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ABSTRACT 

Decision support systems are characterized by large concurrent 

scan operations.  A significant percentage of these scans are 

executed as index based scans of the data. This is especially true 

when the data is physically clustered on the index columns using 

the various clustering schemes employed by database engines. 

Common database management systems have only limited ability 

to reuse buffer content across multiple running queries due to 

their treatment of queries in isolation. Previous attempts to 

coordinate scans for better buffer reuse were limited to table scans 

only.  Attempts for index based scan sharing were non existent or 

were less than satisfactory due to drifting between scans. 

In this paper, we describe a mechanism to keep scans using the 

same index closer together on scan position during scanning. This 

is achieved via intelligent placement of index scans at scan start 

time based on their scan ranges and speeds. This is then 

augmented by adaptive throttling of scan speeds based on the 

index scans' runtime behavior during scan execution. We discuss 

the challenges in doing it for index scans in comparison to the 

more common table scan sharing. We show that this can be done 

with minimal changes to an existing database management system 

as demonstrated in our DB2 UDB prototype. Our experiments 

show significant gains in end-to-end response times and disk I/O 

for TPC-H workloads. 

1. INTRODUCTION 
Decision support systems (DSS) are characterized by the presence 

of large queries which perform scans over a substantial part of the 

data (e.g., to compute aggregate values). A significant percentage 

of these scans are executed as index based scans of data.  This is 

especially true when the data is physically clustered on the index 

columns.  The importance of clustering in reducing physical I/O 

during query processing is well recognized and is reflected in the 

fact that most database engines support one or more types of 

indexed physical clustering schemes nowadays. Examples include 

Multi Dimensional Clustering (MDC) [1][2] in DB2 UDB [9], 

Partitioned Primary Index in Teradata [3] and Index Clustered 

Tables in Oracle [4]. Recent trends indicate that typical DSS users 

are moving towards more and more concurrent queries [5]. 

Common database management systems have only limited ability 

to reuse memory buffer content across multiple running queries 

due to their treatment of queries in isolation.  

In addition to this shift in workload characteristics, technological 

changes in the storage subsystem demand better memory buffer 

reuse as well. Disk drives are increasing in capacity but seek and 

access time is not keeping up [6]. Thus systems are going to be 

more and more prone to becoming I/O bound [7]. Therefore, a 

mechanism which can reduce random seeks on disk and reduce 

the stress on the storage subsystems will go a long way in 

improving overall system throughput. 

DBMS engines which try to optimize scan-heavy query workloads 

have generally limited themselves to table scans only. Attempts 

for index scan based scan sharing were non existent or were less 

than satisfactory due to drifting between scans.  This is despite the 

fact that in real customer situations, one encounters a lot of 

overlapping index based scans.  These are used to access the 

hotspots of a Data Warehouse. For example, a Data Warehouse 

might have 7 years of data and multiple analysts might be 

interested in the last year or month of data. Their queries would 

likely use an index based scan of some sort over that part of the 

data.  An analysis of a DB2 customer scenario indicated that their 

database had 150 users who were submitting 215 different types 

of queries. These were using 553 index scans with two tables 

having more than 100 index scans and 15 tables having more than 

10 index scans each.  This scenario has a high index scan sharing 

potential and is representative of many other scenarios. 

In this paper, we describe a mechanism to increase buffer reuse 

and thereby reduce I/O for concurrent index based scans.  This 

mechanism has been prototyped in DB2 UDB and provides 

significant performance improvement for concurrent queries. The 

mechanism increases buffer reuse by keeping scans using the 

same index closer together on scan position during scanning. This 
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is achieved via intelligent placement of index scans at scan start 

time based on their scan ranges and speeds. This is then 

augmented by adaptive throttling of scan speeds based on the 

index scans' runtime behavior during scan execution.  

The index scan sharing technology was built on the infrastructure 

developed for facilitating the grouping and throttling of table 

scans in DB2 UDB described in [8]. In this paper we discuss the 

challenges in doing index scan sharing in comparison to the more 

common table scan sharing. The effort required to extend existing 

database management systems with our new algorithm is minimal, 

as shown in our DB2 UDB prototype. The prototype currently 

supports MDC Block Index Scans but can be modified for other 

index scans very easily. Our experiments gave end-to-end gains of 

21% for 5-stream TPC-H benchmark runs. 

The rest of the paper is organized as follows. In Section 2, we 

present related work. In Section 3, we discuss how index scans 

work in a typical RDBMS. Section 4 presents our new “sharing 

index scan operator”, SISCAN. Section 5 describes the module 

that controls sharing between SISCANs. In Section 6 and 7, we 

show how SISCANs are started and adaptively throttled. Section 

8 contains our experimental results and we conclude in Section 9. 

2. RELATED WORK 
This work touches various areas: caching, database query 

optimization, and database query execution. In the following, we 

therefore summarize related work in these areas. 

Different techniques have been proposed for increasing buffer 

locality for various workloads. One of the oldest and most basic 

algorithms is LRU which evicts the page from the buffer that was 

not accessed the longest. LRU is currently the policy of choice in 

many database systems due to its small overhead and tuning-free 

operation. Many variants of LRU have been proposed since. 

Examples are LRU-K [10], 2Q [11], LFU [12], and hybrids such 

as LRFU [13] and ARC [14]. All these techniques are for general 

access patterns, while this paper focuses on ordered access 

patterns only and can therefore achieve much improved buffer 

utilization for this specific type of access.  

Commercial database vendors such as Red Brick [15], Teradata 

[16,17], and Microsoft SQL Server [18] employ proprietary 

algorithms to let the database synchronize multiple table scan 

operations in order to maximize buffer locality. This idea was 

taken even further by Harizopoulos et al. [19]. They propose ideas 

for a new database architecture that tries to maximize reuse of 

partial query results from the query down to the page access level. 

This is achieved by detecting overlaps in active query plan 

operators at query execution time and then exploiting it by 

pipelining one operator’s results to all dependent operators where 

possible. Two of the operators discussed in that paper are the table 

and index scan operators. For these, the authors propose to use 

one scan thread that keeps scanning all pages while table scan 

operators can attach to and detach from this thread in order to 

share the scanned pages. 

While this approach works well for scans with similar speeds, in 

practice scan speeds can vary by large margins and even single 

scans’ speeds are usually far from constant due to changes in 

predicate evaluation overhead. Therefore, the benefit can be lower 

as scans may start drifting apart. Techniques to prevent drift by 

automatically throttling faster scans and by scan-group based 

prioritization of buffer pages have been discussed in [5]. However 

this work is applicable for table scans only. 

In addition to cache or page buffer algorithm improvements, other 

methods to reduce disk access costs for multiple concurrent 

queries with overlapping data accesses have been investigated. 

These methods include multi-query optimization [20] (which 

requires all queries to be known in advance) and query result 

caching [21]. Due to being at a high level of the query execution 

hierarchy, the latter may miss out on sharing potential for queries 

that have very different predicates but still end up performing 

scans on the same table, for example. 

Zukowski et al. [22], Sacco et al. [23], and Chou and DeWitt [24] 

introduce smarter buffer managers that are used to optimize page 

replacement under multiple running queries in order to maximize 

buffer locality. Their approaches require significant modifications 

of the caching system. This paper, on the other hand, views the 

caching system as a “black box” and limits modifications to a few 

extra function calls in the index scan code. 

3. INDEX SCAN OPERATORS 
This section gives an overview of IXSCAN (standard index scan 

on B+ trees) processing, including the concept of "location” of a 

scan, and how concurrent index scans may interact with each 

other.  

3.1 Index Scan Overview 
An access plan consists of a number of operators, used to satisfy a 

given query, as determined by the optimizer.  The operators 

represent processing steps such as table scans, joins, predicate 

evaluations, etc.  One such operator is IXSCAN, or index scan.  

An IXSCAN includes various attributes, such as which index to 

scan, whether there are predicates to apply, etc. 

A standard index scan consists of reading leaf pages from an 

index, processing each entry (i.e., a key and a row identifier, or 

RID) sequentially, and (possibly) following each RID to retrieve 

the corresponding record from the underlying table.  There may 

be a start key and/or an end key to limit the scope of the scan, 

depending on predicates in the SQL query.  

Figure 1 shows a high-level pseudo-code algorithm of an 

IXSCAN. Assuming a start key is given, it is used in a tree search, 

starting with the root of the index, to find the child page of each 

non-leaf page that may contain the key value specified, until such 

a child is a leaf page. If there is no start key, the index scan begins 

at the first leaf page in the index. This is done in the loc() 

function in line 2 of the algorithm. Once the starting page has 

been determined, the scan begins, with a loop over the leaf pages, 

and a loop over each entry (line 2). The page corresponding to the 

RID is read into the bufferpool1 (or located in the bufferpool, if it 

                                                                 

1 The bufferpool is a memory region used by DB2 to cache pages 

during query execution. 

 1 proc IXSCAN( startKey, endKey ) 
 2  loop l from loc(startKey) to loc(endKey) 
 3   perform operations on page(l); 
 4   release page(l) with priority p; 
 5  endloop; 
 6 endproc; 

Figure 1. High-level logic of IXSCAN operation 
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is already there), and the record specified by the RID is located. 

That record is then handled (line 3) in whatever way is needed for 

the query processing (predicates, aggregations, sorting, etc.).  

After reading and processing the relevant parts of a table page, the 

page gets released in the bufferpool (line 4) so that the space can 

be used for other pages if needed. The priority assigned to the 

released page is an indicator to the caching algorithm for deciding 

which pages to discard first when space is needed. In the 

IXSCAN algorithm this priority is typically fixed during a scan 

(though it may change from one scan to another). We show later 

how we adjust this parameter to increase bufferpool sharing. 

Once the page is released, the next iteration of the loop will find 

the next RID in the index entry, if any. If there is an end key, each 

entry encountered in the loop is compared against that value for 

determining the end of the scan. If there is no end key, the scan 

ends with the last entry in the last leaf page. 

3.2 Index Scan Location 
At any time during an index scan, it is said to have a particular 

"location". This is the indication of which key (index entry) and 

RID is currently being processed. Whenever the index scan moves 

“forward”, the next RID of the same key value is accessed until no 

more are available. Then, the scan switches to the next key value 

(in increasing or decreasing order) and the first RID for that key. 

This is in contrast to a table scan whose location is described 

simply as the current RID and the next location is obtained by 

increasing or decreasing the RID. This distinction is important 

because only the key values are in increasing or decreasing order 

during an index scan. The RIDs may not be in any specific order. 

This can lead to many expensive disk seek operations if the RIDs 

are poorly distributed across the scan range. Improved caching 

can mitigate this problem. 

3.3 Concurrent Index Scans 
Often, there will be multiple applications performing the same 

index scan at the same time. There may or may not be overlap in 

the ranges of values covered by the concurrent scans. The scans 

may have the same values for start and end keys, or the start and 

end key ranges may overlap in some way, or they may be disjoint. 

If there is overlap in the ranges specified for start and end keys, 

then the scans may benefit each other in terms of bufferpool 

usage.  The first one to read a particular page has paid the price of 

the physical I/O, and the second one can process the page that is 

already in the buffer pool, avoiding a second physical read.  

However, perhaps the second scan starts after some time has 

passed.  In that case, there is a chance that the buffer manager has 

already had to victimize that page, and the second scan will have 

to do a physical read again.  When this happens, both scanners 

will have to do physical reads of the same pages, resulting in 

roughly twice the number of physical reads as for only one scan. 

In other words, if the scan locations are close, the number of 

physical page reads needed is oftentimes reduced. 

3.4 Block Index Scans 
A block index is essentially the same as a RID index, except that 

each index entry consists of a key and a list of Block IDs (BIDs) 

instead of Row IDs (RIDs).  A block is a contiguous set of pages 

in the table that contain records of the same key value. The block 

size is constant for a given table, and is determined when the table 

is created. Block index scans are used very frequently on MDC 

tables [1][2] in decision support systems that require slicing and 

dicing of large datasets. We implement our prototype initially for 

block index scans for this reason. All other properties discussed 

for RID index scans also apply to block index scans with the scan 

location now being described as key/BID instead of key/RID. 

While “chance” buffer sharing between regular index scans may 

occur occasionally, it is rare. We therefore discuss next a new type 

of index scan that actively “seeks” buffer sharing. 

4. NEW SISCAN OPERATOR 
In this section, we introduce a new index scan operator SISCAN 

(for “sharing index scan”). This operator can be inserted at most 

places of the query plan where a IXSCAN operator would be 

applicable and enables the corresponding index scan to actively 

share bufferpool content with some other ongoing index scans. 

We will discuss cases when sharing between index scans should 

not be permitted, in Section 4.1. 

In a query plan, the IXSCAN operator may be associated with a 

start and/or end key specifying the range to be scanned. As 

discussed in Section 3, the corresponding index structure would 

then be traversed at runtime starting from the start key and ending 

with the last identifier matching the end key. 

The SISCAN operator also traverses the index structure, accessing 

every record between start and end key but the traversal logic is as 

follows (cf. Figure 2): 

1. pick a start location startLoc (i.e., key and RID) 

2. scan index from startLoc to end key 

3. scan index from start key to startLoc 

By allowing the SISCAN to start at any location in step 1, 

bufferpool page sharing can be improved by starting a new 

SISCAN at the location of an ongoing SISCAN. If both have a 

similar speed, they will subsequently read the same index entries 

and thereby the same base table pages, even if the RIDs are 

“randomly” distributed across the scan range.  

Due to its nature, the SISCAN operator has additional parameters 

for controlling various aspects of bufferpool sharing. These 

parameters are the scan speed estimate and the scan amount 

estimate. The speed estimate characterizes the index scan’s speed 

in number of pages read per second and scan amount estimate 

characterizes the overall number of pages to be read between start 

key and end key. These parameters are supplied by the costing 

component of the query compiler and can be based on table 

statistics and/or past measurements. 

From an implementation perspective, adding piecewise scans is 

not difficult as most RDBMSs already provide similar facilities 

for farming out scans to multiple processors. Also, breaking an 

index scan into only two phases rather than some other more 

Start key End key

“z”“y”“x” “x” “y” “y” “y” “z” “z”

startLoc

First scan rangeSecond scan range

 

Figure 2. Two index scan ranges 
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complex scan pattern reduces both implementation complexity 

and the required memory footprint for scan status information. 

4.1 SISCAN Operators in Query Plans 
The query optimizer chooses an index scan operation over some 

other access type if the cost caused by the index scan is lower than 

the cost caused by the other access types. This may be due to 

selectivity or due to sorted results needed later in the query plan, 

making an index scan desirable.  

From the optimizer’s point of view, a SISCAN operator can occur 

anywhere an IXSCAN operator is used. However, an important 

difference between IXSCAN and SISCAN operators is that 

IXSCAN returns identifiers in monotonic key order (either 

increasing or decreasing) while SISCAN may not due to the 

modified key traversal order shown in Figure 2. Therefore, if the 

query optimizer decides to use an index scan for getting records 

ordered on the index key value, it can only use IXSCANs. 

Fortunately, in practice, there are many cases where index scans 

are used for reduced access time rather than for key ordering. 

Similarly, we are not discussing replacement of “index only” 

IXSCANs (i.e., scans that only generate a RID list without 

processing the underlying table data) with SISCANs, even though 

scans on large indexes may also benefit from sharing of index 

pages in bufferpool or CPU caches. 

4.2 SISCAN Process Logic 
As visible in Figure 3, the logic of a SISCAN is very similar to 

the logic of a regular IXSCAN. The main difference is that (1) a 

SISCAN can start in the middle of its key range, and (2) the 

SISCAN periodically calls a new component, the index scan 

sharing manager (ISM). The ISM is the central ingredient to our 

bufferpool sharing mechanism and will be discussed in depth in 

Section 5. For now, it suffices to know that the ISM keeps track of 

ongoing SISCANs and uses this knowledge to influence index 

scan speeds and bufferpool replacement decisions. 

At a high level, the interaction of a SISCAN with the ISM is 

given as pseudocode in Figure 3. The lines in bold font mark the 

differences with the IXSCAN logic in Figure 1. SISCANs first 

register with the ISM (line 2), providing its start and end key and 

the expected time needed to finish the scan. The ISM then 

determines whether the new SISCAN should start at the first 

key/RID of the scan range or whether it can join some other 

ongoing SISCAN. We will discuss new index scan placement in 

detail in Section 6. The start location is returned to the caller. 

The SISCAN then starts scanning the index like an IXSCAN but 

instead of starting from the start key, it starts from the location 

startLoc assigned to it by the ISM (line 3). The operations for 

each index entry are similar to IXSCANs except that SISCANs 

may periodically call the ISM to update their scan location (lines 

5 and 10). These calls can be performed at every page or they can 

be performed at every x entries read. In general, the more frequent 

the calls are made, the more accurate the location information in 

the ISM but the higher the additional overhead.  

In line 6, the processed page is released in the bufferpool. 

Contrary to IXSCANs, in the case of SISCANs, the priority is 

adjusted dynamically by the ISM based on the state of all 

SISCANs in the system and returned as result of the ISM.pr() call. 

After picking the starting location in line 1, this is the second 

degree of freedom that the ISM has. The idea is that this priority 

is chosen such that pages that are needed soon again will receive 

higher priority than pages not needed in the near future. Details 

on how the ISM chooses the priority can be found in Section 7. 

In lines 8 through 12, a second index scan is performed, this time 

starting at the original start key and ending at startLoc.  Finally, in 

line 13, the ISM is informed that the index scan has ended. When 

reaching this point, all index entries starting at the start key and 

ending at the end key have been read and processed. 

Conceptually, one can think of the SISCAN logic as two back-to-

back IXSCANs over adjacent key ranges (cf. Figure 2). 

5. INDEX SCAN SHARING MANAGER 
In this section, we discuss details of the index scan sharing 

manager (ISM). The ISM keeps track of ongoing index scans, 

their locations, and their speeds with very little overhead in terms 

of memory and CPU usage. The ISM also determines the start 

location of a new SISCAN and performs scan speed regulation 

and bufferpool entry reprioritization based on the characteristics 

of ongoing SISCANs with the goal of maximizing buffer reuse. In 

the following, we discuss the overall architecture, attributes 

maintained for SISCANs and groups of SISCANs. 

5.1 ISM in Architectural Context 
Figure 4 shows the ISM in context of the overall architecture. 

During the execution of a query with index scans, SISCAN 

operators are spawned (step 1). These inform the ISM about their 

start (step 2) and determine which table pages to scan via index 

access (step 4). The required pages are then fetched from the 

bufferpool (step 5). Periodically, they inform the ISM about their 

current index location (step 3). When the index scan is finished, 

they also inform the ISM (step 2). 

This architecture has several advantages. First, the ISM’s interface 

can be kept relatively simple (we only need “start/end of 

SISCAN” and “update location” calls). Second, the ISM is kept 

separate from the rest of the architecture. There is no direct 

interaction between ISM and bufferpool replacement algorithms 

or index access functions. Only the SISCAN processes interact 

with the ISM. This has the advantage that the required changes to 

the architecture are very localized. 

In the next sections, we discuss what information is kept in the 

ISM and how it is used to establish a partial ordering between 

SISCANs. This partial ordering will come in handy when we 

discuss where to start new SISCANs and how to control their 

speeds. 

 

 1 proc SISCAN( startKey, endKey ) 
 2    startLoc := ISM.startSISCAN( startKey, 
                                   endKey, time ); 
 3  loop l from startLoc to loc(endKey) 
 4   perform operations on page(l); 
 5   ISM.updateSISCANLocation(l); 
 6   release page(l) with priority ISM.pr(); 
 7  endloop; 
 8  loop l from loc(startKey) to startLoc 
 9   perform operations on page(l); 
10   ISM.updateSISCANLocation(l); 
11   release page(l) with priority ISM.pr(); 
12  endloop; 
13  ISM.endSISCAN(); 
14 endproc; 

Figure 3. High-level logic of SISCAN operation 
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5.2 Attributes Maintained by ISM 
There is one ISM per bufferpool since index scans usually do not 

span multiple bufferpools. Each ISM maintains statistics about the 

ongoing SISCANs. For each SISCAN, the ISM maintains its 

location (key value and RID), remaining pages in scan range (this 

value is initialized from the scan amount estimate in the SISCAN 

operator, cf. Section 4), average speed (in pages/s; this is 

initialized as “(estimated pages in scan range) / (estimated scan 

time)” and updated during scan execution), start and end key of 

the scan range, an anchor location and an anchor offset (these 

attributes are needed to determine the relative ordering between 

SISCANs; we will return to this in the next Section). The ISM 

updates these attributes whenever SISCANs start, finish, or 

update their location. 

5.3 Partial SISCAN location order 
Compared to table scans, it is difficult to determine distances 

between index scans by only inspecting their scan locations 

because the RIDs are not necessarily accessed in any monotonic 

order and so the distance is not simply the difference between two 

SISCANs’ scan locations. Consider the example in Figure 5. The 

location of index scan A is (key “y”, RID 5) and the location of 

index scan B is (key “z”, RID 8). The distance between the two 

scans in index order is not necessarily 3 pages as the RIDs seem 

to indicate. It could be more or less, depending on how the data 

pages are laid out on disk. In this example, the distance is 5, since 

the RIDs in index order between A and B are 5, 3, 4, 7, 9, and 8.  

However, in order to determine the potential for bufferpool 

sharing and necessary adjustments to the index scan speed to 

increase sharing, it is necessary to estimate the distance between 

two index scans. For this reason, the ISM maintains information 

about the distance of a SISCAN to a fixed known location – the 

anchor location. Whenever a new SISCAN A starts, it may either 

start by itself or it may start at some other SISCAN B’s location. 

In the first case, the ISM sets A’s anchor to its start location and 

the anchor distance to 0. In the second case, the ISM sets A’s 

anchor to the location of B’s anchor and A’s anchor offset to B’s 

offset. Whenever A or B move, their anchor offset is updated with 

the moving distance but their anchor remains the same. By 

knowing the distance of A and of B from the anchor, the ISM can 

calculate the distance between A and B. 

For the example above, let us assume the common anchor of scans 

A and B is (key “x”, RID 2) and scan A’s anchor offset is 2 and 

scan B’s anchor offset is 7 (cf. Figure 5). Now the distance 

between A and B can easily be calculated as the difference 

between the anchor offsets, namely 5. It should be noted that the 

maintenance of anchor locations and offsets can be done while 

regarding the index as a black box. No changes are necessary in 

the way the index is managed and in fact, the same anchor/offset 

technique works for any type of index that has a deterministic 

ordering. 

It is useful to think of the anchors and offset as defining a partial 

ordering between SISCANs. In the example in Figure 6, two 

anchors were created with four SISCANs (shown as black dots) 

having one of the anchors in common and two SISCANs having 

the other anchor in common. We will refer to SISCANs that have 

an anchor in common as anchor groups from now on. Since we 

know the relative locations between scans within anchor groups 

but not between anchor groups, we obtain a partial ordering 

between SISCANs as AºB, BºC, CºD, EºF where “º” denotes 

the (transitive) partial order defined by anchors and offsets. 

Next, we discuss an algorithm for choosing a starting location for 

a new SISCAN. We will see how the partial SISCAN ordering 

becomes useful in the practical implementation of this algorithm 

in Section 6.3. 

6. SISCAN PLACEMENT 
Whenever a new SISCAN starts, it calls the startSISCAN function 

in the ISM (line 2 in Figure 3). The ISM then determines where 

the new SISCAN should start by inspecting its scan statistics data 

structure. If there are no other SISCANs, the ISM may start the 

new scan at its start key/RID. If there are some other ongoing 

SISCANs, the ISM has to decide the placement of the new scan 

based on the other scans’ speeds, locations, and scan ranges. The 

overall objective is to maximize bufferpool sharing between all 

SISCANs by selecting the starting location of each scan based on 

the available statistics. 

If, for example, there is one ongoing scan A with scan range [key 

“a”, key “f”] and its current location is at key “b” and the scan 

range of a new scan B is [key “d”, key “g”], B cannot share 

bufferpool pages by starting at A’s location because key “b” is 

outside of B’s scan range. 

A C Danchor

off=10
off=60 off=75

E Fanchor

off=20 off=40

B

off=50

 

Figure 6. Two anchor groups 
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Figure 4. ISM in context of the overall architecture 
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Even when ruling out cases where the location of ongoing scans is 

outside of the scan range of the new scan, there may be many 

scans that can be selected as starting location. Consider the 

example in Figure 7. There are three ongoing SISCANs, A, B, C. 

The figure on the top shows their scan ranges as horizontal lines. 

The current location of each scan is marked with an arrow. The 

new scan’s key range is shown as a dotted line below. 

By inspecting only the amount of overlap between the scan 

ranges, it is tempting to assume that scan B would be a good 

choice to share bufferpool contents with. However, when taking 

into account the time dimension, as shown in the graph below, it 

becomes obvious that this is not a good choice. The lower plot 

shows the scan location (in index order) on the x-axis and the time 

on the y-axis, with the current time marked with a dashed line. 

Different speeds of the scans show up as different slopes of the 

lines representing the scans. The current location of the scans is 

the intersection point of the scan lines with the line of the current 

time. For simplicity, we assume the speed of the scans is constant 

and that past speed is a good indicator for future speed. 

Furthermore, we assume that we can estimate the speed of the new 

scan, indicated by the slope of the dotted lines. 

The figure shows three potential starting points for the new scan: 

at the location of scan A, scan B, or scan C. When starting at scan 

A’s current location, A and the new scan drift apart quickly, due 

to their different speeds. Sharing of bufferpool pages is therefore 

only of short duration. Once the distance between A and the new 

scan reaches a threshold, the other ongoing scans will cause the 

pages read by A to be discarded from the bufferpool, causing 

additional I/Os for the new scan that has to re-read them, thereby 

increasing the drift even further. 

If the new scan is started at scan B’s location, the drift is smaller 

because scan B’s speed is more similar to the new scan’s speed. 

However, the sharing duration is limited by the fact that the new 

scan’s key range has very little overlap with scan B’s remaining 

scan range. Once the new scan reaches the end of its range, 

sharing of bufferpool pages between the two scans ends. 

Finally, if the new scan is started at scan C’s location, sharing of 

bufferpool pages is maximized because scan C has a similar speed 

and scan C’s remaining scan range overlaps sufficiently with the 

new scan’s key range. Therefore, even though not obvious when 

inspecting the key ranges by themselves, starting the new scan at 

scan C’s location is the best choice in this example. 

We learn from this example that placement of a new SISCAN 

depends on (1) the speeds, and (2) the remaining scan ranges of 

the ongoing SISCANs. We also note that in order to find the 

optimal placement, it is not enough to consider ongoing SISCANs 

individually as we have done in the example above. In many 

cases, a new scan may first share bufferpool pages with one 

ongoing scan and then switch to share with another scan due to 

speed changes and drift. An algorithm to find the optimal 

placement should therefore also consider starting locations that do 

not lead to immediate sharing, if they lead to more sharing later 

on. 

6.1 Estimating sharing potential 
Each starting location of a new SISCAN has a different sharing 

potential based on the other ongoing scans. How can this potential 

be estimated? Let is consider the example in Figure 8. Again, the 

x-axis represents the location of the index scans and the y-axis 

represents time increasing towards the bottom. Current time is the 

top-most dashed line. There are three ongoing SISCANS: A, B, 

and C with different scan ranges and speeds. We also know there 

will be a scan D in the future. This may be the second phase of 

scan A (assuming A was started in the middle and has to perform 

a second phase as explained in Section 4.2), or a scan that is the 

inner of a nested loop join and therefore repeated multiple times. 

Given this state of the system, assume a new SISCAN E is about 

to start. Its scan range and expected scan time is shown as the 

dotted box in the center (the width of the box corresponds to its 

scan range and the height corresponds to the time to scan the 

range). 

Let us consider starting E at the beginning of its scan range 

(Figure 8). This will result in a trace as shown by the dotted line 

marked with “E”. Between the current time T0 and time T1, there 

are four ongoing SISCANs (A, B, C, and E). Only C and E are 

close enough to share some bufferpool pages (as shown by the 

hashed area between C and E). However, sharing is only possible 

if C and E are close to each other since otherwise A and B may 

cause bufferpool pages to be displaced. Between time T1 and T2, 

only three scans (C, D, E) are running, thereby allowing for 

sharing even when C and E are further apart (cf. larger hashed 

area between T1 and T2). However, at some point, the distance 

between C and E will be too large due drift caused by their 

different speeds, and sharing will end. 

The sharing potential for this scenario can now be calculated by 

counting how often pages in E’s scan range had to be read and re-

read. In the key range before C and E start sharing, there are three 

scans that read those pages at different times (C, D, and E), so 

each page in this range is read three times. The second key range 

is when only C and E are active and sharing, so each page here is 

read only once (marked in red because the number would be 

higher without sharing). In the next range, A is active in addition, 

so each page is read twice (also marked in red). Then C and E 

stop sharing, so each page is now read three times. And in the last 

key range, B, C, and E are active but none is sharing, so each page 
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Figure 7. Placement of new SISCAN 
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is read three times. If for example, the sizes of the ranges are 15, 

30, 15, 20, and 10 pages respectively, then the overall amount of 

page reads “within the dotted area” would be 15*3 + 30*1 + 15*2 

+ 20*3 + 10*3 = 195. This compares to the worst case without 

sharing which is 15*3 + 30*2 + 30*3 + 5*3 + 10*3 = 240. So, the 

potential reduction in I/Os through sharing is 1-195/240 or 19%. 

Let us now consider a different starting point for E (Figure 9). 

This time, E is started near ongoing scan A. It will then scan until 

it reaches the right end of the scan range, “wrap around”, and start 

from the left end of the range (second phase). Therefore, we see 

two dotted lines corresponding to scan E. In this case, E can share 

with A right from the beginning all the way until A ends, since 

both have similar speeds and stay therefore close together. After 

sharing with A, E can share pages with scan C until the end of the 

scan range is reached. Finally, after starting in phase two, E can 

share with scan D until D ends. 

We calculate the sharing potential the same way as before. In the 

first key range, in which D and E are sharing and C is not, we read 

each page twice. In the second range (C and D ongoing, not 

sharing), we read each page twice. In the third range (A and E 

sharing, C not), again each page is read twice. And in the last 

range (C and E sharing and B not), we again read each page twice. 

For range sizes 15, 20, 40, and 15, respectively, we have 15*2 + 

20*2 + 40*2 + 15*2 = 180 page reads. The potential I/O reduction 

is therefore 1-180/240 or 25%. Starting E near scan A is therefore 

preferable. 

More formally, the algorithm for estimating the number of page 

reads for a given SISCAN start location and a given set of 

ongoing SISCANs is given in Figure 10. The function reads(r) in 

line 10 determines the number of reads and re-reads for any page 

in the range r and the function pages(r) determines the number of 

pages in range r. Since the number of time intervals is 

proportional to the number of ongoing scans and the number of 

key ranges in R is proportional to the number of scans as well, the 

running time of this function is O(|S|). 

Now that we know how to calculate the expected page read cost 

for a given SISCAN start location, we will discuss next how to 

pick the start location that leads to a small read cost. 

6.2 Finding the best starting location 
One naïve way to find the best starting location would be to try 

every possible start location and pick the one with maximum 

sharing potential. Since this requires O(p) steps where p is the 

number of pages in the scan range, this is not very practical. 

Fortunately, it suffices to inspect only the locations where we can 

expect local optima. In the following, we call such locations 

“interesting locations”. 

Consider Figure 11. This is an example with one ongoing scan A 

and a new SISCAN that starts at time T0. Knowing how many 

other scans are active between T0 and T1, we can draw an 

“envelope” around A (shown as hashed area) that indicates the 

area in which there can be sharing between A and another scan. If 

another scan is outside the envelope, there is no sharing because 

they are too far apart. There are three interesting starting locations 

for the new scan: E1, E2, and E3. E1 is the location when the new 

scan touches A’s envelope on the left. E2 is the location when the 

new scan goes through the center of A’s envelope. And E3 is the 

location when the new scan touches A’s envelope on the right. 

The reason why these locations are the only ones that may have 

local optima is because between interesting locations E1 and E2 

the sharing potential is monotonically increasing and between E2 

and E3 it is monotonically decreasing. 

In this example, the solution would obviously be the starting 

location E2 as it has maximum sharing. However, for many 

ongoing scans, there may be many local optima. Even then it still 

holds that the monotonicity of the sharing potential function may 

change from increasing to decreasing (or vice versa) from one 

interesting location to the next while being monotonic (actually 

even linear) between interesting locations. In other words, local 

optima can only occur at interesting locations. 
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Figure 8. Sharing potential when starting new SISCAN E at 
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Figure 9. Sharing potential when starting new SISCAN E 

near scan A 

 1 fct calculateReads( scan t, scanset S ) 
 2  R := empty set; 
 3  for each time interval Ti defined by 
      scan start/stops 
 4   n := number of ongoing scans in Ti; 
 5       determine key ranges K during which t can 
         share with scans in S based on n; 
 6       add K to R; 
 7  endfor 
 8    reads := 0; 
 9    for each key range r in R 
10   reads := reads + reads(r)*pages(r); 
11    endfor 
12    return reads; 
13 endfct; 

Figure 10. Algorithm for calculating the number of page reads 

necessary for a given SISCAN start location 
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This yields a simple algorithm for finding the best starting 

location: (1) determine all interesting points, (2) for each such 

point, compute the sharing potential with the calculateReads 

function (Figure 10), (3) pick the point with minimum reads 

(maximum sharing). Step (1) requires to find the three interesting 

locations for each scan “envelope” in each time slice. There are 

O(|S|) time slices and O(|S|2) envelopes for |S| scans. Since each 

sharing potential calculation requires O(|S|) cost, we have an 

overall cost of O(|S|3). 

6.3 Practical implementation 
While the previously discussed algorithm will find the starting 

location with optimal sharing potential, it has two shortcomings 

for practical purposes: (1) the cost is relatively high (even though 

this cost only occurs at SISCAN start time) and (2) linearly 

ordered locations for all SISCANS as assumed in the 

time/location graph in Figure 11 may not be available without 

access to the index structure (as we had discussed earlier, the RID 

component of the index scan location may not be ordered in any 

way). For this reason, we now discuss a modified version of the 

previous algorithm that has lower cost and treats the index 

structure as a black box. The high-level idea is to compute the 

sharing potential for anchor groups that overlap the new scan’s 

key range based on the partial ordering between SISCANs 

discussed in Section 5.3. 

For purpose of presentation, let us assume one anchor group of 

three SISCANs A, B, and C as shown in Figure 12. The current 

time is again indicated as T0. We also assume the current location 

of A, B, and C (the intersection of their traces with the dashed T0 

line) are inside the new scan’s key range (shown as shaded 

region), as is the end key of A and B and the anchor. C’s end key 

is assumed to be outside of the new scan’s range. Contrary to the 

previous algorithm, we now have only partial knowledge about 

the relative locations of scans and their end keys. We know the 

distance of A’s current location from the anchor (30 in this 

example), the distance of B’s location from the anchor (60 in this 

example), and the distance of C’s location from the anchor (75 in 

this example). In addition, we know the past (and assumed future) 

speed and the expected number of remaining pages of A, B, and C 

(denoted by “remaining(A/B/C)”). Scan speed and remaining scan 

pages are maintained for each SISCAN (cf. Section 5.2) and give 

us the approximate end location of a scan relative to its start 

location (as shown in Figure 12). 

This still leaves the question of where the start of the new scan 

range is located (we only know it is before the anchor) and where 

the end of the new scan range is located (we only know it is 

between the end of B’s scan range and the end of C’s scan range). 

Since the location of the new scan start key is needed to estimate 

where a “wrapped” SISCAN continues, we will estimate the 

sharing potential only for the “pre-wrap” phase. In addition, to be 

conservative, we set the end location of the new scan to the 

smallest location (in this case, the end location of B). 

We now have nearly all the parameters needed to apply the 

calculateReads function to this scenario: we know the 

current locations and the end locations of A, B, C (and their trace 

slopes), we know the new scan’s expected speed (from the 

average speed attribute), and we have fixed the new scan’s end 

key location. The only parameter missing is the new scan’s start 

location. In the previous section, we picked it from among the 

“interesting locations”. In this scenario, we have only three 

locations to pick from: the current location of A, B, and C. We 

propose to calculate the sharing potential for each of these. The 

best one gives us the best starting location for this group of scans. 

We then repeat the same procedure for other anchor groups that 

overlap the new scan’s key range and pick the location with best 

overall sharing potential among all groups as the new scan’s 

starting location. The pseudocode algorithm is shown in Figure 

13. Since we need to evaluate calculateReads once per scan, 

the overall cost for this algorithm is O(|S|2). 

One interesting special case in the algorithm is in line 2. If there 

are no ongoing SISCANs, we start the new scan at the location of 

the last SISCAN that finished. This way, the new scan can reuse 

any bufferpool pages left behind by the scan that finished. 

Technically, we should start the new scan several pages before the 

last scan’s location, depending on how many pages of this scan 

we expect to be left in the bufferpool. In the location/time diagram 
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Figure 11. Determining "interesting" SISCAN starting 
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Figure 12. Finding best SISCAN starting location with 

anchors and offsets 

 1 fct findStartLoc( scan t, scanset S ) 
 2  if S is empty, return most recently finished 
      scan’s location; 
 3  G := set of SISCAN groups that overlap t’s 
           scan range; 
 4    if G is empty, return t’s regular start loc; 
 5    for each group g in G 
 6       loc(g) := best start location for t in the 
                   group (as discussed in text); 
 7    endfor 
 8    return loc(g) with best sharing among all g; 
 9 endfct; 

Figure 13. Finding SISCAN starting location 
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in Figure 8, such terminated scans would show up as vertical 

traces (since they are no longer moving forward) and with a wide 

(hashed) sharing area (since no other SISCANs are running). So, 

by keeping the last terminated SISCAN in the data structure with 

speed set to 0, this special case could be handled by the general 

algorithm. 

Once the new SISCAN’s location is determined, its anchor is set 

to either its start key/RID (if it cannot start with some other 

SISCAN) or to some other SISCAN’s anchor (if it starts at that 

other SISCAN’s location) with the offset being 0 or the other 

SISCAN’s offset, respectively. 

7. SISCAN LOCATION UPDATE 
In this section, we discuss how a SISCAN location change 

influences the various SISCAN attributes, how the speed of 

SISCANs can be adaptively controlled, and how the bufferpool 

page priorities are influenced by the scan states. 

7.1 SISCAN attribute updates 
As discussed in Section 4.2, the ISM is called periodically to 

update the SISCAN location in its data structures. This call can be 

performed every time a new table page is accessed or at every x 

page accesses. There is a tradeoff: if the updates are too frequent, 

the accuracy of the SISCAN location in the data structure is high 

but there is extra overhead at every page change. On the other 

hand, if the updates are too infrequent, this overhead is lower but 

the location accuracy decreases, leading to less optimal decisions 

for SISCAN start locations and speed control. In our 

implementation, we update locations at fixed intervals (every 16 

32k pages, to be precise) but we plan to investigate more adaptive 

schemas in future work. 

At every location update call, the following SISCAN fields are 

modified: location, remaining pages, speed, and anchor/offset 

information. In our implementation, we set the speed to (pages 

read since last update)/(time since last update). Since this speed 

estimate depends only on the near past, it can capture speed 

fluctuations caused by interactions with other ongoing scans. 

The anchor offset is simply incremented with one important 

exception. When a SISCAN A’s new location is equal to some 

other SISCAN B’s anchor, A sets its anchor to B’s anchor and 

sets its anchor offset to (A’s offset)+(B’s offset). This way, the 

anchor/offset-based partial SISCAN order discussed in Section 0 

now also has an order between A and B. Or in other words, A and 

B are now in the same anchor-group. 

7.2 SISCAN speed control 
No matter how smart the starting location of a SISCAN is picked, 

scans that were perfectly aligned at the beginning, may start 

drifting apart over time. This is caused by different index scan 

predicates and disk access interference. Without actively keeping 

SISCANs aligned by adjusting their speeds, the drift will lead to 

reduced bufferpool sharing over time. 

We have addressed the drift problem in our previous work on 

bufferpool sharing for table scans [8]. We will therefore just 

summarize this work here, as the translation to index scans is very 

straightforward. In [8] we propose to group table scans together 

based on similar speeds. The table scan in the front of the group 

(in scan direction) is designated as the “leader” and the scan in the 

back of the group is designated as the “trailer” of the group. In 

order to reduce drift, we measure periodically whether the 

distance between leader and trailer becomes larger than some 

threshold (typically less than two prefetch extents). If it does, we 

insert some wait operations for the leader to let the trailer (and the 

rest of the group) catch up. The wait duration is determined by the 

measured speeds of the table scans in the group and the distance 

between leader and trailer. Technically, the wait is inserted during 

an updateSISCANLocation call; the call therefore simply 

appears to take a longer time to the calling SISCAN. 

We now show how the partial ordering on SISCANs can be used 

to determine leaders and trailers (Figure 14). Let us consider the 

groups in Figure 6 again and assume the bufferpool size is 50 

pages. We know the partial order between the scans is A º B, 

B º C, C º D, and E º F. We also know the scan distances are 

d(A,B)=40, d(B,C)=10, d(C,D)=15, and d(E,F)=20. We first sort 

the scan pairs by distances and then add them in increasing order 

to form larger scan groups until the sum of the extents of all scan 

groups reaches the bufferpool size (lines 3-8). Here, we first add 

(B,C), then (C,D), resulting in the group (B,C,D), and finally we 

add (E,F) which does not merge with the other groups since no 

scans are in common. The final result are the groups (A) with 

extent 0, (B,C,D) with extent 25, and (E,F) with extent 20 and an 

overall extent of 45 (which is smaller than the bufferpool size). 

For each of these groups we have a leader (the largest by location) 

and a trailer (the smallest by location). A is leader and trailer of 

the first group, B is trailer and D is leader of the second group, 

and E is trailer and F is leader of the third group (lines 9-11). 

Thereby we have mapped this scenario to the scenario of table 

scan groups with leaders and trailers in [8] and can now apply the 

throttling technique discussed there. 

Slowing down a scan operation in order to improve query 

response time may seem counter-intuitive at first. However, let us 

consider what would happen if the leader was not slowed down. 

In this case, the distance between the leader and other scans in the 

group would keep increasing until the distance is so large that 

bufferpool pages can no longer be reused between them. Once this 

happens, every page that the leader has read, needs to be re-read 

by the other scans in the group – the I/O cost has doubled. This 

additional I/O in return also affects the leader itself negatively 

since its I/O requests get delayed more due to a busier disk. 

Of course, there is a limit to the amount of throttling of a scan. If 

all scans in a group are progressing very slowly relative to the 

leader, it may not make sense to keep slowing down the leader. 

For this reason, we keep track of the accumulated slowdown of 

each SISCAN (this can be stored in an additional field in the ISM 

data structure). If a SISCAN was slowed down for more than 80% 

of its estimated total scan time, it is not slowed down anymore 

until it finishes. By limiting the per-scan delay, we can enforce 

some amount of fairness in that no single scan may get delayed 

 1 fct findLeadersTrailers( scanset S ) 
 2  R := empty set; 
 3  while sum of extents of groups in R <  
      bufferpool size 
 4       pick a pair (x,y) not in R with xºy and  
                   d(x,y) minimal; 
 5       if (w,x) in R, replace it with (w,x,y) 
 6       elsif (y,z) in R, replace it with (x,y,z) 
 7       else add (x,y) to R; 
 8  endwhile 
 9    for each group (x, …, y) in R 
10   mark x as trailer and y as leader; 
11    endfor 
12 endfct; 

Figure 14. Classifying SISCAN leaders and trailers 
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indefinitely in order to improve bufferpool sharing for other 

scans. The “80%” threshold is based on our experience with 

various workloads. One interesting extension would be to make 

this threshold dynamic by taking into account query priorities and 

machine characteristics. 

7.3 Adaptive bufferpool page prioritization 
As discussed in Section 4.2, each SISCAN releases pages that are 

processed with a priority determined by the ISM rather than with 

a fixed priority. The idea is to assign a high priority to pages in 

the bufferpool that are needed soon by members of the group and 

a low priority to pages that will not be needed soon. Similar to 

[8], we propose to use the leader/trailer status (as determined in 

the previous section) to decide on the priority. Leader SISCANs 

assign a high priority to their finished pages because other 

SISCANs that need the same page are following. Trailer 

SISCANs assign a low priority to their finished pages because 

there is a big gap until the next following SISCAN and so the 

page would get discarded anyway at some point in time before the 

following SISCAN can read it. 

8. EXPERIMENTAL RESULTS 
This section discusses the experimental results obtained from our 

prototype implementation in IBM’s DB2 Universal Database 

(UDB). The implementation of SISCAN operators and the ISM is 

built on top of the table scan bufferpool-sharing infrastructure for 

DB2 UDB described in [8]. That infrastructure allows normal 

table scans’ speed and bufferpool page prioritization to be 

controlled via a table scan sharing manager (much like the ISM). 

The table scan sharing manager provides functions similar to the 

ISM: “start table scan”, “end table scan”, “update table scan 

location”, and “get page priority”. We extend these functions to 

also accept index scans. Internally, the table scan sharing manager 

keeps track of groups of table scans. In the new prototype, the 

ISM keeps track of groups of SISCANs and their anchors and 

offsets. Since we view SISCANs just as another type of scans, we 

can reuse all of the grouping, leader/trailer classification, 

throttling and page prioritization algorithms. The implementation 

effort is mainly limited to the algorithm for determining the 

SISCAN start location and the modified SISCAN process logic 

(cf. Section 4.2).  

While the presented algorithms work for any type of index-based 

scans, we have decided to implement our prototype first for MDC 

block index scans [1] [2] since these are increasingly popular in 

customer settings. The block size is configurable. In our 

experiments, we set it to 16 pages with a page size of 32 Kbytes. 

We perform calls to updateSISCANLocation at every extent 

boundary. 

We evaluated our prototype on two hardware platforms: (1) an HP 

Integrity rx5670 server powered by 4 Intel Itanium 2 processors 

running at 1GHz on HPUX OS with 15GB main memory and 

FAStT storage manager and (2) an 8-node p660 AIX cluster with 

each node powered by 4 PowerPCs running at 600MHz with 8GB 

main memory and 16 SSA disks. The reason why we use two 

platforms is because HP-UX allows us to measure disk seek times, 

while AIX allows us to measure disk I/O wait times. Both are key 

indicators for evaluating our algorithm. 

The database for the experiments is a 100GB TPC-H [25] 

database. The bufferpool size is about 5% of the database size. 

We performed three sets of experiments: single stream TPC-H 

runs (to investigate the overhead of our SISCAN extensions), runs 

with single TPC-H queries that are started in a staggered way and 

full TPC-H throughput runs. In each set of experiments, we obtain 

measurements for vanilla DB2 and our prototype over five runs 

and average the results. Due to space constraints we only report 

on the latter two experiments but note that the observed overhead 

in the first experiment was well below 1% of the end-to-end time. 

8.1 Staggered Q1/Q6 query performance 
For the single query runs we chose TPC-H queries Q1 and Q6. 

While the former is very CPU-intensive, the latter is highly I/O-

intensive. For both tests, the queries were started 10s apart, so that 

the runs are overlapping. The runs were performed on the AIX 

box which displays the I/O waits in the iostat readings. 

Figure 15 shows the timing measurements for Q6. The left graph 

shows the distribution of CPU time spent in user time, system 

time, idling, and in I/O wait. “Base” indicates the distribution for 

the plain DB2 runs. It shows that in this configuration, a large 

amount of time is spent in I/O wait. For our prototype (indicated 

with “SS”), I/O wait time is reduced by half, indicating that our 

algorithm is making pages available to the SISCAN processes 

faster by improving bufferpool sharing and reducing seek times. 

Similarly, the idle time is reduced showing better CPU utilization. 

In turn, the user time component increases, indicating that with 

pages now more easily available, the scan processes are able to do 

more useful work. The right graph shows the execution times for 

each of the three Q6 runs. Each of the runs gains more than 50% 
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Figure 16. Timings for 3 Q1 streams (CPU intensive) 
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due to the sharing of bufferpool pages with the middle run gaining 

most due to its sharing potential being highest. 

In contrast, Figure 16 shows the same types of results for 

staggered runs of TPC-H query Q1 – a very CPU-intensive query. 

As can be seen in the left graph, the amount of time spent in I/O 

idle and wait is negligible compared to the user slice. Despite that, 

improved bufferpool sharing is able to reduce even these small 

amounts further. Also, since fewer system read calls are now 

being made, the system time is going down as well. All these 

reductions lead to more time available for the scan processes to do 

useful work (as shown in the user time slice). Thus, as the right 

graph shows, even in these sub-optimal conditions, our prototype 

improves the runtime of each Q1 noticeably. 

8.2 TPC-H throughput performance 
During a TPC-H throughput run, five query streams are started at 

the same time. Each stream consists of a predefined order of 22 

queries. Since the order is different in each stream, different 

queries overlap at different points in time. In the 22 queries, there 

are 18 block index scans and 29 table scans. 

In our experiments, we measure both the end-to-end time gains of 

TPC-H, as well as gains per stream and disk I/O gains. These runs 

were done on the HP box since HP-UX shows seek times as part 

of the iostat readings. Table 1 summarizes the overall results 

as improvements over the vanilla DB2 measurements. The first 

column shows that end-to-end runtime of the TPC-H throughput 

runs was improved by 21% with our prototype. These gains are 

largely due to better bufferpool usage between index scans. This 

is visible from the second and third columns of Table 1 which 

show that the average disk reads (i.e., the amount of data read 

from disk) and the average disk seeks are reduced by 33% and 

34%, respectively. The reduced disk utilization may be used to 

scale to a larger number of streams with the same hardware. 

 

Table 1. Performance results for 5 stream TPC-H 

End-to-end gain Avg. disk read gain Avg. disk seek gain 

21% 33% 34% 

 

Figure 17 shows the amount of data read from disk over time. 

Each bar in the graph stands for a fixed unit of time and the y-axis 

indicates the amount of data read during that time unit. The graph 

entitled “Base” shows the read characteristics for the unmodified 

DB2 version during the TPC-H run. It shows some amount of 

jitter which is due to different queries being executed in the 

different streams over time. Our prototype (indicated by “SS”) 

shows the same jitter but the amount of reads is lower in most 

time intervals and the run ends sooner. 

Similarly, Figure 18 shows the progress of disk seeks (y-axis) per 

time unit (x-axis). As with the data reads, the disk seeks is very 

much reduced during most time intervals. This is because with our 

prototype, scans are synchronized and thus tend to reuse the pages 

demanded by each other. Thus, although each scan ends up 

demanding the same page set as with the base code, they demand 

it in such an order that the disk has to seek less often to satisfy 

them. 

Time

S
e

e
k
s
 P

e
r 

S
e

c

SS Base

 

Figure 18. Disk seeks over time for plain DB2 and our 

prototype 

1 2 3 4 5

stream

ti
m

e
 (
s

)

base

ss

 

Figure 19. Per stream gains (5 stream TPC-H) 
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Figure 20. Per query gains (5 stream TPC-H) 
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Figure 17. Disk read amounts over time for plain DB2 

and our prototype 
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In order to investigate the “fairness” of our algorithm, we measure 

the per-stream and per-query gains. The per-stream results are 

shown in Figure 19. We can see that each stream gained similarly 

from the improved bufferpool sharing. The per-query results are 

shown in Figure 20. The chart shows the average execution time 

for the 21 queries for the 5 TPC-H streams. While the gains from 

the bufferpool sharing vary with queries, no query shows a 

negative effect. This is remarkable given the fact that we slow 

down individual SISCANs whenever drift occurs. Apparently no 

single query’s SISCANs get “punished” with throttling over the 

others. Instead, throttling seems to be distributed across the 

queries for mutual benefit. We also point out that certain queries 

benefit more from bufferpool sharing than others (e.g., query 21). 

This is due to the amount and range size of the index scans 

present in the queries. 

9. CONCLUSION 
In this paper, we presented a technique to improve caching 

between concurrent index scans on an RDBMS. At the core of the 

idea is a new index scan sharing manager that keeps track of 

ongoing scans and decides where to start a new index scan and 

how to throttle ongoing scans. Since our extensions treat the index 

itself as a black box and requires only few extra calls to the 

sharing manager, integration with an existing architecture is very 

easy. Our prototype in DB2 UDB shows significant gains for the 

TPC-H benchmark, both in terms of reduced disk activity and in 

end-to-end timings. 

In the future, we plan to investigate sharing for other types of 

index scans and tighter coupling of SISCANs and the query 

optimizer. 
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