. On
the other hand, given a pair of data nodes, the only other
data nodes and edges that need to be considered in path
enumeration are those that are reachable from the source
node and can reach the destination node. While the all-
pairs reachability computation is known to be an expensive,
O(V 3), operation, this can be done off-line. Thus, given a
pair, ni and nj , of source/destination nodes, first a reacha-
bility graph Gi,j(Vi,j , Ei,j), is identified by intersecting the
forward and backward reachabilities of ni and nj , respec-
tively. Given this, the inter-arrival time of sub-results is

interresultT ime(ni, nj) = O(|Vi,j |(|Ei,j | + |Vi,j |log|Vi,j |)),
where Vi,j and Ei,j denote nodes and edges in the corre-
sponding reachability graph segment.

4.2 Horizon Tightening
As we proved in Section 2.3, the problem of min-cost twig

query problem on weighted data graphs in NP-Hard. In fact,
it is easy to show that, given an arbitrary data graph G, the
number of paths between two data nodes can be exponential
in the size of the graph. Consequently, the complexity of
the HR-Join based twig evaluation plans are hidden in the
potential number of path-based inputs.

As discussed in Section 3.4.2, the cost of a HR-Join based
plan depends on the number of input paths that need be
considered before a match can be committed. The HR-
join operator uses a horizon based self-punctuation mecha-
nism (based on the sum-max monotonicity) to regulate the
amount of input paths that need to be considered. Per
Proposition 1, the horizon value is set assuming that the de-
gree of overlaps between sub-results can be up to 100%. In
practice, the degree of overlaps may be significantly smaller
than this. To account for this, we introduce a horizon tight-
ening factor (0 < tf < 1) in Step 2(a)iB of the horizon
valve algorithm4 (Figure 6). An indirect impact of this is a
reduction in the inputs to be considered before matches are
committed. In Section 5, we evaluate the effect of tightening
factors on complexity and optimality of the results.

4.3 Tag-based Path Enumeration
Yen’s algorithm [37] returns a ranked stream of paths be-

tween two nodes in the data graph. However, in twig-query
processing, we are mostly interested in paths between pairs
of nodes not identified by their node ids, but their tags.

In order to enable tag-based sub-query evaluation, we ex-
tend the original graph with two special start and end nodes
per distinct tag in the data (Figure 17). The special start

4. . . (cost(S.entry[avail + 1]) ≤ tf × horizon)

Figure 17: The tag extension of the graph: the two
node, ni and nj share the same tag, A. Consequently,
they are connected to two tag extension nodes la-
beled with Ast and Aend, with 0 cost edges

nodes are used as sources and the end nodes are used as des-
tinations in cost-ranked path enumeration. Since the special
nodes do not alter the reachability in the graph and since
they do not add any cost to the original paths, they do not
affect the order of the matches.

For a given data graph, G(V, E), the overhead of the tag-
extension is minimal with 2×num distinct tags new nodes
and 2 × |V | many new edges.

4.4 Dealing with “*” Wildcards
On one hand, handling of the ”*” wildcards, which match

all the tags in the data, is trivial through a similar tag ex-
tension process. On the other hand, this straightforward so-
lution may prove to be extremely costly. Let us consider a
twig query, q=A//*[//B]//C. Splitting this query into three
sub-queries, sq1=A//*, sq2=*//B, and sq3=*//C and enu-
merating all paths in the graph starting from A, all paths
ending at B, and all paths ending at C to be later combined
using HR-Join operators could be costly.

In order to prevent enumeration of a large number of
paths, we refrain from splitting queries at those nodes la-
beled with “*”. Instead, queries are split into sub-queries
only at non-wildcard query nodes. For the above example,
this leads to two sub-queries instead of three: sq′1=A//*//B

and sq′2=A//*//C. Paths matching these sub-queries can
be identified by cost-ranked enumeration of the data paths
from As to Bs and from As to Cs. Given a matching data
path, the query node with “*” maps onto any of the in-
termediary data nodes on the path. Consequently, a single
data path of length l, matching the sub-query A//*//B, en-
codes l − 2 sub-results, all with the same edges and, thus,
with identical costs. We can generalize this example as fol-
lows: Given a sub-query of the form sq=X//*//..//*//Y

with w many intermediary “*”s and a matching data path,
p, of length l ≥ w + 2, by just one iteration of Yen’s kth

shortest loopless paths algorithm, we are able to identify a
compact representation of O(lw) many sub-results.

Note that a particular advantage of this compact, clus-
tered representation is that the sub-results do not need to
be de-clustered for the join operation. Let us reconsider the
query q=A//*[//B]//C and the corresponding match shown
in Figure 18. The same match with the same cost would be
obtained when paths from As to Bs and from As to Cs are
enumerated independently and put together, based on the
data node corresponding to A. It is easy to generalize this
example to twig queries with more than one “*” wildcard
symbols. In general, we translate twig queries with “*”s to
twig queries without any “*”. The sub-result combination
step (Section 3.4.1) eliminates false hits. A post-processing
step after the HR-Join based query plan can then identify
the node IDs of the data nodes matching wildcards.

515

(a) A “*” query (b) Query rewritten without “*”

(c) Match (d) False-hit

Figure 18: (a) A twig query with a “*” wildcard
and (b) its no-”*” version. (c) A result to the orig-
inal query where the nodes E and F match the “*”;
this result would also be returned for the rewritten
query: the common ancestors of the nodes B and C

(except A itself) are matches to “*”. (d) A false-
hit for the rewritten query; these false hits can be
eliminated from the result stream efficiently

5. EXPERIMENTS
In this section, we evaluate the proposed schemes for

horizon-based ranked join and twig query evaluation on
weighted graph data. The experiments reported in this sec-
tion ran on a 2GHz Pentium with 1GB main memory.

5.1 HR-Join and M-Way HR-Join
In Section 3.4, we introduced various behavioral metrics,

including sub-result pruning and data overhead, for HR-Join
operators. We also discussed the expected behavior patterns
for HR-Join and M-Way HR-Join operators. The amount
of input pruning depends not only on the workings of the
operator, but also on the total number of sub-results that
there exist. We leave the evaluation of this to Section 5.2,
where we report results for queries executed on graph data.
Here we focus on experimental evaluation of the relationship
between time to compute top-k results, data overhead, and
intermediary result pruning behaviors.

These patterns are visualized in Figure 19. In this figure,
HR stands for the plan in Figure 12 and HRM stands for the
M-way HR-Join based plan (with a single, shared horizon)
in Figure 16. The figure shows the behavior of the plans for
two significantly different join-selectivity distributions: ∼
10% (where the likelihood of matches between the sub-paths
is around 10%) and 1-to-1 (where each sub-result matches
at most one sub-result in the other streams).

Figure 19(a) compares the data overhead both for input
streams and for the intermediary data. According to this
figure, as predicted in Section 3.5, HRM join fails to prune
intermediary data which do not contribute to the final result.
On the other hand, it ensures that all the input data consid-
ered by the join block is necessary. The intermediary data
overhead is especially high for the ∼ 10% join selectivity,
which results in a higher number of matches between input
data. In contrast, while the HR setup regulates the interme-
diary data well, it leaks some unnecessary inputs from the
input streams to the join block. The reason for the leakage
is provided in Figure 19(b). For the HR-Join setup there is
a larger variation of horizon values computed by the lower-

join operators. The horizon values computed by HRM, on
the other hand, are closer to the final results themselves.
This means that the likelihood of allowing unnecessary in-
puts to the join process is less in HRM than in the HR setup.
The count of horizons (i.e., amount of punctuations that
needs to be managed) is also higher in HR than in HRM.

Consequently, the choice between whether to use HR-join
or M-way HR-Join depends on the join behavior. In gen-
eral, since M-way HR-Join involves less punctuation man-
agement, it is desirable over HR-Join based schemes. When
the join selectivity leads to high join costs and large numbers
of candidate results are to be maintained in the result sieve,
HR-Join only plans may prove to be better (Figure 19(c)).

5.2 Ranked Twig Query Processing
In this set of experiments, we used the FICSR weighted

graph data[38], which represents the integration of a pair of
taxonomies with high degree of misalignments. The weights
on the edges represent the degrees of disagreements between
the sources, as well as the user feedback (Figure 1). Since,
despite the mis-alignments, there are more parts of the tax-
onomies matching than mis-matching, the weight distribu-
tion of the edges show a Zipfian-like distribution, with more
costs closer to 0 than closer to 1. The queries on the inte-
grated taxonomies involved reachability neighborhoods of ∼
125, 250, and 500 data nodes. Each data point is obtained
by averaging the results of 10 random twig queries.

Figure 20(a) shows that, as expected, the cost of Yen’s al-
gorithm is linear in the number of paths enumerated. Impor-
tantly, the inter-arrival time of paths was less than 100ms.

Figure 20(b) plots the time between consecutive out-
puts of the HR-Join operator (for random queries of type
A[//B]//C). The neighborhood size affects the speed of the
output since the time to identify the input paths increases
with the size of the reachability graph (Figure 20(a)). There-
fore, the degree of input pruning becomes more important in
large neighborhoods. Figure 20(c) plots the degree of prun-
ing obtained by using smaller ks (as opposed to k=20, in
this figure). As expected, the degree of pruning is directly
correlated with how small k is.

5.3 “*” Wildcards and Horizon Tightening
As discussed in Section 4.4, results to the rewritten queries

generally encode more than one match to the original query.
Thus, few matches to the rewritten query can be sufficient
to obtain all top-10 matches. In Figure 21, we plot results
for different tf values for queries of type A//*[//B]//C. We
also plot results for rewritten queries, of type A[//B]//C, for
top-10 distinct results as well as for top-10 distinct encodings.

Figure 21(a) shows that smaller horizon tightening factors
(tfs) provide significant time savings, since they allow early
punctuations. Rewritten queries, on the other hand, execute
significantly faster than the original query (even for very low
horizon tightening factors, e.g. 0.5). This is true especially
for the first few distinct encodings they return.

Figure 21(b) shows the costs of the enumerated results
for the original “*” query, for different tf values. The figure
also shows the cost of distinct results and distinct encodings
obtained through rewriting. From this figure, we can see
that the costs of the distinct results returned by the rewrit-
ten query are significantly better than the others. Original
queries with tf values close to 1.0 provide costs similar to
those of the distinct encodings returned by rewritten queries.
Early punctuation (even for tf values close to 1.0) prevents

516

Data Overhead (1 - necessary/all)

0.56

0.00

0.30

0.000.00

0.27

0.00

0.29

0

0.1

0.2

0.3

0.4

0.5

0.6

HRM-JOIN HR-JOINJoin type

D
at

a
O

ve
rh

ea
d

Inter (10%)
Inter(1-1map)
Input (10%)
Input(1-1map)

Distribution of Horizons vs. Results

11

25
45

75
106 136 166

117

3

0 0

6 5

0 0 0 0 10 0

5 6

0 0 0 0 0
1

10

100

1000

[0,
5)

[5,
10

)

[10
,15

)

[15
,20

)

[20
,25

)

[25
,30

)

[30
,35

)

[35
,40

)

(in
fin

ity
)

Horizon Value Range

C
ou

nt

HR(Left)
HRM
Results

Top-10 Ranked Join Time (HRM vs.HR)

0

0.2

0.4

0.6

0.8

1

1.2

10 100
Inter-arrival time (ms)

H
R

M
Pr

oc
es

sT
im

e/
H

R
Pr

oc
es

Ti
m

e

HRM/HR (4str,10%)
HRM/HR(4str,1-1map)

(a) Data overhead (input, intermediary) (b)Horizon and result distribution (c) Time to top-10 (HRM/HR)
Figure 19: Comparison of HR-Join and M-Way HR-Join operators

Time to Enumerate Kth Path

0.001

0.01

0.1

1

10

1 2 4 8 16 32

Rank of the result

Ti
m

e
(s

ec
)

~500 nodes
~250 nodes

Time Between Consecutive HR-Join Results

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Rank of the resut

Ti
m

e
be

tw
ee

n
re

su
lts

(s

ec
)

~500 nodes
~250 nodes
~125 nodes

Input Pruning

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10
Rank of the result

D
eg

re
e

of
 P

ru
ni

ng

~500 nodes
~250 nodes
~125 nodes

(a) Path enumeration time using [37] (b) Time between consecutive results (c) Pruning (relative to the 20th result)
Figure 20: Twig query processing results on weighted graph data for queries of type A[//B]//C

Time to Enumerate Results

1

10

100

1000

1 2 3 4 5 6 7 8 9 10Rank of results

Ti
m

e
co

st
 (s

ec
)

0.9 0.85 0.8
0.5 Rewr. (dist.enc) Rewr. (dist.res.)

Costs of the Results

3.9

4.2

4.5

4.8

5.1

1 2 3 4 5 6 7 8 9 10Rank of the result

C
os

t

0.9 0.85 0.8
0.5 Rewr.(dist.enc) Rewr.(dist.res)

(a) Enumeration time (b) Costs of the results

Figure 21: Effects of tf on queries of type
A//*[//B]//C on reachability graphs of ∼250 nodes

enumeration of all relevant paths (thus provides time sav-
ings, but also eliminates some results). Significantly lower
tf values (eg. 0.5) miss further opportunities and negatively
affect the result order and costs.

6. RELATED WORK
Query Processing on Trees and Graphs. In the In-
troduction, we have highlighted that many existing XML
query processors [9, 14, 4] rely on the tree-like structure of
the XML data and require that the ancestor and descendant
lists be available in a structurally sorted order. Structural
join schemes also exploit pre-computed or on-the-fly index
structures (such as B+ trees and its variations [9, 15, 29,
10]) to skip unpromising elements relying on the tree-like
structure of the data. Path-based index structures on semi-
structured data and on rooted-graphs include FB-Index [31],
APEX [16], Dataguides [24], T-Index [35], and other cover-
ing indices [40]. XML filtering schemes, such as [11] and
others, also leverage the tree-like structure of the XML data
for efficiency. Such approaches for pruning structurally irrel-
evant nodes become quickly infeasible when we are not only
interested in shortest-paths, but all paths in progressively
increasing order of cost.
Keyword Queries on XML/Graph Data. Re-
cently, there has been growing interest in integrat-

ing information-retrieval style, keyword-based access into
databases. XRank [25] and ObjectRank [6] propose algo-
rithms to compute node rankings for keyword-style database
queries. XSEarch [17], a semantic search engine for XML
data, relies on extended information retrieval techniques in
ranking its results. [42] proposes a new operator for XML
query processing, where the result type of the user query is
not explicitly specified, but the query returns the most spe-
cific result in the database. Unlike the above papers, which
all aim to identify the best node matching a given query,
RIU [34], BANKS-I [7] and BANKS-II[30], and DPBF [19]
are algorithms trying to find small-size subtrees connecting
all the nodes that match any keyword in the query.
Ranked Query Processing. Ranked query processing
is important in many application domains, including infor-
mation retrieval and multimedia [1]. [21] and [13] propose
ranked query evaluation algorithms, both of which assume
that individual sources can progressively output sorted re-
sults and also enable random-access. These algorithms also
assume that the query has a monotone combined scoring
function. [12] presents approximate ranked query processing
techniques for cases where not all sub-queries are able to re-
turn ordered results. [22] and [32] recognize that there may
be cases where random accesses are impossible and present
algorithms, under monotonicity assumption, to enumerate
top-k objects without random access. They augment mono-
tonicity with an upper bound principle to enable bounding
of the maximum possible score of a partial result.

[20] focuses on the optimization of the top-k queries. [27]
introduces a rank-join operator that can be deployed in ex-
isting query execution interfaces. Under the monotonicity
assumption, they also propose a score-guided join strategy
to minimize the number of inputs to consider. J∗ [36] uses
an A∗ based heuristic and the monotonicity assumption to
help guide the navigation in the ranked join space. [43]
proposes ranked join indices for the efficient evaluation of
ranked query result. [2] and [32] extend the relational al-
gebra to support ranking as a first-class construct. [32]

517

also presents a pipelined and incremental execution model of
ranking query plans. In [33], authors extend ranked query
processing to aggregate queries. [47] models top-k query-
ing as a k-constrained optimization problem, where a goal
function includes both a boolean constraint characterizing
the data of interest and a quantifying function which acts
as the numeric optimization target.

7. CONCLUSIONS
Weighted, graph-based representation of the data is com-

mon in many application domains. Yet, while the problems
of (a) keyword-based access to data graphs, (b) structural
joins for efficient querying of XML data, and (c) top-k access
to data for IR, multimedia, and web applications have been
considered independently, ours is the first work which faces
and tackles these three challenges with the goal of provid-
ing querying and retrieval over weighted data graphs. We
showed that, while the such queries can be treated as ranked
structural-joins, the critical monotonicity property does not
hold. We also highlighted that top-k queries cannot bene-
fit from existing path-index structures. To address the first
shortcoming, we introduced a sum-max monotonicity prop-
erty and built a self-punctuating horizon-based ranked join
(HR-Join) operator for twig query evaluation. To address
the second challenge, we proposed progressive path-based
sub-query evaluation schemes. We also presented a horizon
tightening approach to deal with the potentially large num-
ber of paths in the graph. As verified by the experiments,
HR-Join, used along with a progressive shortest simple path
enumeration module, enables efficient processing of top-k
twig queries on weighted graph data.

8. REFERENCES
[1] S. Adali, P. A. Bonatti, M. L. Sapino, V. S. Subrahmanian. A

multi-similarity algebra. In SIGMOD, 1998.

[2] S. Adali, C. Bufi, and M. L. Sapino. Ranked relations: Query
languages and query processing methods for multimedia.
Multimedia Tools and Applications, 24(3):197–214, 2004.

[3] S. Agrawal, S. Chaudhuri, G. Das. Dbxplorer: A system for
keyword-based search over relational databases. In ICDE, 2002.

[4] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel.
Structural joins: A primitive for efficient XML query pattern
matching. In ICDE, 2002.

[5] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, D. Srivastava.
Minimization of tree pattern queries. In SIGMOD, 2001.

[6] A. Balmin, V. Hristidis, Y. Papakonstantinou. Objectrank:
Authority-based keyword search in databases. In VLDB, 2004.

[7] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti,
S. Sudarshan. Keyword searching and browsing in databases
using BANKS. In ICDE, 2002.

[8] S. Brin, L. Page. The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems,
30(1–7):107–117, 1998.

[9] N. Bruno, D. Srivastava, N. Koudas. Holistic twig joins:
Optimal XML pattern matching. In SIGMOD, 2002.

[10] K. S. Candan, M. E. Dönderler, Y. Qi, J. Ramamoorthy, J. W.
Kim. Fmware: Middleware for efficient filtering and matching
of xml messages with local data. In Middleware, 2006.

[11] K. S. Candan, W.-P. Hsiung, S. Chen, J. Tatemura,
D. Agrawal. Afilter: Adaptable xml filtering with prefix-caching
and suffix-clustering. In VLDB, 2006.

[12] K. S. Candan, W.-S. Li, M. L. Priya. Similarity-based ranking
and query processing in multimedia databases. Data &
Knowledge Engineering, 35(3):259–298, 2000.

[13] S. Chaudhuri, L. Gravano, A. Marian. Optimizing top-k
selection queries over multimedia repositories. TKDE,
16:992–1009, 2004.

[14] T. Chen, J. Lu, T. Ling. On boosting holism in xml twig
pattern matching using structural indexing techniques. In
SIGMOD, 2005.

[15] S. Y. Chien, Z. Vagena, D. Zhang, V. Tsotras, C. Zaniolo.
Efficient structural joins on indexed XML documents. In
VLDB, 2002.

[16] C.-W. Chung, J.-K. Min, K. Shim. Apex: An adaptive path
index for xml data. In SIGMOD, 2002.

[17] S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv. Xsearch: A semantic
search engine for xml. In VLDB, 2003.

[18] P. F. Dietz. Maintaining order in a linked list. In STOC, 1982.

[19] B. Ding, J. Yu, S. Wang, L. Qing, X. Zhang, X. Lin. Finding
top-k min-cost connected trees in databases. In ICDE, 2007.

[20] D. Donjerkovic, R. Ramakrishnan. Probabilistic optimization of
top n queries. In VLDB, pages 411–422, 1999.

[21] R. Fagin. Combining fuzzy information from multiple systems.
In PODS, 1996.

[22] R. Fagin, A. Lotem, M. Naor. Optimal aggregation algorithms
for middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[23] N. Fuhr, K. Grosjohann. XIRQL: A query language for
information retrieval in XML documents. In Research and
Development in Information Retrieval,2001.

[24] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases. In
VLDB, 1997.

[25] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram. Xrank:
Ranked keyword search over xml documents. SIGMOD, 2003.

[26] V. Hristidis, Y. Papakonstantinou. Discover: Keyword search in
relational databases. In VLDB, 2002.

[27] I. F. Ilyas, W. G. Aref, A. K. Elmagarmid. Supporting top-k
join queries in relational databases. In VLDB03, 2003.

[28] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S.
Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. Timber: A
native xml database. The VLDB Journal, 11(4):274–291, 2002.

[29] H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-Tree: Indexing
XML data for efficient structural joins. In ICDE, 2003.

[30] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai,
and H. Karambelkar. Bidirectional expansion for keyword
search on graph databases. In VLDB, pages 505–516, 2005.

[31] R. Kaushik, P. Bohannon, J. Naughton, and H. Korth. Covering
indexes for branching path queries. In SIGMOD, 2002.

[32] C. Li, K. C. Chang, I. F. Ilyas, S. Song. Ranksql: Query algebra
and optimization for relational topk queries. In SIGMOD, 2006.

[33] C. Li, K. C.-C. Chang, I. F. Ilyas. Supporting ad-hoc ranking
aggregates. In SIGMOD, 2006.

[34] W.-S. Li, K. S. Candan, Q. Vu, D. Agrawal. Retrieving and
organizing web pages by information unit. In WWW, 2001.

[35] T. Milo, D. Suciu. Index structures for path expressions. In
ICDT, 1999.

[36] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, J. S. Vitter.
Supporting incremental join queries on ranked input. In VLDB,
2001.

[37] M. Pascoal, E. Martins. A new implementation of yen’s ranking
loopless paths algorithm. 4OR – Quarterly Journal of the
Belgian, French and Italian Operations Research Societies,
1(2):121–134, 2003.

[38] Y. Qi, K. S. Candan, M. L. Sapino. Ficsr: Feedback-based
InConSistency Resolution and query processing on misaligned
data sources. In SIGMOD, 2007.

[39] Y. Qi, K. S. Candan, M. L. Sapino, K. Kintigh. Using QUEST
for integrating taxonomies in the presence of misalignments
and conflicts. In SIGMOD Demos, 2007.

[40] P. Ramanan. Covering indexes for xml queries: Bisimulation -
simulation = negation. In VLDB, 2003.

[41] G. Reich, P. Widmayer. Approximate minimum spanning trees
for vertex classes. Technical report, Inst. fur Informatik,
Freiburg Univ., 1991.

[42] A. Schmidt, M. L. Kersten, M. Windhouwer. Querying XML
documents made easy: Nearest concept queries. In ICDE, 2001.

[43] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas,
D. Srivastava. Ranked join indices. In ICDE, 2003.

[44] Xpath. http://www.w3.org/TR/xpath, 1999.

[45] Xquery. http://www.w3.org/TR/xquery, 2006.

[46] J. Y. Yen. Finding the k shortest loopless paths in a network.
Management Science, 17:712–716, 1971.

[47] Z. Zhang, S. Hwang, K. C. Chang, M. Wang, C. A. Lang,
Y. Chang. Boolean + ranking: Querying a database by
k-constrained optimization. In SIGMOD, 2006.

518

