
Lazy Maintenance of Materialized Views

Jingren Zhou
Microsoft Research

jrzhou@microsoft.com

Per-Ake Larson
Microsoft Research

palarson@microsoft.com

Hicham G. Elmongui ∗

Purdue University

elmongui@cs.purdue.edu

ABSTRACT
Materialized views can speed up query processing greatly
but they have to be kept up to date to be useful. Today,
database systems typically maintain views eagerly in the
same transaction as the base table updates. This has the
effect that updates pay for view maintenance while benefi-
ciaries (queries) get a free ride! View maintenance overhead
can be significant and it seems unfair to have updates bear
the cost.

We present a novel way to lazily maintain materialized
views that relieves updates of this overhead. Maintenance
of a view is postponed until the system has free cycles or the
view is referenced by a query. View maintenance is fully or
partly hidden from queries depending on the system load.
Ideally, views are maintained entirely on system time at no
cost to updates and queries. The efficiency of lazy mainte-
nance is improved by combining updates from several trans-
actions into a single maintenance operation, by condensing
multiple updates of the same row into a single update, and
by exploiting row versioning. Experiments using a prototype
implementation in Microsoft SQL Server show much faster
response times for updates and also significant reduction in
maintenance cost when combining updates.

1. INTRODUCTION
Materialized views transparently pre-compute joins and

aggregations and, when applicable, can reduce query execu-
tion time greatly. Materialized views are widely used in data
warehousing/decision support systems. To ensure a correct
result, a materialized view must be up to date whenever it is
accessed by a query. Most database systems achieve this by
eager maintenance where all affected views are maintained
as part of the update statement or the update transaction 1.

∗Work performed while visiting Microsoft Research. The
author is also affiliated with Alexandria University, Egypt.
1Throughout the paper, unless otherwise stated, the term
“update” is used generically and refers to any kind of mod-
ification operation (insert, delete, and update).

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Under eager maintenance, the cost of maintaining a view
is born entirely by updates while the beneficiaries of the
view (queries) get a free ride! View maintenance overhead
can be quite high when multiple views require maintenance,
resulting in poor response times for updates.

Forcing updates to pay for view maintenance seems rather
unfair and may also be inefficient if there are many small
updates. To address this situation, some database systems
also support deferred maintenance where maintenance of a
view is delayed and takes place only when explicitly trig-
gered by a user. This approach has the serious drawback
that a query may see an out-of-date view and produce an
incorrect result. Allowing the query optimizer to automat-
ically use such views compromises correctness. The use of
materialized views is no longer automatic and transparent
to users. Query issuers have to know what views are used
by a query, how they are maintained and whether they are,
or need to be, up to date at execution time.

Ideally we would like a solution that both relieves the
burden of view maintenance from updates and retains the
property that queries always see up-to-date views. Lazy view

maintenance introduced in this paper achieves these two
seemingly contradictory goals.

Under lazy maintenance, updates do not maintain views
but just store away enough information so that affected
views can be maintained later. Actual maintenance is done
by low-priority jobs running when the system has free cycles
available. If the system has enough free cycles and a view is
maintained before it is needed by queries, neither updates
nor queries pay for view maintenance! If a view is not up
to date when needed by a query, it is transparently brought
up to date before the query is allowed to access it. In this
case, the first beneficiary of the view “pays” for all or part of
the view’s maintenance by experiencing a delay. However,
it only pays to maintenance of views that it uses and not for
maintenance of other views affected by an update.

Lazy maintenance allows updates to complete faster so
locks are released sooner, which reduces the frequency of
lock contention, lock conflicts and transaction aborts. This
is particularly important for updates that affect highly-aggre-
gated views because they tend to have higher rates of lock
conflicts.

We exploit row versioning for lazy view maintenance, which
greatly simplifies the maintenance operation. Maintenance
cost can also be reduced by merging maintenance tasks,
which allows them to be processed more efficiently. We also
introduce a new “Condense” operator and optimization rules
to prune out redundant updates of the same row as early as

231

possible. The savings can be substantial as we will show in
a later section. We also gain flexibility to schedule main-
tenance tasks, for example, they can be prioritized so that
more frequently referenced views are maintained first.

The main contributions in this paper are as follows.

1. We introduce a new approach to maintaining materi-
alized views that relieves updates of view maintenance
while still ensuring that queries see only up-to-date
views. The process is transparent to applications.

2. We exploit row versioning to obtain simple and effi-
cient maintenance expressions.

3. We reduce the cost of view maintenance by merging
multiple maintenance tasks for a view and by elimi-
nating redundant updates of the same row.

4. We exploit system free cycles to maintain views using
low-priority background jobs. If a view is not up to
date when a query needs it, the query waits while the
view is immediately brought up-to-date.

5. A prototype implementation in SQL Server 2005 and
extensive experiments demonstrate the feasibility and
benefits of our approach.

The rest of the paper is organized as follows. We first out-
line an overview of our approach in Section 2. We present
basic maintenance algorithms and consider combining mul-
tiple update transactions together for the maintenance pur-
pose in Section 3. In Section 4, we introduce a new “Con-
dense” operator and optimization rules to generate more
efficient maintenance plans. Extensive experimental results
on Microsoft SQL Server 2005 are provided in Section 5.
We further discuss various issues in Section 6. We survey
related work in Section 7 and conclude in Section 8.

2. SOLUTION OVERVIEW
We begin with an overview of our design in this section

and describe individual components in more detail in subse-
quent sections. Our design relies on being able to read old
versions of base table rows. Exploiting row versioning allows
for simpler and more efficient maintenance expressions.

To assist the reader in understanding our approach, we
provide a brief description of row versioning and snapshot
isolation in Microsoft SQL Server 2005. Although our pro-
totype is built on SQL Server, the techniques are applicable
to any other system with support for row versioning.

2.1 Background Information
SQL Server 2005 includes a version store that stores old

versions of records and makes it possible to read a table as of
an earlier point time. The version store is designed for short-
term transient versioning and not for persistent versioning.
It is used for multiple purposes, for example, to implement
online index build and snapshot isolation [3]. Here, we focus
on the functionality needed for lazy view maintenance. The
description is slightly simplified for ease of understanding; a
detailed discussion of the implementation is out of the scope
of the paper.

For versioning purposes, each transaction is assigned a
unique transaction sequence number (TXSN) when the trans-
action begins and a commit sequence number (CSN) when
it commits. These sequence numbers are monotonically in-
creasing and drawn from a single counter. Within a trans-
action, each statement is also assigned a unique statement
number (STMTSN).

Each record in the version store contain version informa-
tion, such as which transaction (TXSN) and which statement
(STMTSN) created the version. The version store maintains
a version chain for each record of a table, view, or index.
By following the version chain of a record, the system can
recover any old version of the record that is still available.

The key feature of the version store is that given a transac-
tion sequence number TXSN and a statement number STMTSN,
the version store can return record versions as of either the
beginning or the end of this transaction/statement. If a
record is inserted after the statement, it is not visible.

The version store keeps track of all active transactions and
what versions they need. A version has to be kept only until
all transactions that may require it have terminated. Older
versions are automatically reclaimed by a garbage collector.

Snapshot isolation [3] guarantees that all reads within a
transaction will see a consistent snapshot of the database.
The main benefit is that read-only transactions do not block
update transactions, which is particularly important for long-
running queries. In SQL Server, snapshot isolation is imple-
mented using the version store.

Even though our approach is applicable for other isolation
levels, the details of lazily maintaining a view depend on
the isolation level of the originating transaction. For ease
of presentation, we assume that all transactions run under
snapshot isolation in this paper.

2.2 System Overview

Views

Base Tables

V
e

rs
io

n
 s

to
re

 (
S

Q
L

S
E

R
V

E
R

)

Task

Queue

Maintenance

Manager

(low priority)

Client

Update

Trans

Queries

Immediate

Maintenance
Delta Tables

Figure 1: System Overview

Figure 1 shows our overall system design for lazy view
maintenance. We first describe the individual components
and then explain the overall procedure. Our design is pri-
marily driven by efficiency considerations. We postpone
comparison with alternative approaches to Section 6.

Delta Tables. Execution of an insert, delete, or update
statement against a base table produces a stream of delta
rows. The delta stream is then transformed into a split delta

stream with an additional action column Action. Each delta
row in the split delta stream encodes what change was made
to a (uniquely identified) row of the target base table. The
action column indicates if the delta row represents an insert,
delete, or update of a row. In a split delta stream, an update
is represented by two delta rows, one containing the old
values with action “delete”, the other containing the new
values with action “insert”. A more detailed description of
delta streams can be found in [7].

For each base table we create a corresponding delta table

which stores the split delta stream for its base table. Rows
in the delta table include two additional columns, the trans-
action sequence number TXSN and the statement sequence
number STMTSN that indicate which transaction and state-
ment produced the delta row. These two columns are used

232

when building maintenance expressions as explained in Sec-
tion 3. A delta table is clustered on columns TXSN, STMTSN,
Action, plus the primary key columns of its base table.

Maintenance Task. When an update transaction com-
mits, a lazy maintenance task is generated for each mate-
rialized view referencing a table that was updated by the
transaction. When the task executes later on, its effect on
the view should be the same as it would be if the task were
executed immediately as part of the update transaction.

A maintenance task specifies which view needs to be main-
tained, the set of updated base tables, the transaction se-
quence number (TXSN) and the commit sequence number
(CSN) of the originating transaction, at what statement (STMTSN)
to begin (explained later), and current status of the task
(pending, inprogress or completed). TXSN and optional STMTSN
are used to locate the correct delta rows and versions of base
tables when lazy maintenance is actually performed later.
CSN is used to decide the task maintenance order. Task sta-
tus is used by the maintenance manager to schedule and
track individual tasks. More details about the maintenance
algorithm are provided in Section 3.

Maintenance Manager. This component keeps track of
active view maintenance tasks and what database versions
and delta streams are needed. It is also responsible for con-
structing view maintenance jobs (from maintenance tasks)
and scheduling them.

To be able to quickly find all maintenance tasks for a
given view, the manager maintains a hash table containing
an entry for each materialized view with active maintenance
tasks. Each entry has a linked list containing the mainte-
nance tasks of the view. The list is sorted in an increasing
order on commit sequence number.

To be able to determine what versions and delta streams
are still needed, the maintenance manager keeps track of
the status of all maintenance tasks generated by an up-
date transaction. When they have all completed, neither
the database versions required by those tasks nor the delta
streams generated by the transaction are needed any longer.
The manager maintains a list of pending view maintenance
tasks for each update transactions. All tasks generated by
a transaction have completed when the list is empty or con-
tains only completed tasks. In addition, the update trans-
actions are inserted into a hash table to allow quick access
based on the transaction sequence number. Using these data
structures, the manager makes sure all versions required for
lazy maintenance are kept in the version store and are prop-
erly released once maintenance is done. The manager also
periodically creates low-priority jobs to delete obsolete delta
streams from delta tables.

Task Table. Maintenance tasks are also stored persis-
tently in a global view-maintenance task table. The table
is used for recovery purposes only, not for normal process-
ing. A maintenance task is added to this table as part of
the transaction that generated it and deleted as part of the
transaction that performs the maintenance. We discuss re-
covery strategy in Section 6.

2.2.1 Update Transactions
Consider an update statement modifying a base table R

that is referenced by a number of materialized views. Eager
maintenance updates all materialized views that reference
R immediately after the update statement. In the case of
lazy maintenance, as shown in Figure 1, Step ①, view main-

tenance is skipped 2. Instead, enough information is saved
so the affected views can be updated later. The split delta
stream produced by the update statement is appended to
the corresponding delta table. Versioning is enabled so that
when the update is applied to R, the old version of each
modified row is stored in the version store.

An update transaction may contain multiple update state-
ments. The transaction internally records which table is
modified by which statement and which views are affected.
Each update statement reports its own information at the
end of its execution.

When the update transaction commits, maintenance tasks
are constructed based on the information reported during
execution. One maintenance task is generated per affected
materialized view. The tasks are then passed on to the main-
tenance manager and also written to the persistent task
table. If the update transaction aborts, no information is
saved and no maintenance tasks are constructed.

2.2.2 Lazy Maintenance
Lazy maintenance is shown as Step ② in Figure 1. The

manager wakes up every few seconds. If there are no pend-
ing maintenance tasks or the system is currently busy, it
goes back to sleep. Otherwise, it decides what views to
maintain and, for each view, constructs a low-priority back-

ground maintenance job and schedules it. Maintenance
jobs for the same view are always executed in the commit
order of the originating transactions.

We explain how to generate maintenance expressions and
how to schedule maintenance jobs in Section 3. The main-
tenance manager may combine multiple maintenance tasks
for the same view into a larger job that can be executed
more efficiently. During maintenance, delta streams from
delta tables and appropriate versions of base tables from
the version store are used.

When a maintenance job completes, it reports back to the
maintenance manager. The manager then removes the com-
pleted tasks from its task list and releases any row versions
and delta rows that are no longer required by the remain-
ing pending tasks. As part of the maintenance transaction,
the completed maintenance tasks are also deleted from the
persistent task table. If a view is dropped, all of its pending
tasks are removed. Altering a view is treated as dropping
the view and creating a new one.

2.2.3 Query Execution
During query execution, shown as Step ③ in Figure 1,

we have to make sure that all views used are up to date.
Before a query plan begins execution, we check whether
the views used by the plan have any pending maintenance
tasks and whether they originate from transactions whose
effects the query is supposed to see. Under snapshot isola-
tion this means any transaction that committed before the
current transaction began. If such tasks exist, the query
asks the maintenance manager to schedule them immedi-
ately and then waits. The query resumes execution when
the maintenance tasks have completed. We call this type of
maintenance on-demand maintenance. We briefly describe
the process here and discuss further considerations in Sec-
tion 3.5.

2All indexes on the base table are updated eagerly. In this
paper, we consider only lazy maintenance of views but our
techniques are applicable to indexes as well.

233

T1
T2

T3
Update Trans Queries

Free cycles

Q1

View

Maintenance

Base Table

Updates

Immediate

Maintenance

T3 Q1
(a) Eager Maintenance

Case 1:
Free cycles

Background

Maintenance

Maintenance

T1 T2 T3 Q1

Case 2:

Free cycles
Background

Maintenance

T1 T2 T3 Q1

delay

Case 3:

Free cycles

Background

Maintenance
T1 T2 T3

Q1

delay

(b) Lazy Maintenance

Figure 2: Response Time Benefits
If all views required by a query are up to date, there is vir-

tually no delay in query execution. Note that the on-demand
maintenance jobs are executed in separate transactions and
commit before query execution resumes. Even if the query
aborts, it does not trigger committed maintenance jobs to
roll back.

A slightly more complex case occurs when, within the
same transaction, we have update statements that affect
views referenced by subsequent queries. The queries are sup-
posed to see all changes made by prior update statements
within the transaction so we have to update the views, but
such in-transaction changes to the view cannot be made per-
manent because the transaction may abort.

We handle this case in the following way. Suppose we are
about to begin execution of a query plan that uses a view
V . We first request the maintenance manager to perform
on-demand maintenance to bring view V up to date as of
the beginning of this transaction. This part of maintenance
is done in separate transactions so even if the current trans-
action fails, the effects of these maintenance jobs will not be
rolled back. We then check whether the current transaction
has updated any table that is referenced by view V . If it has,
we maintain V by applying updates from this transaction to
the view. This part of maintenance is executed within the
current transaction so if the transaction later fails, all its
effects on the view will be rolled back automatically.

2.3 Effect on Response Time
Lazy view maintenance is completely transparent to ap-

plications. Applications exploit materialized views in the
same way as before and always see a state that is transac-
tionally consistent with base tables. The only difference is
in response time of updates and queries, which is the topic
of this section. Suppose we have three updates followed by
a query. All three updates affect a materialized view that is
used by the query.

Under eager maintenance, shown in Figure 2(a), each up-
date has to wait until view maintenance is done. If the
affected views are expensive to maintain, update response
times may be very slow. When the query arrives, the up-
dates have completed and the view content is up to date so
the query completes quickly.

Under lazy maintenance, shown in Figure 2(b), the re-
sponse time of the updates is much improved. Suppose the
system gets a chance to maintain the affected views after

the three updates. By combining the three updates, the to-
tal time spent on maintaining the views is reduced. If the
query arrives after lazy maintenance is done, shown in Case

1, its response time is the same as under eager maintenance.
If the query arrives in the middle of lazy maintenance of a
view that it needs, shown in Case 2, it is forced to wait until
maintenance of that view is finished. Finally, if the query
arrives immediately after updates and before the system has
begun maintenance of the view, shown in Case 3, the query
issues a on-demand maintenance request at the beginning
and waits until it is finished. The total system response
time for all the updates and the query is still improved over
eager maintenance.

From this example, we see that lazy view maintenance
consistently improves response time for updates and view
maintenance overhead is fully or partially hidden from sub-
sequent queries. How much of the overhead is hidden de-
pends on how frequently the view’s base tables are updated,
how frequently the view is queried, and the overall load on
the system.

3. MAINTENANCE ALGORITHMS
Lazy view maintenance is performed by executing a main-

tenance task. Maintenance tasks for the same view are exe-
cuted strictly in the commit order of the originating trans-
actions. This is enforced by comparing the commit sequence
numbers (CSN) stored in the maintenance tasks. However,
maintenance tasks for different views can be scheduled in-
dependently without any restriction on order. We discuss
various scheduling strategies in Section 3.5.

3.1 Full and Partial Maintenance Tasks
As described earlier, a maintenance task specifies which

view to maintain and the set of updated base tables. Lazy
maintenance should produce the same effect on the view
as if it had been maintained immediately in the originating
transaction. This is achieved by retrieving appropriate base
table versions from the version store and recovering delta
streams from delta tables using the transaction sequence
number (TXSN) of the originating transaction and, if neces-
sary, the starting statement number (STMTSN).

Consider an update transaction T consisting of multiple
statements and denote its transaction sequence number by
T .TXSN. Suppose the third statement of T inserts rows ∆R

into a table R and there is a view V that references R and an-
other table S. If view V were maintained immediately after
the insert statement, what version of S would the mainte-
nance expression see? Because the transaction runs under
snapshot isolation, it would see a version of S that includes
all updates that committed before T started plus all up-
dates of T prior to the current insert statement. Therefore,
the lazy maintenance task should store TXSN = T .TXSN and
STMTSN = 3. If the earlier statements in T did not update S,
STMTSN is optional because the version of S seen by the third
statement is the same as of the beginning of the transaction.
In this case, the maintenance task includes changes from all
update statements in the transaction. We call this type of
maintenance tasks as “full maintenance tasks”.

A more complicated case shows when including STMTSN

is important. In the previous example, if the fourth state-
ment of T references the view V , we need to maintain the
view V up to the point of the fourth statement, including
the third statement that inserts ∆R. Such maintenance be-

234

comes permanent once the transaction T commits. Suppose
the fifth statement updates S. The corresponding lazy main-
tenance task should store TXSN = T .TXSN and STMTSN = 5.
In this case, the statement number is crucial and tells us
that all delta streams generated by statements prior to the
fifth statement have already been applied to the view and
only the remaining delta streams from the transaction need
to be applied to complete maintenance. We call this type of
maintenance tasks as “partial maintenance tasks”.

3.2 Normalized Delta Streams
Before describing how to incrementally compute the view

delta using delta tables and versioning, we present an impor-
tant observation that forms the foundation of our solution.

Consider a transaction T containing a series of update
statements that update tables R and S. Let ∆Ri, i =
1, · · · , n denote the split delta stream produced by the ith
statement updating table R. Similarly, ∆Si, i = 1, · · · , m

denotes the split delta stream produced by the ith statement
updating table S.

The update statements are processed in some order when
the transaction executes, producing the delta streams in the
same order. Suppose, for example, that the delta streams
are produced in the order of ∆R1, ∆S1, ∆R2, ∆S2, · · · . De-
note the initial states (when the transaction begins) of R

and S by R0 and S0 and the final states (when the trans-
action ends) by R1 and S1. If we apply the delta streams
to the initial states R0 and S0 in the given order, the tables
will end up in the final states R1 and S1.

Now we re-order the delta streams so that the R deltas
occur first followed by the S deltas, ∆R1, ∆R2, · · · , ∆Rn,
∆S1, ∆S2, · · · , ∆Sm. If we apply the deltas in this order
to R0 and S0, the tables still end up in exactly the same
final states R1 and S1. Note that we did not change the
ordering among the deltas for table R or the ordering of
records within each delta stream. It is important that mul-
tiple delta rows that affect the same row are applied to the
base table in the originating order. Otherwise, we could no
longer guarantee that the tables end in the same final state.

Next we concatenate the R deltas and the S deltas, ob-
taining ∆R = ∆R1 + ∆R2 + · · · + ∆Rn and ∆S = ∆S1 +
∆S2 + · · · + ∆Sn. Concatenation ensures that delta rows
from ∆R1 come before ∆R2, and so on. This can be done
by sorting the delta rows in ascending order on TXSN and
STMTSN. The end result is as if there there had been two
large update statements, producing delta stream ∆R and
∆S, respectively. If we apply ∆R to R0 and then ∆S to S0,
the tables will end up in the same final states R1 and S1.
The two deltas are applied to separate tables so it doesn’t
matter in what order we apply them. We summarize the ob-
servation below, but omit the proof due to space limitation.

Proposition 3.1 Two sequences of delta streams affecting

a set of base tables are equivalent if both produce the same

final state when applied to the same initial state of the base

tables. Any sequence of delta streams can be normalized
to an equivalent sequence of delta streams consisting of one

delta stream for each affected table.

As discussed above, there are several sequences of delta
streams that are equivalent to the original one generated
when the query executes. Provided that we have a correct
incremental view maintenance algorithm, we can choose any
one among the equivalent sequences to use for maintenance.

For simplicity and efficiency, we always use the normalized

sequence; it only requires a maintenance algorithm able to
handle updates of one table and has the fewest delta streams.

3.3 Computing View Delta Streams
In this section, we focus on how to compute the delta

stream ∆V to be applied to the view. As described in Sec-
tion 2.2, delta rows in delta tables are stored together with
three special columns TXSN, STMTSN and Action. When the
chosen delta rows participate in incremental maintenance
and joins with other tables, if necessary, the three special
columns are carried along into the final computed ∆V . We
discuss how to apply ∆V to the view using these special
columns and some further optimizations in Section 4.

For simplicity, we derive expressions for an n-way join
view V = R1 1 R2 1 . . . 1 Rn. Maintaining an aggregated
view can be done by first computing the delta of its non-
aggregated part and then aggregating the delta rows before
applying them to the view. During aggregation, the action
column is used to decide whether to decrease or increase the
value of aggregated columns. An additional count per group
is maintained to decide when the group becomes empty and
should to be deleted from the view. More details on main-
taining aggregated views can be found in [7].

We start with the simple case when only one table, Ri,
of the view has been updated, producing the concatenated
delta stream ∆Ri. As shown already in [4], the view delta
can then be incrementally computed as

∆V = R1 1 . . . 1 Ri−1 1 ∆Ri 1 Ri+1 1 . . . 1 Rn

The rows of ∆Ri are stored in Ri’s delta table. We know
which transaction produced the delta so we can retrieve ∆Ri

from the delta table by a simple selection query specify-
ing the transaction’s sequence number (TXSN). The selected
delta may contain several delta streams, each one from a dif-
ferent update statement. The statement number (STMTSN)
from the delta table indicates the update order. Note that
Rj(j 6= i) represents the version before the transaction. In
fact, because only table Ri was updated, for all other tables,
the versions before and after the update transaction are the
same. We can retrieve either version from the version store.

Now consider the general case when a maintenance task
represents a transaction with multiple update statements
that modify m out of the view’s n base tables. Each update
statement updates only one table, of course, but different
statements may update the same or different tables. With-
out loss of generality, we assume that base tables R1, . . . , Rm

are updated.
We maintain the view using the normalized delta streams

∆R1, ∆R2, · · ·∆Rm, where ∆Ri is the concatenation of the
split delta streams from statements updating table Ri. Let
R′

i denote the after-version of Ri, that is, at the end of
the transaction after applying ∆Ri to Ri. As described
earlier, ∆Ri can be retrieved from the corresponding delta
table with the appropriate selection predicates on TXSN. The
before and after versions of base tables Ri are also available
because of the version store. By using the normalized delta
streams, we can compute the view delta as

∆V = ∆R1 1 R2 1 . . . 1 Rn 1 {1}+

R
′

1 1 ∆R2 1 R3 1 . . . 1 Rn 1 {2}+

. . . +

R
′

1 1 . . . 1 R
′

m−1 1 ∆Rm 1 . . . 1 Rn 1 {m}

235

A similar formula was introduced in [10], but here we present
a different interpretation. We ignore the last join with a
constant in each term for now.

The m base table deltas are applied one by one, in m

steps. The view delta is computed as if the transaction had
proceeded as follows. First all updates to base table R1

are performed, producing the delta stream ∆R1, and bring-
ing the table to state R′

1. The first term in the expression
computes the view delta needed to incorporate the effects
of ∆R1 into the view. Next all updates to base table R2

are performed, producing ∆R2, and bringing the table to
state R′

2. The second term in the expression computes the
view delta needed to incorporate the effects of ∆R2 into the
view. Note that the term must use R′

1 because R1 has al-
ready been updated. This pattern continues with one term
for each updated base table until the m deltas are covered.

The final computed ∆V is the concatenation of the deltas
from the m steps. We also add a step sequence number (SSN)
to each row in the view delta. All rows generated by the ith
term have SSN = i (added by the last join in each term).
The combination of SSN, TXSN, and STMTSN defines the order
in which to apply the delta rows to the view (although in
this case TXSN is the same for all delta rows). This order is
important because different terms may generate delta rows
for the same view row and we must ensure that they are
applied in the right order. First all delta rows from the first
term are applied, then all delta rows from the second term,
and so on. For each term, the delta rows are applied in
statement sequence order, which is the order of the original
update statements.

The above equations are still valid for partial mainte-
nance tasks but with adjustments for the fact that a pre-
fix of the base table deltas has already been applied to the
view. The statement sequence number of the first unpro-
cessed statement is included in the task and we denote it by
Task.STMTSN. The before version of a table needed is now
the version at the beginning of statement Task.STMTSN. The
normalized delta stream should include on deltas generated
by statement Task.STMTSN or later. We can retrieve the re-
quired delta from the delta table by using a selection predi-
cate that specifies not only the transaction sequence number
but also a lower bound on the statement sequence number,
DeltaTable.STMTSN ≥ Task.STMTSN.

In summary, the maintenance expression computes one
term for each updated table and concatenates the results.
When computing the term containing ∆Ri, we replace ∆Ri

with a selection on the corresponding delta table. When
reading other base tables, we supply version hints to the
table read operators, which then rely on the version store to
return the appropriate version of each row.

Finally, all changes applied to the view will be tagged with
the transaction sequence number of the original transaction.
The net effect is that the view appears to be maintained by
the original transaction, which was precisely the goal.

3.4 Combining Maintenance Tasks
For each update transaction, a maintenance task is cre-

ated for each materialized view affected by the transaction’s
updates, regardless of the size of updates. When the mainte-
nance manager decides or is required to maintain a view, sev-
eral maintenance tasks may have accumulated in the view’s
task queue. The tasks for each view must be performed
in the commit order of the originating transactions. The

naive policy would be to process them one by one by issu-
ing a separate maintenance job for each task. However, if
each task only contains small updates, it is quite wasteful to
apply them one by one. The more efficient way is to com-
bine them into a single, larger maintenance job. Combining
maintenance tasks has several benefits.

1. The combined task is executed once so we avoid mul-
tiple invocation of the same or similar maintenance
expressions.

2. If different tasks update the same base table row or
the same row in the view, the intermediate updates
are redundant and can be eliminated. This reduces
the size of the delta stream, which reduces the cost of
evaluating the maintenance expression and applying
the updates to the view. (This topic is covered in
Section 4.)

Both full and partial maintenance task can be combined
but our current prototype combines only full tasks; partial
maintenance tasks are performed by themselves 3.

Suppose the materialized view V has a queue of l pend-
ing maintenance tasks that were generated by transactions
T1, . . . , Tl (in commit order), updating the set of base ta-
ble B1, . . . ,Bl respectively. Assume transaction Te has the
smallest transaction sequence number, that is, Te begins
the earliest. We can treat transactions T1, . . . , Tl as a single
large transaction T0 that starts at Te.TXSN, ends at Tl.CSN

and updates the set of base tables B1 ∪ . . . ∪ Bl.
The maintenance algorithm in the previous section can

then be applied to this large transaction. Suppose table Ri

is one of the updated tables. The ∆Ri is the concatenation
of the R deltas from transactions T1, . . . , Tl (in commit or-
der). The before-version of a table is now the version before
transaction Te and the after-version includes the updates
from all l participating transactions. Because we treat the
l transactions as one big transaction, we need only two ver-
sions of base tables Ri, . . . , Rm plus their delta changes.

Similar to a single task, the combination of SSN, TXSN, and
STMTSN defines the order in which to apply delta rows to the
view. Note that the delta rows are applied in the order of
transaction sequence number TXSN, which may be different
from the commit CSN order of the originating transaction.
It can be shown that this still produces a correct result.
The reason is that, under snapshot isolation, two commit-

ted transactions whose commit order is different from their
transaction begin order cannot have updated the same base
table row. If they did, a conflict would have been detected
and one of them would have been aborted. As a result, us-
ing the combination of SSN, TXSN, and STMTSN as the update
order for the view produces the correct result.

Maintenance tasks against a view cannot always be com-
bined because intermediate versions of the view are lost. By
combining tasks from update transactions T1, . . . , Tl, the up-
dates applied to the view will be tagged with the transaction
sequence number of Te so all changes appear to be made by
transaction Te and the view is brought to the state produced
by Tl. When a new version of a row is created, the old ver-
sion needs to be kept only if it may be read by an active
transaction. If, at the point of lazy maintenance, there are

3Partial maintenance tasks can also be combined. All the
originating transactions have successfully committed and,
therefore, they have no conflicting base table updates. How-
ever, making sure that the correct versions of base tables are
used during maintenance becomes somewhat more complex.

236

no active transactions or other pending maintenance tasks
that may require an intermediate version of V , we can safely
combine the l tasks.

3.5 Scheduling Maintenance Tasks
Background Scheduling. Lazy maintenance can be

triggered when the system has free cycles. In this case,
the maintenance manager can freely choose which materi-
alized view(s) to maintain. Scheduling of view maintenance
has multiple, somewhat conflicting goals. First, it is de-
sirable to hide view maintenance from queries as much as
possible to improve query response time. Second, mainte-
nance should be performed as efficiently as possible. Third,
it is important to minimize the resources consumed by pend-
ing maintenance tasks. Any scheduling policy represents a
trade-off among these goals.

To hide view maintenance from queries, views could be
assigned priorities based on how soon they are expected to
be referenced by queries. The sooner the view is expected to
be used, the sooner the view needs to be maintained. Future
reference information can be estimated based on historical
usage of the views.

If a view has multiple pending tasks, the manager must
also decide whether and how many to combine into a sin-
gle maintenance job. Combining tasks improves efficiency
but could result in a long-running maintenance transaction,
This could cause resource contention, which we also want to
avoid. The choice should depend on the size of combined
delta streams, the estimated cost of the maintenance oper-
ation, and the current system workload.

Pending maintenance tasks consume space for storing delta
streams and old row versions. Cleanup both in the version
store and delta tables proceeds linearly, always releasing the
oldest data first. Hence, a single very old maintenance task
can prevent younger data from being released. To avoid this,
older maintenance tasks should be given higher priority.

Other considerations may also be important when design-
ing a scheduling policy. For example, we may want to sched-
ule maintenance of similar views together in order to exploit
common subexpressions and achieve better buffer pool effi-
ciency. For some applications, we may know that a view
is used only at a certain time of the day, for example, to
produce reports. In that case, all that matters is that the
view is brought up to date before that time.

Maintenance jobs run as low-priority background jobs but
one could further reduce their impact on system resources.
In case of a sudden burst in system workload, maintenance
jobs can be paused or even aborted to avoid slowing down
the system. Similar to [6, 15], we can also perform mainte-
nance tasks in two phases, a view delta computation phase
and a view delta apply phase, in order to further limit re-
source contention.

Further consideration of scheduling policies for view main-
tenance is beyond the scope of this paper. Our current pro-
totype uses a simple policy that gives the highest priority to
the oldest pending tasks.

On-demand Scheduling. Lazy maintenance can also
be triggered by a query. In this case, the views referenced
by the query are maintained immediately. The mainte-
nance manager must still decide whether and how to com-
bine maintenance tasks. The maintenance job(s) inherit the
same priority as the query.

A more interesting question is when it is possible to avoid

maintaining a view even though it is referenced by a query.
A view referenced by a query does not have to be brought up
to date immediately if the pending updates do not affect the
part of the view accessed by the query. It may be worthwhile
to first check whether the pending maintenance tasks can
cause a change in the view that is visible to the query. If
not, the view does not have to be maintained immediately
while still safely serving the query.

There are several ways to check. For example, we can
project the query predicate onto each base table and scan the
corresponding delta tables with the projected predicate 4. If
no scans return any tuples, we can safely deduce that the
view content accessed by the query cannot be affected by
the pending updates. This can be easily proven because
it means that none of the m terms in the maintenance ex-
pression can produce a result affecting rows accessed by the
query. However, this filtering operation can be as expensive
as maintaining the view.

In either scheduling mode, the maintenance manager sched-
ules one job at a time for one view. This is achieved by
monitoring the task’s status in the manager. There can be
at most one task with the status of inprogress for each ma-
terialized view.

4. CONDENSING DELTA STREAMS
The computed ∆V from the previous section contains spe-

cial columns Action, SSN, TXSN, and STMTSN. In this section,
we first briefly describe how delta rows with action columns
are applied in SQL Server and then present additional opti-
mization techniques for lazy maintenance.

In SQL Server, a “StreamUpdate” operator consumes the
view delta stream and applies the changes to the affected
rows in the view, based on the action column Action. It is,
of course, inefficient to update a row by first deleting the old
one and then insert a new one with the same keys. Before
applying updates to the view, the set of delta rows is sorted
on the unique clustering keys and the action column to guar-
antee that changes to the same row are adjacent. The delete
action has a value smaller than the insert action to ensure
that delete rows precede insert rows. The sort is followed
by a “Collapse” operator that simplifies the delta stream. If
two adjacent delta rows have the same keys, the first one is
a deletion and the second one an insertion with new values,
then the two rows are replaced by a single update row with
new values. The final “StreamUpdate” operator applies the
changes to the view, that is, for each delta row, finds the
corresponding target row in the view, if any, and performs
the action specified in the delta row.

Using split delta streams and sorting on the action col-
umn guarantees optimal data locality for updates. We refer
readers to [7] for more details.

4.1 The Condense Operator
Under eager maintenance, view maintenance is part of

the execution plan for the update statement and each main-
tenance expression processes only one split delta stream.
There can be at most two delta rows with the same keys
in the final computed ∆V , which simplifies the logic of the
“Collapse” operator.

Under lazy maintenance this no longer holds because a

4If the query has no predicate on a base table, the projected
predicate on the table is always true.

237

maintenance task may include delta streams from multiple
statements. Two update statements updating the same base
table may affect the same base table row. If so, they will
also affect the same row in the view. Furthermore, even
updates that affect different rows in different base tables
may end up affecting the same row in the view. As a result,
we may have more than two delta rows with the same keys in
the final computed delta stream. When combining multiple
maintenance tasks, this becomes even more common.

As described earlier, the order in which delta rows are
applied is crucial to achieve the correct result. However, it
is clearly not efficient to apply many changes to a target
row one by one. For example, we do not care about the
intermediate modifications; all that matters is the final state
of the row.

To skip unnecessary changes, we introduce a new “Con-
dense” operator and apply it to the sorted view delta stream.
The stream must be sorted on the unique clustering keys of
the view plus the update order, which is the combination
of SSN, TXSN and STMTSN, and finally Action. The sorting
ensures that all changes to the same view row are grouped
together in the correct update order. The action column is
included to ensure that deletion of a row (if any) occurs be-
fore an insertion originating from the same statement. The
”Condense” operator takes the sorted delta stream as the
input and produces a condensed delta stream by, in essence,
discarding intermediate changes to rows.

First delta row in the group
Insert Delete

Last
delta
row
in the
group

Insert
Output
last delta
row

Full condense:

• output an update delta row

Partial condense:

• output first and last delta
rows

Delete
Output
nothing

Output last delta row

Table 1: “Condense” Operator

The “Condense” operator is an aggregation operator, some-
what similar to duplicate elimination. For each group of
delta rows with the same values of the unique clustering
keys, it outputs at most one delta row for a “Full Condense”
operator or two delta rows for a “Partial Condense” opera-
tor, covered in the next section. The output depends only
on the first and the last delta row, summarized in Table 1.

It is important to note that before lazy maintenance is
performed, all base table updates have been successfully
completed, with no constraint violations. Otherwise, the
update transaction would have rolled back and there would
be no lazy maintenance job for it. Specifically, an insert op-
eration implies that there is no row with the same unique
keys before.

4.2 Partial Condense
So far, we have described the “Condense” operator applied

right before the sorted delta stream is applied to the view.
This reduces a large number of redundant updates to the
view. However, this does not limit redundant computation
caused by multiple updates to the same base table row.

For example, consider a materialized view V = R 1 S.
When combining multiple updates to the same base table R,
if all the updates change only one row, we do not care about
any intermediate version of that row for maintaining the
view under certain conditions. The maintenance operation

may only require the first and last delta rows, join them
with S and apply the changes to the view V . In this case, it
clearly makes sense to push the “Condense” operator down
through the joins or partially condense the delta stream from
the delta table of R. This reduces the number of tuples
participating in joins and can reduce the cost of computing
the view delta significantly.

In fact, partially condensing the delta stream of R can be
viewed as replacing all update statements in the step with an
equivalent update process, which contains only one update
statement that changes R from the before version directly
to the after version.

We introduce a “Partial Condense” operator, which per-
forms the same as a “Condense” operator except that when
the first delta row is a delete and the last delta row is an
insert, it outputs two delta rows because the deleted row
and the inserted row may affect different view rows.

A “Condense” operator is analogous to a “GroupBy” op-
erator in a sense that the “Condense” operator groups on
the sorted columns. Therefore, we can emulate all the op-
timization rules for aggregation, such as push aggregation
down through joins, partial/global aggregation, etc.

Due to space limitation, we do not present all the opti-
mization rules for ”Condense” and “Partial Condense” op-
erators; instead, we use a few examples to illustrate some
important transformation rules in the context of lazy main-

tenance. The underlying principle is that delta rows are

condensable if they are guaranteed to affect the same view

row.

Stream

Update

Condense

Sort

Join

R S R

Partial

Condense

Stream

Update

Condense

Sort

Join

S

Sort

Stream

Update

Nested-Loop

R

Condense S

Sort

(a) (b) (c)

Figure 3: Transformations When Updating R

We first consider a simple case when only table R is up-
dated in the maintenance task. Figure 3(a) shows the main-
tenance plan with a “Condense” operator on top. In fact,
we can first sort ∆R on the unique keys of base table R plus
columns TXSN, STMTSN, and Action and then partial con-
dense the result. The “Partial Condense” operator removes
all the intermediate versions of the delta rows. The mainte-
nance plan is shown in Figure 3(b). If the unique clustering
keys of the view is also the unique keys of the base table R,
we can push the “Condense” operator through the join, as
shown in Figure 3(c). In this case, the join needs to be a
nested-loop join so that the order of the condensed tuples is
maintained for the following “StreamUpdate” to consume.

When both R and S are updated in the maintenance task,
following the algorithm in Section 3, Figure 4(a) shows the
original maintenance plan. We leave out the version infor-
mation for simple presentation. Note that each term only
contains one delta stream. As shown in Figure 4(b), we can
surely sort individual delta streams on their unique keys
plus columns TXSN, STMTSN, and Action and then partial
condense the sorted result, respectively. Again, if there are
many redundant updates, the saving of partial condensing
can be dramatic.

238

Stream

Update

Condense

Sort

UnionAll

Join

R S

Join

R S

S R

Stream

Update

Condense

Sort

UnionAll

Join Join

R

Partial

Condense

Sort

Partial

Condense

Sort

(a) (b)

Figure 4: Transformations When Updating R and S

Similar optimization can also be applied to maintenance
expressions with aggregations. All the transformations are
considered by the optimizer as alternatives. The optimizer
should evaluate them in a cost-based fashion and choose the
cheapest one.

5. EXPERIMENTAL RESULTS
We have prototyped lazy maintenance of materialized views

in Microsoft SQL Server 2005. To demonstrate the benefits
of lazy view maintenance, we compare response times for up-
dates and queries in various situations. Lazy maintenance
is performed in the background and the overhead may be
fully hidden from users. Nevertheless, we also compare the
time spent on lazy maintenance and compare it with the
time required for eager maintenance to measure the over-
head of lazy maintenance. Finally, we examine the worst-
case overhead of using lazy maintenance instead of eager
maintenance.

All experiments were performed on a workstation with
a Pentium D 3.2 GHz processor, 1GB of memory and two
160GB disks, running Windows XP. All queries were against
a 1GB version (SF=1) of the TPC-H database with cold
buffer pool. For lazy maintenance, all updates and queries
ran under snapshot isolation. Snapshot isolation imposes a
small overhead for maintaining snapshots. For eager mainte-
nance we ran all updates and queries under read committed
isolation (the default), which may slightly bias the compar-
ison in favor of eager maintenance.

5.1 Update Response Time
Our first experiment demonstrates the improvement in

update response time when using lazy view maintenance.
We defined a highly aggregated materialized view V1 that
joins lineitem, orders, customer, and nation and aggregates
by nation and market segment.

V1:create view V1 as
select n name, c mktsegment, count(*) as totalcnt,

sum(l extendedprice) as totalprice,
sum(l quantity) as totalquantity,

from customer, orders, lineitem, nation
where c custkey = o custkey and o orderkey = l orderkey

and n nationkey = c nationkey
group by n name, c mktsegment

When an application updates customer information, for
example, nation key or market segment, view V1 is affected
and needs to be maintained.

We compare update response time for lazy maintenance
with that for eager maintenance. Figure 5(a) shows three
scenarios in which we update 1, 10, and 100 records using
a single update statement. With lazy maintenance, update
response time is reduced to virtually nothing. The system

0

1

2

3

4

5

6

7

8

9

10

Update 1 Recs Update 10 Recs Update 100 Recs

E
la

p
se

d
 T

im
e

 (
se

co
n

d
s)

Eager Maintenance Lazy Maintenance

40.6

0

1

2

3

4

5

6

7

8

9

10

Update 1 Recs Update 10 Recs Update 100 Recs

E
la

p
se

d
 T

im
e

 (
se

co
n

d
s)

Eager Maintenance Lazy Maintenance

16.5

99.8

(a) V1 (b) V1 + V2

Figure 5: Update Response Time

returns immediately after the customer table has been up-
dated, delaying the expensive view maintenance. The more
expensive the view maintenance, the greater the improve-
ment in response time. For the case of updating 100 cus-
tomer records, the update response time is improved by fac-
tor of 125.

What if more than one view is affected by the updates?
We created another view V2 that precomputes information
for orders where the customer and the supplier come from
different nations.

V2:create view V2 as
select s name, c name, c mktsegment, ps comment, . . .

from customer, orders, lineitem, supplier, partsupp
where c custkey = o custkey and o orderkey = l orderkey

and l suppkey = ps suppkey and l partkey = ps partkey
and ps suppkey = s suppkey and s nationkey <> c nationkey

We repeated the experiments with the same update state-
ments. Figure 5(b) shows the update response time when
both views are present. Similar to the previous experiment,
the update response time under lazy maintenance is almost
nothing. 5 Compared with the previous experiment, the up-
date response time for eager maintenance increased signifi-
cantly because additional view maintenance has to be done
as part of the update transaction. Under lazy maintenance
the update response time is virtually unchanged by addition
of a second view.

In summary, lazy maintenance can reduce update response
time by orders of magnitude because updates no longer have
to wait for views to be maintained. Under lazy maintenance
the update response time depends only on the cost of up-
dating base tables and storing delta streams and not on the
number and complexity of views affected.

5.2 Maintenance Cost
When lazy maintenance is done in the background, the

overhead may be completely hidden from users. Even so, we
need to verify that lazy maintenance can be done efficiently
and at a cost comparable to that of eager maintenance.

We measure the system time required for lazy mainte-
nance of each view. The sum of the update response time
and the time spent on lazy maintenance indicates the to-
tal amount of work spent on the update. Figure 6 shows
the total amount of work for the same two experiments in
the previous section. The update response time under lazy
maintenance is too small to be visible in the figure.

The total amount of work under lazy maintenance is slightly
higher, but still comparable to that of eager maintenance.
The additional overhead is primarily caused by adding the

5We also run experiments with more than one table updated
in a transaction, for example, updating both customer and
lineitem. The reduction in update response time is still or-
ders of magnitude.

239

0

5

10

15

20

25

30

35

40

45

Eager(1) Lazy(1) Eager(10) Lazy(10) Eager(100) Lazy(100)

E
la

p
se

d
 T

im
e

 (
S

e
co

n
d

s)

Response Time Lazy Maintenance Time

0

20

40

60

80

100

120

Eager(1) Lazy(1) Eager(10) Lazy(10) Eager(100) Lazy(100)

E
la

p
se

d
 T

im
e

 (
S

e
co

n
d

s)

Response Time Lazy Maintenance (V1) Lazy Maintenance (V2)

(a) V1 (b) V1 + V2

Figure 6: Breakdown of Total Time Spent on Up-
date (including view maintenance)

delta streams into the customer delta table and by saving
old versions of the updated customer rows. We delay a more
detailed discussion of overhead until Section 5.5.

In the rest of this section, we present results with only one
view V1 present. The results with more views were similar.

5.3 Query Response Time
Under eager maintenance, a query can exploit a view for

free since it has already been maintained. However, update
transactions are slowed down by view maintenance so they
keep locks on the affected views longer, which may force
queries and other updates to wait. In this sense, material-
ized views are not completely free to queries.

Under lazy maintenance, query response time depends on
when the query arrives. Before execution begins, the query
first checks with the maintenance manager if the requested
view is up to date. If not, the query waits until all pending
and in-progress maintenance of the view is completed.

0 10 20 30 40 50 60

Lazy (50s delay)

Lazy (25s delay)

Lazy (10s delay)

Eager

Update Request Interval Query

Figure 7: Query Response Time

In this experiment, we issued a 100-row update of the cus-
tomer table followed by a query exploiting view V1. In the
eager maintenance case, we issued the query immediately
after the update statement returned. In the lazy mainte-
nance cases, we issued the query 10, 25, or 50 seconds after
the update statement.

Figure 7 compares query response times for different sce-
narios. Again, the update response time under lazy main-
tenance is too small to be visible in the figure. When the
query is issued after lazy maintenance has completed, for
example 50 seconds after the update in the figure, neither
the update nor the query pay the cost for maintaining the
view! The maintenance cost is hidden from the application.
Of course, if the query is issued soon enough, there may be
some overlap between view maintenance and query execu-
tion. Still, the total response time for the update and the
query is faster than that under eager maintenance.

In fact, when queries are much more frequent than up-

dates, only the first query after an update may be delayed;
the ones arriving later still use the view for free.

5.4 Multiple Updates
To demonstrate the benefits of combining maintenance

task, we ran an experiment with 100 small update state-
ments. Each statement ran in a separate transaction.

We consider two update scenarios. In the first scenario,
each update statement randomly updates 1-10 consecutive
rows in the customer table. The updated rows are scattered
all over the table. The second scenario is similar, except the
updates are highly skewed, uniformly scattered among the
first 100 rows in the customer table.

For each update scenario, we report total system time
spent for both eager maintenance and lazy maintenance,
shown in Figure 8. Under lazy maintenance, we compare
two maintenance strategies: (1) maintain update transac-
tions one after another; (2) merge the 100 update trans-
action by combining their delta streams and maintain the
view once. In the latter case, as described in Section 4.2, we
apply a “Partial Condense” operator after reading the delta
stream from the customer delta table.

0

20

40

60

80

100

120

140

160

Eager

(Random)

Lazy

(Random, No

Merge)

Lazy

(Random)

Eager

(Skewed)

Lazy

(Skewed, No

Merge)

Lazy

(Skewed)

E
la

p
se

d
 T

im
e

 (
se

co
n

d
s)

Response Time Lazy Maintenance Time

Figure 8: Merge Multiple Updates

In both update scenarios, the update response time is
greatly reduced. The maintenance time is also significantly
reduced by combining maintenance tasks. In the random
update scenario, the reduced maintenance time is mainly be-
cause we avoid invoking and initializing maintenance plans
100 times individually. In the skewed update scenarios, the
partial condense operator reduces the update rows from al-
most 100,000 rows to roughly 100 rows, which cuts unnec-
essary computation tremendously. In the end, maintenance
time is reduced more than 13X compared with eager main-
tenance.

5.5 Overhead for Lazy Maintenance
As demonstrated before, lazy maintenance reduces the to-

tal response time of updates and queries, even when queries
arrive soon after the updates. If we compare the total system
time spent on updates, lazy maintenance may be slightly
more expensive than eager maintenance, though the extra
costs are likely to be hidden from applications.

Compared with eager maintenance, lazy maintenance has
a few extra steps. We store delta streams into delta ta-
bles and reread them during maintenance and insert main-
tenance tasks into the persistent task table. After mainte-
nance, we have to clean the delta tables and the task table
and remove obsolete information. We also have to maintain
version information during updates and exploit version in-
formation during maintenance. The overhead of these extra

240

0

10

20

30

40

50

60

70

80

90

Eager

(150)

Lazy

(150)

Eager

(1.5K)

Lazy

(1.5K)

Eager

(15K)

Lazy

(15K)

Eager

(150K)

Lazy

(150K)

E
la

p
se

d
 T

im
e

 (
se

co
n

d
s)

Response Time Lazy Maintenance Time

Figure 9: Overhead for Lazy Maintenance

steps is more noticeable with large delta streams.
We repeated the previous experimental setup but increased

the number of customer rows that were updated. Figure 9
shows the total amount of work for updating 150, 1.5K, 15K,
and 150K customer rows using a single statement, respec-
tively. As the size of updates increases, the update response
time of lazy maintenance also increases because more data
has to be stored into the delta table and the version store.
However, the update response time is still much better than
for eager maintenance. The total time of the update and
lazy maintenance is higher than that for eager maintenance
with large delta streams. Nevertheless, some (or all) of lazy
maintenance cost may be hidden from applications.

6. FURTHER CONSIDERATIONS
In this section, we discuss various issues on lazy mainte-

nance and compare other alternative approaches.

6.1 When to Use Lazy Maintenance?
We demonstrated the benefits of lazy maintenance exper-

imentally in the last section. However, we do not recom-
mend replacing eager maintenance with lazy maintenance
for all materialized views. Each maintenance approach has
its benefits and drawbacks and which approach is better for
a particular view depends on the application.

Generally speaking, the choice of maintenance strategy
for a materialized view depends on the following factors.

• The ratio of updates to queries and how soon queries
follow after updates.

• The size of updates (number of rows affected by each
update), relative to the view maintenance cost.

Eager maintenance is suitable for materialized views whose
base tables are seldom updated and the updates are likely
to be followed immediately by queries. It is also suitable for
views where the input delta streams tend to be large but
maintenance cost is relatively low. On the other hand, lazy
maintenance is suitable for views with more frequent small
updates and whose maintenance costs are relatively high.

6.2 Recovery and Error Handling
The system may crash while there are still pending main-

tenance tasks. As part of normal recovery, the persistent
task table is recovered and the effects of any in-flight main-
tenance jobs are undone. Based on the information in the
task table, we can rebuild the view maintenance manager
and determine what delta streams and versions are needed
by the remaining maintenance tasks. The required parts of
the delta tables and the version store can then be rebuilt
from the database log.

Is it possible that a lazy maintenance task cannot be com-
pleted? In SQL Server a materialized view must have a
unique clustering key. If this uniqueness constraint is not
implied by constraints on the view’s base tables, a violation
may not be detected until view maintenance time and main-
tenance fails. This is an inherent problem for all deferred or
asynchronous view maintenance algorithms [6, 15] and not
unique to our approach. This can be handled by either dis-
allowing lazy maintenance for such views or marking a view
as unusable if a violation is detected.

6.3 Alternative Approaches
To compute the change to a view, any deferred, incremen-

tal maintenance algorithm needs base table deltas and old
versions of base tables. We explicitly store table deltas and
rely on an existing version store to deliver the required ver-
sions of base tables. We chose this solution for efficiency but
there are other alternatives.

On a system with a version store, base table deltas can be
handled in three different ways. First, they can be explicitly
stored in delta tables (also called table logs). This is an
efficient and commonly used solution. Second, they can be
extracted from the recovery log. This could very expensive
though because the delta rows for a particular transaction
are not clustered in the log. Even if we know exactly where
they are in the log, simply gathering them could still be
expensive. Third, base table deltas can be recovered from
the version store. This could also very expensive because
the rows updated by a transaction are not clustered in the
base table and the version store.

Similarly, on a system with a version store, access to old
versions of base tables can also be provided in various ways.
First, they can be accessed using the version store. This is
precisely what a version store is built for, so this is likely
to be an efficient solution. Second, an old version of a base
table can be reconstructed from the current version of the
table by “undoing” changes made by all transactions that
occurred later than the target transaction. The resulting
expressions are rather complex and potentially expensive to
compute, even when the required base table deltas can be
retrieved efficiently from delta tables.

7. RELATED WORK
Issues related to design, exploitation and maintenance of

materialized views have received considerable attention in
the research community for the last two decades. Mate-
rialized views have been adopted in all major commercial
database systems, including Oracle [2], IBM DB2 [16, 12],
and Microsoft SQL Server [8].

Many incremental view maintenance algorithms have been
proposed and studied in [4, 10, 9, 13, 12, 5, 11], all in the
context of eager maintenance. They all used the update

delta paradigm where a set of change tuples (insertions or
deletions) is computed and then applied to the materialized
view. Eager compensation as a view maintenance technique
was proposed and used in [18, 19, 1] for the case when base
tables may be distributed across several systems. Another
concurrency control technique, based on multi-versioning,
was presented in [14] in order to reduce resource contention.

Deferred or asynchronous view maintenance was proposed
in [6] and [15], though with different goals. Colby et al. [6]
proposed algorithms for deferred view maintenance in order
to minimize view downtime. Their algorithms only brought

241

the view up-to-date to the point of deferred maintenance
while our algorithm can bring the view up to any point in
time. Salem et al. [15] introduced an algorithm that per-
forms incremental view maintenance as a series of small and
asynchronous steps. The goal was to limit contention be-
tween the refresh process and concurrent operations. How-
ever, as illustrated by experiments, dividing maintenance
into many small steps can be quite inefficient and combin-
ing small maintenance tasks improves efficiency.

Both papers focused on algorithmic issues and provided
none or very limited experimental results. Their algorithms
relied on auxiliary tables similar to our delta tables but did
not exploit versioning, resulting in rather complex and po-
tentially expensive maintenance expressions. Both papers
proposed decomposing view maintenance into separate prop-
agation and apply phases. This idea can also be applied to
lazy maintenance.

Oracle supports materialized views with different refresh
options and modes. Some, but not all, types of views can
be maintained incrementally (fast refreshable); others are
recomputed completely on refresh. View logs (delta tables)
have to be explicitly defined in order to use fast refresh.
Views can be refreshed either on commit, that is, at commit
time of a update transaction, or on demand, when a user
explicitly calls a refresh procedure. As far as we have been
able to find out, views are not maintained during a transac-
tion, which means that a view cannot be used automatically
by a query if it is affected by an earlier update in the same
transaction.

There has been much research on optimizing maintenance
of a set of views. We refer readers to the latest work [17]
for a complete list of references. Under lazy maintenance,
the same techniques can be applied when scheduling main-
tenance for multiple views together. The details are beyond
the scope of this paper.

8. CONCLUSION
In this paper, we proposed a lazy approach to maintain

materialized views. Unlike eager maintenance, we separate
view maintenance from update transactions. View mainte-
nance is performed either when the system has free cycles or
when a query references the view. Lazy maintenance of ma-
terialized views greatly improves update response time while
still allowing queries to use materialized views safely. The
whole process is totally transparent to applications. View
maintenance overhead can be significantly reduced by con-
densing delta streams and/or combining multiple mainte-
nance tasks.

All or most of the maintenance cost can be hidden from
applications. In the common scenario when queries are much
more frequent that updates, most queries get the full benefit
of materialized views for free and none or only a few queries
may experience a delay while a view is maintained.

Although this paper deals only with materialized views,
the approach of lazy maintenance can be applied to indexes
and other auxiliary data structures as well. Another di-
rection for future work is to incorporate probabilistic query
delay into the plan cost when choosing a lazily maintained
view during optimization.

9. REFERENCES
[1] D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek.

Efficient view maintenance at data warehouses. In
Proceedings of SIGMOD Conference, 1997.

[2] R. G. Bello, K. Dias, A. Downing, J. J. F. Jr., J. L.
Finnerty, W. D. Norcott, H. Sun, A. Witkowski, and
M. Ziauddin. Materialized views in oracle. In
Proceedings of VLDB Conference, 1998.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ansi sql
isolation levels. In Proceedings of SIGMOD

Conference, 1995.

[4] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa.
Efficiently updating materialized views. In Proceedings

of SIGMOD Conference, 1986.

[5] S. Chen and E. A. Rundensteiner. Gpivot: Efficient
incremental maintenance of complex rolap views. In
Proceedings of ICDE Conference, 2005.

[6] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and
H. Trickey. Algorithms for deferred view maintenance.
In Proceedings of SIGMOD Conference, 1996.

[7] C. A. Galindo-Legaria, S. Stefani, and F. Waas. Query
processing for sql updates. In Proceedings of SIGMOD

Conference, 2004.

[8] J. Goldstein and P.-Å. Larson. Optimizing queries
using materialized views: A practical, scalable
solution. In Proceedings of SIGMOD Conference, 2001.

[9] T. Griffin and L. Libkin. Incremental maintenance of
views with duplicates. In Proceedins of SIGMOD

Conference, 1995.

[10] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In Proceedings of

SIGMOD Conference, 1993.

[11] P.-Å. Larson and J. Zhou. Efficient maintenance of
materialized outer-join views. In Proceedings of ICDE

Conference, 2007.

[12] W. Lehner, R. Sidle, H. Pirahesh, and R. Cochrane.
Maintenance of automatic summary tables. In
Proceedings of SIGMOD Conference, 2000.

[13] I. S. Mumick, D. Quass, and B. S. Mumick.
Maintenance of data cubes and summary tables in a
warehouse. In Proceedings of SIGMOD Conference,
1997.

[14] D. Quass and J. Widom. On-line warehouse view
maintenance. In Proc. of SIGMOD Conference, 1997.

[15] K. Salem, K. Beyer, B. Lindsay, and R. Cochrane.
How to roll a join: Asynchronous incremental view
maintenance. In Proc. of SIGMOD Conference, 2000.

[16] M. Zaharioudakis, R. Cochrane, G. Lapis,
H. Pirahesh, and M. Urata. Answering complex sql
queries using automatic summary tables. In
Proceedings of SIGMOD Conference, 2000.

[17] J. Zhou, P.-Å. Larson, J.-C. Freytag, and W. Lehner.
Efficient exploitation of similar subexpressions for
query processing. In Proceedings of SIGMOD

Conference, 2007.

[18] Y. Zhuge, H. Garcia-Molina, J. Hammer, and
J. Widom. View maintenance in a warehousing
environment. In Proc. of SIGMOD Conference, 1995.

[19] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. The
strobe algorithms for multi-source warehouse
consistency. In Proceedings of Conference on Parallel

and Distributed Information Systems, 1996.

242

