
Extending Dependencies with Conditions

Loreto Bravo
University of Edinburgh

lbravo@inf.ed.ac.uk

Wenfei Fan
Univ. of Edinburgh & Bell Labs

wenfei@inf.ed.ac.uk

Shuai Ma
University of Edinburgh

sma1@inf.ed.ac.uk

Abstract
This paper introduces a class of conditional inclusion dependencies
(CINDs), which extends traditional inclusion dependencies (INDs)
by enforcing bindings of semantically related data values.We show
that CINDs are useful not only in data cleaning, but are also in
contextual schema matching [7]. To make effective use ofCINDs
in practice, it is often necessary to reason about them. The most
important static analysis issue concernsconsistency, to determine
whether or not a given set ofCINDs has conflicts. Another issue
concernsimplication, i.e., deciding whether a set ofCINDs entails
anotherCIND. We give a full treatment of the static analyses of
CINDs, and show thatCINDs retain most nice properties of tradi-
tional INDs: (a) CINDs are always consistent; (b)CINDs are finitely
axiomatizable,i.e., there exists a sound and complete inference
system for implication ofCINDs; and (c) the implication problem
for CINDs has the same complexity as its traditional counterpart,
namely,PSPACE-complete, in the absence of attributes with a finite
domain; but it isEXPTIME-complete in the general setting. In addi-
tion, we investigate the interaction betweenCINDs and conditional
functional dependencies (CFDs), an extension of functional depen-
dencies proposed in [9]. We show that the consistency problem for
the combination ofCINDs andCFDs becomes undecidable. In light
of the undecidability, we provide heuristic algorithms forthe con-
sistency analysis ofCFDsandCINDs, and experimentally verify the
effectiveness and efficiency of our algorithms.

1. Introduction
A class ofconditional functional dependencies(CFDs) has re-

cently been proposed in [9] as an extension of functional depen-
dencies (FDs). In contrast to traditionalFDs, CFDs hold condition-
ally on a relation,i.e., they apply only to those tuples that satisfy
certain data-value patterns, rather than to the entire relation. CFDs
have proven useful in data cleaning [9]: inconsistencies and errors
in the data may emerge as violations ofCFDs, whereas they may
not be caught by traditionalFDs.

It has been recognized [8] that to clean data, one needs not only
FDs but alsoinclusion dependencies(INDs). Furthermore,INDs are
commonly used in schema matching systems,e.g.,Clio [16]: INDs
associate attributes in a source schema with semantically related at-
tributes in a target schema. Both schema matching and data clean-
ing highlight the need for extendingINDs along the same lines as
CFDs, as illustrated by the examples below.

Example 1.1: Consider a bank that has branches in various coun-
tries. Each branchB maintains a separateaccount relation:

source schema: account B(an, cn, ca, cp, at)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

an cn ca cp at
t1: 01 J. Smith NYC, 19087 212-5820844 saving
t2: 02 G. King NYC, 19022 212-3963455 checking
t3: 03 J. Lee NYC, 02284 212-5679844 checking

(a) account in NYC branch

an cn ca cp at
t4: 01 S. Bundy EDI, EH8 9LE 131-6516501 saving
t5: 02 I. Stark EDI, EH1 4FE 131-6693423 checking

(b) account in EDI branch

an cn ca cp ab
t6: 01 J. Smith NYC, 19087 212-5820844 NYC
t7: 01 S. Bundy EDI, EH8 9LE 131-6516501 EDI

(c) saving

an cn ca cp ab
t8: 02 G. King NYC, 19022 212-3963455 NYC

t9: 03 J. Lee NYC, 02284 212-5679844 NYC
t10: 02 I. Stark EDI, EH1 4FE 131-6693423 EDI

(d) checking

ab ct at rt
t11: EDI UK saving 4.5%
t12: EDI UK checking 10.5%
t13: NYC US saving 4%
t14: NYC US checking 1%

(e) interest

Figure 1: Exampleaccount, saving, checking, interest data

in which each tuple specifies an account: the number (an) and type
(at, saving or checking) of the account, along with the name (cn),
address (ca) and phone number (cp) of the owner of the account.

The bank needs to integrate theaccount data from its branches
and stores the data in a target database with the following schema:

target schema: saving(an, cn, ca, cp, ab)
checking(an, cn, ca, cp, ab)
interest(ab, ct, at, rt)

whereab is the name of the branch where the account was opened,
and an, cn, ca, cp and at are as above. In relationinterest, rt

indicates the interest rate, andct is the country where the branchab
is located. Example source (account) and target (saving, checking,
interest) data instances are shown in Fig. 1.

A schema matching system might want to match attributesan,
cn, ca, cp from source schemaaccount to an, cn, ca, cp in the
target schemassaving and checking, and attempt to express the
matches in terms of inclusion dependencies from the source to
the target,e.g.,account B(an, cn, ca, cp) ⊆ saving(an, cn, ca, cp)
andaccount B(an, cn, ca, cp) ⊆ checking(an, cn, ca, cp). These
traditional INDs, however, do not make sense: an account in a
source relation should be stored either in the targetsaving or
checking, butnot in both. This is where we need contextual schema
matching [7]: for any tuplet in anaccount relation, its attributes
an, cn, ca, cp can be mapped to the targetsaving relation only if
t[at] = saving, and tochecking only if t[at] = checking.

To capture this, one can use the constraints below (at branchB):
ind1: account B (an, cn, ca, cp; at =‘saving’) ⊆

saving (an, cn, ca, cp; ab = ‘B’)

243

ind2: account B (an, cn, ca, cp; at =‘checking’) ⊆
checking (an, cn, ca, cp; ab = ‘B’)

where ind1 asserts that for each tuplet1 in the account relation
at branchB, if t1[at] = saving, then there must exist a tuplet2 in
saving such thatt1[an, cn, ca, cp] = t2[an, cn, ca, cp], and more-
over, t2[ab] = B. That is, an account in the source is migrated to
target relationsaving only if the type of the account is saving, and
in addition,t2[ab] holds the constantB. This constraint is anIND

that holds only on the subset ofaccount tuples that satisfy the pat-
tern at =‘saving’, rather on the entireaccount relation; similarly
for ind2. However, these constraints are not consideredINDs since
they are specified with apatterncontainingdata values. 2

Example 1.2: Next let us focus on the target database alone
and consider data cleaning. It has been recognized that integrity
constraints are important in data cleaning [24]. Prior workon
constraint-based data cleaning, however, mostly adopts traditional
dependencies such asFDsandINDs(e.g.,[2, 8, 13, 25]). Traditional
FDs andINDs on our example database include:

fd1: saving (an, ab → cn, ca, cp)
fd2: checking (an, ab → cn, ca, cp)
fd3: interest (ct, at → rt)
ind3: saving (ab) ⊆ interest (ab)
ind4: checking (ab) ⊆ interest (ab)

These assert thatan, ab are a key forsaving and checking (fd1,
fd2), all the saving (resp. checking) accounts in the same country
must have the same interest rate (fd3), and that any branch insaving

andchecking must appear ininterest (ind3, ind4).
While the instances of Fig. 1 satisfy these traditional dependen-

cies, the data is not clean. The bank may offer slightly different
interest rates for accounts in different countries,e.g.,for checking
accounts in theUK, the interest rate is 1.5%, whereas it is 1% for
the US checking accounts. Tuplet12 in Fig. 1(e) indicates that the
interest rate for checking accounts in theUK is 10.5% rather than
1.5%. This inconsistency, however, cannot be detected by standard
INDs andFDs, which were originally developed forschema design
rather thandata cleaning. In contrast, this can be caught by the
constraints below, which refineind3 andind4 by adding patterns:
ind5: saving (ab = ‘EDI’) ⊆

interest (ab = ‘EDI’, at = ‘saving’, ct = ‘UK ’, rt = 4.5%)
ind6: checking (ab = ‘EDI’) ⊆

interest (ab = ‘EDI’, at = ‘checking’,ct = ‘UK ’, rt = 1.5%)
ind7: saving (ab = ‘NYC’) ⊆

interest (ab = ‘NYC’, at = ‘saving’, ct = ‘US’, rt = 4%)
ind8: checking (ab = ‘NYC’) ⊆

interest (ab = ‘NYC’, at = ‘checking’,ct = ‘US’, rt = 1%)
ind6 says that for each Edinburgh checking account, there must ex-
ist a tuplet in interest such thatt[ab] = EDI, t[at] = checking,t[ct]
= UK andt[rt] = 1.5%. Thus tuplet10 violatesind6: no interest

tuple matchest10 with the correct interest rate1.5%. This shows
thatind6 catches the error that is not detected by traditionalFDsand
INDs. In fact, ind6 and fd3 together assure that for all Edinburgh
checking accounts,1.5% is the unique interest rate. 2

Dependencies such asind1 − ind2 andind5 − ind8 applycondi-
tionally to relations. Clearly, such constraints are needed for both
schema matchinganddata cleaning, and hence deserve a full treat-
ment. However, they cannot be expressed as standardINDs.
Contributions. To this end we introduce an extension ofINDs and
investigate the static analysis of these constraints.

Our first contribution is a notion ofconditional inclusion depen-
dencies(CINDs). A CIND is defined as a pair consisting of anIND

R1[X] ⊆ R2[Y] and apattern tableau, where the tableau enforces
binding of semantically related data values across relationsR1 and

R2. For example,ind1 − ind8 given above can be expressed as
CINDs. In particular, traditionalINDs are aspecial caseof CINDs.
This mild extension ofINDs captures a fundamental part of the se-
mantics of data, and suffices to express many applications com-
monly found in data cleaning and schema matching.

Our second contribution consists of techniques for reasoning
about CINDs. Given a set ofCINDs, the first thing one wants to
do is to determine whether theCINDs areconsistent, i.e., whether
they have conflicts. This is very important: one does not wantto
enforce theCINDson a database at run-time but find, after repeated
failures, that theCINDscannot possibly be satisfied by a nonempty
database. Similarly, one does not want to match schema basedon
CINDs that do not make sense. The consistency analysis help users
to develop consistent sets ofCINDs for data cleaning and schema
matching. For traditionalINDsandFDs, consistency is not an issue:
one can specify anyINDsandFDswithout worrying about their con-
sistency. In contrast, it is known thatCFDs may have conflicts, and
that it is intractable to decide whether or not a set ofCFDs is con-
sistent [9]. Another decision problem associated withCINDs is the
implicationproblem, which is to decide whether a set ofCINDsen-
tails anotherCIND. For traditionalINDs, the implication problem is
PSPACE-complete. Furthermore, it isfinitely axiomatizable: there
exists a finite, sound and complete set of axioms. The implication
analysis is useful in reducing redundantCINDs, and hence improv-
ing performance when detectingCIND violations in a database, and
speeding up the derivation of schema mappings fromCINDs [16].

We show that althoughCINDs are more expressive thanINDs,
they retain most nice properties of their traditional counterpart:
(a) CINDs are always consistent; (b) the implication ofCINDs is
finitely axiomatizable; (c) in the absence of attributes with a fi-
nite domain, the implication problem forCINDs is alsoPSPACE-
complete, while in the general setting, it isEXPTIME-complete.
Since a problem with aPSPACE lower bound is already beyond
reach in practice, theEXPTIME result actually tells us that we do
not have to pay too high a price for the increased expressive power
of CINDs.

Our third contribution is an investigation of the interaction be-
tweenCINDs and CFDs. This is necessary: in data cleaning one
needs bothCFDs and CINDs; so does in schema matching where
one needsCINDs and at least conditional keys [16], a special case
of CFDs. For traditionalFDs andINDs, the interaction is already in-
triguing: the implication problem forFDs and INDs is undecidable
and is not finitely axiomatizable. The interaction betweenCINDs
andCFDsmakes our lives even harder: we show that forCINDsand
CFDs together, the consistency problem is undecidable.

Our fourth contribution is a set of algorithms for checking the
consistency ofCFDsandCINDs. In light of the undecidability result
mentioned above, any consistency-checking algorithm forCFDs
and CINDs that runs in polynomial times is necessarily heuristic.
That is, the algorithm is sound on detecting consistent setsof CINDs
and CFDs, but not necessarily complete. Our heuristic algorithms
are based on a combination of chase techniques, dependency-graph
analysis, and bounded-size witness database construction.

Our fifth and final contribution is a preliminary experimental
study. We compare the performances of our algorithms in terms of
both the accuracy of output and evaluation time. Our experimental
results show that our algorithms are effective and efficient.

These results provide not only complexity bounds and an infer-
ence system for fundamental problems associated withCINDs (and
CFDs), but also efficient algorithms that allowCINDs and CFDs to
be used in practice. Our conclusion is thatCINDs, together with
CFDs, may lead to promising tools for cleaning data and for finding
quality schema matches.

244

We should remark thatCINDsdo not introduce a new logical for-
malism. Indeed, in first-order logic, they can be expressed in a
form similar to tuple-generating dependencies (TGDs), which have
lately generated renewed interests in schema mapping (see [18] for
a survey on recent results). However, (a) these simpleCINDs suf-
fice to capture data consistency and contextual schema matching
commonly found in practice, without incurring the complexity of
full-fledgedTGDs; (b) no prior work has studied the consistency,
implication and finite axiomatizability problems forTGDs in the
presence ofconstants(data values).
Organization. We defineCINDs in Section 2, and investigate their
associated consistency and implication problems in Section 3. In
Section 4 we study the consistency analysis ofCINDsandCFDs, and
provide heuristic algorithms in Section 5. Our experimental results
are presented in Section 6, followed by related work in Section 7
and conclusion in Section 8.

2. Conditional Inclusion Dependencies
A relational database schemaR is a collection of relation

schemas(R1, . . . , Rn), where eachRi is defined over a fixed set
of attributesattr(R). Each attributeAk has an associated domain,
dom(Ak), which is finite or infinite. The setfinattr(R) contains
the finite attributes ofR. An instanceI of Ri is a set of tuples
such that for eacht ∈ I , t[Ak] ∈ dom(Ak) for each attribute
Ak ∈ attr(Ri). A database instanceD of R is a collection of
relations(I1, . . . , In), whereIi is an instance ofRi for i ∈ [1, n].
Syntax. A conditional inclusion dependency (CIND) ψ is a pair
(R1[X;Xp] ⊆ R2[Y ;Yp], Tp), where (1)X,Xp andY, Yp are
lists of attributes inattr(R1) andattr(R2), respectively, such that
X andXp (resp.Y andYp) are disjoint; (2)R1[X] ⊆ R2[Y] is
a standardIND, referred to as theIND embedded inψ; and (3)Tp
is a tableau, called thepattern tableauof ψ; it has all attributes in
X,Xp andY, Yp, and for eachA in X,Xp or Y, Yp and each tuple
tp ∈ Tp, tp[A] is either a constant ‘a’ indom(A), or an unnamed
variable ‘ ’. Moreover,tp[X] = tp[Y].

Abusing set operations, we useX ∪ Xp to denote the set of all
attributes ofX andXp, andX−Y to denote the list obtained from
list X by removing all the elements in listY . We denoteX ∪Xp
asLHS(ψ) andY ∪Yp asRHS(ψ), and separate theLHS andRHS

attributes in a pattern tuple with ‘‖’. We usenil to denotean empty
list. LetX = [A1, . . . , Am] andY = [B1, . . . , Bm]. We assume
w.l.o.g thatdom(Ai) ⊆ dom(Bi) for eachi ∈ [1,m].

Example 2.1: Constraintsind1–ind8 given in Examples 1.1 and
1.2 can all be expressed asCINDsshown in Fig 2:ψ1–ψ4 for ind1–
ind4, respectively;ψ5 for both ind5 andind7, one pattern tuple for
each constraint; andψ6 for bothind6 andind8. In ψ1, for instance,
bothX andY are[an, cn, ca, cp],Xp is [at] andYp is [ab]. In ψ3,
bothX andY are[ab], while bothXp andYp arenil. In ψ5, both
X andY arenil, whileXp is [ab] andYp is [ab, at, ct, rt]. 2

As shown byψ3 andψ4, a standardIND R1[X] ⊆ R2[Y] is a
special case of theCIND (R1[X;Xp] ⊆ R2[Y ;Yp], Tp) in which
bothXp andYp arenil, andTp has a single tuple with ‘’ only.
Semantics.In general theIND embedded in aCIND may not hold
on the entireR1 relation: it applies only toR1 tuples matching the
pattern tuples. More precisely, we define an order≍ on data values
and the unnamed variable ‘’: η1 ≍ η2 if eitherη1 = η2, or η1 is a
data valuea andη2 is ‘ ’. The order≍ naturally extends to tuples,
e.g.,(EDI, UK, 1.5%) ≍ (EDI, UK,) but (EDI, UK, 4.5%) 6≍ (EDI, UK,
10.5%). We say that a tuplet1 matchest2 if t1 ≍ t2.

An instance(I1, I2) of (R1, R2) satisfiesthe CIND ψ, denoted
by (I1, I2) |= ψ, iff for eacht1 in the relationI1, and foreachtuple
tp in the pattern tableauTp, if t1[X,Xp] ≍ tp[X,Xp], thenthere

ψ1 = (account B[an, cn, ca, cp; at] ⊆ saving[an, cn, ca, cp; ab], T1)

T1:
an cn ca cp at an cn ca cp ab

saving B

ψ2 = (account B[an, cn, ca, cp; at] ⊆ checking[an, cn, ca, cp; ab], T2)

T2:
an cn ca cp at an cn ca cp ab

checking B

ψ3 = (saving[ab; nil] ⊆ interest[ab; nil], T3)

T3:
ab ab

ψ4 = (checking[ab; nil] ⊆ interest[ab; nil], T4)

T4:
ab ab

ψ5 = (saving[nil; ab] ⊆ interest[nil; ab, at, ct, rt], T5)

T5 :
ab ab at ct rt

EDI EDI saving UK 4.5%
NYC NYC saving US 4%

ψ6 = (checking[nil; ab] ⊆ interest[nil; ab, at, ct, rt], T6)

T6:
ab ab at ct rt

EDI EDI checking UK 1.5%
NYC NYC checking US 1%

Figure 2: Example CINDs

existst2 in the relationI2 such thatt1[X] = t2[Y] ≍ tp[Y] and
moreover,t2[Yp] ≍ tp[Yp]. That is, if t1[X,Xp] matches the pat-
tern tp[X,Xp], then the inclusion constraint specified bytp must
apply, which requires the existence oft2 such that (1)t1[X] and
t2[Y] are equal as required by the standardIND embedded inψ,
and (2)t2[Yp] must match the patterntp[Yp].

The patternXp is not part of the embeddedIND. Intuitively, it
is used to identify theR1 tuples over whichψ is applied. The pat-
ternYp enforces that the matchingR2 tuples must satisfy a certain
form. Notice that in real case scenarios it is expected that the pat-
tern tableaux are much smaller than the database.

Example 2.2: The database in Fig. 1 satisfiesCFDsψ1–ψ7. Note
that although theseCINDs are satisfied, their embeddedINDs do
not necessarily hold. For example, whileψ1 is satisfied, theIND

account edi[an, cn, ca, cp] ⊆ saving[an, cn, ca, cp] is not. The
patternXp in LHS(ψ1) is used to identify the tuples over whichψ
has to be enforced, namely, tuples for saving accounts.

On the other hand,ψ6 is violatedby the database. Indeed, for
tuple t10, there exists a pattern tupletp (the first tuple) inT6 such
that t10[ab] ≍ tp[ab] but there is no tuplet in table interest such
thatt[ab] = EDI, t[at] = checking,t[cn] = UK andt[rt] = 1.5%. 2

We say that a databaseD satisfies a setΣ of CINDs, denoted by
D |= Σ, if D |= ϕ for eachϕ ∈ Σ.

3. Reasoning about CINDs
With any constraint languageL, there are two associated funda-

mental problems: the consistency problem for determining whether
a given set of constraints inL has conflicts, and the implication
problem for deriving other constraints from a given set of con-
straints inL. As remarked in Section 1, for constraints in a lan-
guage to be effectively used in practice, it is often necessary to be
able to answer these two questions at compile time.

One might be tempted to use a constraint language more power-
ful than CINDs, e.g.,full-fledgedTGDs extended by allowing con-
stants (data values). The question is whether the language allows us
to effectively reason about its constraints. We need a constraint lan-
guage that is powerful enough to express dependencies commonly

245

found in schema matching and data cleaning, while at the same
time well-behaved enough so that its associated decision problems
are tractable or, at the very least, decidable [18]. For full-fledged
TGDs, it was known 30 years ago that the implication problem is
undecidableeven in theabsenceof data values [5].

As found in most database textbooks, standardINDshave several
nice properties. (a)INDs are always consistent. (b) ForINDs, the
implication problem is decidable (PSPACE-complete). (c) Better
still, INDs are finitely axiomatizable,i.e., there exists a finite infer-
ence system that is sound and complete for implication ofCINDs.
The question is: when constants are introduced intoINDs as found
in CINDs, does the extension ofINDs still has these properties?

It was observed in [5] that ifTGDs were extended by includ-
ing data values, their analysis would become more intriguing. Al-
though we are aware of no previous work on the static analysesof
TGDs with constants, the study ofCFDs [9] tells us that data values
in the pattern tableaux of dependencies would make our livesmuch
harder. In particular, in the consistency and implication problems,
we have to consider whether or not the domaindom(A) of each at-
tributeA in a dependency is finite, since a finite domain constrains
how we can populate a relation that satisfies the dependencies.

In this section we investigate the consistency and implication
problems ofCINDs. We show that despite the fact thatCINDs con-
tain data values and are more expressive thanINDs, they retain most
of the nice properties of their standardIND counterpart. That is,
CINDs properly balance the expressive power and complexity.
Normal form. To simplify the discussion, we will consider, with-
out loss of generality,CINDs in normal form. ACIND ψ (R1[X;
Xp] ⊆ R2[Y ;Yp], Tp) is in thenormal form if Tp consists of a
single pattern tupletp such thattp[A] is aconstantif and only ifA
is inXp or Yp. We writeψ as(R1[X;Xp] ⊆ R2[Y ;Yp], tp).

Two setsΣ1 andΣ2 of CINDs areequivalent, denoted byΣ1 ≡
Σ2, if for any instanceD,D |= Σ1 iff D |= Σ2.

Proposition 3.1: For a setΣ of CINDs, there exists a setΣ′ of
CINDs in the normal form such thatΣ ≡ Σ′, and the size ofΣ′ is
linear in the size ofΣ. 2

Proposition 3.1 allows us to considerCINDs in the normal form
in the sequel. It tells us that everyCIND ψ can be rewritten as an
equivalent setΣψ of CINDs in the normal form. This can be done
as follows: (1) ifψ has more than one pattern tuple, replace it with
a set ofCINDs, each with only one pattern tuple; (2) for eachCIND

in the set, remove from the patternsXp andYp those attributesA
if tp[A] = ; note that such pattern attributes pose no constraints;
and (3) move toXp andYp any pair(Ai, Bi) such thatAi ∈ X,
Bi is the matching attribute ofA in Y andtp(Ai) is a constant.

Example 3.1: CINDsψ1–ψ4 in Fig. 2 are in the normal form, but
ψ5 andψ6 are not. We can transformψ5 into the normal form
by separating it into twoCINDs, each carrying only one pattern tu-
ple of ψ5; similarly for ψ6. As another example, considerCIND

(R[A,B;C,D] ⊆ S[E,F ;G], tp) with tp = (, h; i, || , h; o). It
is not in the normal form, but can be rewritten to(R[A;B, C] ⊆
S[E; F,G], t′p) with t′p = (; h, i|| ; h, o) in the normal form. 2

3.1 Consistency of CINDs
One cannot expect to derive sensible schema matches or clean

data from a set of constraints if it is inconsistent itself. Thus before
any run-time computation is conducted, we have to make sure that
the constraints are consistent, or make sense.

Theconsistency problemfor a constraint languageL is to deter-
mine, given a finite setΣ of constraints inL defined on a database
schemaR, whether or not there exists a nonempty instanceD of
R such thatD |= Σ.

TraditionalFDs andINDs do not contain data values, and any set
of FDs andINDs is consistent. However, adding data values to con-
straints may make their consistency analysis much harder. Indeed,
CFDs, which extendFDs by adding patterns, may be inconsistent,
as illustrated by the following example taken from [9].

Example 3.2: Consider a schemaR with attr(R) = {A,B}, and
theCFDs below onR, refining standardFDsA→ B andB → A:

φ1: (A = true) → (B = b1), φ2: (A = false) → (B = b2),
φ3: (B = b1) → (A = false), φ4: (B = b2) → (A = true),

wheredom(A) is bool, and b1, b2 are two distinct constants in
dom(B). CFD φ1 (resp.φ2) asserts that for anyR tuple t, if t[A]
is true (resp.false), thent[B] must beb1 (resp.b2). On the other
hand,φ3 (resp.φ4) requires that ift[B] is b1 (resp.b2), thent[A]
must befalse (resp.true). There existsnononempty instance ofR
satisfying all theseCFDs. Indeed, for anyR tuplet, no matter what
Boolean valuet[A] has, theseCFDs together forcet[A] to take the
other value from the finite domainbool.

Note that ifdom(A) anddom(B) were infinite, we could find a
tuplet such thatt[A] is neithertrue nor false, andt[B] is notb1 or
b2; then theR instance{t} satisfies theseCFDs. This tells us that
attributes with a finite domain may complicate the analysis.2

It was shown in [9] that the consistency problem forCFDs is
NP-complete. As opposed toCFDs, we show that forCINDs the
consistency analysis is as trivial as their standard counterpart.

Theorem 3.2:For any setΣ of CINDsdefined on a schemaR, there
exists a nonempty instanceD of R such thatD |= Σ. 2

Proof Sketch: Given Σ, one can construct an instance ofR as
follows. First define an active domain for each attributeA in R,
consisting of the constants appearing inΣ plus at most one distinct
value indom(A). Then, build an instance of each relation schema
in R as the cross product of the active domains of all attributes in
it. This yields a nonempty instance ofR satisfyingΣ. 2

3.2 Implication and Finite Axiomatization of CINDs
Theimplication problemfor CINDs is to determine, given a finite

setΣ of CINDs and anotherCIND ψ defined on a database schema
R, whether or notΣ entailsψ, denoted byΣ |= ψ, i.e.,whether or
not for all instancesD of R, if D |= Σ thenD |= ψ.

Example 3.3:LetΣ be the set ofCINDsgiven in Fig. 2, and assume
thatdom(at) = {saving, checking}. One wants to know whether
Σ |= ψ, whereψ = (account B[at; nil] ⊆ interest[at; nil], (||));
i.e.,whether or notψ is derivable fromΣ. 2

As remarked earlier, for standardINDs the implication problem
is not only decidable but also finitely axiomatization. The finite
axiomatizability is a property stronger than the decidability since
inference rules reveal the essential properties of the constraints.

We now show thatCINDs are also finitely axiomatizable. We
provide an inference system forCINDs, denoted byI and shown
in Fig. 3. Given a finite setΣ of CINDs and anotherCIND ψ, we
denote byΣ ⊢I ψ thatψ is provable fromΣ usingI. The rules
in I characterizeCIND implication: they are bothsound, i.e., if
Σ ⊢I ψ thenΣ |= ψ, andcomplete, i.e., if Σ |= ψ thenΣ ⊢I ψ.

Theorem 3.3: The inference systemI is sound and complete for
implication ofCINDs. 2

Proof Sketch: The soundness ofI is verified by induction on the
length ofI-proofs, and its completeness is shown by using a chase
technique (see,e.g.,[1] for the details of chase). 2

Recall that for standardINDs, the inference system proposed
in [11] consists of three rules: reflexivity, projection-permutation

246

CIND1: If X is a sequence of distinct attributes ofR, then
(R[X; nil] ⊆ R[X; nil], tp), wheretp[A] = ‘ ’ for all A ∈ X.

CIND2: If (Ra[A1, . . . , Am;Xp] ⊆ Rb[B1, . . . , Bm;Yp], tp),
then(Ra[Ai1 , . . . , Aik ;X′

p] ⊆ Rb[Bi1 , . . . , Bik ;Y ′
p], t

′
p),

where {i1, .., ik} is a sequence in{1, . . . , m}; X′
p and

Y ′
p are permutations ofXp andYp respectively; andt′p =

tp[Ai1 , . . . , Aik ;X′
p||Bi1 , . . . , Bik ; Y ′

p].

CIND3: If (Ra[X;Xp] ⊆Rb[Y ;Yp], t1), (Rb[Y ; Yp] ⊆Rc[Z; Zp],
t2), andt1[Yp] = t2[Yp], then(Ra[X; Xp] ⊆ Rc[Z; Zp],
t3), wheret3[X;Xp] = t1[X;Xp], andt3[Z; Zp] = t2[Z;
Zp].

CIND4: If (Ra[X;Xp] ⊆ Rb[Y ;Yp], tp), X = {A1, . . . , Am}
andY = {B1, . . . , Bm}, then (Ra[X − Aj ; Xp ∪ Aj]
⊆ Rb[Y− Bj ; Yp ∪ Bj], t′p), whereAj ∈ X, t′p[Aj] ∈

dom(Aj), t′p[Aj] = t′p[Bj], and t′p[A] = tp[A] for every
A ∈ (X,Xp, Y, Yp)− (Aj , Bj).

CIND5: If (Ra[X;Xp] ⊆ Rb[Y ;Yp], tp), then (Ra[X;Xp, A] ⊆
Rb[Y ;Yp], t′p), whereA ∈ attr(Ra) − (X ∪Xp), t′p[A] ∈

dom(A), andt′p[X;Xp||Y ;Yp] = tp.

CIND6: If (Ra[X;Xp] ⊆ Rb[Y ; Yp], tp), then (Ra[X;Xp] ⊆
Rb[Y ;Y ′

p], t
′
p), whereY ′

p ⊆ Yp, t′p = tp[X;Xp|| Y ; Y ′
p].

CIND7: If (Ra[X;AXp] ⊆ Rb[Y ; Yp], ti) for i ∈ [1,m], t1[Xp;
Yp] = . . . = tn[Xp; Yp], A ∈ finattr(R), anddom(A)
= {t1[A], . . . , tn[A]}, then(Ra[X;Xp] ⊆ Rb[Y ;Yp], tp),
wheretp[Xp||Yp] = t1[Xp||Yp].

CIND8: If (Ra[X;AXp] ⊆ Rb[Y ;BYp], ti) for i ∈ [1, n], t1[Xp;
Yp] = . . . = tn[Xp; Yp]; ti[A] = ti[B] for i ∈ [1, n],A ∈
finattr(R) and dom(A) = {tp1[A], tp2[A], . . . , tpn[A]},
then(Ra[XA;Xp] ⊆ Rb[Y B; Yp], tp), wheretp[Xp||Yp]
= t1[Xp||Yp].

Figure 3: Inference SystemI for CINDs

and transitivity. To cope with the richer semantics ofCINDs, the in-
ference systemI is more complicated than the one forINDs. Below
we briefly illustrate the rules inI.

RulesCIND1–CIND3 correspond to the inference rules forINDs.
CIND1 is the reflexivity rule.CIND2 shows that also the pattern
portions,i.e.,Xp andYp, can be permutated.CIND3 enforces that
in order for the transitivity rule to be applied, not only theRHS of
the firstCIND has to be the same as the LHS of the secondCIND,
but also their respective portion of the tuple patterns. Note that
since theCINDs are in the normal form, checking thatt1[Y ; Yp] =
t2[Y ;Yp] is equivalent to checkingt1[Yp] = t2[Yp].

CIND4 allows us to instantiate attributes inX and their corre-
sponding attributes inY . Given(Ra[X;Xp] ⊆ Rb[Y ;Yp], tp), we
can take attributes fromX and the corresponding attributes inY ,
replace their values intp by constants and move these attributes to
the pattern portions of theCIND (Xp andYp, respectively).

CIND5 allows one to add extra attributes toXp. Consider aCIND

(Ra[X;Xp] ⊆ Rb[Y ; Yp], tp) and an attributeA of Ra which is
not already inX or Xp. If ψ holds for any value ofA, then it
will also hold for a specific value ofA. Thus we can addA to the
pattern portionXp and assign totp[A] any constant fromdom(A).

CIND6 removes an attribute fromYp. If (Ra[X;Xp] ⊆ Rb[Y ;
Yp], tp) holds, then for every tuple inRa that satisfies the pattern
tp[Xp], there is a match inRb that satisfies the patterntp[Yp]. If
attributes are deleted fromYp, theCIND will clearly still hold.

Finally,CIND7 andCIND8 are only needed when there are finite
domains.CIND7 says that if we have a set ofCINDs that are the
same except for the valuetp[A] of a finite-domain attributeA, and
the union of all thosetp[A] values covers the domain ofA, then we
can replace the set ofCINDs by a singleCIND in which tp[A] = .
Furthermore, since a variable in the pattern portion of theCIND has

no effect, we can just deleteA from theCIND.
CIND8 is, in a way, the inverse ofCIND4. If CIND4 is used over

a CIND ψ to instantiate the values in the pattern tuple for attributes
A andB whentp[A] ranges over all the values ofdom(A), then
CIND8 can take all thoseCINDs and restoreψ. In short,CIND8

merges a set ofCINDs if (1) they differ only in the value ofti[A],
(2) ti[A] ranges over all the values indom(A), and (3) there is an
attributeB in the RHS of eachCIND such thatti[A] = ti[B].

Example 3.4: Recall Σ and ψ from Example 3.3, where
dom(at) = {checking,saving}. We show thatΣ ⊢I ψ; then from
Theorem 3.3 it follows thatΣ |= ψ.

(1) (account B [nil; at] ⊆ saving[nil; ab], t1) ψ1, CIND2
t1 =(saving||B)

(2) (account B [nil; at] ⊆ checking[nil; ab], t2) ψ2, CIND2
t2=(checking||B))

(3) (saving[nil; ab] ⊆ interest[nil; at], t3) ψ5, CIND2
t3 =(B||saving)

(4) (checking[nil; ab] ⊆ interest[nil; at], t4) ψ6, CIND2
t4 =(B||checking)

(5) (account B [nil; at] ⊆ interest[nil; at], t5) (1),(3),CIND3
t5=(saving||saving)

(6) (account B [nil; at] ⊆ interest[nil; at], t6) (2),(4),CIND3
t6 =(checking||checking)

(7) (account B [at; nil] ⊆ interest[at; nil], t7) (5),(6),CIND8
t7 =(||))

2

It is not surprising that the implication problem ofCINDs is
harder than standardINDs. The lower bound of the theorem below
is verified by reduction from the two-player tiling problem [12].

Theorem 3.4: The implication problem forCINDs is EXPTIME-
complete. 2

The complication of the implication problem arises from ex-
amining attributes with a finite domains. In the absence of such
attributes, there is a linear-space non-deterministic algorithm that
uses only rulesCIND1–CIND6 in I. In this case, the implication
problem forCINDs has precisely the same complexity as itsIND

counterpart, namely, the problem becomesPSPACE-complete.

Theorem 3.5:For any setΣ ∪ {ψ} of CINDs defined on a schema
R, it is PSPACE-complete to decide whether or notΣ |= ψ, if nei-
therΣ norψ involvesR attributes that have a finite domain. In this
setting, the inference rulesCIND1– CIND6 are sound and com-
plete for implication ofCINDs. 2

4. Interaction between CINDs and CFDs
We have seen thatCINDs do not make the consistency and im-

plication problems much harder than their traditional counterparts.
In contrast, we show in this section that whenCINDs andCFDs are
taken together, the static analysis become far more intriguing. As
remarked earlier, in schema matching and data cleaning it isoften
necessary to use bothCINDsandCFDs.

We start with a review ofCFDs, which were introduced in [9].
CFDs. A conditional functional dependency(CFD) φ on a relation
R is a pair(R : X → Y, Tp), where (1)X andY are subsets of
attr(R); (2) R : X → Y is a standardFD, referred to as theFD

embedded inφ; and (3)Tp is a tableau with all attributes inX and
Y , referred to as thepattern tableauof φ, where for eachA in X
or Y and each tuplet ∈ Tp, t[A] is either a constanta ∈ dom(A),
or an unnamed variable ‘’, as defined forCINDsgiven earlier.

An instanceD of R satisfiesthe CFD φ, denoted byD |= φ,
iff for each pairof tuplest1, t2 in the relationD, and foreach
tupletp in the pattern tableauTp, if t1[X] = t2[X] ≍ tp[X], then
t1[Y] = t2[Y] ≍ tp[Y]. That is, ift1[X] andt2[X] are equal and
match the patterntp[X], thent1[Y] andt2[Y] must also be equal
to each other and match the patterntp[Y].

247

ϕ1 = (saving (an, ab → cn, ca, cp), T ′
1)

T ′
1:

an ab cn ca cp

ϕ2 = (checking (an, ab → cn, ca, cp), T ′
2)

T ′
2:

an ab cn ca cp

ϕ3 = (interest (ct, at → rt), T ′
3)

T ′
3:

ct at rt

UK saving 4.5%
UK checking 1.5%
US saving 4%
US checking 1%

Figure 4: Example CFDs

Example 4.1: The FDs fd1-fd3 given in Example 1.2 can be ex-
pressed asCFDs, as shown in Fig. 4. This tells us that standardFDs
are a special case ofCFDs in which the pattern tableau contains a
single tuple that consists of ‘’ only.

We can refinefd3 by asserting that whenct is UK (resp.US)
andat is saving,rt must be 4.5% (resp. 4%); similarly, ifct is UK

(resp.US) andat is checking,rt must be 1.5% (resp. 1%). These are
incorporated intoϕ3 of Fig. 4 (the last 4 tuples, one per constraint).

While the instance of Fig. 1 satisfies standardFDs fd1-fd3 and
it satisfiesϕ1 andϕ2, it does not satisfyϕ3. Indeed, tuplet12 of
Fig. 1violatesthe constraint specified by the third pattern tuplet3p
in T ′

3: althought12[ct, at] ≍ t3p[ct, at], we can see thatt12[rt] 6≍
t3p[rt]: t12[rt] is 10.5% butt3p[rt] is 1.5%. From this we can see
that while it takes at least two tuples to violate a standardFD, a
single tuplealone may violate aCFD. Moreover,CFDs can catch
inconsistencies that standardFDs cannot detect. 2

Along the same lines asCINDs in normal form, we say that aCFD

φ = (R : X → Y, Tp) is in thenormal formif Tp consists of a
single tupletp andY contains a single attributeA, and we write
φ as (R : X → A, tp). We can always rewrite aCFD into an
equivalent set ofCFDs in the normal form. In the sequel, we only
considerCFDs in the normal form.

For CFDs the following have been established in [9]. (a) The
consistency problem forCFDs is NP-complete. (b) The implica-
tion problem ofCFDs is finitely axiomatizable. (c) The implication
problem forCFDs is coNP-complete. (d) The consistency and impli-
cation problems are inO(n2) time, wheren is the size of the given
CFDs, if the CFDs do not involve attributes with a finite domain.

While CFDsalone already complicate the static analyses, we next
show thatCFDsandCINDs together make our lives much harder.

Implication analysis. It is not surprising that the implication prob-
lem for CINDsandCFDs is undecidable and is not finitely axiomati-
zable, since the problem has already these characteristicsfor stan-
dard INDs and FDs (see,e.g., [1]), and CINDs and CFDs subsume
INDsandFDs, respectively. The result holds if the given constraints
do not involve attributes with a finite domain.

Corollary 4.1: The implication problem forCINDs and CFDs is
undecidable, and is not finitely axiomatizable, even forCINDs and
CFDs that involve only attributes with an infinite domain. 2

Consistency analysis.Even if a set ofCFDs and a set ofCINDs
are separately consistent, when they are put together, there may be
conflicts among them, as illustrated below.

Example 4.2: Consider a relationR with attr(R) = {A,B}, on
which we define aCFD φ = (R : A → B, (||a)) and aCIND

ψ = (R[nil;B] ⊆ R[nil;B], (||b)), wherea and b are distinct
constants. Obviously, there exists a nonempty instance ofR that

Constraints Consistency Implication Fin. Axiom
CINDs (Th. 3.2, 3.4, 3.3) O(1) EXPTIME-complete Yes

CFDs [9] NP-complete coNP-complete Yes
CFDs + CINDs (Th 4.2, 4.1) undecidable undecidable No

Table 1: Complexity in the general setting

Constraints Consistency Implication Fin. Axiom
CINDs (Th. 3.2, 3.5) O(1) PSPACE-complete Yes

CFDs [9] O(n2) O(n2) Yes
CFDs + CINDs (Th 4.2, 4.1) undecidable undecidable No

Table 2: Complexity in the absence of finite-domain attributes

satisfiesφ and there is an instance satisfyingψ. However, there
existsno nonempty instance ofR that satisfies bothψ andφ. To
see this, assume that such an instanceD exists. Thenψ tells us that
as long asD is nonempty, there is a tuplet inD such thatt[B] = b.
In contrast,φ requires thatt[B] = a, violatingψ. 2

While the undecidability of the implication problem forCINDs
andCFDs is expected, the following result is a little surprising. The
undecidability can be verified by reduction from the implication
problem for standardFDs and INDs. The undecidability remains
intact in the absence of attributes with a finite domain.

Theorem 4.2:The consistency problem forCFDs andCINDs is un-
decidable, with or without attributes having a finite domain. 2

This tells us that it is necessary to use heuristic methods tosolve
the consistency and implication problems in practice.

Summary. We summarize the complexity bounds for the consis-
tency and implication problems, as well as for finite axiomatizabil-
ity (Fin. Axiom) in Tables 1 and 2. Table 1 gives the results inthe
general setting where attributes of infinite domains and those with
finite domains are both present, and Table 2 for constraints involv-
ing attributes with an infinite domain only. This gives us a complete
picture of the static analyses forCINDsandCFDs, established in this
work (for CINDs, andCINDs+ CFDs) and in [9] (forCFDs).

5. Algorithms for Consistency Analysis
In light of the undecidability of the consistency problem for

CINDsandCFDs, in this section we develop efficient heuristic meth-
ods to check the consistency ofCINDs andCFDs.

More specifically, given a setΣ of CINDs and CFDs, our algo-
rithms attempt to construct a nonemptywitness databaseD such
thatD |= Σ. The algorithms conclude thatΣ is consistent, and
return true, if such a witness can be built. It is guaranteed that
if true is returned thenΣ is consistent. However, the algorithms
might not find a witness database even ifΣ is consistent, due to the
undecidability of the problem. As will be seen in the next section,
the algorithms are able to return accurate answers in most cases.

The algorithms are based on an extension of the chase tech-
nique, bounded-size witness databases, and an optimization tech-
nique leveraging dependency graphs ofCINDs and CFDs. We ex-
tend the chase in Section 5.1, present a checking algorithmsin Sec-
tion 5.2 and provide our optimization technique in Section 5.3.

5.1 Chasing with CFDs and CINDs
The chase is an important tool for implication analysis of de-

pendencies and for query optimization (see,e.g., [1] for details
about chase). However, even for standardINDs there may bein-
finitechasing sequences,i.e., the chase may not terminate. To cope
with this, we present an extension of the chase that, employsta-
bles with bounded-size, therefore, guaranteeing termination. We
use this extension of the chase for theconsistencyanalysis ofCFDs

248

andCINDs.
Consider a database schemaR. For each relation schemaR in R

and each attributeA in R, we assume a nonempty finite setvar[A]
of distinct variables. Intuitively, when chasing withCINDs, we may
have to create a new tuple; then we use only the variables in these
sets to “populate” the unknown fields in the tuple. All the sets
var[A] have a maximum size ofN , which is a predefined parameter.
Let Var be the set consisting of all these variable. We assume for
convenience a total order< on variables inVar. We also assume
that v < a for any v ∈ Var and constanta, but do not pose the
order on constants. Thusv 6= a andv 6≍ a; but we allowv ≍‘ ’.

We now define our chase operations for a setΣ of CINDs and
CFDs, which transform a databaseD into a new databaseD′. To
simplify the discussion we denote byR a schema as well as an
instance of the schema when it is clear from the context.

For eachCIND ψ = (Ra[A1, . . . , Am; Xp] ⊆ Rb[B1, . . . , Bm;
Yp], tp) in Σ, we define the chase operationIND(ψ) as follows.
For a tupleta ∈ Ra satisfyingta[Xp] = tp[Xp], we add a tupletb
to Rb such thattb[Bi] = ta[Ai] for i ∈ [1, m], tb[Yp] = tp[Yp],
andtb[B] takes a random variable fromvar[B] for the rest attribute
B ∈ attr(Rb) − ({B1, . . . , Bk} ∪ Yp).

For eachCFD φ = (R : X → A, tp) in Σ, we define the
chase operationFD(φ) as follows. For tuplest1, t2 ∈ R such
that t1[X] = t2[X] ≍ tp[X], but either t1[A] 6= t2[A] or
t1[A] = t2[A] 6≍ tp[A], we consider the following two cases:
(i) tp[A] =‘ ’: if either t1[A] or t2[A] is a variable andt1[A] <
t2[A] (resp.t2[A] < t1[A]), we replacet1[A] with t2[A] in R
(resp. replacet2[A] with t1[A]). If t1[A] and t2[A] are different
constants, then the application ofFD(φ) toD is not defined.
(ii) t[A] = a: if either t1[A] or t2[A] is a constant distinct froma,
then the application ofFD(φ) is undefined. Otherwise we replace
botht1[A] andt2[A] with a.

A chasing sequenceof D w.r.t.Σ is a sequence of database tem-
plates (with variables)D0, D1, . . . , Dn such thatD0 = D and
Di+1 is the result of applying a chase operation for a constraint
in Σ to Di. If IND(ψ)(Dn) = Dn for every CIND ψ ∈ Σ and
FD(φ)(Dn) = Dn for every CFD φ ∈ Σ, we say that the chase
of Σ overD is terminaland refer toDn as theresultof the chase,
denoted bychase(D,Σ). Otherwise,FD(φ) must be undefined for
someφ ∈ Σ, and in this case we say thatchase(D,Σ) is unde-
fined. Since the chase takes values from a predefined finite set of
variables, it will always terminate. Note that for a set ofCINDs
only, the chase is always defined.

5.2 Heuristic Methods for Consistency Checking
Employing this extension of the chase, we next develop a heuris-

tic method for checking the consistency ofCFDs andCINDs.
For any setΣ of CINDs andCFDs defined overR, if Σ does not

involve attributes that have finite domains, a possible heuristic to
determine ifΣ is consistent works as follows: (1) it first constructs
a databaseD that only contains, in a randomly chosen relationR ∈
R, a tuplet = (v1, . . . , vn) such thatt[Ai] = vi is from var[Ai];
(2) it then checks whetherchase(D,Σ) is defined; and (3) it return
true if the chase is defined. One can see that ifchase(D,Σ) is
defined thenΣ is consistent, as illustrated by the example below.

Example 5.1: ConsiderR = (R1, R2), whereattr(R1) = {E,
F}, attr(R2) = {G, H}, finattr(R) = ∅, and the domain of all the
attributes isstring. Also considerΣ = {φ1, φ2, ψ1, ψ2, ψ3}, where
φ1 = (R1 : E → F, (||)), φ2 = (R2 : H → G, (||c)), ψ1 =
(R1[E; nil] ⊆ R2[G; nil], (||)), ψ2 = (R2[nil; H] ⊆ R1[nil;F],
(0||a)) andψ3 = (R2[nil; H] ⊆ R1[nil;F], (1||b)).

The heuristic mentioned above works as follows. Letvar[A] =
{vA1, vA2} for A ∈ {E, F,G,H}. We start withD that contains

Algorithm RandomChecking

Input: A setΣ of CINDs andCFDs over schemaR = (R1, . . . , Rn)
Output: true if a databaseD can be built s.t.D |= Σ; false otherwise

1. D := an instance ofR that contains, for a randomly chosen schema
Ri ∈ R, a single-tuple instance of fresh variables fromVar;

2. k := 0;
3. while Vfinattr(R) 6= ∅ or k ≤ K do
4. randomly chooseρ ∈ Vfinattr(R);
5. Vfinattr(R) := Vfinattr(R) − {ρ}; k := k + 1;
6. if chaseI(ρ(D),Σ) is definedthen
7. return true;
8. return false;

Figure 5: Algorithm RandomChecking

tuple (vE1, vE2) in R1. After applyingIND(ψ1), tuple (vE1, vH1)
is added toR2. Then,FD(φ2) makesvE1 = c. No chase operation
can be applied after that, andchase(D,Σ) is:

R1:
E F

c vF1
R2:

G H

c vH1

The heuristic concludes thatΣ is consistent. Indeed, since the
domain ofF andH are infinite, it is always possible to find a map-
ping from the variables to values in the respective domains such
that they do not satisfy the left pattern of anyCIND andCFD. For
example, by mappingvF1 = d andvH1 = e, we obtain a database
instance ofR that satisfiesΣ. 2

In contrast, ifΣ involves attributes with finite domains, we can
no longer usechase(D,Σ) as above, as shown by the next example.

Example 5.2: ConsiderΣ of Example 5.1. If instead of having
an infinite domain forH we haddom(H) = {0, 1}, then it is not
always possible to find a valuation for the variables such that the
result database of the chasew.r.t. the valuation satisfiesΣ. For ex-
ample, forvH1 = 1, we could still applyIND(ψ3). If, for example,
there are alsoψ4 = (R1[nil; F] ⊆ R2[nil;G], (a||d)), andψ5 =
(R1[nil; F] ⊆ R2[nil; G], (b||d)), thenIND(ψ5) would now apply,
resulting in a database that does not satisfyΣ because ofφ2. 2

Algorithm RandomChecking. To cope with finite domains, we de-
velop an algorithm, calledRandomChecking and given in Fig. 5.

While the chase given above always terminates, it may yield a
witness database of exponential size. To avoid this, we adopt two
further simplifications. (a) When applyingIND(ψ) for a ψ ∈ Σ,
we need to add a new tuple that might have variables. If this vari-
able is for an attribute with a finite domain, we modifyIND(ψ)
in such a way that instead of adding a variable, a constant of the
finite domain is used. (b) During the chase, if the number of tu-
ples in any table exceeds a predefined thresholdT , we say that the
chase is undefined and terminate the process. The chase with these
two simplifications is referred to as theinstantiated chase, and is
denoted bychaseI(D,Σ). More specifically, letV be the set of
all variables associated with attributes that have finite domains. A
valuationρV w.r.t. V is a mapping fromV to constants in the re-
spective domains of the variables. We denote byρ(D) the database
D obtained by applyingρ toD. Note that constants and variables
with infinite domains inD remainunchangedin ρ(D). The set of
all valuationsw.r.t. V is denoted byVfinattr(R). If V = ∅, then we
assume thatVfinattr(R) consists of a single empty mapping.

Algorithm RandomChecking starts by creating a databaseD
that, for a randomly chosen relationR ∈ R, contains a tu-
ple (v1, . . . , vn) such thatvi for attributeAi is a variable from
var[Ai] (line 1). For a predefined parameterK, it then randomly
picks up toK valuationsρ from Vfinattr(R), and checks whether

249

chaseI(ρ(D),Σ) is defined (lines 3-5). If it is for any suchρ, then
the algorithm immediately returnstrue (lines 6-7). Otherwisefalse
is returned (line 8). The use ofK is to prevent the exponential
cost of exploring all possible valuations inVfinattr(R) in the worst
case. However, as will be seen in the next section, in many prac-
tical casesK is not necessary because a positive answer can often
be found before many valuations are tried out.

Example 5.3: Applying to the constraintsΣ of Example 5.1 with
dom(H) = {0, 1}, Algorithm RandomChecking works as follows.
After executing line 1 of the algorithm,D could contain a tuple
(vG1, vH1) in R2. The only variable with a finite attribute isvH1

and its possible mappings areρ1 andρ2 that mapsvH1 to 0 and 1,
respectively. A sequence of the instantiated chasew.r.t. ρ1(D) is:

R1 R2

D1
E F

vE1 a

G H

vG1 0
IND(ψ2) applied toρ1(D)

D2
E F

vE1 a

G H

c 0
FD(φ2) applied toD1

D3

E F

vE1 a

G H

c 0
vE1 0

IND(ψ1) applied toD2

D4
E F

c a

G H

c 0
FD(φ2) applied toD3

SincechaseI(D,Σ) is defined and results in databaseD4 (which
satisfies the constraints), the algorithm returnstrue and does not
need to check the chase for mappingρ2. 2

Improvement. While conceptually simple, it may hamper the
chance of finding a witness database if we assign a value toev-
ery variable with a finite domainbeforethe chase starts. To rectify
this, before applying a valuationρ from Vfinattr(R), we first chase
with CFDs in Σ, which mayinstantiatecertain variables by impos-
ing constant bindings in their pattern tuples. This requires a pro-
cedureCFD Checking that, given a databaseDi (with variables) in
a chase sequence, chases withonly CFDs in Σ; that is, it applies
FD(φ) for everyCFD φ in Σ that is applicable toDi, instantiating
variables in terms of constants in the pattern tuples when possible.
The procedure appliesρ fromVfinattr(R) only to theremainingvari-
ables with a finite domain that have not been assigned a value dur-
ing the chase. ProcedureCFD Checking returns a databaseDi+1

in which all variables with finite domains have constant values, if
Di+1 is consistent with theCFDs in Σ, and it fails otherwise.

Capitalizing on CFD Checking, algorithm RandomChecking
works as follows. It starts withchaseI(D,Σ), and randomly picks
a constraint inΣ to chase with. Every time a new tuple is added
to the database as a result of someIND(ψ), it invokes proce-
dureCFD Checking, which instantiates all variables with finite do-
mains as described above. IfCFD Checking fails, chaseI(D,Σ) is
undefined and the algorithm starts another random run. Eventually
eitherchaseI is defined in some run and thusRandomChecking re-
turnstrue, or chaseI(D,Σ) is undefined for allK runs and the al-
gorithm returnsfalse. This is the algorithm we have implemented.

ProcedureCFD Checking (not shown due to lack of space) can
be implemented either as described above, or by leveraging existing
tools for knownNP problems, since the consistency problem for
CFDs is in NP [9]. In the latter case, we reduce it toSAT, a well-
knownNP-problem, and then check the consistency of theCFDsby
using SAT4j [19], a well-developed tool.

5.3 Optimization: Dependency Graph Analysis
To further improve the accuracy and response time of our al-

gorithms, we next present an optimization technique, basedon a

notion of dependency graphs ofCFDs and CINDs. Below we first
define dependency graphs. We then present a consistency checking
algorithm that benefits from the usage of dependency graphs.
Dependency graph.For a setΣ of CFDsandCINDsdefined over a
database schemaR, thedependency graphis defined to beG[Σ] =
(V, E). The setV contains one vertex per relationRi in R. Each
vertexRi is associated with the set ofCFDs defined onRi in Σ,
denoted byCFD(Ri), and a tuple templateτ , denoted byτ (Ri),
which consists of distinct variables in each attribute ofRi. Later,
τ will be instantiated to be a tuple that satisfies all theCFDs in
CFD(Ri) if CFD(Ri) is consistent. The setE contains an edge
from vertexRi toRj if there is at least oneCIND fromRi toRj in
Σ. Furthermore, the edge is labeled with the set of allCINDs from
Ri toRj , denoted byCIND(Ri, Rj).

Example 5.4:Consider the following extension of the schema and
constraints of Example 5.1:R = {R1, R2, R3, R4, R5}, attr(R1)
= {E, F}, attr(R2) = {G, H},attr(R3) = {A, B}, attr(R4) =
{C, D}, attr(R5) = {I, J}, finattr(R) = {H} anddom(H) is
bool. Also considerΣ = {φ1, φ2, φ3, φ4, φ5, φ6, ψ1, ψ2, ψ3,
ψ4, ψ5}, whereφ1–φ2 andψ1–ψ3 are those given in Example 5.1,
andφ3 = (R3 : A → B, (c||)), φ4 = (R4 : C → D, (||a)),
φ5 = (R4 : C → D, (||b)), φ6 = (R5 : I → J, (||c)), ψ3 =
(R2[nil;H] ⊆ R1[nil;F], (1||b)), ψ4 = (R3[A; B] ⊆ R4[C; nil],
(; b||)), andψ5 = (R5[nil; J] ⊆ R2[nil;G], (c||d)). The graph
G[Σ] is depicted in Fig. 6. Each node inG[Σ] is associated with
a set ofCFDs: CFD(R1) = {φ1}, CFD(R2) = {φ2}, CFD(R3) =
{φ3}, CFD(R4) = {φ4, φ5} andCFD(R5) = {φ6}. 2

Figure 6: Graph G[Σ]

In a nutshell, we want to reduceG[Σ] by removing any nodeR
(and its related edges) for whichCFD(R) is inconsistentand thus
has to be empty in any instance ofR that satisfiesΣ. The reduc-
tion is conducted with care such that it will not generate impact on
the consistency analysis on the remaining graph. When the graph
cannot be further reduced, it consists of strongly connected com-
ponents such that ifΣ is consistent, then all relations in some of
those components have to be nonempty. Furthermore, for eachre-
lationR′ in a component,CFD(R′) is consistent. This allows us
to reduce the consistency analysis onR to the analysis on a sin-
gle component. Better still, in some cases the graph reduction tells
us whether or notΣ is consistent. For example, if the finalG[Σ]
is empty then there is no relationR for which CFD(R) is consis-
tent; as a resultΣ is inconsistent. On the other hand, we can con-
clude thatΣ is consistent if there isR such thatτ (R) |= CFD(R)
and the (instantiated) tupleτ (R) does nottrigger any CIND in Σ,
i.e., there is noCIND (R[X;Xp] ⊆ R′[Y ; Yp], tp) in Σ such that
τ (R)[Xp] ≍ tp[Xp]. This is because a consistent instance ofR
can be built such that it consists of (a){τ (R)} as the instance ofR,
and (b) empty instances for all other relation schemas.

We formalize this idea in algorithmpreProcessing, shown in
Fig. 7. First, the algorithm performs a topological sort on vertexes
in G[Σ] (line 1) such that for anyRi andRj in G[Σ], (a) if they are
on a cycle, then an arbitrary order onRi andRj is adopted, and (b)
otherwise, if there is edge fromRi toRj thenRj precedesRi. The
order is stored in aqueueQ. Second, for each relationR inQ, algo-
rithm CFD Checking is called to check the consistency ofCFD(R)
(lines 3-4). After runningCFD Checking, if the setCFD(R) is con-
sistent,τ (R) becomes a tuple that satisfiesCFD(R). Furthermore,

250

Algorithm preProcessing

Input: The dependency graphG(Σ) of a setΣ of CINDs andCFDs.
Output:G(Σ) is reduced, containing only strongly connected components;

1 is returned if a databaseD such thatD |= Σ is found,0 if it
can conclude thatΣ is inconsistent, and−1 otherwise.

1. Q:= a topological order of nodes inG(Σ);
2. while Q is not emptydo
3. R := Q.dequeue();
4. if CFD Checking(CFD(R), τ(R)) then
5. if τ(R) does not trigger anyCIND in Σ then
6. return 1;
7. else
8. for eachRj such that(Rj , R) ∈ E(G[Σ])
9. addCIND(Rj , R)⊥ to CFD(Rj);
10. if Rj is not inQ then
11. Q.enqueue(Rj);
12. Delete nodeR from G[Σ];
13. Delete all nodes ofG with indegree = 0;
14. if G(Σ) is emptythen
15. return 0;
16. return −1;

Figure 7: Algorithm preProcessing

if τ (R) does nottrigger CIND in Σ, then we can conclude thatΣ is
consistent, and return1 (lines 5-6).

Now, if the setCFD(R) is inconsistent, we know that no database
that satisfiesΣ can have an nonemptyR. We can thus delete
nodeR from G[Σ] after addingnon-triggering CFDs to prevent
all the neighboring relations from inserting tuples intoR (lines 7-
12). More specifically, for eachRj and eachCIND (Rj [X; Xp] ⊆
R[Y ; Yp], tp) in Σ, we add non-triggeringCFDs (Rj : Xp → A,
(tp[Xp] || c1)) and(Rj : Xp → A, (tp[Xp] || c2)), whereA ∈
attr(Rj) andc1, c2 are distinct constants indom(A). These two
CFDs deny any tuple inRj that matches the patternXp. We use
CIND(Rj , R)⊥ to denote the set of all such non-triggeringCFDs
for Rj and itsCINDs. If non-triggeringCFDs are added to a node
Rj for which CFD(Rj) was already checked for consistency, then
Rj has to be added back toQ to make sure the updatedCFD(Rj)
is still consistent (line 11).

After checking the local consistency ofCFDs for all nodes in
G[Σ], the graph contains only relations for which the set ofCFDs is
consistent. If there is a nodeR that has no incoming edges, it can
also be deleted (line 13), since we can makeR empty without any
impact on finding a consistent instance ofΣ. If after the process the
graph is empty, we can conclude thatΣ is inconsistent and return0
(lines 14-15). Otherwise, whether or notΣ is consistent cannot be
decided at this point, and thus−1 is returned.

Example 5.5:Continuing with Example 5.4, letG[Σ] be the graph
of Fig. 6. AlgorithmpreProcessing starts by performing a topolog-
ical sort. One possible output isQ = [R4, R3, R1, R2, R5].

In the first while-iterationR = R4 andQ = [R3, R1, R2, R5].
ProcedureCFD Checking returnsfalse sinceCFD(R4) = {φ4, φ5}
is inconsistent. ThusR4 is deleted fromG[Σ] after addingCFDs to
R3 in order to ensure thatψ4 is not triggered. NowCFD(R3) =
{φ3, (R3 : B → A, (b||c1)), (R3 : B → A, (b||c2))}. SinceR4

is deleted fromG[Σ], edge(R3, R4) no longer exists.
In the next iteration,R = R3 andQ = [R1, R2, R5]. Pro-

cedureCFD Checking returnstrue sinceCFD(R3), including the
non-triggering constraints added in the previous step, is consistent.
In fact,τ (R3) could be(v1, v2) wherev1 andv2 are variables. This
means that since attributesA andB are infinite, it is always possi-
ble find constants in the domains such that theCFDs are satisfied.
Better still, sinceR3 has no outgoing edges,τ (R3) does not trigger
any CIND. This implies thatτ (R3) |= Σ and thatΣ is consistent.

Figure 8: Graph G[Σ] after preProcessing

Algorithm Checking

Input: A setΣ of CINDs andCFDs over schemaR = (R1, . . . , Rn)
Output: true if a databaseD can be built s.t.D |= Σ; false otherwise

1. G := the dependency graphG(Σ) of Σ;
2. if preProcessing(G) = 1 then
3. return true;
4. if preProcessing(G) = 0 then
5. return false;
6. for each connected componentG′ ∈ G
7. LetΣ′ be theCINDs andCFDs defined overG′;
8. if RandomChecking(Σ′) then
9. return true;
10. return false;

Figure 9: Algorithm Checking

At this pointpreProcessing returns1.
As another example, let us replaceψ4 in Σ by ψ′

4 = (R3[A;
nil] ⊆ R4[C; nil], (||)). In the first while-iterationR = R4 and
Q = [R3, R1, R2, R5]. The algorithmCFD Checking returnsfalse
sinceCFD(R4) is inconsistent. ThusR4 is deleted fromG[Σ] af-
ter addingCFDs to R3 in order to ensure thatψ′

4 is not triggered.
SinceXp in ψ′

4 is nil, there is no way to avoid triggering it. This
implies thatR3 also has to be empty. This is enforced by adding
non-triggeringCFDs, and nowCFD(R3) = {φ3, (R3 : B → A,
(||c1)), (R3 : B → A, (||c2))}. These non-triggeringCFDs are
now inconsistent, and therefore no tuple will be added toR3.

In the next iteration,R = R3 andQ = [R1, R2, R5]. Pro-
cedureCFD Checking returnsfalse sinceCFD(R3), including the
non-triggering constraints added in the previous step, is inconsis-
tent. NodeR3 is therefore deleted fromG[Σ].

Now, R = R1 andQ = [R2, R5]. ProcedureCFD Checking
returnstrue sinceCFD(R1) is consistent. TheCIND ψ1 is trig-
gered by any tuple inR1 so we need to continue to the next re-
lation. Subsequently, forR = R2 and then forR = R5, pro-
cedureCFD Checking returnstrue and it is not possible to avoid
the triggering of constraints. The queue is now empty andG[Σ] is
reduced to relationsR1, R2 andR5 and their edges.

The execution of line 13 of the algorithm will delete nodeR5,
since any database that contains tuples inR5 and satisfiesΣ can be
replaced by another database that also satisfiesΣ but withoutR5.

When preProcessing terminates,G[Σ] is reduced to the graph
shown in Fig. 8, and -1 is returned. 2

Algorithm Checking. We combine algorithmpreProcessing with
RandomChecking and develop algorithmChecking shown in Fig. 9.
Initially, graphG[Σ] is constructed and pre-processed (lines 1-2). If
preProcessing returns 1, from the discussion above we know thatΣ
is consistent and thusChecking returnstrue (lines 2-3). Similarly, if
preProcessing returns 0,Checking returnsfalse (lines 4-5). Other-
wisepreProcessing does not have an affirmative Boolean answer; it
returnsG′, a reduced version ofG[Σ] that consists of only strongly
connected components. Subsequently,Checking takes each con-
nected component ofG′ and callsRandomChecking that attempts
to find the witness databaseD that satisfiesΣ′ (line 6-8). If this
database is found, the algorithm returnstrue (line 9). If for each
connected component it cannot find such databaseD, algorithm
Checking returnsfalse (line 10).

251

Example 5.6:Consider the setΣ given in Example 5.4, withψ′
4 of

Example 5.5 in place ofψ4. If algorithm Checking is run to check
the consistency ofΣ, it would first call algorithmpreProcessing
which would return the reduced graph as shown in Fig. 8. The re-
duced graph has only one connect component withR = {R1, R2}
and Σ = {φ1, φ2, ψ1, ψ2, ψ3}. Then, algorithmChecking runs
RandomChecking (see Example 5.3). 2

It is easy to verify the correctness of our checking algorithms.

Theorem 5.1:Given a setΣ of CINDsandCFDs, if eitherChecking
or RandomChecking returnstrue, thenΣ is consistent. 2

For the complexity of the algorithms, given a schemaR and a set
Σ of constraints, letn andm be the numbers ofCFDsandCINDs in
Σ respectively,r be the number of relations, anda be the maximum
relation arity. Then we can get the following: (a)RandomChecking
is in O(a · r · (n2 + m)), (b) preProcessing is in O(a · r · (n +
m)2 + r2), and (c)Checking is inO(a · r · (n+m)2 + r2). Note
that in practicea andr will be much smaller thann andm.

6. Experimental Study
We next present a preliminary experimental study of our heuris-

tic methods for checking the consistency ofCINDsandCFDs.
We compare the performance of our algorithms for checking the

consistency of (a)CFDs alone, namely, the chase-based method
and the method based on reduction toSAT presented in Sec-
tion 5.2, for implementingCFD Checking, denoted byChase and
SAT, respectively, and (b)CFDs and CINDs put together, namely,
RandomChecking andChecking. As shown by Theorem 3.2, there
is no need to considerCINDsalone as they are always consistent.

For these algorithms we investigated their accuracy and scala-
bility when varying both the schema (the number of relations) and
the number of constraints. We useF to denote the ratio of finite-
domain attributes in the schema.
Experimental setting. We used relational schemas that include
up to 100 relations, withF ranging from0% to 25%. Each finite
domain was set to have 2 to 100 elements. The experiments show
thatN , the maximum size ofvar[A], has a negligible impact on
the accuracy of the algorithms. This is why we setN = 2 in the
experiments, which makes the algorithms much more efficient.

We have implemented a generator that, given a schemaR, ran-
domly generates sets ofΣ consisting ofCFDs and CINDs defined
over R, with any given cardinalitycard(Σ) of Σ. More specifi-
cally, each setΣ was either consistent or inconsistent. We evalu-
ated the accuracy of the algorithms by applying them on consistent
and randomly generated sets ofCINDsandCFDs. In order to gener-
ate the former, we took care to generate a consistent setΣ of CFDs
andCINDs by ensuring that there exists at least one possible value
for each attribute so as to make awitness databaseof Σ.

The experiments were run on a machine with an Intel Pentium D
3.00GHz with 1GB of memory. Each experiment was run 6 times
and the average is reported here.
Experiments for CFDs only. This experiment aimed at comparing
the accuracy and scalability ofChase andSAT. In order to avoid the
exponential cost of checking all the valuations of finite attributes in
algorithmChase, no more thanKCFD valuations are allowed.

We varied the cardinality ofcard(Σ) of Σ while fixing the
number of relations to 20, andF to 25%. The results, given in
Fig. 10(a), show thatChase significantly outperformsSAT in terms
of scalability. Indeed,Chase works well even for a large number of
CFDs. When the accuracy is concerned,Chase andSAT are com-
parable and both do very well: the percentage that they reported
true when the inputΣ was consistent was 100% and only in a few
occasions it was 95%. We also experimented with random sets of

CFDs. In this case, the accuracy can be determined by running the
algorithm with and without a limitKCFD. Fig. 10(b) shows the
results obtained for 1000 randomly generatedCFDs while varying
KCFD from 100 to 16K. In fact even whenKCFD reaches2000K,
our algorithm still runs very fast. Thus we fixedKCFD = 2000K
in the sequel.

Given the advantage ofChase over SAT, we adopted the chase
implementation ofCFD Checking in the rest of the experiments.
Experiments for CFDsand CINDs. Our second experiments evalu-
ated the efficiency and accuracy ofRandomChecking andChecking.
We fixed the following parameters in these experiments:
(1) Schema:R included 20 relations, with at most 15 attributes in
each relation andF ranging from 0% to 20%.
(2) Constraints:Σ consisted of 75% ofCFDs and 25% ofCINDs.
(3) Other Parameters:K, the number of instantiation of finite do-
main attributes, is set to20. T , the maximum number of tuples in
each relation of the witness database, ranges between2K and4K.

Algorithms RandomChecking and Checking scaled well when
the number of constraints was increased for both consistentand
random set of constraints (see Fig. 11(b) and 11(c) respectively).
Even though the running time ofRandomChecking is theoretically
better thanChecking, in practice, most of the cases are solved in the
preProcessing step and thereforeChecking shows to be more effi-
cient. Also, as shown in Fig. 11(a), for algorithmsChecking the ac-
curacy was almost constantly 100%.The experiments show that the
preProcessing not only increases accuracy but it also improves the
scalability of the algorithm. The high accuracy can be explained by
the difficulty of generating consistent datasets that were complex
enough for the algorithm to fail. However, we believe the datasets
used in the experiments are already more complex than the ones
found in practice.

To investigate the impact of the number of relations over theper-
formance, the algorithms were run with different number of rela-
tions, but fixing the ratio of|Σ|/|R| = 1000. The results of this
experiment are given in Fig. 11(d).
Summary. We have presented preliminary results from our exper-
imental study. First, we find that our heuristic methods, in almost
all cases, accurately determine the consistency ofCFDs andCINDs.
Second, all algorithms, exceptSAT, scale well when the number of
constraints or the size of relations increases. Third, we also find
that thepreProcessing optimization technique not only improves
the accuracy, but also reduces the running time.

7. Related work
Closest to our work is the recent study ofCFDs [9], which pro-

posed the notion ofCFDs, established the intractability of the con-
sistency and implication problems forCFDs, and provided anSQL

technique for findingCFD violations. However, neitherCINDs nor
their static analyses were studied in [9].

Also relevant are dependencies of [4, 21, 22] developed for con-
straint databases. Constrained dependencies of [21] are ofthe form
ξ → (Z → W), whereξ is an arbitrary constraint that is not
necessarily anFD. These dependencies applyFD Z → W only
to the subset of a relation that satisfiesξ. They cannot express
CFDs sinceZ → W does not allow patterns with constants as
found in CFDs. More expressive are constraint-generating depen-
dencies (CGDs) of [4] and constrained tuple-generating dependen-
cies (CTGDs) of [22], of the form∀x̄(R1(x̄)∧. . .∧Rk(x̄)∧ξ(x̄) →
ξ′(x̄)) and∀x̄(R1(x̄) ∧ . . . Rk(x̄) ∧ ξ → ∃ȳ(R′

1(x̄, ȳ) ∧ . . . ∧
R′

s(x̄, ȳ) ∧ ξ
′(x̄, ȳ)), respectively, whereRi, R′

j are relation sym-
bols, andξ, ξ′ are arbitrary constraints. While bothCGDs and
CTGDs can expressCFDs, and CTGDs can expressCINDs, little is
known about the complexity of their satisfiability and implication

252

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000 1200

R
un

tim
e(

se
c.

)

of CFDs per relation

Chase
SAT

(a) Performance ofCFD Checking

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600

A
cc

ur
ac

y(
%

)

KCFD

CFD_checking (Chase)

(b) CFD Checking accuracy for differentKCFD

Figure 10: Scalability and accuracy of consistency checking for CFDs and CINDs

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000

A
cc

ur
ac

y(
%

)

Number of Constraints

RandomChecking
Checking

(a) Accuracy for consistent sets ofCFDsandCINDs

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000
R

un
tim

e(
se

c.
)

Number of Constraints

RandomChecking
Checking

(b) Scalability for consistent sets ofCFDsandCINDs

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000

R
un

tim
e(

se
c.

)

Number of Constraints

RandomChecking
Checking

(c) Scalability for random sets ofCFDsandCINDs

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

R
un

tim
e(

se
c.

)

Number of Relations

RandomChecking
Checking

(d) Scalability for different number of relations

Figure 11: Scalability and accuracy of consistency checking for CFDs and CINDs

problems, effective algorithms to solve these problems, ortheir in-
ference systems. Indeed, forCGDs, the complexity of these prob-
lems is an open issue in the presence of constantsor finite-domain
attributes, even whenξ andξ′ are (=, 6=) constraints; forCTGDs
the satisfiability and implication problems are already undecidable
even in the absence ofξ, ξ′ and constants. That is, the expressive
power of these dependencies comes with the price of high com-
plexity. None of the prior results applies toCFDs or CINDs.

Constraints used in schema matching are typically standardINDs
and keys (see,e.g.,[16]). Contextual schema matching [7] inves-
tigated the applications of contextual foreign keys, a primitive and
special case ofCINDs, in deriving schema mapping from schema
matches. While [7] partly motivated this work, it neither formal-
ized the notion ofCINDsnor considered static analyses ofCINDs.

Research on constraint-based data cleaning has mostly focused
on two topics [2]:repairing is to find another database that is con-

sistent and minimally differs from the original database (e.g., [8,
13, 15]); andconsistent query answeringis to find an answer to a
given query in every repair of the original database (e.g.,[2, 25]).
A variety of constraint formalisms have been used in data cleaning,
ranging from standardFDs and INDs [2, 8, 13], denial constraints
(full dependencies) [20], to logic programs (see [6] for a recent
survey). To our knowledge, no prior work has considered pattern
tableaux, which, as shown in [9], can be treated asdata tablesin
SQL queries and thus allow efficientSQL techniques to detect con-
straint violations. Moreover, previous work on data cleaning did
not study the consistency and implication problems of constraints,
which are the focus of this paper.

As remarked earlier, algorithms and inference systems for the
implication problems of standardFDs and INDs can be found in
most database textbooks, and have also been well studied fora va-
riety of constraints such asTGDs, equality generating dependencies

253

and embedded dependencies (seee.g.,[1]). In contrast toCFDsand
CINDs, these constraints were studied in theabsenceof constant
values (and negation), and thus their consistency analysisis trivial.

The consistency problem,a.k.a.theconstraint satisfiability prob-
lem, has been studied for first-order logic constraints, for which
heuristic methods have also been developed (see,e.g., [10, 23]).
Unfortunately, attributes with finite domains were not considered in
that context, and thus those algorithms cannot be applied toCINDs
andCFDs. Methods have also been developed for the satisfiability
problem for,e.g.,description logics (see,e.g.,[3]), in which CINDs
andCFDs are not expressible.

The chase is widely used in implication analysis and query op-
timization, and has been studied for a variety of dependencies
(see,e.g.,[1]). Recently it was extended for query reformulation
and schema mapping, and a number of sufficient conditions were
identified to guarantee its termination (see [14] for a recent survey).
A heuristic method for chasing withFDs and INDs was proposed
in [17], with the following simplifications to ensure termination:
for a predefined constantn, INDs are applied at mostn times and
then only one extra variable is allowed to be used to instantiate at-
tributes of the tuples newly inserted when chasingINDs. This is, in
spirit, similar to our predefined variable sets.

8. Conclusion
We have proposedCINDs, a mild extension ofINDs that is im-

portant in both contextual schema matching and data cleaning. We
have provided complexity bounds and a sound and complete infer-
ence system for consistency and implication problems ofCINDs.
We also established complexity bounds for reasoning aboutCINDs
together withCFDs. These results settle the fundamental problems
associated with conditional dependencies. Even if we consider only
finite databases,i.e., databases where each relation has a finite ex-
tension, all the obtained complexity bounds still hold. It is left for
future work checking if better complexity results can be obtained
by considering extra assumptions, such as acyclicity ofCINDs or
CINDs with only unary relations.

In response to the intractability of the interaction between CFDs
and CINDs, we have developed efficient heuristic algorithms for
checking the consistency ofCINDs and CFDs. As verified by
our preliminary experimental results, these algorithms are promis-
ing for employingCINDs and CFDs in practical data cleaning and
schema matching tools.

There is naturally much more to be done. In practice one of-
ten needs to find a minimal cover of a given setΣ of constraints,
namely, a setΣmc that is equivalent toΣ but contains no redun-
dancy. The computation ofΣmc involves implication analysis,
which is undecidable forCINDs and CFDs. Thus it is practical to
develop heuristic algorithms for checking implication ofCFDs and
CINDs. Another interesting topic is propagation ofCFDsandCINDs
throughSQL views. This is needed when deriving schema mapping
from the constraints [16]. We are also investigating SQL-based
techniques for detectingCIND violations in real-life data along the
same line as [9] for data cleaning. Finally, effective use ofCINDs
and CFDs in schema matching and data cleaning requires a full
treatment.

Acknowledgments. Wenfei Fan is supported in part by
EPSRC GR/S63205/01, GR/T27433/01, EP/E029213/1and BBSRC
BB/D006473/1.

9. References

[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of

Databases. Addison-Wesley, 1995.
[2] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query

answers in inconsistent databases.TPLP, 3(4-5):393–424,
2003.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. Patel-Schneider, editors.The Description Logic Handbook
— Theory, Implementation and Applications. Cambridge Uni-
versity Press, 2003.

[4] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-
Generating Dependencies.JCSS, 59(1):94–115, 1999.

[5] C. Beeri and M. Vardi. A proof procedure for data dependen-
cies.JACM, 31(4):718–741, 1984.

[6] L. Bertossi. Consistent query answering in databases.SIG-
MOD Rec., 35(2):68–76, 2006.

[7] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster. Putting
context into schema matching. InVLDB, 2006.

[8] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-
based model and effective heuristic for repairing constraints
by value modification. InSIGMOD, pages 143–154, 2005.

[9] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsiet-
sidis. Conditional functional dependencies for data cleaning.
In ICDE, 2007.

[10] F. Bry, N. Eisinger, H. Schütz, and S. Torge. SIC: Satisfiabil-
ity checking for integrity constraints. InDDLP, pages 25–36,
1998.

[11] M. A. Casanova, R. Fagin, and C. H. Papadimitriou. Inclusion
dependencies and their interaction with functional dependen-
cies.JCSS, 28(1):29–59, 1984.

[12] B. S. Chlebus. Domino-tiling games.JCSS, 32(3):374–392,
1986.

[13] J. Chomicki and J. Marcinkowski. Minimal-change integrity
maintenance using tuple deletions.Information and Compu-
tation, 197(1-2):90–121, 2005.

[14] A. Deutsch, L. Popa, and V. Tannen. Query reformulation
with constraints.SIGMOD Record, 35(1):65–73, 2006.

[15] E. Franconi, A. L. Palma, N. Leone, S. Perri, and F. Scarcello.
Census data repair: a challenging application of disjunctive
logic programming. InLPAR, pages 561–578, 2001.

[16] L. Haas, M. Hernández, H. Ho, L. Popa, and M. Roth. Clio
grows up: from research prototype to industrial tool. InSIG-
MOD, 2005.

[17] D. S. Johnson and A. Klug. Testing containment of con-
junctive queries under functional and inclusion dependencies.
JCSS, 28(1):167–189, 1984.

[18] P. G. Kolaitis. Schema mappings, data exchange, and meta-
data management. InPODS, 2005.

[19] Lens Computer Science Research Centre. SAT4j home page,
2003.http://www.sat4j.org/.

[20] A. Lopatenko and L. Bertossi. Complexity of consistentquery
answering in databases under cardinality-based and incre-
mental repair semantics. InICDT, 2007.

[21] M. J. Maher. Constrained dependencies.Theoretical Com-
puter Science, 173(1):113–149, 1997.

[22] M. J. Maher and D. Srivastava. Chasing Constrained Tuple-
Generating Dependencies. InPODS, 1996.

[23] R. Manthey. Satisfiability of integrity constraints: Reflections
on a neglected problem. InFMLDO, pages 169–179, 1990.

[24] E. Rahm and H. H. Do. Data cleaning: Problems and current
approaches.IEEE Data Eng. Bull., 23(4):3–13, 2000.

[25] J. Wijsen. Database repairing using updates.TODS,
30(3):722–768, 2005.

254

