
Increasing Buffer-Locality for Multiple Index Based Scans
through Intelligent Placement and Index Scan Speed

Control
Christian A. Lang

Bishwaranjan Bhattacharjee
Tim Malkemus

IBM T.J. Watson Research Center
19 Skyline Dr

Hawthorne, NY 10532
+1 (914) 784-7387

{langc,bhatta,malkemus}@us.ibm.com

Kwai Wong

IBM Toronto Lab

8200 Warden Ave
Markham, ON L6G 1C7

+1 (905) 413-2818

kwaiwong@ca.ibm.com

ABSTRACT

Decision support systems are characterized by large concurrent

scan operations. A significant percentage of these scans are

executed as index based scans of the data. This is especially true

when the data is physically clustered on the index columns using

the various clustering schemes employed by database engines.

Common database management systems have only limited ability

to reuse buffer content across multiple running queries due to

their treatment of queries in isolation. Previous attempts to

coordinate scans for better buffer reuse were limited to table scans

only. Attempts for index based scan sharing were non existent or

were less than satisfactory due to drifting between scans.

In this paper, we describe a mechanism to keep scans using the

same index closer together on scan position during scanning. This

is achieved via intelligent placement of index scans at scan start

time based on their scan ranges and speeds. This is then

augmented by adaptive throttling of scan speeds based on the

index scans' runtime behavior during scan execution. We discuss

the challenges in doing it for index scans in comparison to the

more common table scan sharing. We show that this can be done

with minimal changes to an existing database management system

as demonstrated in our DB2 UDB prototype. Our experiments

show significant gains in end-to-end response times and disk I/O

for TPC-H workloads.

1. INTRODUCTION
Decision support systems (DSS) are characterized by the presence

of large queries which perform scans over a substantial part of the

data (e.g., to compute aggregate values). A significant percentage

of these scans are executed as index based scans of data. This is

especially true when the data is physically clustered on the index

columns. The importance of clustering in reducing physical I/O

during query processing is well recognized and is reflected in the

fact that most database engines support one or more types of

indexed physical clustering schemes nowadays. Examples include

Multi Dimensional Clustering (MDC) [1][2] in DB2 UDB [9],

Partitioned Primary Index in Teradata [3] and Index Clustered

Tables in Oracle [4]. Recent trends indicate that typical DSS users

are moving towards more and more concurrent queries [5].

Common database management systems have only limited ability

to reuse memory buffer content across multiple running queries

due to their treatment of queries in isolation.

In addition to this shift in workload characteristics, technological

changes in the storage subsystem demand better memory buffer

reuse as well. Disk drives are increasing in capacity but seek and

access time is not keeping up [6]. Thus systems are going to be

more and more prone to becoming I/O bound [7]. Therefore, a

mechanism which can reduce random seeks on disk and reduce

the stress on the storage subsystems will go a long way in

improving overall system throughput.

DBMS engines which try to optimize scan-heavy query workloads

have generally limited themselves to table scans only. Attempts

for index scan based scan sharing were non existent or were less

than satisfactory due to drifting between scans. This is despite the

fact that in real customer situations, one encounters a lot of

overlapping index based scans. These are used to access the

hotspots of a Data Warehouse. For example, a Data Warehouse

might have 7 years of data and multiple analysts might be

interested in the last year or month of data. Their queries would

likely use an index based scan of some sort over that part of the

data. An analysis of a DB2 customer scenario indicated that their

database had 150 users who were submitting 215 different types

of queries. These were using 553 index scans with two tables

having more than 100 index scans and 15 tables having more than

10 index scans each. This scenario has a high index scan sharing

potential and is representative of many other scenarios.

In this paper, we describe a mechanism to increase buffer reuse

and thereby reduce I/O for concurrent index based scans. This

mechanism has been prototyped in DB2 UDB and provides

significant performance improvement for concurrent queries. The

mechanism increases buffer reuse by keeping scans using the

same index closer together on scan position during scanning. This

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and its

date appear, and notice is given that copying is by permission of the Very

Large Database Endowment. To copy otherwise, or to republish, to post on

servers or to redistribute to lists, requires a fee and/or special permissions

from the publisher, ACM.

VLDB ’07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1298

is achieved via intelligent placement of index scans at scan start

time based on their scan ranges and speeds. This is then

augmented by adaptive throttling of scan speeds based on the

index scans' runtime behavior during scan execution.

The index scan sharing technology was built on the infrastructure

developed for facilitating the grouping and throttling of table

scans in DB2 UDB described in [8]. In this paper we discuss the

challenges in doing index scan sharing in comparison to the more

common table scan sharing. The effort required to extend existing

database management systems with our new algorithm is minimal,

as shown in our DB2 UDB prototype. The prototype currently

supports MDC Block Index Scans but can be modified for other

index scans very easily. Our experiments gave end-to-end gains of

21% for 5-stream TPC-H benchmark runs.

The rest of the paper is organized as follows. In Section 2, we

present related work. In Section 3, we discuss how index scans

work in a typical RDBMS. Section 4 presents our new “sharing

index scan operator”, SISCAN. Section 5 describes the module

that controls sharing between SISCANs. In Section 6 and 7, we

show how SISCANs are started and adaptively throttled. Section

8 contains our experimental results and we conclude in Section 9.

2. RELATED WORK
This work touches various areas: caching, database query

optimization, and database query execution. In the following, we

therefore summarize related work in these areas.

Different techniques have been proposed for increasing buffer

locality for various workloads. One of the oldest and most basic

algorithms is LRU which evicts the page from the buffer that was

not accessed the longest. LRU is currently the policy of choice in

many database systems due to its small overhead and tuning-free

operation. Many variants of LRU have been proposed since.

Examples are LRU-K [10], 2Q [11], LFU [12], and hybrids such

as LRFU [13] and ARC [14]. All these techniques are for general

access patterns, while this paper focuses on ordered access

patterns only and can therefore achieve much improved buffer

utilization for this specific type of access.

Commercial database vendors such as Red Brick [15], Teradata

[16,17], and Microsoft SQL Server [18] employ proprietary

algorithms to let the database synchronize multiple table scan

operations in order to maximize buffer locality. This idea was

taken even further by Harizopoulos et al. [19]. They propose ideas

for a new database architecture that tries to maximize reuse of

partial query results from the query down to the page access level.

This is achieved by detecting overlaps in active query plan

operators at query execution time and then exploiting it by

pipelining one operator’s results to all dependent operators where

possible. Two of the operators discussed in that paper are the table

and index scan operators. For these, the authors propose to use

one scan thread that keeps scanning all pages while table scan

operators can attach to and detach from this thread in order to

share the scanned pages.

While this approach works well for scans with similar speeds, in

practice scan speeds can vary by large margins and even single

scans’ speeds are usually far from constant due to changes in

predicate evaluation overhead. Therefore, the benefit can be lower

as scans may start drifting apart. Techniques to prevent drift by

automatically throttling faster scans and by scan-group based

prioritization of buffer pages have been discussed in [5]. However

this work is applicable for table scans only.

In addition to cache or page buffer algorithm improvements, other

methods to reduce disk access costs for multiple concurrent

queries with overlapping data accesses have been investigated.

These methods include multi-query optimization [20] (which

requires all queries to be known in advance) and query result

caching [21]. Due to being at a high level of the query execution

hierarchy, the latter may miss out on sharing potential for queries

that have very different predicates but still end up performing

scans on the same table, for example.

Zukowski et al. [22], Sacco et al. [23], and Chou and DeWitt [24]

introduce smarter buffer managers that are used to optimize page

replacement under multiple running queries in order to maximize

buffer locality. Their approaches require significant modifications

of the caching system. This paper, on the other hand, views the

caching system as a “black box” and limits modifications to a few

extra function calls in the index scan code.

3. INDEX SCAN OPERATORS
This section gives an overview of IXSCAN (standard index scan

on B+ trees) processing, including the concept of "location” of a

scan, and how concurrent index scans may interact with each

other.

3.1 Index Scan Overview
An access plan consists of a number of operators, used to satisfy a

given query, as determined by the optimizer. The operators

represent processing steps such as table scans, joins, predicate

evaluations, etc. One such operator is IXSCAN, or index scan.

An IXSCAN includes various attributes, such as which index to

scan, whether there are predicates to apply, etc.

A standard index scan consists of reading leaf pages from an

index, processing each entry (i.e., a key and a row identifier, or

RID) sequentially, and (possibly) following each RID to retrieve

the corresponding record from the underlying table. There may

be a start key and/or an end key to limit the scope of the scan,

depending on predicates in the SQL query.

Figure 1 shows a high-level pseudo-code algorithm of an

IXSCAN. Assuming a start key is given, it is used in a tree search,

starting with the root of the index, to find the child page of each

non-leaf page that may contain the key value specified, until such

a child is a leaf page. If there is no start key, the index scan begins

at the first leaf page in the index. This is done in the loc()

function in line 2 of the algorithm. Once the starting page has

been determined, the scan begins, with a loop over the leaf pages,

and a loop over each entry (line 2). The page corresponding to the

RID is read into the bufferpool1 (or located in the bufferpool, if it

1 The bufferpool is a memory region used by DB2 to cache pages

during query execution.

 1 proc IXSCAN(startKey, endKey)
 2 loop l from loc(startKey) to loc(endKey)
 3 perform operations on page(l);
 4 release page(l) with priority p;
 5 endloop;
 6 endproc;

Figure 1. High-level logic of IXSCAN operation

1299

is already there), and the record specified by the RID is located.

That record is then handled (line 3) in whatever way is needed for

the query processing (predicates, aggregations, sorting, etc.).

After reading and processing the relevant parts of a table page, the

page gets released in the bufferpool (line 4) so that the space can

be used for other pages if needed. The priority assigned to the

released page is an indicator to the caching algorithm for deciding

which pages to discard first when space is needed. In the

IXSCAN algorithm this priority is typically fixed during a scan

(though it may change from one scan to another). We show later

how we adjust this parameter to increase bufferpool sharing.

Once the page is released, the next iteration of the loop will find

the next RID in the index entry, if any. If there is an end key, each

entry encountered in the loop is compared against that value for

determining the end of the scan. If there is no end key, the scan

ends with the last entry in the last leaf page.

3.2 Index Scan Location
At any time during an index scan, it is said to have a particular

"location". This is the indication of which key (index entry) and

RID is currently being processed. Whenever the index scan moves

“forward”, the next RID of the same key value is accessed until no

more are available. Then, the scan switches to the next key value

(in increasing or decreasing order) and the first RID for that key.

This is in contrast to a table scan whose location is described

simply as the current RID and the next location is obtained by

increasing or decreasing the RID. This distinction is important

because only the key values are in increasing or decreasing order

during an index scan. The RIDs may not be in any specific order.

This can lead to many expensive disk seek operations if the RIDs

are poorly distributed across the scan range. Improved caching

can mitigate this problem.

3.3 Concurrent Index Scans
Often, there will be multiple applications performing the same

index scan at the same time. There may or may not be overlap in

the ranges of values covered by the concurrent scans. The scans

may have the same values for start and end keys, or the start and

end key ranges may overlap in some way, or they may be disjoint.

If there is overlap in the ranges specified for start and end keys,

then the scans may benefit each other in terms of bufferpool

usage. The first one to read a particular page has paid the price of

the physical I/O, and the second one can process the page that is

already in the buffer pool, avoiding a second physical read.

However, perhaps the second scan starts after some time has

passed. In that case, there is a chance that the buffer manager has

already had to victimize that page, and the second scan will have

to do a physical read again. When this happens, both scanners

will have to do physical reads of the same pages, resulting in

roughly twice the number of physical reads as for only one scan.

In other words, if the scan locations are close, the number of

physical page reads needed is oftentimes reduced.

3.4 Block Index Scans
A block index is essentially the same as a RID index, except that

each index entry consists of a key and a list of Block IDs (BIDs)

instead of Row IDs (RIDs). A block is a contiguous set of pages

in the table that contain records of the same key value. The block

size is constant for a given table, and is determined when the table

is created. Block index scans are used very frequently on MDC

tables [1][2] in decision support systems that require slicing and

dicing of large datasets. We implement our prototype initially for

block index scans for this reason. All other properties discussed

for RID index scans also apply to block index scans with the scan

location now being described as key/BID instead of key/RID.

While “chance” buffer sharing between regular index scans may

occur occasionally, it is rare. We therefore discuss next a new type

of index scan that actively “seeks” buffer sharing.

4. NEW SISCAN OPERATOR
In this section, we introduce a new index scan operator SISCAN

(for “sharing index scan”). This operator can be inserted at most

places of the query plan where a IXSCAN operator would be

applicable and enables the corresponding index scan to actively

share bufferpool content with some other ongoing index scans.

We will discuss cases when sharing between index scans should

not be permitted, in Section 4.1.

In a query plan, the IXSCAN operator may be associated with a

start and/or end key specifying the range to be scanned. As

discussed in Section 3, the corresponding index structure would

then be traversed at runtime starting from the start key and ending

with the last identifier matching the end key.

The SISCAN operator also traverses the index structure, accessing

every record between start and end key but the traversal logic is as

follows (cf. Figure 2):

1. pick a start location startLoc (i.e., key and RID)

2. scan index from startLoc to end key

3. scan index from start key to startLoc

By allowing the SISCAN to start at any location in step 1,

bufferpool page sharing can be improved by starting a new

SISCAN at the location of an ongoing SISCAN. If both have a

similar speed, they will subsequently read the same index entries

and thereby the same base table pages, even if the RIDs are

“randomly” distributed across the scan range.

Due to its nature, the SISCAN operator has additional parameters

for controlling various aspects of bufferpool sharing. These

parameters are the scan speed estimate and the scan amount

estimate. The speed estimate characterizes the index scan’s speed

in number of pages read per second and scan amount estimate

characterizes the overall number of pages to be read between start

key and end key. These parameters are supplied by the costing

component of the query compiler and can be based on table

statistics and/or past measurements.

From an implementation perspective, adding piecewise scans is

not difficult as most RDBMSs already provide similar facilities

for farming out scans to multiple processors. Also, breaking an

index scan into only two phases rather than some other more

Start key End key

“z”“y”“x” “x” “y” “y” “y” “z” “z”

startLoc

First scan rangeSecond scan range

Figure 2. Two index scan ranges

1300

complex scan pattern reduces both implementation complexity

and the required memory footprint for scan status information.

4.1 SISCAN Operators in Query Plans
The query optimizer chooses an index scan operation over some

other access type if the cost caused by the index scan is lower than

the cost caused by the other access types. This may be due to

selectivity or due to sorted results needed later in the query plan,

making an index scan desirable.

From the optimizer’s point of view, a SISCAN operator can occur

anywhere an IXSCAN operator is used. However, an important

difference between IXSCAN and SISCAN operators is that

IXSCAN returns identifiers in monotonic key order (either

increasing or decreasing) while SISCAN may not due to the

modified key traversal order shown in Figure 2. Therefore, if the

query optimizer decides to use an index scan for getting records

ordered on the index key value, it can only use IXSCANs.

Fortunately, in practice, there are many cases where index scans

are used for reduced access time rather than for key ordering.

Similarly, we are not discussing replacement of “index only”

IXSCANs (i.e., scans that only generate a RID list without

processing the underlying table data) with SISCANs, even though

scans on large indexes may also benefit from sharing of index

pages in bufferpool or CPU caches.

4.2 SISCAN Process Logic
As visible in Figure 3, the logic of a SISCAN is very similar to

the logic of a regular IXSCAN. The main difference is that (1) a

SISCAN can start in the middle of its key range, and (2) the

SISCAN periodically calls a new component, the index scan

sharing manager (ISM). The ISM is the central ingredient to our

bufferpool sharing mechanism and will be discussed in depth in

Section 5. For now, it suffices to know that the ISM keeps track of

ongoing SISCANs and uses this knowledge to influence index

scan speeds and bufferpool replacement decisions.

At a high level, the interaction of a SISCAN with the ISM is

given as pseudocode in Figure 3. The lines in bold font mark the

differences with the IXSCAN logic in Figure 1. SISCANs first

register with the ISM (line 2), providing its start and end key and

the expected time needed to finish the scan. The ISM then

determines whether the new SISCAN should start at the first

key/RID of the scan range or whether it can join some other

ongoing SISCAN. We will discuss new index scan placement in

detail in Section 6. The start location is returned to the caller.

The SISCAN then starts scanning the index like an IXSCAN but

instead of starting from the start key, it starts from the location

startLoc assigned to it by the ISM (line 3). The operations for

each index entry are similar to IXSCANs except that SISCANs

may periodically call the ISM to update their scan location (lines

5 and 10). These calls can be performed at every page or they can

be performed at every x entries read. In general, the more frequent

the calls are made, the more accurate the location information in

the ISM but the higher the additional overhead.

In line 6, the processed page is released in the bufferpool.

Contrary to IXSCANs, in the case of SISCANs, the priority is

adjusted dynamically by the ISM based on the state of all

SISCANs in the system and returned as result of the ISM.pr() call.

After picking the starting location in line 1, this is the second

degree of freedom that the ISM has. The idea is that this priority

is chosen such that pages that are needed soon again will receive

higher priority than pages not needed in the near future. Details

on how the ISM chooses the priority can be found in Section 7.

In lines 8 through 12, a second index scan is performed, this time

starting at the original start key and ending at startLoc. Finally, in

line 13, the ISM is informed that the index scan has ended. When

reaching this point, all index entries starting at the start key and

ending at the end key have been read and processed.

Conceptually, one can think of the SISCAN logic as two back-to-

back IXSCANs over adjacent key ranges (cf. Figure 2).

5. INDEX SCAN SHARING MANAGER
In this section, we discuss details of the index scan sharing

manager (ISM). The ISM keeps track of ongoing index scans,

their locations, and their speeds with very little overhead in terms

of memory and CPU usage. The ISM also determines the start

location of a new SISCAN and performs scan speed regulation

and bufferpool entry reprioritization based on the characteristics

of ongoing SISCANs with the goal of maximizing buffer reuse. In

the following, we discuss the overall architecture, attributes

maintained for SISCANs and groups of SISCANs.

5.1 ISM in Architectural Context
Figure 4 shows the ISM in context of the overall architecture.

During the execution of a query with index scans, SISCAN

operators are spawned (step 1). These inform the ISM about their

start (step 2) and determine which table pages to scan via index

access (step 4). The required pages are then fetched from the

bufferpool (step 5). Periodically, they inform the ISM about their

current index location (step 3). When the index scan is finished,

they also inform the ISM (step 2).

This architecture has several advantages. First, the ISM’s interface

can be kept relatively simple (we only need “start/end of

SISCAN” and “update location” calls). Second, the ISM is kept

separate from the rest of the architecture. There is no direct

interaction between ISM and bufferpool replacement algorithms

or index access functions. Only the SISCAN processes interact

with the ISM. This has the advantage that the required changes to

the architecture are very localized.

In the next sections, we discuss what information is kept in the

ISM and how it is used to establish a partial ordering between

SISCANs. This partial ordering will come in handy when we

discuss where to start new SISCANs and how to control their

speeds.

 1 proc SISCAN(startKey, endKey)
 2 startLoc := ISM.startSISCAN(startKey,
 endKey, time);
 3 loop l from startLoc to loc(endKey)
 4 perform operations on page(l);
 5 ISM.updateSISCANLocation(l);
 6 release page(l) with priority ISM.pr();
 7 endloop;
 8 loop l from loc(startKey) to startLoc
 9 perform operations on page(l);
10 ISM.updateSISCANLocation(l);
11 release page(l) with priority ISM.pr();
12 endloop;
13 ISM.endSISCAN();
14 endproc;

Figure 3. High-level logic of SISCAN operation

1301

5.2 Attributes Maintained by ISM
There is one ISM per bufferpool since index scans usually do not

span multiple bufferpools. Each ISM maintains statistics about the

ongoing SISCANs. For each SISCAN, the ISM maintains its

location (key value and RID), remaining pages in scan range (this

value is initialized from the scan amount estimate in the SISCAN

operator, cf. Section 4), average speed (in pages/s; this is

initialized as “(estimated pages in scan range) / (estimated scan

time)” and updated during scan execution), start and end key of

the scan range, an anchor location and an anchor offset (these

attributes are needed to determine the relative ordering between

SISCANs; we will return to this in the next Section). The ISM

updates these attributes whenever SISCANs start, finish, or

update their location.

5.3 Partial SISCAN location order
Compared to table scans, it is difficult to determine distances

between index scans by only inspecting their scan locations

because the RIDs are not necessarily accessed in any monotonic

order and so the distance is not simply the difference between two

SISCANs’ scan locations. Consider the example in Figure 5. The

location of index scan A is (key “y”, RID 5) and the location of

index scan B is (key “z”, RID 8). The distance between the two

scans in index order is not necessarily 3 pages as the RIDs seem

to indicate. It could be more or less, depending on how the data

pages are laid out on disk. In this example, the distance is 5, since

the RIDs in index order between A and B are 5, 3, 4, 7, 9, and 8.

However, in order to determine the potential for bufferpool

sharing and necessary adjustments to the index scan speed to

increase sharing, it is necessary to estimate the distance between

two index scans. For this reason, the ISM maintains information

about the distance of a SISCAN to a fixed known location – the

anchor location. Whenever a new SISCAN A starts, it may either

start by itself or it may start at some other SISCAN B’s location.

In the first case, the ISM sets A’s anchor to its start location and

the anchor distance to 0. In the second case, the ISM sets A’s

anchor to the location of B’s anchor and A’s anchor offset to B’s

offset. Whenever A or B move, their anchor offset is updated with

the moving distance but their anchor remains the same. By

knowing the distance of A and of B from the anchor, the ISM can

calculate the distance between A and B.

For the example above, let us assume the common anchor of scans

A and B is (key “x”, RID 2) and scan A’s anchor offset is 2 and

scan B’s anchor offset is 7 (cf. Figure 5). Now the distance

between A and B can easily be calculated as the difference

between the anchor offsets, namely 5. It should be noted that the

maintenance of anchor locations and offsets can be done while

regarding the index as a black box. No changes are necessary in

the way the index is managed and in fact, the same anchor/offset

technique works for any type of index that has a deterministic

ordering.

It is useful to think of the anchors and offset as defining a partial

ordering between SISCANs. In the example in Figure 6, two

anchors were created with four SISCANs (shown as black dots)

having one of the anchors in common and two SISCANs having

the other anchor in common. We will refer to SISCANs that have

an anchor in common as anchor groups from now on. Since we

know the relative locations between scans within anchor groups

but not between anchor groups, we obtain a partial ordering

between SISCANs as AºB, BºC, CºD, EºF where “º” denotes

the (transitive) partial order defined by anchors and offsets.

Next, we discuss an algorithm for choosing a starting location for

a new SISCAN. We will see how the partial SISCAN ordering

becomes useful in the practical implementation of this algorithm

in Section 6.3.

6. SISCAN PLACEMENT
Whenever a new SISCAN starts, it calls the startSISCAN function

in the ISM (line 2 in Figure 3). The ISM then determines where

the new SISCAN should start by inspecting its scan statistics data

structure. If there are no other SISCANs, the ISM may start the

new scan at its start key/RID. If there are some other ongoing

SISCANs, the ISM has to decide the placement of the new scan

based on the other scans’ speeds, locations, and scan ranges. The

overall objective is to maximize bufferpool sharing between all

SISCANs by selecting the starting location of each scan based on

the available statistics.

If, for example, there is one ongoing scan A with scan range [key

“a”, key “f”] and its current location is at key “b” and the scan

range of a new scan B is [key “d”, key “g”], B cannot share

bufferpool pages by starting at A’s location because key “b” is

outside of B’s scan range.

A C Danchor

off=10
off=60 off=75

E Fanchor

off=20 off=40

B

off=50

Figure 6. Two anchor groups

A BC DE F G

A BC DE F G

ISM

Data Access Subsystem

Disk

Query Coordinator / User

SISCAN

Process

5. “get page x” page x

Buffer

pool

Write back pages /

fetch pages

1. “SISCAN on index I ”

2. “start/end SISCAN”

3. “update location”

Table T Index I

4. Determine

table pages

to read

Figure 4. ISM in context of the overall architecture

“z”“y”

1 2 3 4 5 6 7 8 9 10

“x” “x” “y” “y” “y” “z” “z”

Anchor
location

Scan A

(Anchor
offset=2)

Scan B

(Anchor
offset=7)

Key

RID

Figure 5. Anchor location and offsets

1302

Even when ruling out cases where the location of ongoing scans is

outside of the scan range of the new scan, there may be many

scans that can be selected as starting location. Consider the

example in Figure 7. There are three ongoing SISCANs, A, B, C.

The figure on the top shows their scan ranges as horizontal lines.

The current location of each scan is marked with an arrow. The

new scan’s key range is shown as a dotted line below.

By inspecting only the amount of overlap between the scan

ranges, it is tempting to assume that scan B would be a good

choice to share bufferpool contents with. However, when taking

into account the time dimension, as shown in the graph below, it

becomes obvious that this is not a good choice. The lower plot

shows the scan location (in index order) on the x-axis and the time

on the y-axis, with the current time marked with a dashed line.

Different speeds of the scans show up as different slopes of the

lines representing the scans. The current location of the scans is

the intersection point of the scan lines with the line of the current

time. For simplicity, we assume the speed of the scans is constant

and that past speed is a good indicator for future speed.

Furthermore, we assume that we can estimate the speed of the new

scan, indicated by the slope of the dotted lines.

The figure shows three potential starting points for the new scan:

at the location of scan A, scan B, or scan C. When starting at scan

A’s current location, A and the new scan drift apart quickly, due

to their different speeds. Sharing of bufferpool pages is therefore

only of short duration. Once the distance between A and the new

scan reaches a threshold, the other ongoing scans will cause the

pages read by A to be discarded from the bufferpool, causing

additional I/Os for the new scan that has to re-read them, thereby

increasing the drift even further.

If the new scan is started at scan B’s location, the drift is smaller

because scan B’s speed is more similar to the new scan’s speed.

However, the sharing duration is limited by the fact that the new

scan’s key range has very little overlap with scan B’s remaining

scan range. Once the new scan reaches the end of its range,

sharing of bufferpool pages between the two scans ends.

Finally, if the new scan is started at scan C’s location, sharing of

bufferpool pages is maximized because scan C has a similar speed

and scan C’s remaining scan range overlaps sufficiently with the

new scan’s key range. Therefore, even though not obvious when

inspecting the key ranges by themselves, starting the new scan at

scan C’s location is the best choice in this example.

We learn from this example that placement of a new SISCAN

depends on (1) the speeds, and (2) the remaining scan ranges of

the ongoing SISCANs. We also note that in order to find the

optimal placement, it is not enough to consider ongoing SISCANs

individually as we have done in the example above. In many

cases, a new scan may first share bufferpool pages with one

ongoing scan and then switch to share with another scan due to

speed changes and drift. An algorithm to find the optimal

placement should therefore also consider starting locations that do

not lead to immediate sharing, if they lead to more sharing later

on.

6.1 Estimating sharing potential
Each starting location of a new SISCAN has a different sharing

potential based on the other ongoing scans. How can this potential

be estimated? Let is consider the example in Figure 8. Again, the

x-axis represents the location of the index scans and the y-axis

represents time increasing towards the bottom. Current time is the

top-most dashed line. There are three ongoing SISCANS: A, B,

and C with different scan ranges and speeds. We also know there

will be a scan D in the future. This may be the second phase of

scan A (assuming A was started in the middle and has to perform

a second phase as explained in Section 4.2), or a scan that is the

inner of a nested loop join and therefore repeated multiple times.

Given this state of the system, assume a new SISCAN E is about

to start. Its scan range and expected scan time is shown as the

dotted box in the center (the width of the box corresponds to its

scan range and the height corresponds to the time to scan the

range).

Let us consider starting E at the beginning of its scan range

(Figure 8). This will result in a trace as shown by the dotted line

marked with “E”. Between the current time T0 and time T1, there

are four ongoing SISCANs (A, B, C, and E). Only C and E are

close enough to share some bufferpool pages (as shown by the

hashed area between C and E). However, sharing is only possible

if C and E are close to each other since otherwise A and B may

cause bufferpool pages to be displaced. Between time T1 and T2,

only three scans (C, D, E) are running, thereby allowing for

sharing even when C and E are further apart (cf. larger hashed

area between T1 and T2). However, at some point, the distance

between C and E will be too large due drift caused by their

different speeds, and sharing will end.

The sharing potential for this scenario can now be calculated by

counting how often pages in E’s scan range had to be read and re-

read. In the key range before C and E start sharing, there are three

scans that read those pages at different times (C, D, and E), so

each page in this range is read three times. The second key range

is when only C and E are active and sharing, so each page here is

read only once (marked in red because the number would be

higher without sharing). In the next range, A is active in addition,

so each page is read twice (also marked in red). Then C and E

stop sharing, so each page is now read three times. And in the last

key range, B, C, and E are active but none is sharing, so each page

Scan C

Current
location

Scan A

Current
location

Scan B

Current
location

Scan C
Scan B

Scan A

S
c
a
n
 r

a
n
g

e
s

New scan

ti
m

e

Current

time

location

Scan A

Scan B

Scan C

N
ew

 scan w
ith C

N
ew

 scan w
ith A

N
ew

 scan w
ith B

Figure 7. Placement of new SISCAN

1303

is read three times. If for example, the sizes of the ranges are 15,

30, 15, 20, and 10 pages respectively, then the overall amount of

page reads “within the dotted area” would be 15*3 + 30*1 + 15*2

+ 20*3 + 10*3 = 195. This compares to the worst case without

sharing which is 15*3 + 30*2 + 30*3 + 5*3 + 10*3 = 240. So, the

potential reduction in I/Os through sharing is 1-195/240 or 19%.

Let us now consider a different starting point for E (Figure 9).

This time, E is started near ongoing scan A. It will then scan until

it reaches the right end of the scan range, “wrap around”, and start

from the left end of the range (second phase). Therefore, we see

two dotted lines corresponding to scan E. In this case, E can share

with A right from the beginning all the way until A ends, since

both have similar speeds and stay therefore close together. After

sharing with A, E can share pages with scan C until the end of the

scan range is reached. Finally, after starting in phase two, E can

share with scan D until D ends.

We calculate the sharing potential the same way as before. In the

first key range, in which D and E are sharing and C is not, we read

each page twice. In the second range (C and D ongoing, not

sharing), we read each page twice. In the third range (A and E

sharing, C not), again each page is read twice. And in the last

range (C and E sharing and B not), we again read each page twice.

For range sizes 15, 20, 40, and 15, respectively, we have 15*2 +

20*2 + 40*2 + 15*2 = 180 page reads. The potential I/O reduction

is therefore 1-180/240 or 25%. Starting E near scan A is therefore

preferable.

More formally, the algorithm for estimating the number of page

reads for a given SISCAN start location and a given set of

ongoing SISCANs is given in Figure 10. The function reads(r) in

line 10 determines the number of reads and re-reads for any page

in the range r and the function pages(r) determines the number of

pages in range r. Since the number of time intervals is

proportional to the number of ongoing scans and the number of

key ranges in R is proportional to the number of scans as well, the

running time of this function is O(|S|).

Now that we know how to calculate the expected page read cost

for a given SISCAN start location, we will discuss next how to

pick the start location that leads to a small read cost.

6.2 Finding the best starting location
One naïve way to find the best starting location would be to try

every possible start location and pick the one with maximum

sharing potential. Since this requires O(p) steps where p is the

number of pages in the scan range, this is not very practical.

Fortunately, it suffices to inspect only the locations where we can

expect local optima. In the following, we call such locations

“interesting locations”.

Consider Figure 11. This is an example with one ongoing scan A

and a new SISCAN that starts at time T0. Knowing how many

other scans are active between T0 and T1, we can draw an

“envelope” around A (shown as hashed area) that indicates the

area in which there can be sharing between A and another scan. If

another scan is outside the envelope, there is no sharing because

they are too far apart. There are three interesting starting locations

for the new scan: E1, E2, and E3. E1 is the location when the new

scan touches A’s envelope on the left. E2 is the location when the

new scan goes through the center of A’s envelope. And E3 is the

location when the new scan touches A’s envelope on the right.

The reason why these locations are the only ones that may have

local optima is because between interesting locations E1 and E2

the sharing potential is monotonically increasing and between E2

and E3 it is monotonically decreasing.

In this example, the solution would obviously be the starting

location E2 as it has maximum sharing. However, for many

ongoing scans, there may be many local optima. Even then it still

holds that the monotonicity of the sharing potential function may

change from increasing to decreasing (or vice versa) from one

interesting location to the next while being monotonic (actually

even linear) between interesting locations. In other words, local

optima can only occur at interesting locations.

ti
m

e

loc

Scan key range

23 3

A B

C

D

E

1 3

T0

T1

T2

Figure 8. Sharing potential when starting new SISCAN E at

beginning

ti
m

e

loc

Scan key range

2 2 22

A B

C

D

E
T0

T1

T2

Figure 9. Sharing potential when starting new SISCAN E

near scan A

 1 fct calculateReads(scan t, scanset S)
 2 R := empty set;
 3 for each time interval Ti defined by
 scan start/stops
 4 n := number of ongoing scans in Ti;
 5 determine key ranges K during which t can
 share with scans in S based on n;
 6 add K to R;
 7 endfor
 8 reads := 0;
 9 for each key range r in R
10 reads := reads + reads(r)*pages(r);
11 endfor
12 return reads;
13 endfct;

Figure 10. Algorithm for calculating the number of page reads

necessary for a given SISCAN start location

1304

This yields a simple algorithm for finding the best starting

location: (1) determine all interesting points, (2) for each such

point, compute the sharing potential with the calculateReads

function (Figure 10), (3) pick the point with minimum reads

(maximum sharing). Step (1) requires to find the three interesting

locations for each scan “envelope” in each time slice. There are

O(|S|) time slices and O(|S|2) envelopes for |S| scans. Since each

sharing potential calculation requires O(|S|) cost, we have an

overall cost of O(|S|3).

6.3 Practical implementation
While the previously discussed algorithm will find the starting

location with optimal sharing potential, it has two shortcomings

for practical purposes: (1) the cost is relatively high (even though

this cost only occurs at SISCAN start time) and (2) linearly

ordered locations for all SISCANS as assumed in the

time/location graph in Figure 11 may not be available without

access to the index structure (as we had discussed earlier, the RID

component of the index scan location may not be ordered in any

way). For this reason, we now discuss a modified version of the

previous algorithm that has lower cost and treats the index

structure as a black box. The high-level idea is to compute the

sharing potential for anchor groups that overlap the new scan’s

key range based on the partial ordering between SISCANs

discussed in Section 5.3.

For purpose of presentation, let us assume one anchor group of

three SISCANs A, B, and C as shown in Figure 12. The current

time is again indicated as T0. We also assume the current location

of A, B, and C (the intersection of their traces with the dashed T0

line) are inside the new scan’s key range (shown as shaded

region), as is the end key of A and B and the anchor. C’s end key

is assumed to be outside of the new scan’s range. Contrary to the

previous algorithm, we now have only partial knowledge about

the relative locations of scans and their end keys. We know the

distance of A’s current location from the anchor (30 in this

example), the distance of B’s location from the anchor (60 in this

example), and the distance of C’s location from the anchor (75 in

this example). In addition, we know the past (and assumed future)

speed and the expected number of remaining pages of A, B, and C

(denoted by “remaining(A/B/C)”). Scan speed and remaining scan

pages are maintained for each SISCAN (cf. Section 5.2) and give

us the approximate end location of a scan relative to its start

location (as shown in Figure 12).

This still leaves the question of where the start of the new scan

range is located (we only know it is before the anchor) and where

the end of the new scan range is located (we only know it is

between the end of B’s scan range and the end of C’s scan range).

Since the location of the new scan start key is needed to estimate

where a “wrapped” SISCAN continues, we will estimate the

sharing potential only for the “pre-wrap” phase. In addition, to be

conservative, we set the end location of the new scan to the

smallest location (in this case, the end location of B).

We now have nearly all the parameters needed to apply the

calculateReads function to this scenario: we know the

current locations and the end locations of A, B, C (and their trace

slopes), we know the new scan’s expected speed (from the

average speed attribute), and we have fixed the new scan’s end

key location. The only parameter missing is the new scan’s start

location. In the previous section, we picked it from among the

“interesting locations”. In this scenario, we have only three

locations to pick from: the current location of A, B, and C. We

propose to calculate the sharing potential for each of these. The

best one gives us the best starting location for this group of scans.

We then repeat the same procedure for other anchor groups that

overlap the new scan’s key range and pick the location with best

overall sharing potential among all groups as the new scan’s

starting location. The pseudocode algorithm is shown in Figure

13. Since we need to evaluate calculateReads once per scan,

the overall cost for this algorithm is O(|S|2).

One interesting special case in the algorithm is in line 2. If there

are no ongoing SISCANs, we start the new scan at the location of

the last SISCAN that finished. This way, the new scan can reuse

any bufferpool pages left behind by the scan that finished.

Technically, we should start the new scan several pages before the

last scan’s location, depending on how many pages of this scan

we expect to be left in the bufferpool. In the location/time diagram

ti
m

e
loc

Scan key range

A

T0

E1
(entering)

E2
(max overlap)

E3
(leaving)

Figure 11. Determining "interesting" SISCAN starting

locations

ti
m

e

loc

A

T0

B

C
anchor

off=30 off=60 off=75

remaining(A)

remaining(B)

remaining(C)

E
n
d
 o

f
n
e

w

s
c
a
n
 r

a
n
g

e

S
ta

rt
 o

f
n
e

w

s
c
a
n

 r
a
n

g
e

Figure 12. Finding best SISCAN starting location with

anchors and offsets

 1 fct findStartLoc(scan t, scanset S)
 2 if S is empty, return most recently finished
 scan’s location;
 3 G := set of SISCAN groups that overlap t’s
 scan range;
 4 if G is empty, return t’s regular start loc;
 5 for each group g in G
 6 loc(g) := best start location for t in the
 group (as discussed in text);
 7 endfor
 8 return loc(g) with best sharing among all g;
 9 endfct;

Figure 13. Finding SISCAN starting location

1305

in Figure 8, such terminated scans would show up as vertical

traces (since they are no longer moving forward) and with a wide

(hashed) sharing area (since no other SISCANs are running). So,

by keeping the last terminated SISCAN in the data structure with

speed set to 0, this special case could be handled by the general

algorithm.

Once the new SISCAN’s location is determined, its anchor is set

to either its start key/RID (if it cannot start with some other

SISCAN) or to some other SISCAN’s anchor (if it starts at that

other SISCAN’s location) with the offset being 0 or the other

SISCAN’s offset, respectively.

7. SISCAN LOCATION UPDATE
In this section, we discuss how a SISCAN location change

influences the various SISCAN attributes, how the speed of

SISCANs can be adaptively controlled, and how the bufferpool

page priorities are influenced by the scan states.

7.1 SISCAN attribute updates
As discussed in Section 4.2, the ISM is called periodically to

update the SISCAN location in its data structures. This call can be

performed every time a new table page is accessed or at every x

page accesses. There is a tradeoff: if the updates are too frequent,

the accuracy of the SISCAN location in the data structure is high

but there is extra overhead at every page change. On the other

hand, if the updates are too infrequent, this overhead is lower but

the location accuracy decreases, leading to less optimal decisions

for SISCAN start locations and speed control. In our

implementation, we update locations at fixed intervals (every 16

32k pages, to be precise) but we plan to investigate more adaptive

schemas in future work.

At every location update call, the following SISCAN fields are

modified: location, remaining pages, speed, and anchor/offset

information. In our implementation, we set the speed to (pages

read since last update)/(time since last update). Since this speed

estimate depends only on the near past, it can capture speed

fluctuations caused by interactions with other ongoing scans.

The anchor offset is simply incremented with one important

exception. When a SISCAN A’s new location is equal to some

other SISCAN B’s anchor, A sets its anchor to B’s anchor and

sets its anchor offset to (A’s offset)+(B’s offset). This way, the

anchor/offset-based partial SISCAN order discussed in Section 0

now also has an order between A and B. Or in other words, A and

B are now in the same anchor-group.

7.2 SISCAN speed control
No matter how smart the starting location of a SISCAN is picked,

scans that were perfectly aligned at the beginning, may start

drifting apart over time. This is caused by different index scan

predicates and disk access interference. Without actively keeping

SISCANs aligned by adjusting their speeds, the drift will lead to

reduced bufferpool sharing over time.

We have addressed the drift problem in our previous work on

bufferpool sharing for table scans [8]. We will therefore just

summarize this work here, as the translation to index scans is very

straightforward. In [8] we propose to group table scans together

based on similar speeds. The table scan in the front of the group

(in scan direction) is designated as the “leader” and the scan in the

back of the group is designated as the “trailer” of the group. In

order to reduce drift, we measure periodically whether the

distance between leader and trailer becomes larger than some

threshold (typically less than two prefetch extents). If it does, we

insert some wait operations for the leader to let the trailer (and the

rest of the group) catch up. The wait duration is determined by the

measured speeds of the table scans in the group and the distance

between leader and trailer. Technically, the wait is inserted during

an updateSISCANLocation call; the call therefore simply

appears to take a longer time to the calling SISCAN.

We now show how the partial ordering on SISCANs can be used

to determine leaders and trailers (Figure 14). Let us consider the

groups in Figure 6 again and assume the bufferpool size is 50

pages. We know the partial order between the scans is A º B,

B º C, C º D, and E º F. We also know the scan distances are

d(A,B)=40, d(B,C)=10, d(C,D)=15, and d(E,F)=20. We first sort

the scan pairs by distances and then add them in increasing order

to form larger scan groups until the sum of the extents of all scan

groups reaches the bufferpool size (lines 3-8). Here, we first add

(B,C), then (C,D), resulting in the group (B,C,D), and finally we

add (E,F) which does not merge with the other groups since no

scans are in common. The final result are the groups (A) with

extent 0, (B,C,D) with extent 25, and (E,F) with extent 20 and an

overall extent of 45 (which is smaller than the bufferpool size).

For each of these groups we have a leader (the largest by location)

and a trailer (the smallest by location). A is leader and trailer of

the first group, B is trailer and D is leader of the second group,

and E is trailer and F is leader of the third group (lines 9-11).

Thereby we have mapped this scenario to the scenario of table

scan groups with leaders and trailers in [8] and can now apply the

throttling technique discussed there.

Slowing down a scan operation in order to improve query

response time may seem counter-intuitive at first. However, let us

consider what would happen if the leader was not slowed down.

In this case, the distance between the leader and other scans in the

group would keep increasing until the distance is so large that

bufferpool pages can no longer be reused between them. Once this

happens, every page that the leader has read, needs to be re-read

by the other scans in the group – the I/O cost has doubled. This

additional I/O in return also affects the leader itself negatively

since its I/O requests get delayed more due to a busier disk.

Of course, there is a limit to the amount of throttling of a scan. If

all scans in a group are progressing very slowly relative to the

leader, it may not make sense to keep slowing down the leader.

For this reason, we keep track of the accumulated slowdown of

each SISCAN (this can be stored in an additional field in the ISM

data structure). If a SISCAN was slowed down for more than 80%

of its estimated total scan time, it is not slowed down anymore

until it finishes. By limiting the per-scan delay, we can enforce

some amount of fairness in that no single scan may get delayed

 1 fct findLeadersTrailers(scanset S)
 2 R := empty set;
 3 while sum of extents of groups in R <
 bufferpool size
 4 pick a pair (x,y) not in R with xºy and
 d(x,y) minimal;
 5 if (w,x) in R, replace it with (w,x,y)
 6 elsif (y,z) in R, replace it with (x,y,z)
 7 else add (x,y) to R;
 8 endwhile
 9 for each group (x, …, y) in R
10 mark x as trailer and y as leader;
11 endfor
12 endfct;

Figure 14. Classifying SISCAN leaders and trailers

1306

indefinitely in order to improve bufferpool sharing for other

scans. The “80%” threshold is based on our experience with

various workloads. One interesting extension would be to make

this threshold dynamic by taking into account query priorities and

machine characteristics.

7.3 Adaptive bufferpool page prioritization
As discussed in Section 4.2, each SISCAN releases pages that are

processed with a priority determined by the ISM rather than with

a fixed priority. The idea is to assign a high priority to pages in

the bufferpool that are needed soon by members of the group and

a low priority to pages that will not be needed soon. Similar to

[8], we propose to use the leader/trailer status (as determined in

the previous section) to decide on the priority. Leader SISCANs

assign a high priority to their finished pages because other

SISCANs that need the same page are following. Trailer

SISCANs assign a low priority to their finished pages because

there is a big gap until the next following SISCAN and so the

page would get discarded anyway at some point in time before the

following SISCAN can read it.

8. EXPERIMENTAL RESULTS
This section discusses the experimental results obtained from our

prototype implementation in IBM’s DB2 Universal Database

(UDB). The implementation of SISCAN operators and the ISM is

built on top of the table scan bufferpool-sharing infrastructure for

DB2 UDB described in [8]. That infrastructure allows normal

table scans’ speed and bufferpool page prioritization to be

controlled via a table scan sharing manager (much like the ISM).

The table scan sharing manager provides functions similar to the

ISM: “start table scan”, “end table scan”, “update table scan

location”, and “get page priority”. We extend these functions to

also accept index scans. Internally, the table scan sharing manager

keeps track of groups of table scans. In the new prototype, the

ISM keeps track of groups of SISCANs and their anchors and

offsets. Since we view SISCANs just as another type of scans, we

can reuse all of the grouping, leader/trailer classification,

throttling and page prioritization algorithms. The implementation

effort is mainly limited to the algorithm for determining the

SISCAN start location and the modified SISCAN process logic

(cf. Section 4.2).

While the presented algorithms work for any type of index-based

scans, we have decided to implement our prototype first for MDC

block index scans [1] [2] since these are increasingly popular in

customer settings. The block size is configurable. In our

experiments, we set it to 16 pages with a page size of 32 Kbytes.

We perform calls to updateSISCANLocation at every extent

boundary.

We evaluated our prototype on two hardware platforms: (1) an HP

Integrity rx5670 server powered by 4 Intel Itanium 2 processors

running at 1GHz on HPUX OS with 15GB main memory and

FAStT storage manager and (2) an 8-node p660 AIX cluster with

each node powered by 4 PowerPCs running at 600MHz with 8GB

main memory and 16 SSA disks. The reason why we use two

platforms is because HP-UX allows us to measure disk seek times,

while AIX allows us to measure disk I/O wait times. Both are key

indicators for evaluating our algorithm.

The database for the experiments is a 100GB TPC-H [25]

database. The bufferpool size is about 5% of the database size.

We performed three sets of experiments: single stream TPC-H

runs (to investigate the overhead of our SISCAN extensions), runs

with single TPC-H queries that are started in a staggered way and

full TPC-H throughput runs. In each set of experiments, we obtain

measurements for vanilla DB2 and our prototype over five runs

and average the results. Due to space constraints we only report

on the latter two experiments but note that the observed overhead

in the first experiment was well below 1% of the end-to-end time.

8.1 Staggered Q1/Q6 query performance
For the single query runs we chose TPC-H queries Q1 and Q6.

While the former is very CPU-intensive, the latter is highly I/O-

intensive. For both tests, the queries were started 10s apart, so that

the runs are overlapping. The runs were performed on the AIX

box which displays the I/O waits in the iostat readings.

Figure 15 shows the timing measurements for Q6. The left graph

shows the distribution of CPU time spent in user time, system

time, idling, and in I/O wait. “Base” indicates the distribution for

the plain DB2 runs. It shows that in this configuration, a large

amount of time is spent in I/O wait. For our prototype (indicated

with “SS”), I/O wait time is reduced by half, indicating that our

algorithm is making pages available to the SISCAN processes

faster by improving bufferpool sharing and reducing seek times.

Similarly, the idle time is reduced showing better CPU utilization.

In turn, the user time component increases, indicating that with

pages now more easily available, the scan processes are able to do

more useful work. The right graph shows the execution times for

each of the three Q6 runs. Each of the runs gains more than 50%

User System Idle Wait
0

20

40

60

80

100

120

%
 O

f
T

o
ta

l
T

im
e

Base ScanShare

CPU Usage Stats

1st Q1 2nd Q1 3rd Q1

T
im

in
g
s
 i
n
 S

e
c
o
n
d
s

Base Scan Share

Query Timings

Figure 16. Timings for 3 Q1 streams (CPU intensive)

User System Idle Wait

0

10

20

30

40

50

60

70

%
 O

f
T

o
ta

l
T

im
e

Base SS

CPU Usage Stats For 3 Steams

1st Q6 2nd Q6 3rd Q6

T
im

e

Base SS

3 Streams Timings

Figure 15. Timings for 3 Q6 streams (I/O intensive)

1307

due to the sharing of bufferpool pages with the middle run gaining

most due to its sharing potential being highest.

In contrast, Figure 16 shows the same types of results for

staggered runs of TPC-H query Q1 – a very CPU-intensive query.

As can be seen in the left graph, the amount of time spent in I/O

idle and wait is negligible compared to the user slice. Despite that,

improved bufferpool sharing is able to reduce even these small

amounts further. Also, since fewer system read calls are now

being made, the system time is going down as well. All these

reductions lead to more time available for the scan processes to do

useful work (as shown in the user time slice). Thus, as the right

graph shows, even in these sub-optimal conditions, our prototype

improves the runtime of each Q1 noticeably.

8.2 TPC-H throughput performance
During a TPC-H throughput run, five query streams are started at

the same time. Each stream consists of a predefined order of 22

queries. Since the order is different in each stream, different

queries overlap at different points in time. In the 22 queries, there

are 18 block index scans and 29 table scans.

In our experiments, we measure both the end-to-end time gains of

TPC-H, as well as gains per stream and disk I/O gains. These runs

were done on the HP box since HP-UX shows seek times as part

of the iostat readings. Table 1 summarizes the overall results

as improvements over the vanilla DB2 measurements. The first

column shows that end-to-end runtime of the TPC-H throughput

runs was improved by 21% with our prototype. These gains are

largely due to better bufferpool usage between index scans. This

is visible from the second and third columns of Table 1 which

show that the average disk reads (i.e., the amount of data read

from disk) and the average disk seeks are reduced by 33% and

34%, respectively. The reduced disk utilization may be used to

scale to a larger number of streams with the same hardware.

Table 1. Performance results for 5 stream TPC-H

End-to-end gain Avg. disk read gain Avg. disk seek gain

21% 33% 34%

Figure 17 shows the amount of data read from disk over time.

Each bar in the graph stands for a fixed unit of time and the y-axis

indicates the amount of data read during that time unit. The graph

entitled “Base” shows the read characteristics for the unmodified

DB2 version during the TPC-H run. It shows some amount of

jitter which is due to different queries being executed in the

different streams over time. Our prototype (indicated by “SS”)

shows the same jitter but the amount of reads is lower in most

time intervals and the run ends sooner.

Similarly, Figure 18 shows the progress of disk seeks (y-axis) per

time unit (x-axis). As with the data reads, the disk seeks is very

much reduced during most time intervals. This is because with our

prototype, scans are synchronized and thus tend to reuse the pages

demanded by each other. Thus, although each scan ends up

demanding the same page set as with the base code, they demand

it in such an order that the disk has to seek less often to satisfy

them.

Time

S
e

e
k
s
 P

e
r

S
e

c

SS Base

Figure 18. Disk seeks over time for plain DB2 and our

prototype

1 2 3 4 5

stream

ti
m

e
 (
s

)

base

ss

Figure 19. Per stream gains (5 stream TPC-H)

Q
1

Q
1
0

Q
1
1

Q
1
2

Q
1
3

Q
1
4

Q
1
5
a

Q
1
6

Q
1
7

Q
1
8

Q
1
9

Q
2

Q
2
0

Q
2
1

Q
2
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

ti
m

e
 (

s
)

base

ss

Figure 20. Per query gains (5 stream TPC-H)

Time

K
B

 R
e

a
d

SS Base

Figure 17. Disk read amounts over time for plain DB2

and our prototype

1308

In order to investigate the “fairness” of our algorithm, we measure

the per-stream and per-query gains. The per-stream results are

shown in Figure 19. We can see that each stream gained similarly

from the improved bufferpool sharing. The per-query results are

shown in Figure 20. The chart shows the average execution time

for the 21 queries for the 5 TPC-H streams. While the gains from

the bufferpool sharing vary with queries, no query shows a

negative effect. This is remarkable given the fact that we slow

down individual SISCANs whenever drift occurs. Apparently no

single query’s SISCANs get “punished” with throttling over the

others. Instead, throttling seems to be distributed across the

queries for mutual benefit. We also point out that certain queries

benefit more from bufferpool sharing than others (e.g., query 21).

This is due to the amount and range size of the index scans

present in the queries.

9. CONCLUSION
In this paper, we presented a technique to improve caching

between concurrent index scans on an RDBMS. At the core of the

idea is a new index scan sharing manager that keeps track of

ongoing scans and decides where to start a new index scan and

how to throttle ongoing scans. Since our extensions treat the index

itself as a black box and requires only few extra calls to the

sharing manager, integration with an existing architecture is very

easy. Our prototype in DB2 UDB shows significant gains for the

TPC-H benchmark, both in terms of reduced disk activity and in

end-to-end timings.

In the future, we plan to investigate sharing for other types of

index scans and tighter coupling of SISCANs and the query

optimizer.

10. REFERENCES
[1] Padmanabhan, S., Bhattacharjee, B., Malkemus, T., Cranston

L., Huras, M., “Multi-Dimensional Clustering: A New Data

Layout Scheme in DB2”, Proceedings of SIGMOD 2003.

[2] Bhattacharjee, B., Padmanabhan, S., Malkemus, T., Lai, T.,

Cranston, L., Huras, M., “Efficient Query Processing for

Multi-Dimensionally Clustering Tables in DB2”,

Proceedings of VLDB 2003

[3] Teradata Corporation, ”Introduction to Teradata RDBMS

V2R5.0”, December 2002

[4] Kyte, T., “Expert Oracle”, Apress, 2005

[5] Winter Corporation, “Peak Workload, DW 2005”,

http://www.wintercorp.com

[6] E. Grochowski; R.D. Halem, “Technological impact of

magnetic hard disk drives on storage systems” IBM System

Journal,Vol 42, No 2, 2003

[7] R. Bhashyam. Technology challenges in a data warehouse. In

Proc. Int. Conf. on Very Large Data Bases, pages 1225–

1226, 2004.

[8] Lang, C., Bhattacharjee, B., Malkemus, T., Padmanabhan, S.,

Wang, K.,”Increasing Buffer Locality for Multiple Relational

Table Scans through Grouping and Throttling”, Proceedings

of the ICDE 2007

[9] http://www-306.ibm.com/software/data/db2

[10] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page

replacement algorithm for database disk buffering. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, pages

297–306, 1993.

[11] T. Johnson and D. Shasha. 2Q: A low overhead high

performance buffer management replacement algorithm. In

Proc. Int. Conf. on Very Large Data Bases, pages 439–450,

1994.

[12] J. Robinson and M. Devarakonda. Data cache management

using frequency-based replacement. In Proc. ACM

SIGMETRICS Conf., pages 134–142, 1990.

[13] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho,

and C. S. Kim. LRFU: A spectrum of policies that subsumes

the least recently used and least frequently used policies.

IEEE Trans. Computers, 50(12):1352–1360, 2001.

[14] N. Megiddo and D. Modha. Outperforming LRU with an

adaptive replacement cache, 2004.

[15] P. M. Fernandez. Red brick warehouse: a read-mostly

RDBMS for open SMP platforms. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, page 492, 1994.

[16] T. Walter. Explaining cache — NCR CTO Todd Walter

answers your trickiest questions on Teradata’s caching

functionality. (http://www.teradata.com/t/page/116344/)

[17] R. Bhashyam, "TPC-D - The Challenges, Issues and

Results", NCR Corporation, SIGMOD Record 25(4) 1996:

89-93

[18] www.microsoft.com, “SQL Server 2005 Books Online”

[19] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. QPipe: A

simultaneously pipelined relational query engine. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, pages

383–394, 2005.

[20] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient

and extensible algorithms for multi query optimization. In

Proc. ACM SIGMOD Int. Conf. on Management of Data,

pages 249–260, 2000.

[21] J. Shim, P. Scheuermann, and R. Vingralek. Dynamic

caching of query results for decision support systems. In

Proc. Int. Conf. on Scientific and Statistical Database

Management, pages 254–263, 1999.

[22] M. Zukowski; P.A. Boncz; M.L. Kersten, "Cooperative

Scans", CWI Report 2004, INS-E0411, ISSN 1386-3681

[23] G. M. Sacco and M. Schkolnick. A mechanism for managing

the buffer pool in a relational database system using the hot

set model. In Proc. Int. Conf. on Very Large Data Bases,

pages 257–262, 1982.

[24] H. Chou and D. DeWitt. An evaluation of buffer

management strategies for relational database systems. In

Proc. Int. Conf. on Very Large Data Bases, pages 127–141,

1985.

[25] http://www.tpc.org/tpch

1309

