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ABSTRACT 
The growing nature of databases, and the flexibility inherent in the 
SQL query language that allows arbitrarily complex formulations, 
can result in queries that take inordinate amount of time to 
complete. To mitigate this problem, strategies that are optimized to 
return the ‘first-few rows’ or ‘top-k rows’ (in case of sorted 
results) are usually employed. However, both these strategies can 
lead to unpredictable query processing times. Thus, in this paper 
we propose supporting time-constrained SQL queries. Specifically, 
a user issues a SQL query as before but additionally provides 
nature of constraint (soft or hard), an upper bound for query 
processing time, and acceptable nature of results (partial or 
approximate). The DBMS takes the criteria (constraint type, time 
limit, quality of result) into account in generating the query 
execution plan, which is expected (guaranteed) to complete in the 
allocated time for soft (hard) time constraint. If partial results are 
acceptable then the technique of reducing result set cardinality (i.e. 
returning first few or top-k rows) is used, whereas if approximate 
results are acceptable then sampling is used, to compute query 
results within the specified time limit. For the latter case, we argue 
that trading off quality of results for predictable response time is 
quite useful. However, for this case, we provide additional 
aggregate functions to estimate the aggregate values and to 
compute the associated confidence interval.  This paper presents 
the notion of time-constrained SQL queries, discusses the 
challenges in supporting such a construct, describes a framework 
for supporting such queries, and outlines its implementation in 
Oracle Database by exploiting Oracle’s cost-based optimizer and 
extensibility capabilities. 

1. INTRODUCTION 
The prolific growth in the amount of information being generated 
has lead to larger and larger databases. Most commercial databases 
(including IBM DB2, Microsoft SQL Server, Oracle, MySQL, 
PostgreSQL) have deployed databases ranging anywhere from 
Gigabytes to Terabytes (and now even to Petabytes).  

Furthermore, use of SQL as the standard query language allows for 
formulation of arbitrarily complex queries involving joins of many 
tables, grouping and sorting of results, and the use of expensive 

user-defined functions as filtering predicates.  

The above two trends have introduced the problem of long 
running SQL queries. This is further worsened by unpredictable 
query response times. For example, a query which has worked 
quite well in the past, can take seconds, minutes or even hours to 
complete when executed with an input value that makes the filter 
condition unselective. 

Prior research has tried to address the problem of long running 
queries and unpredictable query response time using the following 
approaches: 

• Optimize for first-few rows: Users can indicate (for example, 
by using a hint in Oracle) that they want to optimize the 
query to return the first few rows as soon as possible. 

• Optimize for top-k rows: This is another variant of ‘first-few 
rows’ optimization, where the user is interested in only the 
top-k candidates (specifiable, for example, using a 
ROWNUM clause in Oracle) of the sorted results. 

• Compute approximate results: Unlike the first two 
approaches which return accurate results, this approach 
speeds up query processing by working only on portions of 
data and hence, returns approximate results. Since the results 
are approximate, errors (in terms of confidence interval) are 
usually estimated to give a measure of goodness of results.  

These approaches try to address the problem of long running SQL 
queries by computing either partial or approximate results quickly. 
However, when a user is constrained for time, the onus of 
employing these approaches intelligently is left to the user. Given 
the sophistication of cost-based optimizers that are now common 
in commercial database systems, it is not an easy task for a user to 
translate a time constraint to an appropriate top-k or approximate 
query.   

Thus, the paper argues that database systems should support time-
constrained SQL queries and examines supporting such a notion in 
Oracle Database. The key idea is to support an additional clause as 
part of SQL query specifying constraint type (soft or hard), time 
limit (time in seconds), and acceptable nature of results (partial or 
approximate). For soft (hard) time constraint, the DBMS generates 
a query execution plan, which is expected  (guaranteed) to 
complete in the allocated time. The acceptable nature of results 
determines the technique employed by the DBMS, namely, 
reducing the result set cardinality when partial results are 
acceptable or using sampling when approximate results are 
acceptable. For approximate results, we additionally provide two 
types of aggregate functions, namely, i) functions that estimate the 
aggregate values for the complete table data even though only a 
portion of the table is used, and ii) functions that compute 
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confidence intervals quantifying the uncertainty in the 
corresponding estimated aggregate values. 

Time-constrained SQL queries would be useful both in traditional 
and emerging database applications: 

• Decision Support Systems (DSS): In traditional DSS 
environments, users have complex aggregate queries with 
long processing time. Often, the user is not interested in full 
query results, but only wants partial results to spot trends (e.g. 
growth rate of sales in different regions). There has been a lot 
of discussion around this in the context of approximate and 
top-k queries. By using a time-constrained query, a user can 
obtain results within a certain time. The results can be 
complete or approximate as long as they meet the time 
constraints.  

• Mobile and Sensor Network Applications: In some mobile 
applications, the user is interested in complex select queries 
with top-k results, which are often bound by time. Consider a 
user who expects to pass a certain location in the next 2 
minutes, and is interested in finding out if there are any 
Starbucks near that location. In this case, any results returned 
after 2 minutes are useless to the user. In such a case, the user 
query can be easily modeled with a time constraint. In RFID 
applications, sensors generate voluminous data tracking 
objects in containers (shelf, shipment package, etc.) that are 
part of supply chain. Time-constrained queries can be used to 
generate approximate statistics regarding objects detected by 
RFID sensors in a timely manner. 

• Data Center Service Level Management: Consider a data 
center that employs a Service Level Agreement (SLA) to 
ensure quality and codify customer expectations. Such a 
system may want to flag queries which take an inordinately 
long amount of time, indicating possible problems with 
resource availability or poor execution plans, or simply due to 
use of an unselective filter condition. The system can impose 
a time constraint on all such queries.  

We have prototyped the support for soft time-constrained SQL 
queries in Oracle Database, using the cost-based optimizer features 
(EXPLAIN PLAN and system and object level statistics) and the 
extensibility features of Oracle (table functions).  We conducted 
experiments using a 10GB sized TPC-H data set [26], which 
validate the feasibility of our approach (see Section 7 for more 
details). 

The key contributions of this paper are as follows: 

• A framework for supporting time-constrained SQL queries 
leveraging features available in a commercial database 
system,  

• An algorithm for translating time constraints on a multi-table 
query that does not involve joins on foreign keys by choosing 
the tables to which the sample clause should be added and 
determining the corresponding sample sizes,  

• A scheme for supporting hard time constraints that puts hard 
limits on the top-level query as well as on each of its blocking 
operations, and 

• Experimental evaluation validating the feasibility of the 
approach. 

The rest of this paper is organized as follows. Section 2 discusses 
related work. Section 3 introduces the terminology and the key 
concept of time-constrained SQL queries. Section 4 discusses 
relevant features of Oracle Database. Sections 5 and 6 cover the 
scheme for supporting soft and hard time constraints respectively. 
Section 7 presents results of an experimental study conducted 
using a TPC-H Benchmark data set, which is followed by a 
discussion in Section 8. Section 9 concludes the paper and outlines 
future work. 

2. Related Work 
Real-time database systems have been a topic of research for over 
a decade now. However, as pointed out in [28, 29], the focus has 
been on transaction processing issues encompassing areas of 
resource scheduling, concurrency control, and memory 
management. Also, the bulk of the work in this area is in relation 
to main-memory based systems.  

In contrast, our work focuses on extending a traditional database 
system with time constraints on long running SQL queries.  It 
leverages research done in the areas of top-k query processing, 
approximate queries, and error estimations. Here we briefly 
discuss the relevant work in each of these areas.  

The need for a SQL extension to explicitly limit the cardinality of 
a query result was proposed in [3]. The basic strategy of limiting 
data that need to be examined by augmenting the query with a 
range predicate is discussed in [5, 23].  In [4], authors propose a 
partitioning-based approach to efficiently process top-k queries. 
For queries involving joins, [24] proposes generating join results 
ordered on a user-defined scoring function. In general, the need 
for rank-aware query optimization and possible approaches to 
supporting it is discussed in [25]. Note that most commercial 
database systems allow specifying top-k query and its 
optimization. For example, Oracle Database supports the 
ROWNUM clause [19], which can be used to specify top-k 
results, and Oracle cost-based optimizer takes that into account in 
generating an optimal query execution plan [18]. 

Approximate query processing focuses on returning approximate 
results by employing sampling techniques [8, 9, 10]. Online 
aggregation is another area where approximate query processing 
techniques are used [6, 7]. The work in this area also includes 
estimating errors in the reported results, for example, computing 
confidence interval values for common aggregates such as SUM, 
AVG, and COUNT [6].  The ability to restrict rows from a table to 
a sample is supported in most commercial database systems 
including Microsoft SQL Server [15], IBM DB2 [16], and Oracle 
[19]. 

Another somewhat related area of work is progress monitors [11, 
12, 13, 14] for long running SQL queries. They try to address the 
problem of long and unpredictable query processing time by 
providing a progress bar, which indicates the percentage of query 
execution completed so far. 

Time-constrained query processing is considered in detail in the 
context of CASE-DB prototype database system [1, 2]. For queries 
involving non-aggregates, this work assumes partitioning of a 
relation into a collection of fragments, where each fragment 
contains semantically related rows. For example, one fragment 
may contain data that is more recent and hence must be processed 
first. They propose a scheme of implementing various relational 
operations by transforming the original query to work over 
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corresponding table fragments. For queries involving aggregates, a 
sampling technique is employed. For queries involving multiple 
tables, the problem is simplified by assuming equal sample sizes 
from all the participating tables. The work also provides statistical 
estimators when sampling is employed. 

Our work of supporting time-constrained SQL queries in Oracle 
Database differs from CASE-DB in the following ways: 1) We 
transform the query and rely on Oracle’s cost-based optimizer to 
estimate the query processing time. 2) For handling queries on 
non-aggregates, our scheme does not require the user to specify 
fragments for a relation. 3) For queries involving multi-table joins, 
our scheme is flexible in that it can identify one or more tables to 
which the sample clause is added. Furthermore, the sample size for 
different tables could be different.  4) Our scheme for supporting 
hard time constraints introduces timers for each blocking 
operation.  

3. KEY CONCEPTS 
This section gives the terminology, and describes time-constrained 
SQL queries and related concepts. 

3.1 Terminology 
Often, the end user has time constraints and wants the query 
results within certain time bounds. We introduce the concept of 
soft time constraints where the end user only gives directives on 
the desired time for the query to return results, and hard time 
constraints, where the query is guaranteed to return results within 
the specified time. 
For a time-constrained query, the query results can be approximate 
or partial.  The query can sample a portion of the data that is 
queried and return approximate results based on the sample. 
Alternately, it can choose to return only a partial subset of the 
results (first few rows or top K rows in case of sorted result) with 
the guarantee that they are accurate. 

3.2 Time-Constrained SQL Queries 
The syntax of SQL’s SELECT statement can be extended by adding 
a TIME CONSTRAINT (T) clause (where T indicates time in 
seconds) and additional clauses to specify the result set 
characteristics (approximate or partial). The resulting query syntax 
is as follows: 

SELECT … FROM … WHERE … 
GROUP BY … HAVING … 
ORDER BY … 
[[SOFT|HARD] TIME CONSTRAINT (T) 
 [WITH {APPROXIMATE|PARTIAL} RESULT]]; 

If neither SOFT nor HARD is specified, by default soft time 
constraint will be assumed. If the WITH ... RESULT clause is not 
specified then the system computes approximate results by default. 
Although T in the TIME CONSTRAINT (T) clause can be replaced 
by an SQL <value expression>, which is not correlated with 
the rest of the query, this paper only focuses on the case of T as an 
integer. In addition, this paper does not address the cases of putting 
the TIME CONSTRAINT clause into sub-queries, DML statements 
and even DDL statements because the semantics may be unclear. 
However, the semantics of the TIME CONSTRAINT clause in a 
top-level SQL query is clear, namely, return the results (partial or 
approximate) for the top SQL query as per the specification, in the 
specified time limit.  

3.3 The Basic Approach 
For supporting soft time constraints, the input query is 
transformed by either  
• augmenting it with a  ROWNUM clause that reduces the result 

set size, or  
• augmenting it with a SAMPLE clause that reduces the data 

blocks scanned and the intermediate result size returned from 
the referenced table(s) 

When the user asks for partial results, the query is augmented with 
the ROWNUM clause. When the user asks for approximate 
results, the query is transformed by augmenting it with the 
SAMPLE clause. The transformed query is expected to finish 
sooner. For example, consider the following time-constrained SQL 
query where the user is interested in ‘APPROXIMATE’ results: 

Q1: SELECT AVG(salary) 
FROM employees 
SOFT TIME CONSTRAINT (50) 
WITH APPROXIMATE RESULT; 

The user indicates that the specified query should be completed 
with approximate results in 50 seconds. The above query after 
rewrite may be transformed into 

Q1-T: SELECT AVG(salary)  
FROM employees SAMPLE BLOCK (10); 

The sample clause specifies the sample size (in percentage). Thus, 
in the above transformed query, only about 10%1 of table blocks 
are accessed in computing the average, which reduces the overall 
query processing time. Thus, augmenting the SAMPLE BLOCK 
clause to the query is expected to reduce the time needed to 
complete the query. The same happens for the case of augmenting 
the ROWNUM filter condition in the top-k or partial result query.  

The challenge is in correctly estimating the result set cardinality in 
the case of partial results or estimating the sample size in the case 
of approximate results, which can lead to timely completion of the 
query.  

3.4 Soft Time-Constrained Query Definition 
and Processing 
Definition: A query Q with a soft time constraint of T seconds 
� testimated_by_optimizer (Q’) BETWEEN T-d AND T, where d 
is a small time unit and Q’ is the transformed query. 

That is, the transformed query should have an estimated time 
within the specified time limit.  

To estimate the result set size in the case of partial results, we can 
proceed as follows. Let the function fQ(r), which represents that 
the time to execute query Q depends on result set size r. Thus, 
fQ(r) = T, where T is the specified time constraint. The desired r is 
a root of equation fQ(r) – T = 0 and is obtained using a root 
finding algorithm [20]. 

Similarly, estimating the sample size for a single table query is 
straightforward. Let the function fQ(s), which represents that the 
time to execute query Q depends on sample size s. Thus, fQ(s) = 
                                                                 
1 (10%: This percentage indicates the probability of each row, or 
each cluster of rows in the case of block sampling, being selected 
as part of the sample. It does not mean that the database will 
retrieve exactly sample percent of the rows of the table.) 
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T, where T is the specified time constraint. The desired s is a root 
of equation fQ(s) – T = 0 and is obtained using a root finding 
algorithm as before. Note that Oracle’s EXPLAIN PLAN feature is 
used to estimate fQ(r) and fQ(s). 

However, for queries involving multiple tables, there is no easy 
way to determine the set of tables to which the sampling clauses 
should be added and to determine the respective sample sizes. For 
queries involving joins of tables via foreign key, we add the 
sampling clause only to the fact table as proposed in [8]. For the 
class of queries that do not involve joins on a foreign key, we 
propose an algorithm that determines the tables for which the 
sample clause should be added and computes the corresponding 
sample sizes (see Section 5.2.3 for details).  

Adding the SAMPLE and the ROWNUM clauses to the queries as 
part of query transformation allows supporting soft time 
constraints. That is, the system only transforms the query based on 
the EXPLAIN PLAN time estimates. However, the actual 
execution may take longer than the specified time constraint.   

3.5 Hard Time-Constrained Query Definition 
and Processing 
Definition: A query Q with a hard time constraint of T seconds 
� telapsed (Q)  <= T.  

That is, the query must complete within the specified time limit. 
We propose the following scheme for supporting hard time 
constraints: 1) Transform the input query by treating the specified 
time limit as a soft constraint. The estimated time for the 
transformed query meets the specified time limit. 2) Generate 
execution plan and use the estimated time information for various 
operations to associate timers as follows: 

• A timer for top-level operation with time set to the specified 
time limit. 

• A timer for every blocking operation with time set to the 
estimated time for corresponding operation in execution plan if 
‘APPROXIMATE RESULT’ is specified. 

• If ‘PARTIAL RESULT’ is specified, the “ROWNUM <= RNO” 
condition can be pushed into some blocking operations, the 
variable RNO will be adjusted in each of these blocking 
operation to meet its time budget during the execution.   

3.6 Aggregates in Time-Constrained Queries 
When time-constrained queries involve aggregates and the 
SAMPLE clauses are added, the user would by default get the 
aggregate values based on the data sampled. We propose three new 
user-defined aggregate functions – estimatedSum, 
estimatedCount, and estimatedAvg that can estimate the 
aggregate values for the complete table data even though only a 
portion of the table is used to compute the aggregates. Also, we 
propose three ancillary user-defined aggregate functions – 
sumConfidence, countConfidence and avgConfidence that 
can compute confidence intervals quantifying the uncertainty in 
the corresponding estimated aggregate values. The ancillary 
aggregate functions take in the expression and the probability with 
which to compute the estimate. Note that the user-defined 
aggregate function estimatedAvg returns the same value as AVG 
does, but it is needed for computing confidence interval 
avgConfidence. The confidence interval functions are based on 

Central Limit Theorem, and Hoeffding’s inequality, which are 
well covered in several papers [6, 30, 31].  

A query with built-in and user-defined aggregate functions: 

Q2: SELECT COUNT(*), 
       estimatedAvg(salary), 
       avgConfidence(salary, 95) 
FROM employees 
SOFT TIME CONSTRAINT (50) 
WITH APPROXIMATE RESULT; 

The above query returns the exact count for the sampled portion of 
employees table, the estimated average salary for the entire 
employees table, and also returns the confidence interval (say c) 
[6], indicating that the estimated average salary is within ± c of 
the actual computed average salary, with 95 percent probability. 
Note that when the time limit is large enough to process the entire 
employees table, estimatedSum and estmatedCount will 
return the same values as SUM and COUNT do, and the confidence 
interval functions will return 0.  

Both the estimated aggregates and the confidence interval 
functions utilize collected statistics (such as histograms) and run-
time query results to refine their final values. They can help the 
user determine the nature of error in the returned results. 

3.7 EXPLAIN_TQ_RESULTS View  
The characteristics of time-constrained SQL query results are 
maintained in an in-memory data structure, which is available to 
the user as EXPLAIN_TQ_RESULTS (RESULT_TYPE, 
NUMROWS, ESTIMATED_NUMROWS, COMMENT) view. 
The RESULT_TYPE column displays ‘PARTIAL’ or 
‘APPROXIMATE’, NUMROWS gives number of rows returned, 
ESTIMATED_NUMROWS column gives the result set cardinality 
without time constraint, and COMMENT contains any additional 
comment regarding the result. For example, when the ROWNUM 
filter condition is used for the case of partial results, the estimated 
total number of resultant rows for the following query:  

Q3: SELECT salary, MAX(tax)   
FROM tax_return 
GROUP BY salary   
ORDER BY salary DESC 
SOFT TIME CONSTRAINT (10) 
WITH PARTIAL RESULT; 

can be obtained by querying the EXPLAIN_TQ_RESULTS view 
as follows: 

SELECT RESULT_TYPE, NUMROWS,ESTIMATED_NUMROWS 
FROM EXPLAIN_TQ_RESULTS; 
 
RESULT_TYPE   NUMROWS    ESTIMATED_NUMROWS 
-----------   -------    ----------------- 
    PARTIAL    100000              1000000  

Only the result characteristics for the most recent query are 
maintained in this data structure. 

4. RELEVANT ORACLE FEATURES  
This section describes the relevant Oracle features, and their use in 
supporting both soft and hard time-constrained SQL queries.    

System Statistics and Object-Level Statistics: In the Oracle 
Database, the package DBMS_STATS is used to collect and 
modify not only object-level statistics, such as the number of 
blocks and the number of rows in a table, the height of an index 
etc., but also system statistics, such as the average number of CPU 
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cycles per second, average time to read a single block (random 
read), and average time to read multi-blocks at once (sequential 
read). Both object-level statistics and system statistics enable the 
Oracle Database optimizer to calculate CPU and IO costs for each 
access method in a SQL query and combine them into the total 
elapsed time.  

EXPLAIN PLAN: The EXPLAIN PLAN statement allows users 
to see the execution plan Oracle follows to execute a specified 
SQL statement. The execution plan describes each step of the SQL 
execution plan, such as the join order in the multi-table join query, 
and how tables are accessed, either via full table scan or via 
indexes. For example, query 14 in TPC-H can be explained and 
the execution plan can be shown through the use of “select * from 
table (dbms_xplan.display)” in Figure 1. 

 
Figure 1: A sample EXPLAIN PLAN output 

The Oracle optimizer not only chooses the best plan for this query, 
but also estimates the resulting data set size and the elapsed time in 
each step. 

ROWNUM Pseudo Column Filtering Clause: This clause can be 
used to limit the result of a query. For example, the query 

SELECT * FROM  
     (SELECT * FROM employees ORDER BY salary)  
    WHERE ROWNUM <= 10   
returns the 10 employees with highest salaries. Oracle’s cost-based 
optimizer can generate an optimal execution plan for the query 
with the ROWNUM predicate.    

SAMPLE Clause: Several database systems including IBM DB2, 
Microsoft SQL server, and Oracle, support random sampling in a 
SQL query to allow users to find overall patterns quickly from a 
smaller sized sample. In general, there are two classes of sampling 
methods: row sampling and block sampling (or page-level 
sampling in DB2). If row sampling retrieves every available row 
and then decides if this row is taken, it may not outperform some 
queries without sampling (for example, a single table full scan 
query). However, it can still reduce the data set significantly, 
which, in turn, can have performance benefits if the results have to 
be further processed by expensive operations. Moreover in 
practice, row sampling can be optimized to skip some data blocks 
once enough sampled rows are obtained. Block sampling is similar 
to row sampling, except that the blocks are sampled. Since block 
sampling can reduce the number of disk I/Os, the query with block 
sampling can run faster than the original query (i.e. without the 
sample clause). However, if there is a high degree of column value 
clustering in the blocks, block sampling may not be as accurate as 
row sampling to represent the entire dataset.  

In the presence of indexes, block sampling can be applied on the 
index blocks only when the optimizer chooses an index fast full 

scan. For other types of index scans (unique scan, range scan) the 
optimizer can apply row sampling for the index rows.  

Table Functions: We model the time-constrained query as a SQL 
table function, which takes in the original SQL query to be 
executed, the time limit in seconds, the nature of time constraint 
(‘SOFT’ or ‘HARD’), and the nature of result (‘PARTIAL’ or 
‘APPROXIMATE’). Our implementation makes use of the 
rewritable SQL table function feature of Oracle [27], which allows 
a table function to be replaced by a generated SQL query.  

5. SUPPORTING SOFT TIME 
CONSTRAINTS 

5.1 Optimizing for Partial Results  
For time-constrained query  ‘WITH PARTIAL RESULT’, the input 
query is augmented with  ‘ROWNUM <= RNO’ predicate so that the 
estimated time for the transformed query is within the specified 
time constraint. The RNO is obtained using the algorithm shown in 
Figure 2, which makes use of a root finding algorithm [20].   

Q  := Original Query; 
T  := Time Constraint;   
ER := Estimated # of result rows from Q; 
RNO:= The # used in the ROWNUM predicate;   
ET := Estimated time from explain plan for Q; 
ET(RNO):= Estimated time from explain plan for 

            SELECT * FROM (Q) WHERE ROWNUM <= RNO; 
 
  explain plan for Q to obtain ER and ET;  
  if (ET <= T) return Q;  
  else { 
    explain plan for  

           SELECT * FROM (Q) WHERE ROWNUM <= 1;    
    if (ET(1) > T)  

          return ‘ERROR: NEED AT LEAST $ET(1) s’; 
    else { 
      RNO = root_finding_algorithm(1, ER, 

                  (ET(1)-T), (ET-T), T, Q); 
      return  

          ‘SELECT * FROM (Q) WHERE ROWNUM <= RNO’;  
    } 
  } 
      

Figure 2: Computing  estimated rownum  
In our implementation, the false position method [21] is used as 
our root finding algorithm. 

As an example, after optimizing for response time, the query Q3 
specified in Section 3.7 gets rewritten to  
Q3-T: SELECT *  

FROM (SELECT salary, MAX(tax)   
      FROM tax_return 
      GROUP BY salary   
      ORDER BY salary DESC) 

    WHERE ROWNUM <= RNO; 

When the time constraint is inadequate to return the first single 
row, an error is returned to end users with the information such as 
a lower-bound time limit, above which the time-constrained query 
would most likely yield the first row. 

5.2 Optimizing for Approximate Results 
When an end user specifies the ‘WITH APPROXIMATE RESULT’ 
clause, our system will try to transform the query with the time 
constraint to a query with sampling on some table(s) so that the 
estimated time for the transformed query is within the specified 
time constraint. Since a random sample is used, the results for 
queries involving aggregates may be approximate. This 
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‘APPROXIMATE’ mode can significantly reduce the query 
processing costs by using sampling. Thus, it allows the query to 
complete within a specified time constraint. However, end users 
should use estimatedSum/sumConfidence, 
estimatedCount/countConfidence, and 
estimatedAvg/avgConfidence to check how well the 
approximate results are computed. An alternative is to let the 
system figure out the minimal sample size for each table so that a 
statistically valid approximate result can be returned. However this 
problem is beyond the scope of this paper.     

5.2.1 Single Table Query 
Since long running queries over a single table typically use a full 
table scan, the query transformation involves augmenting the 
query with a sample block clause for the table. The sample size is 
obtained in the same fashion as in Section 5.1, i.e. by using a root 
finding algorithm via EXPLAIN PLAN trials.   

5.2.2 Multi-Table Query with Foreign Key Join  
According to [8], a uniform random sample over foreign-key joins 
of tables can be achieved through a uniform random sampling over 
the fact table and then joining with other dimension tables. We 
adopt this approach for transforming a time-constrained query over 
multiple tables with foreign key joins. Specifically, we analyze the 
table structures (especially foreign keys and primary keys) and 
determine which table is the fact table. The sample size for the fact 
table is obtained in the same fashion as in Section 5.1, i.e. by using 
a root finding algorithm via EXPLAIN PLAN trials.  

Note that the presence of foreign keys and primary keys does not 
mean that the best execution plan will utilize the index structures 
associated with these keys. For example, a hash join method could 
perform much better than an index nested-loop join method as 
shown in figure 1. Another example is that if there is a selective 
predicate in a dimension table, other index structures, such as 
bitmap index and bitmap join index, are better alternatives. This 
approach requires that only one table is the fact table, and other 
tables are joined through the foreign key either directly from the 
fact table or from the already joined tables. Though it appears 
restrictive, the primary key/foreign key requirements normally 
hold for many well-defined (normalized) schemas (e.g., TPC-H 
Benchmark [26]). 

5.2.3 Multi-Table Query without Foreign Key Join 
When some tables are joined without foreign keys (even in the 
presence of other tables being joined with foreign keys), we 
introduce the following algorithm, which tries to achieve the goal 
of returning as many resulting rows as possible (for queries 
involving aggregates, the goal is to sample as many rows as 
possible in the resultant joins). 

Let R1, R2: The two tables that need to be joined; f1, f2: The 
sample size for the two tables respectively; and f: The sample size 
corresponding to the join result.  

Consider samples S1 = SAMPLE (R1, f1), S2 = SAMPLE(R2, 
f2), and S = SAMPLE ( R1 � R2, f). Since S = SAMPLE 
(R1 � R2, f) requires more time than S1 � S2 = 
SAMPLE(R1, f1) � SAMPLE(R2, f2), we only need to consider 
the latter case, that is sampling prior to join.  Also, f1*f2 is the 
upper bound for f (from Theorem 12 in [22]). To simplify the 
calculation of f, we assume that f is a linear function of f1*f2. 

Thus, sampling should maximize f1*f2 while meeting the time 
constraint.  

Assume that T1 is the total time to process R1 and T2 is the total 
time to process R2. The total query time T can be simplified as: 

T = T1 + T2. 

Note that T1 and T2 do not mean the time to simply scan R1 and 
R2. They can also include the time to sort a table, and to hash-
build or probe a table. In the nested loop join case, the total time 
to process an inner relation includes the time to scan the inner 
relation as many times as needed. We also specify t1 and t2 to 
be the time to process S1 and S2.   

Here we discuss the nested loop join and hash join in detail, and 
the sort-merge join briefly.  

5.2.3.1 Nested Loop Join  
Considering nested loop join as the join method for S1 � S2, and 
S1 and S2 are the outer relation and inner relation that are block-
sampled directly from R1 and R2, we can simplify the total time 
(for processing S1 � S2) to be: 

T = t1(f1) + t2(f1,f2) = f1*T1 + f1*f2*T2.  

That means that the time to process S1 is linear to the sample size 
f1 while the time to process S2 is linear to f1 and f2. Note that T2 
includes the time to scan S2 as many times as needed. To make 
f1*f2 maximum, we can prove the following theorem. 

Theorem 1:  
When f2 = 1, max(f1*f2) = f1 = T/(T1 + T2). 

Proof: 
Assume f2 < 1, f1*f2 is maximal: 

T = f1*T1 + f1*f2*T2  
  > f1*f2*T1 + f1*f2*T2 = f1*f2*(T1 + T2). 

=>  f1*f2 < T/(T1 + T2). 

But when f2 = 1, f1*f2 = f1 = T/(T1 + T2).   
Therefore, when f2 = 1,  

max(f1*f2) = f1 = T/(T1 + T2).   
Theorem 1 tells us that the sample clause should be put into the 
outer relation, or the driver node [12]. The same conclusion can be 
extended to the case of multi-table nested loop joins. The total 
time to perform n-table nested loop joins can be written as 
follows.  

T = f1*T1 + f1*f2*T2 + f1*f2*f3*T3 + …  
    + (�fi)*Tn. 

Theorem 2:  
When fi = 1, where 2 � i � n,  
max(�fi) = f1 = T/�Ti. 

The proof to Theorem 2 is similar to the above proof to Theorem 
1, and is ommited due to space limitations. Therefore, to maximize 
the sample size f, the outer relation should be sampled in a 
pipelined multi-table nested loop join and other inner relations 
should be processed as before. In other words, the optimal plan is 
to apply only the reduction factor of the outer relation (i.e. f1) to 
every stage in the pipeline. 

The same conclusion can also be made when the inner relation 
takes an index unique scan, or the index nested loop join is 
performed. In this case, only row sampling method can be applied 
to the inner relation. But because the reduction factors f2, ..., 
fn cannot affect T1,  the optimal plan is to make f2 = f3 = ... = 
fn = 1 regardless of row sampling or block sampling methods 
taken in the inner relation. When only row sampling is available to 
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the outer relation (such as an index range scan followed by a table 
access by index), we have to divide T1 into two parts: TC1 is the 
constant portion of T1 (i.e. the time to perform an index range 
scan), and TF1 is the flexible portion of T1 that can be affected by 
f1 (i.e. the time to perform a table access by index). So some of the 
above equations are rewritten as  

T1 = TC1 + TF1.  
T = TC1 + f1*TF1 + f1*f2*T2 + f1*f2*f3*T3 + …  
    + (�fi)*Tn. 

Corollary 3:  
When fi = 1, where 2 � i � n,  
max(�fi) = f1 = (T - TC1)/(�Ti - TC1). 

Therefore, when row sampling is applied to the outer relation, we 
should deduct the constant portion of T1 from the time constraint, 
and then compute the sample size f1.    

5.2.3.2 Hash Join 
Considering in-memory hash join as the join method for S1 � S2, 
and S1 and S2 are block-sampled directly from R1 and R2, we can 
simplify the total time to be:  

T = t1(f1) + t2(f2) = f1*T1 + f2*T2.  

To make f1*f2 maximum, we can prove the following theorem. 

Theorem 4: 
1. If f1 < 1 and f2 < 1, then  

t1(f1)=t2(f2)=f1*T1=f2*T2= ½*T,  
    max(f1*f2) = (T*T)/(4*T1*T2);  
2.  If f2 = 1, then t1(f1)�t2(f2) or f1*T1 � T2,   
    max(f1*f2) = f1 = (T - T2)/T1; 
3.  If f1 = 1, then t2(f2)�t1(f1) or f2*T2 � T1,  
    max(f1*f2) = f2 = (T – T1)/T2;   

Proof: 
(1). We start the case of f1 < 1 and f2 <1. Assume when f1 = 
g1 and f2 = g2, f1*f2 is maximal. So other values meeting the 
time constraint such as h1*h2 should be not larger than g1*g2. We 
can take 

h1=(g1*T1+g2*T2)/(2*T1).                    (1)  
h2=(g1*T1+g2*T2)/(2*T2).                    (2) 

Assume T1 � T2, then 
h1=(g1*T1+g2*T2)/(2*T1) 
  =g1/2+(g2*T2)/(2*T1)<1/2+1/2=1.       (3) 

Assume h2 < 1 for now and we will prove it later. Therefore, 
h1*h2=((g1*T1+g2*T2)*(g1*T1+g2*T2))/(4*T1*T2)� 
g1*g2.                                  (4) 

=> (g1*T1)^2+(g2*T2)^2+2*g1*T1*g2*T2 
� 4*g1*T1*g2*T2.                          (5) 

=> (g1*T1-g2*T2)^2 � 0.                        (6)       
=>  g1*T1-g2*T2 = 0, or g1*T1=g2*T2=½*T.         (7)  

To prove h2 < 1, we take 
m2=1.                                      (8) 
m1=(g1*T1+g2*T2-m2*T2)/T1=(g1*T1+g2*T2-T2)/T1= 
g1+(g2-1)*T2/T1.                       (9) 

Because  
m1*m2 � g1*g2.                             (10)     

Therefore, 
g1+(g2-1)* T2/T1 �  g1*g2.                (11)                

=>  (g2-1)*T2/T1 � (g2-1)*g1.                (12) 

=>  because (g2 –1) < 0, 
T2/T1 � g1, or (g1*T1)/T2 � 1.            (13)   

Go back to (2), 

h2=(g1*T1+g2*T2)/(2*T2) 
=(g1*T1)/(2*T2)+g2/2.                      (14) 

Because (13) and g2/2 < 1/2,  
h2 < 1.                                  (15) 

Therefore, if f1 < 1 and f2 <1, we should make f1*T1 = f2*T2 
= ½ *T to have max(f1*f2) = (T*T)/(4*T1*T2). 
(2). The second case (f2 = 1) and the third case (f1 = 1) can be 
proved by contradiction, and are ommited due to space limitations.  

Furthermore, the above theorem can be extended to in-memory 
multi-table hash joins. Assume that the total time to perform in-
memory n-table hash joins can be written as follows.  

T = f1*T1 + f2*T2 + f3*T3 + …  + fn*Tn. 

To maximize f1*f2*...*fn , we have the following theorem. 

Theorem 5: 
    If fi < 1 and fj < 1, then  
    ti(fi) = tj(fj) = fi*Ti = fj*Tj.  

The detailed proof is similar to the proof to Theorem 4 and is 
ommited due to space limitations. Both Theorem 4 and Theorem 5 
tell us when the time to process a sampled relation is equal to the 
time to process another sampled relation, the product of their 
sample sizes is maximal.  

When row sampling is applied for some relations, we will have the 
constant and flexible portions of the time to process these 
relations. Assume Si and Sj are row-sampled from R1 and R2 while 
Sk is block-sampled from Rk.  

Ti = TCi + TFi.  

Tj = TCj + TFj. 

T = f1*T1 + … + TCi + fi*TFi + … + TCj + fj*TFj + 

    … + fk*Tk + … + fn*Tn. 
Corollary 6: 
    If fi < 1, fj < 1 and fk < 1,  

    then fi*TFi = fj*TFj = fk*Tk or 

         ti(fi)-TCi = tj(fj)-TCj = tk(fk). 

Therefore, when row sampling is applied to the some relations, we 
should use only the flexible portions of Ti and Tj to compute the 
sample size fi and fj.  

When computational resources (such as memory) are not 
sufficient for a hash join operation, in-memory data will be written 
to disk and reread multiple times. This hash join method, referred 
as multi-pass hash join, may degenerate into a case similar to the 
nested loop join (i.e. the number of the probe passes is linear to 
the size of the build relation). For sort-merge join, which has the 
time complexity of O(nlogn), there is no easy analytical solution 
for this case. So our approach is to heuristically use the equations 
obtained in Theorem 4, Theorem 5, and Corollary 6 to choose 
which tables need to be sampled and compute their sample sizes, 
i.e. to make ti(fi) as close as tj(fj) when Si and Sj are block-
sampled or to make ti(fi)-TCi as close as tj(fj)-TCj when Si 
and Sj are row-sampled.  

5.2.3.3 Algorithm for Multi-Table Query without 
Foreign Key Join 
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When the three join methods are used together in a query 
execution plan, we can view the pipelined nested loop joins as a 
single relation and then use the equations in Theorem 4, Theorem 
5, and Corollary 6. The algorithm is shown in Figure 3. For the 
other join variants (such as outer-join and semi-join operations), 
the sampling operation is pushed in the way similar to the normal 
join operation. Note that outer-join query with sampling can return 
some rows with column values incorrectly reported as NULL. For 
the anti-join operations, like the Difference operation in 5.2.4, only 
the outer relation can be sampled. 

Figure 3: An algorithm to choose which tables to be sampled 
and their sample sizes 

Note that in Step 2 of Figure 3, we may need a root finding 
algorithm to decide the sample sizes via several EXPLAIN PLAN 
trials for cases when the total cost function is not a linear function. 
In addition, steps 2 and 3 can be combined to avoid unnecessary 
iterations in the root-finding algorithm. However, for clarity of 
explaining this algorithm, these are shown as two separate steps. 
Because our algorithm uses EXPLAIN PLAN iteratively, it affects 
the compilation time. To reduce the compilation time of our 
algorithm, we retain the join orders and join methods of the 
original query execution plan since a major part of the compilation 
time is spent in determining the join orders and join methods. 
However in some cases, it may not generate the best execution 
plan for the transformed query. For example, the best plan for the 
original query can be a hash-join operation while the best plan for 
transformed query can be a nested-loop-join operation. Ideally we 
should set an adaptive limit to the compilation time, and allow our 
algorithm to try different join orders and join methods. However, 
this area is a candidate for future study. 

5.2.4 Other Operations on Relations 
As we describe above, the sampling methods are pushed to the 
table scan or index scan as early as possible. But some selection 
and projection operations can be performed before the row sample 
method. For example, an index scan first performs the selective 
access predicate, and then applies the row sample method. In other 

cases, the relational operations, including sort and group-by 
operations, are normally performed after sampling.  

For the set operations, we briefly describe our schemes. (1) Union: 
For SAMPLE(R1�R2, f), we simplify the operation to be 
SAMPLE(R1, f1)� � SAMPLE(R2, f2) with f1 = f2. Therefore, 
t1(f1)/t2(f2) = (f1*T1)/(f2*T2) = T1/T2 when the cost 
function is linear. (2) Difference: SAMPLE(R1�R2, f) is 
simplified to be SAMPLE(R1, f1)� � R2. Therefore, only R1 is 
sampled. (3) Intersect:  SAMPLE(R1�R2, f) is simplified to be 
SAMPLE(R1, f1) � SAMPLE(R2, f2) with maximizing f1*f2. 
This is similar to the join operation.  

5.2.5 Sub-queries 
When a sub-query with an aggregate function appears in a 
predicate condition, we try not to push the sample operation into 
the sub-query until all other options are used up. That’s because 
the predicate condition can change due to the approximate 
aggregate value and some incorrect rows can be returned as the 
result. For example, in the following query, the sample operation 
is performed only on the outer employees table if the sub-query 
takes less than 10 seconds:  
Q4: SELECT *  

FROM employees outer 
WHERE outer.salary >  
       (SELECT AVG(inner.salary)   
        FROM tax_return inner) 
SOFT TIME CONSTRAINT (10); 

If the sampling is also applied to the sub-query, we will insert a 
comment, which can be seen in EXPLAIN_TQ_RESULT view.  

RESULT_TYPE                      COMMENT  
-----------        --------------------- 

    APPROXIMATE        APPROXIMATE PREDICATE 

The time allocated to each stage is determined through linear 
interpolation: assuming the original query takes 30 seconds (18 
seconds are for the sub-query block and 12 seconds are for the top 
query block), we will spend 6 (18*10/30) seconds in the sub-query 
block and 4 (12*10/30) seconds in the top query block. When the 
time constraint is increased to 20 seconds, the sub-query will be 
executed completely in the 18 seconds and only 2 seconds are 
spent in the top query. But the predicate used in the top query will 
be exact thereby producing accurate results. 

The above top-down approach to allocate the time in each query 
block, i.e. the time allotment in each stage is determined first, and 
then the sample size is computed to meet the time allotment. It 
differs from the bottom-up approach in Figure 3, where the sample 
size(s) are computed first to meet certain conditions (such as 
equations in the previous theorems and corollaries) and then we 
try to satisfy the total time constraint.  

The preference for exact aggregates in sub-queries used in 
predicate condition also applies to the correlated sub-queries. For 
example, if possible we should use the exact aggregate values 
computed from the sub-query in the following query: 

Q5: SELECT *  
FROM employees outer  
WHERE outer.salary >  
      (SELECT AVG(inner.salary)   
       FROM tax_return inner 
       WHERE inner.location = outer.location) 
SOFT TIME CONSTRAINT (10); 

Step 2: Use equations in the above theorems 
to compute the sample size for the table(s) in 
the sample list, so that the total estimated time 
< Time Constraint  

                            Step 3 
              Sampled processing time >  
    Largest non-sampled processing time 

No 

Step 4: Add the largest non-sampled table or 
pipeline to the sample list. 

Yes 

Done 

Step 1: Find the table or pipeline with largest 
processing time and put it into the sample list  
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This is similar to the nested loop join operation, i.e. to push the 
sample operation into the outer relation. However the above query 
can be un-nested as shown below with an inline view [17]:  

Q5-inline-view: SELECT *  
FROM employees outer, 
     (SELECT AVG(salary) avg_salary, location    
      FROM tax_return inner 
      GROUP BY location) view    
WHERE outer.salary > view.avg_salary  
  AND outer.location = view.location 

    SOFT TIME CONSTRAINT (10); 

This is similar to the hash join operation, i.e. to push the sample 
operations to both the relations to maximize the product of the 
sample sizes. This contradicts the preference that the exact 
aggregate values should be computed from the sub-query. To solve 
this problem, we can use a sample or hash method that takes a 
column value from each input row and then determines if the row 
is returned or not. For example, in oracle we can rewrite Q5-inline-
view into the query as follows: 

Q5-inline-view-T: SELECT *  
FROM employees outer SAMPLE BLOCK (20), 
     (SELECT AVG(salary) avg_salary, location    
      FROM tax_return inner 
      WHERE ORA_HASH(location, 99) < 20 
      GROUP BY location) view    
WHERE outer.salary > view.avg_salary  
  AND outer.location = view.location; 

The function ORA_HASH(location, 99) is applied to each row 
of the table tax_return, like a row sampling method. It 
computes a hash value (in [0,99]) for “location” column, and 
returns this row only when the hash value is less than 20. Since 
ORA_HASH is a deterministic function, the rows with the same 
location will be put into the same hash bucket. Therefore, the 
inline view returns the exact aggregate values of the sampled 
groups. In other words, when the row sample or hash method 
applies to the same group-by column, the exact aggregate values 
can be returned from some sampled groups.   

6. SUPPORTING HARD TIME 
CONSTRAINTS 
A hard time-constrained query must complete in the specified 
time. This is achieved by transforming the query assuming a soft 
time constraint, and then adding a timer to every blocking 
operation as well as adding a top-level timer. Note that a blocking 
operation does not produce any rows until it has consumed at least 
one of its inputs completely.  For example, Sort and the Build-
relation in a hash join are blocking operations. Once a timer 
reaches its limit, it terminates the underlying subordinate 
operation. However, if the operation completes before the timer 
expires then the timer is simply nullified. 

To determine the time limit for each timer, we rely on the time 
estimated for each step by the EXPLAIN PLAN statement. 
Consider the EXPLAIN PLAN shown in the Figure 1. There are 
two blocking operations: 1) the Build-relation in HASH JOIN 
node (from LINEITEM table); 2) the SORT AGGREGATE node to 
compute the aggregate function. Since the estimated elapsed time 
to access the table LINEITEM is 262 seconds, the first timer is set 
up in the Build-relation of the HASH JOIN node (Id=2), which 
stops its subordinate operation (i.e. full table scan of LINEITEM) in 
262 seconds. The second timer is set up in the SORT AGGREGATE 
node (Id =1), which stops its subordinate operation in 279 seconds. 
The third timer is the top-level timer (Id=0), which stops in 279 

seconds.  In this case where the child node of the top node is a 
blocking operator, the top-level timer may not be as important as 
the timer associated with the child node. However, for the case 
where the child node of the top node is not a blocking operator, 
the top-level timer is needed to guarantee that the query is 
completed within the time constraint.  

Our approach of adding timers for each blocking operation leads 
to a more balanced distribution of time, namely, it avoids 
overspending of time in any one blocking operation. However, it 
can lead to approximate results. Thus, when a user specifies a hard 
time constraint with ‘PARTIAL RESULT’, only the top-level 
timer is added, which ensures that any result returned is accurate. 
But since the “ROWNUM <= RNO” condition can be pushed into 
some blocking operations, the variable RNO will be adjusted in 
each blocking operation to meet its time budget during the 
execution. For a hard time constraint with ‘APPROXIMATE 

RESULT’, the timers for blocking operations are added.  

Because the compilation time can become an important factor for 
the query with hard time constraints, we will utilize the top-down 
approach (described in Section 5.2.5) to compute the sample size. 
For example, in a sort-merge join operation, assuming Ta: time to 
process the relation Ra and Tb: time to process the relation Rb, the 
time limits (ta, tb) for both relations can be either (Ta, T - Ta) 
for sampling only on relation Rb, (½*T, ½*T) for sampling on both 
relations, or (T – Tb, Tb) for sampling only on relation Ra. Their 
sample sizes are simplified as fa = min(Csafe*(ta/Ta), 1) and 
fb = min(Csafe*(tb/Tb), 1), where Csafe (> 1) is used as the 
safety margin to return enough sample rows before the stop timer. 
Thus, when the compilation time is a major factor for the query 
with hard time constraints, we can use the top-down approach to 
compute not only the time limit in each stage, but also its sample 
size, without iterative trials.  

7. EXPERIMENTS 
This section describes the experiments conducted using the 
prototype built on Oracle. Here we report the experiments for soft 
time constraints with approximate results. The experiments 
corresponding to execution time reduction by reducing the 
cardinality of the result set and employing top-k optimization are 
skipped as they have been well covered in several papers [3, 4, 5]. 

7.1 Experimental Setup 
The experiments were done on a Dell PE650 machine (Intel P4 
3.0Ghz with Hyper-Threading), with 2GB main memory, and 
80GB hard disk. The operating system is Redhat Enterprise Linux 
3 and the database system is Oracle Database 10g Release 2 
Enterprise Edition. The relevant database parameters are: 
db_block_size=8192, db_cache_size=160M, and 
shared_pool_size=160M. 

7.2 Dataset 
The dataset is generated from the DBGEN program, recommended 
by the TPC-H Benchmark [26]. Scale factor is set to 10, which 
translates to a database size of about 10GB, consisting of 8 tables 
(PART, SUPPLIER, PARTSUPP, CUSTOMER, ORDERS, 
LINEITEM, NATION, and REGION). The LINEITEM table is 
the biggest and has ~60 million rows, whereas the ORDERS table 
is the second largest with 15 million rows. After loading the 
dataset, the primary key and foreign key constraints are created.  
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Before running the experiments, both system statistics and object-
level statistics are collected. Each experiment is conducted six 
times in warm cache, and the average query execution time is 
computed. The estimated time is obtained from the EXPLAIN 
PLAN statement. Note that the query compilation time (including 
the optimization time) is not significant (< 0.5 second) in the four 
experiments. Thus, we report the total execution time only.   

7.3 Experiment I: Single Table Query with 
Aggregates 
This experiment is conducted using the Q6 (Forecasting Revenue 
Change) query in TPC-H. This query considers all the lineitems 
shipped in a given year with discounts between a ± 0.01 of 
DISCOUNT=0.06. The original query on LINEITEM table, 
estimated to complete in 269 seconds, completed in an average of 
244 seconds. 10%, 20%, 30%, 40%, and 50% of 269 seconds are 
chosen as the time constraints. The query transformation involves 
determining the sample size using the method discussed in section 
5.2. Since the table scan of LINEITEM is the major factor in the 
total execution time, the estimated sample size for each time limit 
is linear to the time limit, i.e. the sample sizes are close to 10%, 
20%, 30%, 40%, and 50% respectively. Figure 4 shows the 
estimated and execution time for different time constraints. 
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Figure 4: Estimated and execution time to run TPC-H Q6 in 
settings: no time constraint, 10%, 20%, 30%, 40%, and 50% 

of Q6’s estimated time  
Table 1: Sum, est. sum, and 95% conf. interval value for Q6 

%  SUM estimatedSum sumConfidence 

10%  113894821 1228484983 49916216 

20%  243045023 1230244879 34194884 

30%  370097887 1228624043 27692357 

40%  489547623 1228986671 24081572 

50%  617119157 1229137335 21449857 

100% 1230113636 N/A N/A 

The transformed queries (augmented with sampling clause) take 
longer than the estimated time to complete. That is because the 
extra cost for "sample block" clause may not be properly 
accounted for by the cost-based optimizer. Specifically, the 
original query can fully utilize multi-block I/O, but the "sample 
block" query has to randomly skip some blocks. But the optimizer 
uses multi-block I/O time to calculate the estimated time for the 
"sample block" query. However, the overall results are still 
encouraging as the execution time does decrease as the user 
specifies smaller time-constraints.  

We also obtained the estimatedSum and sumConfidence (95%) 
values for each time constraint, using Hoeffding-based bounds [6] 
(Table 1). The estimated value is close to the actual value of SUM, 
and the error reduces as the sample size increases.  

7.4 Experiment II: Single Table Query with 
GROUP BY and ORDER BY clause 
This experiment is conducted using the Q1 (pricing summary 
support) query of TPC-H. The original query on LINEITEM table, 
estimated to complete in 340 seconds, completed in an average of 
367 seconds. 10%, 20%, 30%, 40%, and 50% of 367 seconds are 
chosen as the time constraints. Again, since the query primarily 
involves a single table, the estimated sample size percentages are 
linear with respect to the time constraints. Figure 5 shows the 
execution times for various time constraints. 
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Figure 5: Estimated and execution time to run TPC-H Q1 in 
settings: no time constraint, 10%, 20%, 30%, 40%, and 50% 

of Q1’s estimated time 
The results (Figure 5) show that the query execution time reduces 
as smaller time constraints are chosen.  Like Experiment I, the 
actual execution time is larger than the time estimated by Oracle’s 
cost-based optimizer. However, the percentage error in estimation 
(measured as abs(execution-time - estimated-

time)*100/estimated-time) is less when compared to the 
error observed in Experiment I observations (see Table 2).  

Table 2: Percentage error in estimation (Experiment I vs. II) 
 10% 20% 30% 40% 50% 

Exp I 104 146 120 81 69 

Exp II 85 82 83 66 55 

The reduction in the error can be attributed to the fact that the 
under-estimation caused by the changes to multi-block I/O in the 
transformed sampling block query is mitigated by the additional 
processing costs of grouping and sorting operations. 

7.5 Experiment III: Two Table Join Query 
with Aggregates 
This experiment is conducted using the Q14 (promotion effect) 
query in TPC-H, which involves join of LINEITEM and PART 
tables. For the queries with the time constraint, the table 
LINEITEM is sampled because it has a foreign key reference to 
P_PARTKEY. Since LINEITM is much larger than PART table, 
the join query exhibits characteristics of a single table query. 
Thus, the sampling sizes estimated are linear with respect to time-
constraints (as in Experiment I and II). Figure 6 shows the 
execution and estimated times for Q14. Like Experiment I and II, 
the query processing times are under-estimated as the optimizer 
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considers multi-block I/O count, which is not fully exercised for 
transformed sampling block queries. 
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Figure 6: Estimated time and execution time to run TPC-H 
Q14 in settings: no time constraint, 10%, 20%, 30%, 40%, and 

50% of Q14’s estimated time 

7.6 Experiment IV: Four Table Join Query 
with GROUP BY and ORDER BY clause 
This experiment is conducted using the Q10 (returned item 
reporting) query in TPC-H. The original query returns the first 20 
selected rows. However, in our experiment, we removed the 
ROWNUM predicate to return all the selected rows. This query 
needs to join CUSTOMER, ORDERS, LINEITEM and NATION 
tables. For the queries with the time constraint, the table 
LINEITEM is sampled because it has a foreign key reference to 
O_ORDERKEY.  The estimated sampling sizes for various time 
constraints is shown in Figure 7, which displays the non-linear 
nature of relationship between sampling size and the time limit 
specified as part of the time constraint. 
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Figure 7: Estimated sample size in settings: 10%, 20%, 30%, 

40%, and 50% of Q10’s estimated time 
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Figure 8: Estimated time and execution time to run TPC-H 

Q10 in settings: no time constraint, 10%, 20%, 30%, 40%, and 
50% of Q10’s estimated time 

Figure 8 shows the execution and estimated times for the 
transformed queries. The time constraint is able to significantly 
reduce the overall query processing time. An interesting aspect is 

that the estimated times are larger than the execution times. This 
reversal in error (as compared to Experiments I, II, and III) can be 
attributed to the interaction of the augmented sampling clause with 
the WHERE clause predicates, which leads to reduction in the 
data that needs to be processed by the GROUP BY and ORDER 
BY clauses. 

8. DISCUSSION 
Here we discuss the various aspects of our approach. 

Experiments: The experiments clearly demonstrate the 
effectiveness of time-constrained queries. That is, use of smaller 
time limits does reduce the overall query execution time. 

Relying on Oracle’s Cost-Based Optimizer: Our approach to 
rely on Oracle’s cost-based optimizer (namely via EXPLAIN 
PLAN) to get time estimates allows us to leverage the rich 
functionality of Oracle’s cost-based optimizer. For example, this 
allows us to handle queries involving partitioned tables and 
parallel execution in a seamless manner.  However, we are relying 
on Oracle’s cost-based optimizer capability to not only generate 
the optimal execution plans but also to accurately estimate the 
time needed to process the query. The latter is significantly more 
challenging and needs further exploration so that the error in 
estimated times with respect to actual query execution times can 
be minimized. 

Soft vs. Hard Time Constraints: Although the soft time 
constraint query doesn’t guarantee that the query can be 
completed in the specified time constraint, it does generate an 
execution plan for which the estimated time is less than the time 
constraint. This might be useful, for example, to enforce the policy 
where users are not allowed to submit queries that are estimated 
by the optimizer to take longer than the specified maximum 
execution time [18]. For such cases, the user can issue the same 
query with the soft time constraint. Moreover, the support for soft 
time-constrained queries forms the building block for hard time-
constrained queries. 

Loose Integration vs. Tight Integration: The prototype supports 
soft time-constrained query using the EXPLAIN PLAN feature 
and the extensibility features of Oracle (table functions). We use 
rewritable table functions to append additional predicates to the 
user query. Since all this functionality resides outside the Oracle 
server, it can be viewed as a loose integration. For our approach to 
work efficiently in all cases, we need to have access to the final 
query generated after view transformation, query rewrite using 
materialized views, and various other transformations [17]. Thus, 
the technique to augment a query with additional predicates will 
be more efficient when implemented in the database kernel. Also, 
for hard time constraints, the timers need to be associated with 
each blocking operation. Thus, a tight integration with the 
database would be highly desirable. 

Nature of Results: In general, a time-constrained query result can 
have many aspects including i) Is result set complete or partial? ii) 
Are resulting row values accurate or approximate? iii) Are the 
results returned in ordered or unordered manner? (relevant for 
queries with ORDER BY clause)  Consider the following query 
that needs to be executed within a time constraint: 

  SELECT AVG(salary) FROM employees 
    GROUP BY dept ORDER BY dept;  

These aspects in turn can lead to many different possible 
combinations, such as  (complete, accurate, and ordered), the no 
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time-constraint case,  (complete, approximate, and ordered), i.e., 
returning average salary for each and every dept even if the 
average values for each group is approximate and ordered by 
dept, etc. Ideally, the time-constraint specification should allow 
the user to specify preference for any one of these combinations. 
Our current work, does not allow specifying preference for result 
at this fine level of granularity. This we plan to address in a future 
work. 

9. CONCLUSIONS AND FUTURE WORK 
The paper makes a case for supporting time-constrained SQL 
queries in database systems. The advances in the top-k query 
optimization, approximate query processing, and error estimation 
have set the stage for this work. This, in conjunction with the 
capabilities of cost-based optimizer, namely, the optimal plan 
generation, and accurate estimation of the query execution time, 
makes it possible to support time-constrained SQL queries. This 
paper explored supporting both soft and hard time-constrained 
SQL queries by leveraging features of Oracle’s cost-based 
optimizer. As a proof of concept a prototype implementation was 
done on top of Oracle Database. The experimental study 
conducted with the TPC-H dataset and queries demonstrates the 
effectiveness of time-constrained SQL queries. 

In future, we plan to explore doing a tighter integration of the 
proposed techniques. Also, we plan to explore the feasibility and 
effectiveness of supporting hard time constraints. 
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