
RankMass Crawler: A Crawler with High Personalized
PageRank Coverage Guarantee

Junghoo Cho
University of California Los Angeles

4732 Boelter Hall
Los Angeles, CA 90095

cho@cs.ucla.edu

Uri Schonfeld
University of California Los Angeles

4732 Boelter Hall
Los Angeles, CA 90095

shuri@shuri.org

ABSTRACT
Crawling algorithms have been the subject of extensive re-
search and optimizations, but some important questions re-
main open. In particular, given the unbounded number of
pages available on the Web, search-engine operators con-
stantly struggle with the following vexing questions: When
can I stop downloading the Web? How many pages should
I download to cover “most” of the Web? How can I know
I am not missing an important part when I stop? In this
paper we provide an answer to these questions by develop-
ing, in the context of a system that is given a set of trusted
pages, a family of crawling algorithms that (1) provide a
theoretical guarantee on how much of the “important” part
of the Web it will download after crawling a certain num-
ber of pages and (2) give a high priority to important pages
during a crawl, so that the search engine can index the most
important part of the Web first. We prove the correctness
of our algorithms by theoretical analysis and evaluate their
performance experimentally based on 141 million URLs ob-
tained from the Web. Our experiments demonstrate that
even our simple algorithm is effective in downloading im-
portant pages early on and provides high “coverage” of the
Web with a relatively small number of pages.

1. INTRODUCTION

Search engines are often compared based on how much of
the Web they index. For example, Google claims that they
currently index 8 billion Web pages, while Yahoo states its
index covers 20 billion pages [5]. Unfortunately, comparing
search engines based on the sheer number of indexed pages is
often misleading because of the unbounded number of pages
available on the Web. For example, consider a calendar page
that is generated by a dynamic Web site. Since such a page
often has a link to the “next-day” or “next-month” page, a
Web crawler1 can potentially download an unbounded num-

1A crawler is an automatic program that follows links and
downloads pages for a search engine.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

ber of pages from this single site by following an unbounded
sequence of next-day links. Thus, 10 billion pages indexed
by one search engine may not have as many “interesting”
pages as 1 billion pages of another search engine if most of
its pages came from a single dynamic Web site.

The intractably large size of the Web introduces many im-
portant challenges. In particular, it makes it impossible for
any search engine to download the entire Web; they have to
stop at some point. But exactly when should they stop? Are
one billion pages enough or should they download at least
10 billion pages? How much of the “interesting” content on
the Web do they miss if they index one billion pages only?
In this paper, we formally study the following two issues
related to these questions:

1. Crawler coverage guarantee: Given the intractably large
size of the Web search-engine operators wish to have
a certain guarantee on how much of the “important”
part of the Web they “cover” when they stop crawling.
Unfortunately, providing this guarantee is challenging
because it requires us to know the importance of the
pages that have not been downloaded. Without actu-
ally “seeing” these pages, how can a crawler know how
important the pages are?

2. Crawler efficiency: A crawler also wishes to download
“important” pages early during a crawl, so that it can
cover the most important portions of the Web when it
stops. How can a crawler achieve this goal and attain
a certain coverage with the minimum number of down-
loads? Alternatively, how can it achieve the maximum
coverage with the same number of downloads?

In the rest of this paper, we investigate these issues in the
following order:

• In Section 2, we first formalize the notion of the coverage
of a set of Web pages using the metric called RankMass.
Our RankMass metric is similar to the one proposed
in [19] to compare the quality of search-engine indexes.
RankMass is based on a commonly-used variation of PageR-
ank metric (often referred to as Personalized PageRank
or TrustRank) which assumes that the users’ random
jumps are limited only to a set of trusted pages. We
then provide a formal and reasonable assessment on how
much of the “interesting” content on the Web the set
covers.

• In Section 3, we prove key theorems that provide a formal
way to measure the RankMass coverage of a particular

375

subset of the Web. This theoretical result is particularly
useful because the coverage measurement can be done
just based on the pages within the subset, without know-
ing anything about the pages outside of the subset. We
then describe a simple yet effective crawling algorithm
that provides a tight coverage guarantee of the down-
loaded pages as long as the seed set of the crawl captures
the majority of the pages that users randomly jump to.

• In Section 4, we then describe how the crawler can prior-
itize the pages during crawling, so that it can download
high Personalized PageRank pages early during a crawl,
and achieve the highest RankMass when it stops. Again,
the crawling algorithm is developed through a careful
analysis of the properties of the Personalized PageRank
metric and is able to provide a strict guarantee on the
downloaded RankMass.

• In Section 5, we evaluate the effectiveness of our crawl-
ing algorithms by running extensive experiments on real
Web data. Our results indicate that even our simple al-
gorithm performs well in practice and is able to achieve
high RankMass coverage early during a crawl.

There exist a large body of related work in the literature
that investigates related issues [25, 3, 15, 11, 14] and in par-
ticular instances of the family of algorithms we present in
this paper have been described before [24, 2, 12]. However,
due to the fundamental difficulty of computing exact Per-
sonalized PageRank values without downloading the entire
Web, previous studies are based on a set of intuitive heuris-
tics and/or analysis that is mainly focused on the eventual
convergence of the algorithms. As far as we know our work is
the first that provides a strict Personalized PageRank cover-
age guarantee on the downloaded pages during and after the
crawl. This allows search-engine operators to judge exactly
how much of the Web they have covered so far, and thus
make an informed decision on when it is safe to stop crawl-
ing the Web. In the next section we start by introducing
the RankMass coverage metric.

2. RANKMASS COVERAGE METRIC

The Web can be viewed as a potentially infinite set of doc-
uments, denoted by D. The Web crawler can only download
a finite number of documents DC from D. In this section,
we discuss how we may define the measure of the coverage
achieved by DC on a potentially infinite set D.

We represent the importance of each page by assigning
the weight wi to pi ∈ D, where wi values are normalized to
be

P

pi∈D wi = 1. Then the coverage of DC can be defined

as its mass, the sum of the weights of its pages:
P

pi∈DC
wi.

For example, assigning every page pi with a weight of 1
2i

will result in the whole Web’s mass being
P∞

i=1
1
2i = 1, and

the mass of the first 10 pages to be
P10

i=1
1
2i = 1 − 1

210

The important question is exactly how we should assign
weights to Web pages? What will be the fair and reasonable
weight for each page? Many possible weight assignments
may be considered. For example, a document collection may
be evaluated according to its relevance to a particular query
or set of queries. Although this metric may be interesting,
it would require us to know these set of queries beforehand
in order to evaluate a document collection. Other weight as-
signments might leverage the page topic, page size, the fonts
used or any other features associated with the document.

In this paper we choose to explore one such weight as-

signment, where each page is associated with a weight equal
to its PageRank, similarly to the work done by Heydon et
al. [19]. There are a number of reasons why PageRank is
useful as a measure of page importance. Since its first intro-
duction in 1996, PageRank has proven to be very effective
in ranking Web pages, so search engines tend to return high
PageRank pages higher than others in search results. It is
also known that under the random-surfer model, the PageR-
ank of a page represents the probability that a random Web
surfer is at the page at a given time, so high PageRank
pages are the ones that the users are likely to look at when
they surf the Web. We now briefly go over the definition of
PageRank and the random-surfer model to formally define
our coverage metric.

2.1 Review of the PageRank metric

Original PageRank Let D be the set of of all Web pages.
Let I(p) be the set of pages that link to the page p and let
ci be the total number of links going out of page pi. The
PageRank of page pi, denoted by ri, is then given by2

ri = d

2

4

X

pj∈I(pi)

rj

cj

3

5 + (1 − d)
1

|D|
(1)

Here, the constant d is called a damping factor which is
often assumed to be 0.85. Ignoring the damping factor for
now, we can see that ri is roughly the sum of rj ’s that point
to pi. Under this formulation, we construct one equation per
Web page pi with the equal number of unknown ri values.
Thus, the equations can be solved for the ri values, assuming
that the PageRank values sum up to one:

Pn

i=1 ri = 1.

A way to think intuitively about PageRank is to consider
a user “surfing” the Web, starting from any page, and ran-
domly selecting a link from that page to follow. When the
user is on page pj , with the probability d, the user will click
on one of the cj links on the page with equal probability,
meaning 1

cj
. With the remaining probability, 1−d, the user

stops following links, and jumps to a random page in D.
This damping factor d makes sense because users will only
continue clicking on links for a finite amount of time be-
fore they get distracted and start exploring something com-
pletely unrelated.

A more compact notation can be achieved by using ma-
trices as follows:

~R = d
h

W · ~R
i

+ (1 − d)
1

|D|
~1 (2)

In this equation W is the stochastic transition matrix whose
(i, j) element wij is wij = 1

cj
, if a link exists from page pj

to page pi and wij = 0 otherwise. ~R is a vector whose ith

element is ri, the PageRank of pi. Finally, ~1 is a vector
whose elements are all 1.

Personalized PageRank The original PageRank formu-
lation suffers from easy spammability because a malicious
Web publisher can significantly boost the PageRank of his
pages simply by generating a massive number of pages and

2For clarify, here we assume that D is a finite set. Under
the personalized PageRank definition that we describe later,
our results can be easily generalized to the case when D is
infinite.

376

heavily linking among themselves. To avoid the spammabil-
ity problem, a variation of the original PageRank has been
proposed [20, 16, 17] and is being commonly used.

Under this model, every page pi is associated with a trust
score ti (here, ti values are assumed to be normalized to
P

pi∈D
ti = 1). We refer to the vector of the ti values as the

trust vector ~T :

~T =

2

6

4

t1
t2
...

3

7

5
(3)

The PageRank of pi is then defined as

ri = d

2

4

X

pj∈I(pi)

rj

cj

3

5 + (1 − d)ti, (4)

or using the matrix notation,

~R = d
h

W · ~R
i

+ (1 − d)~T . (5)

Note that the only difference between Equations 1 and 4
is that the factor 1/|D| in the first equation is replaced with
ti in the second one. Thus, if ti = 1/|D| for every pi, the
personalized PageRank reduces to the original one. In gen-
eral, ti is set to a non-zero value only for the page pi that
is “trusted” or believed to be “non-spam” by the search en-
gine. Intuitively, this personalized PageRank incorporates
the fact that when a user gets “interrupted” and “jumps”
to a new page, he does not jump to every page with equal
probability. Rather, the user is more likely to jump to the
pages that he “trusts”; the trust score ti represents this ran-
dom jump probability to pi.

It is well known that when ti is set to non zero only for
non-spam pages, a spammer cannot increase ri by simply
creating a large number of pages that link to pi. Thus,
it is significantly more difficult to spam the personalized
PageRank when ti values are carefully chosen. In fact, even
the original Google prototype is known to have used the
personalized PageRank, giving higher ti values to the pages
in the educational domain. In the rest of this paper we
assume the personalized PageRank and simply refer to it as
PageRank for brevity.

2.2 RankMass coverage metric

We now formalize our coverage metric:

Definition 1 (RankMass) Assume D is the set of all pages

on the Web and ~T is the trust vector. For each pi ∈ D,
suppose ri represents the PageRank of pi computed based
on the entire link structure within D using ~T . Then the
RankMass of a subset DC ⊂ D, RM(DC), is defined as the
sum of its PageRank values:

RM(DC) =
X

pi∈DC

ri 2

Given the random-surfer interpretation of PageRank, RM(DC)
represents the probability of random surfers’ visiting pages
in DC . For example, if RM(DC) is 0.99, then 99% of the
users are visiting the pages in DC at any particular time.
Therefore, by guaranteeing a high RankMass for DC , we
guarantee that most of the pages that users will surf to are
in DC . For the reader’s convenience, we summarize all the
symbols used in this paper in Table 1.

Symbol Description

D All documents on the Web
DC The set of documents obtained by

crawling
d Damping factor used in PageRank

calculation
I(p) Set of pages that point to page p
ci Number of outgoing links from pi

ri The PageRank of page pi

~R Vector of PageRank values
~T A trust vector where ti signifies the

degree of trust we give to page pi

W The transition matrix where wij sig-
nifies the probability that a random
surfer will follow the link in page pj

to page pi.
RM(G) RankMass measure defined over a set

of pages G as the sum of their PageR-
ank values

NL(G) The set of pages that are at most L
links away from some page p ∈ G

PP (w) Path probability of path w

Table 1: Summary of notation used

2.3 Problem statement

We now formally state the two problems that we investi-
gate in this paper.

Problem 1 (Crawling algorithm with RankMass guar-
antee) Design an effective crawling algorithm that guaran-
tees that when we stop downloading the Web, the RankMass
of the downloaded pages DC is close to one. That is, given
ǫ, we want to develop a crawling algorithm that downloads
a DC such that

RM(DC) =
X

pi∈DC

ri ≥ 1 − ǫ 2

Problem 2 (Efficient crawling algorithm) Given the
target download size N = |DC |, design a crawling algorithm
that maximizes the RankMass of the downloaded pages DC .
That is, given N , we want to develop a crawling algorithm
that downloads pages such that RM(DC) is maximum out
of all possible DC ’s with |DC | = N . 2

In addressing these problems, it is important to note that
RankMass is computed based on the the link structure of the
entire Web D, not just the graph structure within the subset
DC . Therefore, without downloading the entire Web, it is
not possible to compute RM(DC) precisely. Then how can
we design a crawling algorithm with the above properties?
We address this issue in the next few sections.

3. CRAWLING WITH RANKMASS GUARAN-
TEE

The primary goal of this section is to design a crawling
algorithm that provides the RankMass coverage guarantee
when it stops (Problem 1). As we briefly discussed before,
the core challenge in addressing this problem is that the
crawler does not know the exact RankMass of the down-
loaded pages DC just based on the link structure in DC .
Then how can it provide the RankMass guarantee of DC?

Our main idea for addressing this challenge in this paper is
as follows: while the exact PageRank is difficult to compute,

377

we can still compute the lower bound of the ri values for pi ∈
DC just based on the link structure within DC . Based on this
general idea, in Section 3.1 we first derive the lower bound of
the download pages DC for a special case where only a single
page is trusted. Then in Section 3.2 we build on this result to
compute the lower bound for the general case where multiple
pages are trusted. Based on this result, we then describe a
crawling algorithm that provides the RankMass guarantee.
For the clarify of discussion, we assume that there exist no
dangling page on the Web in the rest of this paper. It is
relatively straightforward to extend our result to the Web
with dangling pages, because the generalization can be done
by additional step of renormalization [7].

3.1 RankMass lower bound under single-page trust
vector ~T (1)

In this section, as a first step of designing a crawling al-
gorithm with the RankMass guarantee, we investigate the
RankMass lower bound of a set of pages for a very special
case: here, we assume that the PageRank values are com-
puted under a special trust vector ~T (1) whose ith element,

t
(1)
i , is defined as follows:

t
(1)
i =

1 for i = 1
0 for i = 2, 3, . . .

Note that the meaning of this trust vector, under the
random-surfer interpretation, corresponds to the case when
the user trusts only page p1, and jumps only to this page
when he gets “interrupted”. While the RankMass lower
bound computed for this special trust vector may not be
directly useful for the general case when multiple pages are
trusted, it provides the key insight for computing the lower
bound for the general case.

As we will see, our RankMass lower bound is given for a
particular set of pages that are in the “neighborhood” of p1.
Thus, we first formalize the notion of neighborhood:

Definition 2 We define the L-neighbors of page p, NL(p),
as the set of pages that are reachable from p by following L
or fewer links. Similarly, given a group of pages G, the L-
neighbors of the group G is defined as NL(G) =

S

p∈G

NL(p).

That is, it includes all pages reachable from any of the pages
in G in L links or less. 2

Given the above definition, we are now ready to state this
section’s main theorem:

Theorem 1 Assuming the trust vector ~T (1), the sum of the
PageRank values of all L-neighbors of p1 is at least dL+1

close to 1.
X

pi∈NL(p1)

ri ≥ 1 − dL+1 (6)

2

Due to space limitations, we omit the full proof of this
theorem in this version of the paper and just provide the in-
tuition behind this theorem using the random-surfer model.

The theorem states that the sum of the PageRank values
of the pages in NL(p1) is above a certain value. In other
words, the probability of finding a random surfer in the L-
neighborhood of p1 is greater than some value. To help our
explanation, in Figure 1 we show L-neighborhoods of p1 for
L = 1, 2, 3. Since our random surfer keeps returning to p1

the chances of being in any page is the chance of being in p1

times the chances of following all possible paths to that page.
Furthermore, the longer the path from p1 is, the less likely it
is to be followed since our random surfer has many chances
of being “interrupted”. In particular, the probability that
the surfer ventures out to any page not within L links from
p1 is at most dL+1 because the user should make L + 1 or
more consecutive clicks, which is the key reason for the term
dL+1 in Equation 6.

Figure 1: Neighborhoods of a single page

We now illustrate the implication of Theorem 1. Accord-
ing to the theorem, the RankMass of, say, N3(p1) is at least
1 − d4. Note that the theorem does not assume anything
about the link structure of the pages. That is, this lower
bound is always guaranteed under the trust vector ~T (1), re-
gardless of the link structure of the Web. Therefore, the the-
orem suggests an effective crawling strategy that guarantees
the RankMass of the downloaded pages: starting from p1, we
simply download all pages reachable within L links from p1!
The theorem then guarantees that the pages in the down-
loaded collection have at least 1− dL+1 of the RankMass of
the entire Web. Unfortunately, search engines are unlikely
to use only a single trusted page in their PageRank compu-
tation — for example, in [16], Gyongyi et al. reports using
close to 160 pages as the trusted pages — so this algorithm
is unlikely to be useful in practice. The next section extends
the result of this section to the general cases when multiple
pages are trusted.

3.2 RankMass lower bound under multi-page trust
vector

We now explain how we can compute the RankMass lower
bound of downloaded pages when the trust is spread across
a (possibly infinite) set of pages. That is, we compute the

RankMass lower bound for a general trust vector ~T , where
multiple ti’s may take non-zero values.

In order to state the RankMass lower bound for this gen-
eral case, let G be the set of trusted pages (i.e., G = {pi|ti >
0}). Then the following theorem shows the RankMass lower
bound:

Theorem 2 The RankMass of the L-neighbors of the group
of all trusted pages G, NL(G), is at least dL+1 close to 1.
That is,

X

pi∈NL(G)

ri ≥ 1 − dL+1. (7)

2

Proof We prove this is by “decomposing” each page’s PageR-
ank value to individual values attributed to individual trusted
pages. More precisely, assume ~T (k) is the trust vector whose

378

kth element is the only non-zero element:

t
(k)
i =

1 for i = k
0 for all other i’s.

Also, let ~R(k) be the PageRank vector computed under the
trust vector ~T (k). Then from the linearity property of PageR-
ank, it can be shown that [18]:

~R =
X

pi∈G

ti
~R(i) (8)

or

rj =
X

pi∈G

ti r
(i)
j for any pj . (9)

If we take the sum of the above equation for every pj ∈
NL(G), we get

X

pj∈NL(G)

rj =
X

pi∈G

ti

X

pj∈NL(G)

r
(i)
j (10)

From Theorem 1, we know that
P

pj∈NL(G) r
(i)
j ≥ 1 − dL+1

for any i. We also know that
P

pi∈G
ti = 1 because G is

the set of all trusted pages. Therefore, the above equation
becomes

X

pj∈NL(G)

rj ≥ 1 · (1 − dL+1) = 1 − dL+1. (11)

�

We are now ready to introduce our crawling algorithm
that provides a RankMass coverage guarantee for a general
trust vector ~T .

3.3 L-neighbor Crawler

The result of Theorem 2 suggests a surprisingly simple
crawling algorithm that can provide a formal RankMass cov-
erage guarantee: download all pages within the L-neighbor
of the set of trusted pages G!

In Figure 2 we describe our L-neighbor algorithm that
implements this idea. The algorithm initializes the first level
of the crawl with the trusted pages in line 2. It then proceeds
to crawl all this level’s immediate neighbors at line 4. This
process continues until the stopping condition ǫ < dL+1 is
met at line 3.

1: L := 0
2: N [0] = {pi|ti > 0} // Start with the trusted pages
3: While (ǫ < dL+1)
4: Download all uncrawled pages in N [L]
5: N [L + 1] = {all pages linked to by a page in N [L]}
6: L = L + 1

Figure 2: L-neighbor Crawling Algorithm.

Given Theorem 2, it is easy to see that the L-neighbor
algorithm provides the following guarantee when it stops.

Corollary 1 When the L-neighbor algorithm stops, the Rank-
Mass of the downloaded pages is at least ǫ close to 1. That
is, RM(DC) ≥ 1 − ǫ. 2

Note that the L-neighbor algorithm is essentially the same
as the well known BFS algorithm except that (1) our crawl is
seeded with the the trusted set of nodes, (2) we have a clear,
goal driven stopping condition and (3) we can give a formal

bound on the “importance” of the (potentially infinite) set
of undownloaded pages.

Finally, we discuss one potential problem when a search
engine operator’s trusted set of pages G is infinite — for ex-
ample, given the random-surfer interpretation of ti, a search
engine operator may decide to analyze users’ real Web-trace
data to estimate their random jump probability to pi, and
use this estimated probability as the ti. In this case, ti can
be non-zero for any pi, at least in principle.

When the set of trusted pages G is infinite, its L-neighbor
NL(G) also contains an infinite number of pages, so the
L-neighbor crawler cannot download all of these pages; it
can only download the L-neighbor of a finite subset G′ ⊂
G. Fortunately, even in this case, we can show that the
algorithm still provides the following RankMass guarantee:

Theorem 3 Assume that we have a finite set G′ ⊂ G,
whose trust score sum is

P

pi∈G′ ti = 1 − δ. Then the

RankMass of the L-neighbor of G′ is
X

pi∈NL(G′)

ri ≥ (1 − δ)(1 − dL+1) (12)

2

The proof can be done using the same steps of the proof for
Theorem 2. The implication of this theorem is that in case
a crawl can be seeded with a finite subset of trusted pages,
the crawler’s RankMass coverage depends both on the depth
of the crawl and the sum of the trust scores of the seed
pages. Later in our experiment section, we investigate the
performance of the L-neighbor algorithm when the crawler
is seeded with only a subset of trusted pages.

4. CRAWLING TO ACHIEVE HIGH RANKMASS

So far we have focused on our first problem, how to pro-
vide a coverage guarantee when the crawler stops. We now
turn our attention to our second problem (Problem 2 in Sec-
tion 2.3): How can we download high PageRank pages early
during a crawl, so that we can maximize the RankMass of
the downloaded pages when we stop?

The L-neighbor algorithm is simple and allows for an effi-
cient implementation, but it is not directly suitable for the
purpose of downloading high PageRank pages early. For ex-
ample, consider running the L-neighbor algorithm with two
seed pages, p1 and p2. p1 has the trust value of 0.99, and p2

has the trust value of 0.01. Intuitively, we expect the pages
near p1 to have much higher PageRank values than the ones
near p2. Given this intuition, we may want to modify the
L-neighbor algorithm to download a larger neighborhood of
p1 earlier than that of p2, so that the higher PageRank pages
are downloaded sooner. As this example demonstrates, what
our L-neighbor algorithm needs is more fine-grained page
prioritization mechanism for use during the crawl.

In general, the core challenge of developing such a page
prioritization mechanism is estimating the PageRank of the
undownloaded pages during a crawl, especially given that
we have only a partial subgraph of the Web. We explain
our idea for addressing this challenge in the next section.

4.1 PageRank lower bound of an individual page

Computing the exact PageRank of an undownloaded page
just from the downloaded part of the Web is not possible.
Therefore, in the algorithms we present in the next few sec-
tions, we instead compute a PageRank lower bound for each
page, and then, give high priority for download to the pages

379

Figure 3: Example surfing session from Pj to Pi

with high PageRank lower bounds. The intuition behind this
prioritization is that the pages with high lower bounds are
more likely to have high PageRank values, although there is
no strict guarantee that this will always be the case.

In this section, we explain how the PageRank lower bound
can be computed just from a downloaded subset of the Web.
However, before we provide our formal results, we first in-
tuitively explain how this can be done based on the random
surfer model introduced earlier.

As discussed earlier, the PageRank of a page pi can be
viewed as the probability that a random surfer is found at
any given moment viewing this page. The random surfer
follows a very simple path; with probability d he continues
his current surfing session, uninterrupted, clicking on any
link from the current page with equal probability. However,
with probability (1−d), the random surfer is interrupted and
the current surfing session ends. In this case, the random
surfer chooses a new random page pj , with a probability
equal to his trust in the page, tj , and he begins a new surfing
session starting from the page.

Given this model, how can we calculate the probability of
the random surfer being in page pi? In order to calculate
this probability, we consider a user who is currently at pi,
and examine all the possible ways any session could have led
him there. We show one possible such a session in Figure 1,
where the user jumps to pj in the beginning of the session
and eventually comes to pi. What is the probability of fol-
lowing such a path? To compute this probability, let wji

denote the sequence of pages along it, not including the last
page pi itself. Thus, |wij | =

P

p∈wij

1 is equal to the number of

links the random surfer clicks in this session. At the begin-
ning of this path, our random surfer was interrupted (with
probability 1−d), randomly jumped to page pj (with proba-
bility tj), and continued clicking on the right links along the
way (with probability

Q

pk∈wji

1
ck

) without being interrupted

throughout the session (with probability d|wji|). Factoring
in all of these together gives us:

0

@

Y

pk∈wji

1

ck

1

A (1 − d)tjd
|wji| (13)

This is the probability of one specific path wji correspond-
ing to one specific surfing session that leads to pi. We refer
to this probability as the path probability of wji, which is
denoted by PP (wji). Then, by summing up the path prob-
abilities of all possible surfing sessions leading to pi we get
the probability of the random surfer being in pi, which is
PageRank. The following lemma formalizes this notion:

Lemma 1 Let D be the set of all the pages on the Web, and
Wji be the set of all paths on the web leading from page pj

to page pi. Thus the following is an alternative method of
calculating the PageRank value of pi denoted by ri:

ri =
X

pj∈D

X

wji∈Wji

PP (wji) (14)

PP (wji) =

0

@

Y

pk∈wji

1

ck

1

A (1 − d)tjd
|wji| (15)

where ck is the number of outgoing links from page pk, tj is
the trust value for page pj, and d is the damping factor. 2

The detailed proof of this lemma is not included in this
version of the paper due to space limitations. This lemma
has also been independently proven by Brinkmeir in [9].

Let us see how this lemma can be used to calculate the
lower bound for PageRank values. The lemma states that if
we sum all these path probabilities PP (w), for every possible
path, starting with every possible page, we will get exactly
the PageRank value we are seeking. Given that all these
probability values are positive, if we sum the probabilities for
a subset of these paths, we get a lower bound on PageRank.
This is exactly what the algorithms in the next section do;
they enumerate every possible path during a crawl greedily
from the high probability paths, and sum up their respective
path probabilities.

4.2 Algorithm RankMass

In this section we finally introduce the RankMass crawling
algorithm which (1) enumerates every possible path origi-
nating from the set of trusted pages, (2) compute the PageR-
ank lower bound of each page through this enumeration
and (3) greedily downloads the page with the highest lower
bound. The pseudo code for the algorithm is presented in
Figure 4.3

The algorithm maintains three important data structures:
(1) UnexploredPaths keeps track of the paths that have
been discovered but not explored (and their path probabil-
ities). (2) sumPathProbi maintains the sum of the path
probabilities in UnexploredPaths that end at pi. That is,

sumPathProbi =
X

wji∈UnexloredPaths

PP (wji).

As we will see later, for an undownloaded page pi, sumPathProbi

works as the PageRank lower bound during a crawl. (3) r
¯i

stores the sum of the path probabilities to pi that have al-
ready been explored. For a downloaded page pi, r

¯i works as
the PageRank lower bound during a crawl.

We now explain how the algorithm proceeds. The algo-
rithm begins in lines 2–7 by initializing UnexploredPaths
with {pi}’s (i.e., the paths that contain one trusted page)
and their path probabilities PP ({pi}) = (1−d)ti. Note that
sumPathProbi is set to (1−d)ti in line 7, because currently
UnexploredPaths contains only one path {pi} for each page
pi.

After this initialization, the algorithm starts exploring the
paths in UnexploredPaths in the loop between line 9 and 25.
For now, ignore the crawling step in line 11, so that we
can understand how the paths are explored and expanded.

3This version of the RankMass crawling algorithm includes
a number of unnecessary steps to help the reader follow the
code. More simplified version of the algorithm will be pre-
sented shortly.

380

0: Variables:
0: UnexploredPaths: List of unexplored paths and their path probabilities
0: sumPathProbi: Sum of the probabilities of all unexplored paths leading to pi

0: r
¯i: Partial sum of the probability of being in pi

0:
1: RankMassCrawl()
2: // Initialize:
3: r

¯i = 0 for each i // Set initial probability sum to be zero.
4: UnexploredPaths = {} // Start with empty set of paths.
5: Foreach (ti > 0): // Add initial paths of jumping to a trusted page and
6: Push [path: {pi}, prob: (1 − d)ti] to UnexploredPaths // the probability of the random jump.
7: sumPathProbi = (1 − d)ti // For every trust page pi, we currently have only one path {pi}
8: // and its path probability is (1 − d)ti.
9: While (

P

i r
¯i < 1 − ǫ):

10: Pick pi with the largest sumPathProbi. // Get the page with highest sumPathProbi.
11: Download pi if not downloaded yet // Crawl the page.
12:
13: // Now expand all paths that end in pi

14: PathsToExpand = Pop all paths ending with pi // Get all the paths leading to pi,
15: from UnexploredPaths
16: Foreach pj linked to from pi // and expand them by adding pi’s children to the paths.
17: Foreach [path, prob] ∈ PathsToExpand

18: path′ = path · pj // Add the child pj to the path,

19: prob′ = d
ci

· prob // compute the probability of this expanded path,

20: Push [path′, prob′] to UnexploredPaths // and add the expanded path to UnexploredPaths.

21: sumPathProbj = sumPathProbj + d
ci

sumPathProbi // Add the path probabilities of the newly added paths to pj.

22:
23: // Add the probabilities of just explored paths to r

¯ i

24: r
¯i = r

¯i + sumPathProbi // We just explored all paths to pi. Add their probabilities
25: sumPathProbi = 0 // to r

¯ i.

Figure 4: RankMass Crawling Algorithm.

In every iteration of the loop, the page with the highest
sumPathProbi is chosen in line 10. Then in lines 13–21 all
paths in UnexploredPaths that end in pi are expanded to
pi’s children and added back to UnexploredPaths. After
the paths are expanded their path probabilities are added
to r

¯i in lines 23–25.
We now state two important properties of the algorithm

using the following theorems.

Theorem 4 When the RankMass algorithm stops, the Rank-
Mass of the downloaded pages is at least 1 − ǫ. That is:

X

pi∈DC

ri ≥ 1 − ǫ 2

Theorem 5 While the algorithm is running, for any page
pi /∈ DC (i.e., a page that has not been downloaded), ri ≥
sumPathProbi. That is, sumPathProbi is the PageRank
lower bound of an undownloaded page pi. 2

Theorem 4 provides the RankMass guarantee of the down-
loaded pages DC when the algorithm stops. Theorem 5 con-
firms our earlier assertion that the algorithm gives higher
priority to the pages with higher PageRank lower bounds
during a crawl (to see this, look at lines 10–11 in Figure 4).

For lack of space we only provide the main ideas of the
proof here. To prove Theorem 4, we have to verify the fol-
lowing two facts: (1) r

¯i > 0 if and only if pi ∈ DC and (2)
ri ≥ r

¯i (i.e., r
¯i is the lower bound of the downloaded page

pi). The first fact is easy to verify because in Figure 4, r
¯i

is increased (line 24) only after pi is downloaded (line 11).
To verify the second fact, all that is left to show is that
(1) r

¯i values are essentially the sums of the path probabil-
ity PP (w) for the paths w that lead to pi and (2) no such
path w is counted twice. Similarly, to prove Theorem 5, we
have to show that (1) sumPathProbi values are essentially

sums of PP (w)’s for the paths w that lead to pi and (2) no
such path w is counted twice. By going over the steps of the
algorithm carefully, it is relatively straightforward to verify
these facts, which proves the above theorems.

Note that the page pi chosen at line 10 of the algorithm
may have already been downloaded. In this case, the pur-
pose of the lines 11 through 25 is not to redownload the page,
but to expand the paths in order to improve the PageRank
lower bound. This “virtual crawl” or “internal probability
propagation” helps the RankMass crawler provide a tighter
RankMass lower bound, but may require a random access to
disk since the links from pi may not reside in main memory.
In the next section, we will briefly talk about how we may
minimize the number of these random accesses by “batch-
ing” the page download and path-expansion steps.

Before we finish our discussion on the RankMass crawling
algorithm, we finally discuss how we can simplify the algo-
rithm in Figure 4. For this simplification, we first note that
the information in UnexploredPaths does not have any ef-
fect over the control flow of the algorithm. That is, even if
we remove lines 4, 6, 14–15 and 17–20, and do not main-
tain UnexploredPaths at all, the algorithm still proceeds
the same way. Second, we note that computing individual
r
¯i values for every page pi is an overkill. All we need is
the sum of r

¯i values, so that we can compute the RankMass
lower bound of the downloaded pages. Therefore, instead
of keeping one r

¯i for every page pi, we can just keep the
sum of r

¯i values in a single variable CRM . Based on this
discussion, we show our final simplified RankMass crawling
algorithm in Figure 5.4

4.3 Windowed-RankMass Crawler

4In the algorithm, we also renamed sumPathProbi with
rmi for conciseness.

381

0: Variables:
0: CRM : RankMass lower bound of crawled pages
0: rmi: Lower bound of PageRank of pi.
0:
1: RankMassCrawl()
2: CRM = 0
3: rmi = (1 − d)ti for each ti > 0
4: While (CRM < 1 − ǫ):
5: Pick pi with the largest rmi.
6: Download pi if not downloaded yet
7: CRM = CRM + rmi

8: Foreach pj linked to by pi:

9: rmj = rmj + d
ci

rmi

10: rmi = 0

Figure 5: RankMass Crawling Algorithm.

The RankMass algorithm presented in the previous sec-
tion is an extremely greedy algorithm that attempts to not
only download the page with the highest PageRank early,
but attempts to provide us with a tight guarantee of the
RankMass collected by the crawl. This type of greediness
increases our chances of being close to the optimal crawl,
but the RankMass algorithm requires random access to the
graph structure, and random access to storage is inherently
expensive.

In this section, we present an algorithm which allows us
to adjust its greediness through a special window parameter.
As we will see, setting the window to 100% will give us the L-
Neighbor algorithm, and as the parameter approaches 0%,
the algorithm behaves more and more like the RankMass
crawler.

The Windowed-RankMass algorithm is an adaptation of
the RankMass algorithm and is designed to allow us to re-
duce the overhead by batching together sets of probability
calculations and downloading sets of pages at a time. Batch-
ing together the downloads may lead to page downloads that
are less close to the optimal. For example, consider the last
downloaded page of a batch of pages. All the pages down-
loaded so far in the batch, could have been used to further
tighten the PageRank lower bounds, and thus increase the
probability of downloading a page with a higher PageRank
value. On the other hand, batching the downloads together
also allows us to batch together the probability calculations
which in turn makes it computationally viable to access the
graph structure through serial access to the disk rather than
the inherently slow random access. The algorithm itself is
presented in Figure 6 and is very similar to the RankMass
algorithm that was presented in Figure 5.

There are two key differences between this algorithm and
the RankMass algorithm. The first difference is that the top
window% of the pages are crawled in line 7, downloaded as
a batch, rather than just the page with the highest rmi.
The second difference is that the probability calculations in
line 8–12 are done for all pages downloaded so far rather
than just the page with the highest rmi. The stopping con-
dition in line 6 is identical to the one used in the previous
algorithm.

Windowed-RankMass algorithm is actually a family of
crawling algorithms that allows us to decide exactly how
greedy we want to be. The appropriate window size can be
chosen according to the needs, purpose and resources avail-
able for the crawl.

In the next section we evaluate the three algorithms we
introduced in this paper.

5. EXPERIMENTAL RESULTS

0: Variables:
1: CRM :
2: rmi:
3:
4: Crawl()
5: rmi = (1 − d)ti for each ti > 0
6: While (CRM < 1 − ǫ):
7: Download top window% pages according to rmi

8: Foreach page pi ∈ DC

9: CRM = CRM + rmi

10: Foreach pj linked to by pi:

11: rmj = rmj + d
ci

rmi

12: rmi = 0

Figure 6: Windowed-RankMass Crawling Algo-
rithm.

In this paper, we introduced three new crawling algo-
rithms: L-Neighbor, Windowed-RankMass, and RankMass.
The main difference between these three algorithms is the
greediness at which they attempt to download the page with
the highest PageRank. In this section, we first discuss the
metrics we will use to compare and evaluate these algo-
rithms. Next, we will describe the experimental setup and
data used, and finally, we will introduce the experimental
results.

Metrics of Evaluation There are three metrics we will
use to evaluate each algorithm: 1. How much RankMass
is collected during the crawl, 2. How much RankMass is
“known” to have been collected during the crawl, and 3.
How much computational and performance overhead the al-
gorithm introduces. The first metric we use to evaluate these
algorithms is the actual RankMass they collect in the first
X pages downloaded. This measure indicates how well the
algorithm actually performs under the RankMass coverage
metric defined in Section 2.

However, having downloaded a certain percent of the Web’s
RankMass does not mean that we know we can stop the
crawl. Unless the algorithm provides a guarantee that the
RankMass downloaded is above our stopping condition ǫ,
we cannot stop the crawl. Therefore, the second metric by
which we evaluate the crawling algorithms is the RankMass
guaranteed to have been downloaded after having down-
loaded X pages. The closer the guarantee is to the actual
RankMass collected, the less time we spend on “unnecessar-
ily” downloading pages.

Finally, the third metric attempts to identify the overhead
of collecting the RankMass early and providing the lower
bound. In other words, this metric completes the evaluation
by saying you have to invest this much more computing time
in order to achieve this much benefit.

Experiment setup We simulate the algorithms L-Neigh-
bor, RankMass, and Windowed-Rankmass on a subgraph of
the Web of 141 million URLs. This subgraph of the Web
includes HTML files only, obtained from a crawl that was
performed between the dates December of 2003 and January
of 2004. The 141 millon URLs span over 6.9 million host
names and 233 top level domains. Parsing the HTML files
and extracting the links was done using a simple HTML
parser. Only the links starting with “http://” were retained,
and the only URL normalization employed was the removal
of terminating slashes.

In order to compute the actual RankMass collected in the
algorithms, we needed to calculate the PageRank values for
all the pages of our subgraph. Although PageRank is defined

382

over the entire web, calculating it over the entire infinite web
is impossible. Therefore we calculated the PageRank values
over the subgraph of the web described above. Additionally,
in order to compute the PageRank values of the pages, we
have to assume a particular trust vector. In all the simula-
tions, unless explicitly specified otherwise, we assume uni-
form trust distribution for the 159 trusted set of pages used
in the TrustRank paper [16]. 5

Simulations of the algorithms were run on machines with
four Gigabytes of memory, and four 2.4 GHz CPUs each.
However, we did not employ any parallel programming tech-
niques in our code, so we did not take advantage of more
than one CPU at a time. The algorithm simulations were
implemented in C++ and compiled using the g++ compiler
without any optimizations. Thanks to the large memory
of the machines, most of the processing was done in mem-
ory. The only disk access that was done in L-Neighbor and
Windowed-RankMass was serial disk access to the graph
structure stored on disk. In the RankMass algorithm, which
requires random access to the graph structure, the graph
structure was accessed through an SQlite [1] database.

Next we present the results of this evaluation for the three
algorithms against the first two metrics: actual RankMass
collected and RankMass lower bound guarantee.

L-Neighbor Algorithm In Figure 7(a) we can see the sim-
ulation results for the L-Neighbor crawling algorithm. The
horizontal axis represents the number of documents down-
loaded so far in the crawl while the vertical axis represents
the RankMass of these documents. Whether it is the actual
RankMass or guaranteed RankMass depends on the specific
curve. The optimal curve shows the actual RankMass col-
lected by an ideal crawler. An ideal crawler in this case tries
to maximize the RankMass collected in each download and
is assumed to know all the URLs and the PageRank value
of the pages they point to. Thus, an ideal crawler would
simply download the uncrawled page that has the highest
PageRank value.

For the L-Neighbor algorithm we can see two values in this
graph, the actual RankMass collected and the “guarantee”,
the lower bound on the RankMass collected. The guaran-
tee is calculated at the time of the crawl, so it is known
during the crawl and can help us know when to stop. On
the other hand, the actual RankMass collected is calculated
after the crawl is complete, by calculating the PageRank
values for all the pages downloaded, and summing them up
in the download order. As expected, the optimal curve is
higher than the actual curve which is higher than the lower
bound guarantee.

The L-Neighbor RankMass guarantee starts off consider-
ably below the actual RankMass collected, and gets tighter
only in an advanced stage of the crawl. The algorithm
downloads more than 7 million pages before the guaran-
teed RankMass passes 0.98, while the optimal does the same
with as few as 27,101 pages. However, although it takes 7
million pages for us to know we downloaded more than 0.98
RankMass, the actual RankMass collected is above 0.98 after
as few as 65,000 downloads. Thus although the L-Neighbor
algorithm performs very well – the actual RankMass col-
lected is very close to optimal after as few as one million
downloads – as a result of the lower bound not being tight,

5The paper in fact used 178 URLs, within our data set only
159 of them appeared

Algorithm Downloads
required for
above 0.98%
guaranteed
RankMass

Downloads
required
for above
0.98% actual
RankMass

L-Neighbor 7 million 65,000
RankMass 131,072 27,939
Windowed-RankMass 217,918 30,826
Optimal 27,101 27,101

Table 2: Downloads required for above 0.98%
RankMass

we may download more pages than necessary to meet our de-
sired stopping condition. Given the fact that our RankMass
guarantee is independent of the global Web link structure,
it is very promising that we get more than 98% of the
RankMass guarantee just after 7 million downloads.

RankMass Algorithm Figure 7(c) shows the simulation
results for the RankMass crawling algorithm. The optimal
curve shown is the same as described before as are the ver-
tical axis and horizontal axis.

Unlike in the L-neighbor case the guarantee provided dur-
ing the run of the RankMass algorithm is very tight. This
means that a crawl will be able to stop earlier in the RankMass
algorithm, when run with the same stop condition ǫ. For
example, the first 131,072 pages downloaded already give a
guaranteed RankMass above 0.98, and an actual RankMass
of above 0.98 is achieved after 27,939 page downloads. Ad-
ditionally, note that both the guaranteed RankMass and
the actual RankMass collected are very close to the opti-
mal, even at an early stage, and become even more tight as
the crawl progresses. For example, the first 262,144 pages
downloaded by the RankMass crawler give us a guaranteed
RankMass of 0.996 and an actual RankMass of 0.999, while
the optimal crawler gives a 0.999 RankMass as well.

Windowed-RankMass Algorithm Figure 7(b) shows us
the RankMass collected using the Windowed-RankMass al-
gorithm with a window size of 10%. The optimal curve
is again the same, as are the horizontal and vertical axes.
When compared to the L-Neighbor algorithm, both the guar-
anteed RankMass and the actual RankMass collected is higher.
For example, Windowed-RankMass requires only 217,918
pages to achieve a guaranteed RankMass of 0.98 and only
30826 pages to achieve the same in actual RankMass. How-
ever, the RankMass crawler performs better than both of
the other algorithms, under both the guaranteed and ac-
tual RankMass metrics. For this simulation we arbitrarily
chose a window size of 10%. What are the effects of differ-
ent window sizes on the actual and guaranteed RankMass
collected?

Window Size Figure 8 shows us the actual RankMass
collected per documents fetched for four window sizes. Note
that when the window size is set to 100% then the windowed
RankMass algorithm behaves just like L-Neighbor. The dif-
ference between a window size of 100% and the window sizes
of 20%, 10%, and 5% is readily apparent. The algorithm
with the larger window size of 100%, although performing
quite well, takes longer to come close to the optimal value.
Window sizes of 5%, 10% and even 20% give results that
are very close to the peformance of RankMass and the opti-
mal crawler. Also worth noting is the stability of the curve,
while RankMass, and the windowed Rankmass with a win-

383

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

R
an

kM
as

s

Number of documents

Guarantee
Actual

Optimal

(a) L-Neighbor Crawler

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

R
an

kM
as

s

Number of documents

Guarantee
Actual

Optimal

(b) 10%-Windowed RankMass Crawler

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

R
an

kM
as

s

Number of documents

Guarantee
Actual

Optimal

(c) RankMass Crawler

Figure 7: RankMass vs Number of Documents for Three Algorithms

dow of 5%, 10% and 20% show relatively smooth curves,
the L-Neighbor shows some perturbations. The implication
is that a smaller window size and the RankMass crawling
algorithm will give better and more consistent results.

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1000 10000

R
an

kM
as

s

Number of documents

RankMass
5%-window

10%-window
20%-window

L-Neighbor
Optimal

Figure 8: Examining Window size in Windowed
RankMass Crawler

The next question we wish to answer now is what price
we pay for this added benefit and if so, how high.

Running Time In order to compare the performance
of the three algorithms, we ran each algorithm simulation
and noted the time and the number of iterations needed to
download 80 million pages. The results are summarized in
Table 3. Examining the results for 20%-windowed, 10%-
windowed and 5%-windowed we can see that halving the
window size doubles the number of iterations and is close to
doubling the running time. L-Neighbor is clearly close to
three times faster than 20%-windowed. Finally, RankMass
is considerably slower than all of them, according to an ini-
tial examination it is mainly due to the random access to the
graphs structure. Given these results, we find that a 20%
window may be a reasonable choice for the window size,
since it gives roughly equivalent RankMass performance at
a significantly lower computational cost.

6By the time the RankMass algorithm downloaded
10,350,000 pages, it has already taken a significantly
longer time than any other algorithms, so we stopped the
RankMass crawling at that point. With extrapolation,

Window Hours number of iterations Number
of docu-
ments

L-Neighbor 1:27 13 83,638,834
20%-windowed 4:39 44 80,622,045
10%-windowed 10:27 85 80,291,078
5%-Windowed 17:52 167 80,139,289
RankMass 25:396 not comparable 10,350,000

Table 3: Algorithm performance by iterations and
running time

How many seeds should be used? Now we investigate
the issue of seed set selection, when the crawling cannot
start from all trusted pages, for example when the trust
is distributed between an unbounded number of pages. In
this case, one important decision people who run crawlers
need to make is deciding how many pages to use to seed
the crawl. Deciding on the number of seeds is influenced by
many factors such as: the connectivity of the web, spamma-
bility of the search engine, efficiency of the crawl, and many
other factors. We now examine how the guarantee on the
RankMass and the actual RankMass collected are affected
by the number of seeds.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1000 10000 100000

S
um

 o
f t

ru
st

 o
f s

ee
ds

Number of seeds

Trust of seed set

Figure 9: Overall trust of seeds vs number of seeds

In this experiment we assume that the trust is distributed
similarly to the way PageRank is distributed. More pre-

we estimate that it would have taken at least 222 for the
RankMass crawler to have downloaded 80,000,000 pages.

384

cisely, as the trust score of each page, we use its PageR-
ank value under the original PageRank definition (i.e., the
values computed with the uniform trust distribution over
all pages). Since PageRank is known to be distributed by
power-law under the original definition, the trust follows the
power-law curve. Choosing any subset of the pages as the
seed set will result in only part of the trust being included
according to Theorem 3, so it make sense to choose the pages
with the highest trust values as your seed to maximize the
RankMass guarantee. Figure 9 plots the overall trust of the
seeds as a function of the number of seeds. The graph shows
that if we use 100,000 most trusted pages as the seed set (less
than 0.1% of our dataset), their trust sum is more than 99%
of all trust, so the RankMass guarantee provided from this
seed set will decrease by less than 1% due to a finite number
of seed-set selection.

To investigate the impact of the seed set size on RankMass
guarantee further, we ran the L-Neighbor algorithm with
three seed set sizes: 160, 1600, and 16000, each time choos-
ing the pages with the highest trust values as seeds. The
larger the seed set is, the higher its trust value sum is, and
the higher guarantee it can give on RankMass. On the other
hand, the large seed sets are likely to include pages with
small trust values whose neighbors are less likely to have
high PageRank. In Figure 10 we plot the results of this
experiment.

In Figure 10(b) we plot the guaranteed RankMass as a
function of the number of documents downloaded. As we
can see, the difference between the guaranteed RankMass
collected using the different seeds sets, quickly becomes very
apparent. The reason for this is again, the different trust
captured in the different seed sets. This demonstrates the
advantage of using larger seed sets that capture more trust.
However, as we can see in Figure 10(a), when comparing
the actual RankMass collected, while during the first few
downloads, the actual RankMass collected is larger when
the seed set is larger, any clear advantage one way or an-
other is not apparent in the more advanced stages of the
crawl. Thus, when crawling using the L-Neighbor algo-
rithm, a larger seed set that includes more trust affects the
guarantee very strongly while affecting the actual RankMass
collected only in the early stages of the crawl.
6. RELATED WORK

We now briefly go over the related work.
Crawling has been the subject of extensive research [24,

27, 14, 10, 13] and Different aspects of Web crawling has
been studied before. For example, in [29] Wolf et al. discuss
re-crawling strategies in order to maintain the freshness of
the search engine’s index. In this section we go over the
work that is most relevant to ours.

URL prioritization for crawling There exists a large
body of work on URL prioritization for Web crawling, which
is the main topic of this paper. Instances of our family of al-
gorithms have already been described and evaluated before.
For example, our L-Neighbor algorithm essentially follows
the well-known breadth-first crawling strategy, which has
been shown to perform well empirically in [24, 12]. How-
ever, as far as we know, due to the fundamental difficulty of
computing the exact PageRank from an incomplete subset
of the Web, most of the previous studies were experimental
or focused on the eventual convergence of the algorithms [24,
12, 2, 4]. As far as we know, our work is the first that shows
analytically why some of these algorithms perform well and

 0.01

 0.1

 1

 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

 1
e+

08

R
an

kM
as

s

Number of documents

L-Neighbor with 160 seeds
L-Neighbor with 1600 seeds

L-Neighbor with 16000 seeds

(a) Actual RankMass collected by L-Neighbor with different seed
set sizes

 0.01

 0.1

 1

 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

 1
e+

08

R
an

kM
as

s

Number of documents

L-Neighbor with 160 seeds
L-Neighbor with 1600 seeds

L-Neighbor with 16000 seeds

(b) Guaranteed RankMass collected by L-Neighbor with different
seed set sizes

Figure 10: RankMass collected by L-Neighbor with
different seed set sizes

provide a tight guarantee on the PageRank coverage of the
downloaded pages.

A different type of crawler is the focused crawler which
sets to download pages related to a specific topic. The basic
premise of focused crawling is that pages pointed to by a
page on a specific topic are more likely to be related to that
topic. In [10] Chakrabarti et al. are first to introduce such
a crawler, and an accelerated approach is presented in [11].
In [15] Ester et al. examine a two level approach to focused
crawling, finding relevant websites first and then crawling
inside them. Although this work is similar to our own, the
important difference is that the importance of pages is de-
fined by the links to them. This difference allows us to pro-
vide the upper bounds we provide in this paper. Future
work may attempt to tackle focused crawling using topic
sensitive PageRank [17].

Search engine index quality Other related papers focus
on the quality of pages covered by a search engine’s index
and the pages’ interest to users. In [19] Heydon et al. are
first to introduce a measure for the quality of a search en-
gine’s index. This is the measure we use in this paper which
we refer to as RankMass. The authors describe a technique

385

which uses random walks to estimate the RankMass of a
search engine’s index. However, this paper does not dis-
cuss upper bounds and does not define a crawling scheme
that sets to download higher quality documents earlier in
the crawl.

In [3], Baeza-Yates et al. analyze how deep a user is
likely to browse inside a single Web site with an unbounded
number of pages. The paper presents several random-surfer
models that are used to analyze the level a user reaches in-
side the web site. The authors backup their findings with
empirical data from Web logs and by summing the PageR-
ank values of the first levels of a specific site. However, the
paper focuses on empirical analysis of the interestingness of
a Web site’s pages while our paper, we focus on developing
new crawling algorithms.

In [25] Pandey and Olston define their own metric of
the quality of a search engine’s index and optimize the re-
crawling of pages to maximize this quality. However, this
work does not tackle the task of optimizing the crawl of the
unknown, undownloaded part of the web as we do.

The PageRank metric PageRank has been the subject
of extensive research since its introduction in [8]. The gen-
eral version of PageRank, which is also called personalized
PageRank, is discussed in [20, 16, 17]. In [20, 21] Jeh and
Widom tackle calculating many different PageRank vectors
with different trust vectors efficiently. In [16] Gyongyi et al.
use the trust vector to combat spam. In [17] topic specific
PageRank vectors are calculated and in [30] topic specific
TrustRank values are calculated to combat spam. In [22]
Haveliwala et al. present an accelerated method of calculat-
ing PageRank. Abiteboul et al. present an online adaptive
page importance computation algorithm, which is a slight
variation of the PageRank metric, and discusses its applica-
tion in the context of a Web crawler. In [28, 26] PageRank
is approximated in a distributed peer-to-peer environment.
In [6] Becchetti and Castillo explore the connection between
the damping factor used and the PageRank distribution.
Many other papers such as [7, 23] analyze PageRank ex-
tensively, however, we are not aware of previous work that
developed the upper bounds and the crawling algorithms as
they are presented here.
7. CONCLUSION

In this paper we investigated a family of crawling algo-
rithms that range from a lightweight and effective breadth-
first-search-style algorithm, up to the very aggressively greedy
RankMass algorithm, which sets to maximize the PageRank
of every page downloaded, and gives close to optimal results.
All these algorithms provide a guarantee of the PageRank
collected during and at the end of the crawl, despite having
access to only a subgraph of the Web at any time. This
guarantee allows the search engine to specify a formal goal-
driven stopping condition, thus continuing the crawl only
long enough to download the desired percent of the Web’s
PageRank.

8. REFERENCES
[1] Sqlite database engine. http://www.sqlite.org/.
[2] S. Abiteboul, M. Preda, and G. Cobena. Adaptive on-line

page importance computation. In Proc. 12th WWW, pages
280–290, 2003.

[3] R. Baeza-Yates and C. Castillo. Crawling the infinite Web:
five levels are enough. In Proc. 3rd WAW, Rome, Italy,
October 2004. Springer LNCS.

[4] R. Baeza-Yates, C. Castillo, M. Marin, and A. Rodriguez.
Crawling a country: better strategies than breadth-first for

web page ordering. In Proc. 14th WWW, pages 864–872.
ACM Press New York, NY, USA, 2005.

[5] Z. Bar-Yossef and M. Gurevich. Random sampling from a
search engine’s index. In Proc. 15th WWW, pages 367–376,
2006.

[6] L. Becchetti and C. Castillo. The distribution of pagerank
follows a power-law only for particular values of the
damping factor. In Proc. 15th WWW, pages 941–942, 2006.

[7] M. Bianchini, M. Gori, and F. Scarselli. Inside PageRank.
ACM TOIT, 5(1):92–128, 2005.

[8] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Proc. 7th WWW,
30(1-7):107–117, 1998.

[9] M. Brinkmeier. PageRank revisited. ACM TOIT,
6(3):282–301, 2006.

[10] S. Chakrabarti, M. van den Berg, and B. Dom. Focused
Crawling: A New Approach for Topic-Specific Resource
Discovery. In Proc. 8th WWW, 1999.

[11] Soumen Chakrabarti, Kunal Punera, and Mallela
Subramanyam. Accelerated focused crawling through online
relevance feedback. In Proc. 11th WWW, pages 148–159,
2002.

[12] J. Cho, H. Garcia-Molina, and L. Page. Efficient Crawling
Through URL Ordering. Proc. 7th WWW, 30(1-7):161–172,
1998.

[13] Junghoo Cho and Hector Garcia-Molina. Parallel crawlers.
In Proc. 11th WWW, pages 124–135, 2002.

[14] M. Diligenti, F. Coetzee, S. Lawrence, C.L. Giles, and
M. Gori. Focused crawling using context graphs. In Proc.
26th VLDB, pages 527–534. September, 2000.

[15] Martin Ester, Hans-Peter Kriegel, and Matthias Schubert.
Accurate and efficient crawling for relevant websites. In
Proc. 30th VLDB, pages 396–407, 2004.

[16] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen. Combating
web spam with TrustRank. 2004.

[17] Taher H. Haveliwala. Topic-sensitive pagerank. In Proc.
11th WWW, Honolulu, Hawaii, May 2002.

[18] T.H. Haveliwala. Topic-sensitive pagerank: A
context-sensitive ranking algorithm for web search. IEEE
TKDE, 15(4):784–796, 2003.

[19] M.R. Henzinger, A. Heydon, M. Mitzenmacher, and
M. Najork. Measuring index quality using random walks on
the Web. Proc. 8th WWW, 31(11-16):1291–1303, 1999.

[20] G. Jeh and J. Widom. Scaling personalized web search.
Technical report, Stanford University, 2002.

[21] G. Jeh and J. Widom. Scaling personalized web search. In
Proc. 12th WWW, pages 271–279, 2003.

[22] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H.
Golub. Extrapolation methods for accelerating pagerank
computations. In Proc. 12th WWW, pages 261–270, 2003.

[23] A. N. Langville and C. D. Meyer. Deeper Inside PageRank.
Internet Mathematics, 1(3):335–380, 2005.

[24] M. Najork and J. L. Wiener. Breadth-first crawling yields
high-quality pages. Proc. 10th WWW, pages 114–118, 2001.

[25] S. Pandey and C. Olston. User-centric web crawling. In
Proc. 14th WWW, pages 401–411, 2005.

[26] J. X. Parreira, D. Donato, S. Michel, and G. Weikum.
Efficient and decentralized pagerank approximation in a
peer-to-peer web search network. In Proc. 32nd VLDB,
pages 415–426, 2006.

[27] S. Raghavan and H. Garcia-Molina. Crawling the Hidden
Web. Proc. 27th VLDB, pages 129–138, 2001.

[28] Y. Wang and D. J. DeWitt. Computing pagerank in a
distributed internet search engine system. In Proc. 30th
VLDB, pages 420–431, 2004.

[29] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and
L. Ozsen. Optimal crawling strategies for web search
engines. In Proc. 11th WWW, pages 136–147, 2002.

[30] B. Wu, V. Goel, and B. D. Davison. Topical trustrank:
using topicality to combat web spam. In Proc. 15th WWW,
pages 63–72, 2006.

386

