
Continuous Queries in Oracle

Andrew Witkowski, Srikanth Bellamkonda, Hua-Gang Li, Vince Liang, Lei Sheng, Wayne Smith,

Sankar Subramanian, James Terry, Tsae-Feng Yu

Oracle USA 400, Oracle Parkway, Redwood Shores, CA 94065, U.S.A.
First.Last@oracle.com

Abstract

This paper describes Continuous Queries (CQ) in Oracle RDBMS,
a feature that incorporates stream and complex event processing
into an RDBMS, the first such attempt in commercial databases.
The feature is based on the concept of query difference and allows
us to monitor real time changes to the query as the result of
changes to its underlying tables. The result of a continuous query
can be deposited into historical tables or queues for further
asynchronous de-queuing, or can invoke a synchronous trigger for
procedural processing. The main contribution of our CQ engine is
that it allows us to react to complex scenarios of changes to data
such as mixed INSERT, DELETE and UPDATE changes, unlike
the existing stream processing systems that deal with INSERTS
only. We support a wide range of query shapes including inner,
semi and anti-joins, aggregates and window functions. More
details are given to the efficient computation of query difference
for general cases and their optimizations based on semantic
constraints. They are shown to improve the response time for
practical cases by more than an order of magnitude. We also show
how delaying CQ re-computation can improve its performance by
batch processing the changes to the base tables.

1. Introduction
There has been a significant interest in processing, within an
RDBMS streams of changes to the data and reporting when the
result of a query defined over the data changes. These queries are
referred to as the continuous queries (CQ) since they continually
produce results whenever new data arrives or existing data
changes. The interest is driven by sensor and event data processing
(RFID in particular), real-time reporting of Key Performance
Indicators for Business Intelligence, and by security monitoring to
discover sequence of prohibited or dangerous events. One primary
reason for an RDBMS solution for stream computation is the
declarative power of SQL that enables rapid and uniform (via a
single language) application development and offers potential for
optimizations of multiple stream queries using multi-query
optimization techniques.

Stream processing has been researched extensively in the
recent literature ([Sul96], [CC+02], [CC+03], [CD+00], [LPT99],
[JMS95], [ABB+03], [SLR94], [CJSS03], [MSHR02]). It also has

some prototype implementations ([CC+02], [CJSS03], [ABB+03],
[CC+03]). In most of these works, streams are treated as append-
only tables or transient queues and queries are expressed with SQL
extensions using window constructs on the streams. Stream
processing attracted previous interest in form of active databases
[PD99] (driven by triggers and procedural programming) and in
form of materialized views ([JMS95]).

In contrast to the literature where the sources of continuous
queries are objects called streams, the sources for our CQ engine
are transactions to the relational tables that can insert (like in
streams), delete or modify data. Continuous query is defined as a
relational set difference between the query result at time t1 and
time t2 (t2 > t1) and is best explained using the analogy of
materialized views (MVs). Given query Q and its materialized
image MV1 at time t1, we accept committed DML changes to the
Q’s tables, re-compute MV2 at time t2, and return query delta ΔQ =
MV2 - MV1. The notion of query delta is very natural to monitoring
applications that define data of interest using a SQL query (e.g.,
customers with balance less than 0) and need to monitor records
entering the set (the insert delta), records leaving it (the delete
delta), and records in the original set that change (the update delta).
Frequency of re-computation is defined by the user and similarly to
MVs, it can be on commit, on demand and periodic. Continuous
query is a transactionally consistent query delta i.e., only
committed changes are emitted by it. This allows us to build
continuous queries that are restartable and consistent across system
crashes.

The continuous results of CQ can be deposited either to a
queue or appended to a table. Users are expected to
asynchronously de-queue the results from the queue or retrieve it
directly from the table. Management of the destination (queue or
table) is left to the user since he/she may decide to preserve it for
historical purposes. We also provide for procedural extensions for
CQ. The process of emitting data from a CQ can invoke an
RDBMS trigger or a user defined callback where further
programmatic processing can be done.

Not surprisingly, we use algorithms similar to incremental
refresh of materialized views to compute query delta. Our
algorithms, however, have many novel features and cover a larger
set of queries than the published ones [GMS93], [GHQ95],
[RB+98]. We provide optimization of the query delta computation
for queries with joins which is based on constraints. This improves
performance of the existing methods by more than an order of
magnitude. We also investigate usage of the snapshot features of
Oracle RDBMS to retrieve the pre-update state of the tables for
delta computation expressions. Previously, the pre-update states
had to be computed using SQL queries over tables and their logs.
To support non-event detection, we extend the algorithms for NON
EXIST sub-queries. For real-time Business Intelligence and
security applications we add incremental refresh of window
functions with a monotonically increasing attribute in their
ORDER BY. To efficiently process these CQs, we introduce a new

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

1173

relational constraint of monotonically increasing attribute; in our
case the time-stamp of events. The constraint is satisfied by many
applications that store historical, time-stamped data in RDBMS.

Due to the real-time nature of most CQs, performance of
refresh for small OLTP transactions is critical and we address it
with novel refresh algorithms. Equally important is a non-blocking
(with respect to OLTP commits) nature of CQ. Hence our refresh
is asynchronous and avoids any locks on the base data. We show
how this can be done using new logging structures.

Finally, we present performance of our algorithms and
compare it to the existing ones. This not only demonstrates
(expected) improvements due to optimized refresh expression
based on constraints, but also discovers an unexpected fact that
pre-update state retrieval using rdbms-native snapshot technology
does not significantly outperform re-computing the state using
SQL queries.

The rest of the paper is organized as follows. Section 2. gives
example schemas that are used throughout the paper. Section 3.
discusses basic concepts and language elements for CQs. In
Section 4. , we describe the sources of changes, clogs. Section 5.
describes CQ refresh and concurrency control. Section 6. presents
the computation of continuous join queries, followed by the
optimizations by exploiting constraints in Section 7. Section 8.
and 9. discuss the computation of continuous queries with
aggregations and window functions respectively. In Section 10. ,
we study the performance of our CQ computation model. Section
11. concludes the paper.

2. Example Schemas and Example CQs
We use two schemas in this paper. The e-store schema consists of
three tables: orders(oid,time,uid) records user orders,
orderline(oid,itemid,price) records items purchased
in each order, and users(uid,address,name) records users
and their attributes. Our example query tracks items purchased by
an under-age user:
Q1 :
SELECT ol.item, o.oid, u.name
FROM orderline ol, order o, user u
WHERE ol.oid=o.oid AND u.uid=o.uid AND u.age<18;

The banking schema consists of only one table
banking_transactions(acct,time,amt) that records
amount of deposits and withdrawals from an account. Our
example query will monitor overdrawn accounts:
Q2 :
SELECT acct, sum(amt) amt
FROM banking_transactions
GROUP BY acct
HAVING sum(amt) < 0;

3. Basic Concepts and Language Elements

Query Delta
Consider a relational query Q over tables T1,..,TN. As the

tables undergo transactional changes, result of Q changes as well.
Continuous Query is a transactionally consistent sequence of
changes to Q. Let Q1 and Q2 be the result set of Q at times t1 and
t2 correspondingly. The delta change to Q, ΔQ, is

Q3 ΔQ = (Q2 MINUS+ Q1) UNION ALL (Q1 MINUS+ Q2)

The first term, (Q2 MINUS+ Q1), represents new rows in the
results set and we refer to them as the insert delta, Δ+Q. The
second, (Q1 MINUS+ Q2), represents rows that disappeared from
the result set, and we refer to them as the delete delta, Δ-Q.

The MINUS+ operator above doesn’t remove duplicates unlike
the MINUS operator in ANSI SQL as otherwise we would lose
useful information. For example {(1,1,1), (1,1,1), (2,2,2)} MINUS+
{(1,1,1), (2,2,2)} = {(1,1,1)} and not, as in relational MINUS, the
empty set {}.

In the above, an update to Q result set is typically modelled as
a delete followed by an insert and this is not intuitive.
Nevertheless, if Q has a primary key, then, for each value of the
primary key, we can group its deleted-inserted rows, and return a
single row with updates to the non-primary key columns. We refer
to this as update delta, ΔuQ. Updates to the primary key will
continue to produce, as before, delete and insert delta.

It is useful for the ΔuQ to return not only the new values of the
updated columns, but their old values as well. We provide a new
sql function for this, cq_old_value(column). To distinguish the
three deltas, there is a new function, cq_delta(), returning ‘I’, ‘D’,
and ‘U’ for Δ+Q, Δ-Q, ΔuQ respectively.

Continuous Query Definition
Continuous Query is a new SQL object that is defined similar

to views. It specifies the query Q, constraints on Q such as its
primary or foreign key, destination where ΔQ is deposited, type of
the delta to be returned, and computational characteristics (when
and how often to compute CQ results). For example, the following
CQ monitors accounts with negative balance, and returns into
destination table dest_table Δ+Q, Δ-Q, ΔuQ deltas.
Q4

CREATE CONTINUOUS QUERY negative_balance_cq
 PRIMARY KEY (acct)
 COMPUTE ON COMMIT
 DESTINATION dest_table
SELECT acct, sum(amt) amt
FROM banking_transactions
GROUP BY acct
HAVING sum(amt) < 0;

The CQ object itself, negative_balance_cq above, is not
queryable. Its destination, however, is. Note that the CQ has a
primary key, hence can deliver ΔuQ. We note that the primary key
applies to defining query and not to the destination.

Destinations of CQ
The destination of a CQ can either be a relational table or an

Oracle queue. In the former case, the shape of the table must be
compatible with the CQ query. A queue is also implemented as a
table, but in addition, it has an API that allow users to subscribe to
the queue, de-queue messages (rows) stored there, and to manage
the underlying tables, for example deleting messages from them
after all the subscribers have consumed them.

In order to programmatically process the delta rows, we
support row triggers on CQ. The triggers are semantically treated
as if an INSERT operation occurred on an object represented by
the CQ and behave the same as row triggers on tables . Hence a
trigger is invoked for each row of the delta. Observe that CQ does
not need a destination table to have a trigger. As usual, trigger
procedures have access to all columns of CQ. For example, users
can write a procedure, process_negative_balance, to alert
a branch manager about customer defaulting on his balance:

1174

Q5
CREATE TRIGGER negative_balance_trigger
 ON negative_balance_cq FOR EACH ROW
 BEGIN process_negative_balance(acct, amt) END;

CQ Computation
CQ computation is performed asynchronously to the

transaction traffic over the base tables and without locking them,
hence, its impact on OLTP is minimal (given enough resources for
CQ computation). Still the CQ produces transactionally consistent
deltas – a non-trivial task explained in Section 5.

The computation of CQ can be invoked in three modes: on
commit of a transaction that modified its base tables, on demand
by calling an explicit cq_recompute(<cq_name>) API, or
periodically with a given start time and periodicity. For example,
CQ negative_balance_cq can recomputed every hour using:
Q6
ALTER CONTINUOUS QUERY negative_balance_cq
 COMPUTE START WITH ’01-01-2007’ PERIOD 1 HOUR;

In many cases application needs to react to the effect of each
transaction but may tolerate a delay in notification. Moreover it is
more performant to compute CQ refresh for a batch of transactions
at one time rather than processing them individually. Therefore, for
on demand and periodic computations we provide two modes of
CQ delta calculation: transactional and batched. The former
applies the change logs in transaction increments and in the
transaction order. The result is similar to the result of “ON
COMMIT” computation but with a delay. The latter produces the
result as the delta between state of the query at the last refresh time
and its current state. For example, to compute Q4 transactionally
every 1 hour we say:
Q7
ALTER CONTINUOUS QUERY negative_balance_cq
 COMPUTE TRANSACTIONAL DELTA
 START WITH ’01-01-2007’ PERIOD 1 HOUR;

Note that if Q7 were computed in batch (and not transactional

mode), we could miss periods when user balance went below 0.

Managing of CQ.
Continuous Queries are created with “CREATE

CONTINUOUS QUERY” statement and managed with a set of
“ALTER CONTINUOUS QUERY” statements. As expected, CQs
can be in three states: ACTIVE, SUSPENDED, and INACTIVE.
In the SUSPENDED state, query delta is not produced, however,
the database monitors and remembers changes to the table and will
apply them to produce delta when CQ is activated. An INACTIVE
CQ just records its own metadata and doesn’t require monitoring
of the changes to base tables. Activation of such CQ is equivalent
to re-creating it. For example,
Q8
ALTER CONTINUOUS QUERY negative_balance_cq
SUSPEND;
suspends the CQ Q4.

Using ALTER statements users can change other attributes of
CQ like its destination, computation options, etc.

Supported Query Shapes.
Some of our CQ computation algorithms originate from

incremental refresh of MVs [BLT86, GMS93, PSCP02]. We
support single block queries with joins (CQJ) and CQJ with
algebraic aggregation (CQJA). Extensions to CQJ algorithms allow
us to support query blocks with semi-joins CQJS (EXISTS or IN

sub-queries) and blocks with anti-joins CQAJ (NOT EXISTS or
NOT IN sub-queries). CQJS algorithms are simple extensions to
CQJ. Efficient CQJA are challenging, however, due to space
limitations, the algorithms are not given here. For CQJ, CQJS, and
CQJA we significantly extend known MV algorithms – see Section
6. and 8.

We propose algorithms to support a very useful class of
continuous queries – single block queries with joins and window
functions (CQW). CQW is frequently used for sensor processing
where comparison of current and past measures is critical, for
example, detection of temperature raise above a threshold within a
given time. Here, refresh is provided for windows over a
monotonically increasing attribute. A new constraint is added to
RDBMS for CQW computation.

In addition to CQJ, CQJA, CQJS, CQAJ and CQW, we
support their composition with UNION ALL and simple filtering
in an outer query block.

New Constraints for CQ
In many cases measurements are always produced (and

stamped) with increasing time values. The monotonically
increasing constraint guarantees that column values in a table or its
partition can only increase. The constraint has two modes:
STRICTLY INCREASING and INCREASING with obvious
semantics. The (strictly) increasing constraint is equivalent to
maintaining a max value for a column over the life span of a table
or its partition, and verifying that new rows, or updated columns
will always have value (greater) no less than this maximum. This
constraint has a natural syntax:

 CONSTRAINT const_name INCREASING column
 [PARTITION BY column] ON table
The constraint is used for computation of CQW.

4. Sources of changes for CQ – clogs
Changes made by transactions are recorded in auxiliary tables
called clogs. There is one clog for each table participating in a CQ,
and by convention its name is clog_<table_name>, for
example clog_orderline. The clogs store pre-images and
post-images of the rows modified by the transactions. As expected,
INSERT, DELETE, UPDATE DML produce post-images, pre-
images, and pre- and post- images, respectively. We note that a
single update is represented as a delete of the updated row
followed by an insert of the row with new values. Clogs contain
the original columns of the tables plus several accounting columns.
The old_new_mark column indicates if the row is a pre-image
(marked by ‘O’) or post-image (marked by ‘N’) and dml_type
indicates the DML that caused the change (‘I’,’D’,’U’ for insert,
delete and update respectively). The trans_scn column records
the System Commit Number (SCN) of the originating transaction.
In an Oracle RDBMS, every transaction is given a unique stamp
called SCN. In general SCNs form an increasing sequence of
integers. SCN serves an important role for concurrency control,
recovery and for retrieval of transactionally consistent versions of
the database. SCNs are recorded in our undo-logs and are used for
computing past versions of the tables as of given SCN by applying
the undo-images to the current image of the table [ORA10GC].

Our clogs are populated shortly after the transaction has
committed, hence they do not block OLTP update traffic. Note that
we get the changes from our transaction layer, which are actually
from undo/redo logs.

1175

During CQ refresh we retrieve records from clogs pertaining to
the refresh by selecting those with trans_scn between the SCN
of the last refresh of the CQ and the current SCN. They represent
changes to the tables that occurred since last refresh.

5. CQ refresh and Concurrency Control
Our challenge was to not slow down the transaction traffic by CQ
(possibly thousands of them) re-computation. Critical and
negative factors include locking of objects that prevent their OLTP
updates and synchronous refresh that holds transaction commit
points. We address them as follows:

Our CQ engine does not place read locks on the base tables or
their clogs. Instead, we rely on Oracle RDBMS’s versioning
system to provide a consistent view of the database for the refresh
expressions. A table T in a query can be qualified with an SCN
number and our storage layer will retrieve the version of T as of
the SCN (provided that the undo-log is large enough to store undo-
records back to that SCN). As explained in the following section,
Oracle CQ refresh expressions consist of SQL statements that
compute query delta and pass it on to the destination tables or
triggers. In some cases refresh expressions are comprised of
multiple SQL statements. At the refresh time, we get current
system SCN, current_scn, and decorate all tables in the refresh
expressions with it, hence computations are done on a
transactionally consistent view of the database. For simplicity, in
our examples we do not show this decoration since it is applied
universally.

We remember in the CQ metadata, the SCN of its last refresh
last_refresh_scn. This SCN is used to retrieve from the
clog records that represent table changes since the last refresh.
Hence retrieval from clogs always has a predicate on
clog.trans_scn:
clog.trans_scn BETWEEN last_refresh_scn AND
current_scn

Again since this predicate is applied to all clogs, we do not
show it in the refresh expressions.

As mentioned before our CQ computation is asynchronous
with the transaction traffic, therefore refresh doesn’t hold up the
commit points. Furthermore, our batched refresh mode, allows us
to use efficient query plans suited for large transaction deltas and
minimize the overhead of CQ startup.

6. Computation of CQJ
In this section, we present the incremental computation of CQJ.
First, we describe general incremental computation algebra and
then show how to generate efficient SQL queries for different
DML scenarios such as inserts-only, deletes-only, and mixed
DML.

Incremental Computation Algebra

Consider a CQ joining tables T1 and T2: CQ = T1 >< T2. Let
pre(CQ) and pre(Ti) denote the initial, before the update state
(image) of the CQ and table Ti, respectively; dlt(Ti) denote the
updates (e.g., inserts) to table Ti, and pst(CQ) and pst(Ti) denote
the state (image) of CQ and table Ti after the update, respectively.
Then:
Q9
pst(CQ) = pst(T1) >< pst(T2)
 = (pre(T1)+dlt(T1)) >< (pre(T2)+dlt(T2))

 = pre(T1) >< pre(T2) + pre(T1) >< dlt(T2) +
 dlt(T1) >< pre(T2) + dlt(T1) >< dlt(T2)
 = pre(CQ) + pre(T1)><dlt(T2)+ dlt(T1)><pst(T2)

Hence, query delta, dlt(CQ) is

Q10 dlt(CQ) = pre(T1)><dlt(T2)+ dlt(T1)><pst(T2)

Note that, following Q9, dlt(CQ) can also be expressed as:
Q11 dlt(CQ) = pst(T1)><dlt(T2) + dlt(T1)><pre(T2)

Q12 dlt(CQ) = pst(T1)><dlt(T2) + dlt(T1)><pst(T2)
 - dlt(T1)><dlt(T2)

Choice of the incremental computation algebra expression will
affect the performance of CQ refresh. Typically, pre-images must
be recomputed from post-images and table deltas, hence we prefer
to minimize their usage or re-compute them only for smaller
tables. Ideally, we would generate all possible expressions, then
choose the least expensive one, but this computation is exponential
and prohibitively expensive when the number of involved tables is
large. We found in most of our internal experiments that Q10 and
Q11 are more performant than Q12. To choose between Q10 and
Q11 we chose the one that computes the pre-image of the smaller
table: Q10 wins if cardinality(T2) > cardinality(T1).
In general, for a CQ joining N tables, we use
Q13 dlt(CQ) =
 dlt(T1)><pre(T2)><pre(T3)>< .. pre(TN) +
 pst(T1)><dlt(T2)><pre(T3)>< .. pre(TN) +
 ...
 pst(T1)><pst(T2)><pst(T3)>< .. dlt(TN)

Again, since inner joins are commutative Q13 is applicable to
any permutation of the tables and we choose one that requires
fewer pre-image computations of larger tables. Note that if only a
subset of tables changed, refresh expressions account for them. For
example, if only T1 and T2 changed in Q13, it can be reduced to:

 dlt(T1)><pre(T2)><pre(T3)>< ... >< pre(TN) +
 pst(T1)><dlt(T2)><pre(T3)>< ... >< pre(TN)

Hence, it is also critical to know which tables are changed
since last refresh of a CQ. In the following we will show how to
implement the incremental computation algebra in SQL for
different update scenarios.

Incremental Computation in SQL

INSERT only case

When inserts are the only DMLs which happened on base
tables, CQJ delta is composed of only insert deltas and will be
tagged as ‘I’ delta type. This CQJ delta can be computed using
expression Q13 that requires computing the pre-images of N – 1
tables for a CQJ involving N tables. To implement Q13 in SQL,
we investigated two approaches to compute the pre-images of the
involved tables. One is to use a “NOT IN” subquery and the other
is to obtain pre-images directly from the storage layer in Oracle
RDBMS, by requesting a version of the table as of some previous
time or previous SCN. In the latter case, Oracle RDBMS applies
its internal undo logs to the table and rolls it back to that SCN. The
assumption is that storage layer does this very efficiently since it is
the basis for Oracle concurrency control. Versioning, aka

1176

flashback, is available from Oracle SQL using the SCN sub-clause
on the table reference, for example: orders AS OF SCN (<scn-
value>). Typically, for a relatively small amount of updates on the
base tables, “AS OF SCN” approach outperforms the “NOT IN”
subquery approach if there is an index available and refresh uses it.
If there is no index available, the performance between the two is
similar. For a relatively large amount of updates on the base
tables, flashback may not be able to provide enough undo for
rollback. In that case flashback based refresh would fail. Detailed
performance studies between these two approaches is presented in
Section 10.

Next, we give concrete examples of these two approaches
using a continuous join query CQJ_2 joining two tables T1 and T2:
CQJ_2 = T1 >< T2.

“NOT IN” Subquery Approach

SELECT <cols of T1>,<cols of T2>,’I’ dlt_type
FROM /* dlt(T1) >< pre(T2) */
 (SELECT <cols of T1> FROM CLOG_T1) DLT_T1,
 (SELECT rowid, <cols of T2> FROM T2) PRE_T2,
WHERE (join condition) AND PRE_T2.rowid NOT IN
 (SELECT rowid FROM CLOG_T2)
UNION ALL
SELECT <cols of T1>,<cols of T2>,’I’ dlt_type
FROM /* pst(T1) >< dlt(T2) */
 (SELECT <cols of T1> FROM T1) PST_T1,
 (SELECT <cols of T2> FROM CLOG_T2) DLT_T2
WHERE (join condition);

“AS OF SCN” Approach

SELECT <cols of T1>,<cols of T2>,’I’ dlt_type
FROM /* dlt(T1) >< pre(T2) */
 (SELECT <cols of T1> FROM CLOG_T1) DLT_T1,
 (SELECT <cols of T2> FROM T2 AS OF SCN :VSCN
) PRE_T2,
WHERE (join condition)
UNION ALL
SELECT <cols of T1>,<cols of T2>,’I’ dlt_type
FROM /* pst(T1) >< dlt(T2) */
 (SELECT <cols from T1> FROM T1) PST_T1,
 (SELECT <cols from T2> FROM CLOG_T2) DLT_T2
WHERE (join condition);

In the above VSCN is the SCN of the last refresh of the CQ.

DELETE only case

When deletes are the only DMLs happened on base tables, then
CQJ delta is composed of only delete delta and will be tagged as
‘D’ delta type. The implementation of the incremental algebra
expression in Q13 for the deletes-only case is the same as that for
the inserts-only case. Hence, we will omit the details here.

Mix of INSERTS, DELETES, and UPDATES

CQ refresh becomes complicated when tables go through a mix of
DMLs. CQ delta in this case can consist of insert, delete and
update deltas. We typically model "update" as delete followed by
insert and log it in clog as two rows. For the simplicity of
presentation, we model update deltas as an insert and delete pair.
They can be combined into a single update delta provided that the

CQ has a primary key that allows us to clump deletes and inserts
corresponding to the same primary key.

Similar to the above two cases, CQ refresh with mixed DMLs
is also based on the incremental computation expression on Q10
or its general form Q13. Let us consider an example continuous
join query CQJ_2 joining two tables: CQJ_2 = T1 >< T2. Before
we show how to process the CQJ_2 refresh for the case with mixed
DMLs, we rearrange the terms in Q13 making use of the
commutative characteristic of inner join to get:

 dlt(CQJ_2) = pre(T1)><dlt(T2) + dlt(T1)><pst(T2)

We first process deletes (rows marked "U" and "O") from clog

to generate delete delta. We then process inserts (rows marked
"N") from the clog to generate the insert delta. In the end, we
combine these deltas to report update delta. The following
terminology will be needed when describing the CQ refresh for the
case with mixed DMLs. del(Ti) refers to the delete delta on table
Ti. ins(Ti) refers to the insert delta on table Ti. pst’(Ti) refers to the
post-image after deletes on table Ti. pre’(ti) refers to the pre-image
before inserts on table Ti. Note that pst’(Ti) = pre’(Ti) = pst(Ti) –
ins(Ti), pre(Ti) = pst(Ti) – ins(Ti) + del(Ti) = pst’(Ti) + del(Ti).
We then have two deltas to process:

• the delete delta
Q14 del(CQJ_2) = pre(T1) >< del(T2) +
 del(T1) >< pst’(T2)

• the insert delta
Q15 ins(CQJ_2) = pre’(T1) >< ins(T2) +
 ins(T1) >< pst(T2)

As compared with either insert-only case or delete-only case, we
can see that one more image of a table Ti needs to be computed
based on the post-image of table Ti, i.e., pst’(Ti) or pre’(Ti), for
notational convenience, denotes the intermediate image of table
Ti. To implement the algebra expressions of Q14 and Q15, we can
follow the same execution logic as what we do for insert only case
or delete only case but with the adaptation to this particular
scenarios of mixed DML changes. Due to the space limit, we will
not give the detailed SQL statement.

7. Optimization of CQJ Computation

INSERT only case
Refresh expressions from Section 6. can be significantly

simplified in the presence of Foreign-Primary Key (FK-PK)
constraints. Consider a CQJ with N-tables. If all n-tables are
modified, then dlt(CQ), is given by Q13. Suppose that tables T1,
T2, T3 .. Tn are joined (in that order) via FK-PK constraints, i.e.,
T1.fk=T2.pk & T2.fk=T3.pk... Assume further that tables undergo
inserts only. Observe that rows inserted in T2,..TN cannot join
with pre(T1) (since all rows of pre(T1) had to join with pre(T2)
and T2 has a primary index on the join key), hence:

 pre(T1)><dlt(T2)><..pst(TN) = NULL
 pre(T1)><pre(T2)><..dlt(TN) = NULL
Hence:
Q16 dlt(CQ) = dlt(T1)><pst(T2)><..pst(TN)

The above expression is significant since it reduces the number
of refresh expressions from N to 1, and allows us to use only the
post images of the tables.

1177

For many practical cases, transactions come in FK-PK units. In
this mode whenever we insert/delete rows on FK side, we always
insert/delete corresponding row on the PK side. For instance, in the
e-store application, users will place a single order for multiple
items. In this case we insert a new “order” row into the orders table
and insert into the orderline table rows corresponding to the items
bought. In this case we have dlt(orders) and dlt(orderline) that
exclusively join with each other. To get delta of the CQ it is
sufficient to join dlt(orders) and dlt(orderline). There is no need to
join dlt(orderline) to the entire pst(orders). In these cases Q16 can
be simplified further to:
Q17 dlt(CQ) = dlt(T1)><dlt(T2)><..dlt(TN)

For another example, consider an e-store CQ which alerts us if

an under-age user placed an order
Q18 :
 SELECT ol.item, o.oid, u.name
 FROM orderline ol, order o, user u
 WHERE ol.oid=o.oid AND u.uid=o.uid ANDu.age<18

We have a very efficient expression operating only on deltas as in:
dlt(CQ) =
 dlt(orderline) >< dlt(orders) >< pst(users)

The problem is that we don’t know if the delta on the FK side,
dlt(orderline) in our example, joins only with delta on the PK side,
dlt(orders) in the example. To detect this we could find out if the
cardinality of the dlt(orderline) >< dlt(orders) is the same as
dlt(orderline), i.e., all rows from dlt(orderline) join with dlt(orders)
and hence cannot join with pre(orders). One way to discover it is
via an outer join. If
Q19 :
dlt(CQ) =
 dlt(orderline) OUTER><dlt(orders)><pst(users)

has no anti-join tuples, then all rows from delta on the FK side
(dlt(orderline)) joined with delta on the PK side,
(dlt(orders)). If there are anti-join tuples, then we could join
them with pst(orders) to get the full result.

Suppose query delta dlt(CQ) of Q19 will have an anti-join
marker (returning 0 for inner and 1 for anti-join tuples). Based on
this we will insert (using multi-table insert) the delta into two
tables. The inner join tuples will be placed in the destination table,
dest, and anti-join tuples will be placed in a temporary table,
anti_join:

Q20 :
INSERT
 WHEN aj_mark=1 THEN INTO anti_join(item, oid)
 WHEN aj_mark=0 THEN INTO dest(item, oid, user)
SELECT ol.item, ol.oid, u.user,
 CASE o.oid IS NULL THEN 1 ELSE 0 END aj_mark
FROM dlt(orderline) ol,dlt(order) o, pst(user) u
WHERE ol.oid = o.oid(+) AND u.user(+) = o.user
 AND u.age < 18(+)

If anti_join table is empty, then there were no anit-join rows
and we are done generating dlt(CQ). Checking can be done
either via a trigger on the anti-join table or by issuing a query:
“select count(*) from anti-join”.

If anti_join table is not empty, then we have to join all anit-join
rows with pre(orders) and pst(users). Observe that due to FK-
PK relationship, we could join to pst(orders) rather than
pre(orders). In this case to complete generation of dlt(CQ)
we would issue one more query:
 anti_join(MV) >< pst(orders) >< pst(users)

i.e.
Q21 :
INSERT INTO dest (item, oid, user)
SELECT ol.item, ol.oid, u.user,
 CASE o.oid IS NULL THEN 1 ELSE 0 END aj_mark
FROM anti_join ol, pst(order) o, pst(user) u
WHERE ol.oid = o.oid AND u.user = o.user
 AND u.age < 18

Queries Q20 and Q21 can be combined into a single query:

Q22 :
INSERT INTO dest (item, oid, user)
WITH
oj AS
 (SELECT ol.item, ol.odi, u.user,
 CASE o.oid IS NULL THEN 1 ELSE 0 END aj_mark
 FROM dlt(orderline) ol,dlt(order) o, pst(user)u
 WHERE ol.oid=o.oid(+) AND u.user(+)=o.user
 AND u.age < 18(+))
anti_join AS
 (SELECT * FROM oj WHERE aj_mark = 1)
SELECT item, oid, user FROM oj WHERE aj_mark = 0
UNION ALL
SELECT item, oid, user
FROM anti_join ol, pst(order) o, pst(user) u
WHERE ol.oid = o.oid AND u.user = o.user
 AND u.age < 18

The above query is efficient provided that the subquery OJ is
small (or typically empty) compared to orderline and order tables.
In addition, if anti_join is empty (or very small), the second branch
of UNION ALL takes not time (or is very short). Section 10.
shows that this formulation speeds up the general refresh algorithm
of Q9 by orders of magnitude and the FK-PK optimized algorithm
Q16 by an oder of magnitude.

DELETE only case
Assume DELETES only to T1, T2, .. Tn. If the foreign key

’CASCADE DELETE’ option is active then deleting a row from
T2 will delete the dependent foreign key rows in T1. If the option
is not active, then we cannot delete rows from T2 that have foreign
key in T1. Rows from T1 have to be removed first. Thus deleting
rows from T2,..Tn which join with T1, will eventually propagate to
T1. Hence deletes on T1, T2, ..Tn, is equivalent from CQ refresh
point of view to deletes only on T1. Thus dlt(MV) of Q13can be
simplified to:
Q23 :
dlt(CQ) = dlt(T1) >< pre(T2)... >< pre(Tn)

This expression is very efficient, if RDBMS provides an easy
access to pre refresh images of the tables. Otherwise, pre images
must be re-computed using post images and change logs on the
tables.

Q23 can be further processed by replacing pre(Ri) with
pst(Ri)+dlt(Ri) to get only the post images of the relations
which are immediately available. For example, if i=3, then:

dlt(CQ) = dlt(T1) >< pre(T2) >< pre(T3)
 = dlt(T1) >< (pst(T2)
 + dlt(T2) >< (pst(T3) + dlt(T3))
 = dlt(T1) >< pst(T2) >< pst(T3)
 + dlt(T1) >< dlt(T2) >< pst(T3)
 + dlt(T1) >< pst(T2) >< dlt(T3)
 + dlt(T1) >< dlt(T2) >< dlt(T3)

The third factor above:

1178

 dlt(T1) >< pst(T2) >< dlt(T3) = NULL

since pst(T2)><dlt(T3) = NULL, i.e., pst(T2) cannot join
with dlt(T3) since rows in dlt(T3) would also cause deletion in T2,
hence they cannot belong to pst(T2). Thus:

dlt(CQ) = dlt(T1) >< pre(T2) >< pre(T3)
 = dlt(T1) >< pst(T2) >< pst(T3)
 + dlt(T1) >< dlt(T2) >< pst(T3)
 + dlt(T1) >< dlt(T2) >< dlt(T3)

This is an important result as it allows us to express refresh
expressions in terms of deltas and post-images. In general:
Q24 :
dlt(CQ) = dlt(T1) >< pre(T2) >< ... >< pre(Tn)
 = dlt(T1) >< pst(T2) >< ... >< pst(Tn)
 + dlt(T1) >< dlt(T2) >< ... >< pst(Tn)
 ...
 + dlt(T1) >< dlt(T2) >< ... >< dlt(Tn)

Now consider scenario when deletes affect only a subset of

tables: DELETES on { Ti, .. TN }, i>1. If ’ON DELETE
CASCADE’ option is ON, then this delete will cause deletes on
T1, T2, Ti-1 as well, and Q23 and Q24 still hold. If ’ON DELETE
CASCADE’ is OFF, then delete on { T2, .. TN } has no effect on
T1 >< T2 >< T3 >< .. >< Tn as the deletes cannot affect T1.

Note that for this case (DELETE ONLY) case we can apply an
optimization for transactions which come in FK-PK units. It is
similar to the INSERT case above. If on the FK side we delete only
rows which are deleted on the PK side, then Q23 can be
significantly simplified to:

dlt(MV) = dlt(T1) >< dlt(T2) >< ... >< dlt(Tn)

The validity of this optimization can be verified in the same
way as in the INSERT case.

Mix of DELETES, INSERTS and UPDATES
Assume tables T1, T2, .. TN go through a series of

modifications which (logically) can be represented by set of
DELETES followed by set of INSERTS. Then, based on the above
two paragraphs, dlt(CQ) can be represented as two deltas: delete
followed by insert:

dlD(CQ) = dlD(T1) >< pre(T2) ><.. pre(Tn)
dlI(CQ) = dlI(T1) >< pst(T2) ><.. pst(Tn)

If desired, these two deltas can be represented as three deltas –
delete, insert, or update. This can be done by using the primary key
of CQ. In the simplest case, the primary key consists of all rowids
of the tables. Rows from dlD(CQ) and dlI(CQ) with the same
PK are group together to form an update delta.

8. Computation of CQJA
We compute the results of a CQJA using a backing

materialized aggregate view (MAV) that will store the aggregates
of query defining CQ up to the last refresh. Result of CQJA is
obtained by joining the MV to aggregates on the current deltas.
Efficient incremental refresh algorithms for MAVs were proposed
in literature [GMS93], [GH195] and also implemented in
commercial databases [RB-98], [ORA10GC] and hence we skip
their explanation here.

We explain CQJA on an example. Consider the CQ
negative_balance_cq that notifies whenever a customer’s account

balance goes below $0. For this CQ, we will create the following
backing MAV:

CREATE MATERIALIZED VIEW mav_banking_transactions
REFRESH FAST ON DEMAND
SELECT
 acct, sum(amt) sum_amt, count(amt) count_amt,
 count(*) count_star
FROM banking_transactions
GROUP BY acct;

We include count(amt) and count(*) in the MAV definition

since our incremental refresh [Oracle10GC] requires it.
CQJA result can be obtained by outer joining the delta query

(“V” in the below example) with the MV, and then refreshing the
MV.

INSERT INTO dest_table
SELECT acct, CASE mv.sum_amt is null THEN 0
 ELSE mv.sum_amt END + v.dlt_sum
FROM (SELECT
 acct,
 SUM(CASE dml=’I’ THEN 1 ELSE –1 END*amt)
 dlt_sum
 FROM CLOG$_BANKING_TRANSACTIONS
 AS OF SNAPSHOT <refexp_scn> M
 WHERE M.COMMIT_SCN IN <SCN_RANGE>
 GROUP BY acct) V,
RIGHT OUTER JOIN
 mav_banking_transactions mv
ON v.acct = mv.acct
WHERE CASE mv.sum_amt is null THEN 0
 ELSE mv.sum_amt END + v.dlt_sum < 0;

We are also investigating extending the MERGE syntax to
deposit the results into multiple destinations – one destination will
be the MAV and the other would be the destination table/queue
specified in the CQ specification.

9. Computation of CQW
In this section we describe techniques to support refresh of CQW.
Since one of our goals is to not affect OLTP negatively, we restrict
ourselves to the cases where CQW refresh will be efficient and
they are:

1. Tables are append-only and,

2. Window functions are on monotonically
increasing column, and

3. Windows extend only to the preceding rows.

With the above restrictions, CQW refresh is based on
maintaining a buffer of past rows (remember that tables are insert
only) needed for window function computation. These are the
preceding rows that will be in the window of the incoming rows.
Rows that no longer needed will be deleted from the buffer. This is
like MV maintenance and prompted us to use an MV to materialize
the rows needed for future refreshes of the CQ. The MV definition
depends on the type of the window functions used in CQW and is
explained later. Incremental maintenance of this MV will take
place along with CQW result computation by the refresh process.
The size of this MV and the expressions for refreshing it depend on
the type of the window functions used – physical (using ROWS

1179

qualifier) vs. logical windows (using RANGE qualifier), and
cumulative vs. moving [Z99].

CQW with physical moving windows
Physical window functions use ROW offsets to specify

window size, for example, ROWS BETWEEN CURRENT ROWS
AND 1 ROW PRECEDING. For simplicity, we explain refresh of
CQW on a single table. When there are multiple tables, refresh
expressions of Section 6. and 7. are used to get join delta (which
is the insert delta as tables are append-only) that forms the input to
window functions. Consider the CQ that sends a single notification
whenever temperature in a location increases above 90 degrees.
CREATE CONTINUOUS QUERY notify_hightemp_cq
 COMPUTE ON COMMIT
 DESTINATION dest_table
SELECT loc, time, temp
FROM (SELECT loc, time, temp,
 LAG(temp,1) OVER (PARTITION BY loc

 ORDER BY time) prev_temp
FROM temps)

WHERE temp >= 90 AND prev_temp < 90;

This CQ emits a row if, in a given location, the previous
temperature was below 90 degrees but current one is above it.
Assume that table temps has a constraint indicating column
temps.time is monotonically increasing within temps.loc.
For this CQW, we define an MV to materialize the last row of each
location, i.e., row with a previous temperature. The definition of
this MV is:

CREATE MATERIALIZED VIEW MV_Q1_window
 PARTITION BY RANGE(pmarker)
 (PARTITION po VALUES LESS THAN (1),
 PARTITION p1 VALUES LESS THAN (MAXVALUE))
SELECT loc, time, temp, 0 pmarker
FROM(SELECT loc, time, temp,

 ROW_NUMBER () OVER (PARTITION BY loc
 ORDER BY time) rn,

 COUNT(*) OVER (PARTITION BY loc) pcard
FROM temps)

WHERE rn > pcard-1 AND rn <= pcard;

The predicate “rn>pcard-1 AND rn<=pcard“ keeps
only one row (the last one) for each location. Only this row is
relevant to our CQ refresh. We partition the MV into two partitions
p0 and p1 so as to deposit CQW results and refresh
MV_Q1_window together in a single DML statement. The
overhead of maintaining this MV thus becomes minimal since we
can use fast partition truncate operations rather than expensive
DELETE dml to clean up the MV. [N+05] showed clean-up of MV
using partition truncate operation is significantly better than using
corresponding DELETE dml. At any point in time, only one
partition has data and that is the set of rows that potentially be in
the window of newly arrived rows. While refreshing the CQW, we
determine the new set of rows needed for next refresh and load
them into the empty partition. Partition that was used for CQW
refresh will be truncated at the end of refresh. The following SQL
accomplishes CQW refresh:

/* Assume pname and pid are the name and number
 of the partition used for CQW refresh. This
 information can be obtained from RDBMS
 internal functions */
INSERT
 WHEN temp>=90 AND prev_temp<90 AND tag=1

 THEN INTO dest_table
 WHEN rn > pcard - 1 and rn <= pcard
 THEN INTO MV_Q1_window
 (loc, time, temp, 1 - :pid)
SELECT loc, time, temp, tag,
 LAG(temp,1) OVER (PARTITION BY loc
 ORDER BY time) prev_temp,
 ROW_NUMBER() OVER (PARTITION BY loc
 ORDER BY time) rn,
 COUNT(*) OVER (PARTITION BY loc) pcard
FROM (SELECT loc, time, temp, 0 tag

FROM MV_Q1_window
UNION ALL
SELECT loc, time, temp, 1 tag
FROM clog_temps) V;

ALTER TABLE MV_Q1_window TRUNCATE

PARTITION :pname;

The view V produces the rows of interest – delta rows and
materialized rows from MV partition. In the outer query block, we
compute the original window function and two additional window
functions needed by the multi-table insert to deposit rows in CQ
destination and in the empty MV partition.

The above SQL can easily be generalized when there are
multiple window functions having same PARTITION BY and
ORDER BY keys but with different window sizes.

WINDOWFUNC_1(a1) over (
 PARTITION BY pk_1, pk_2, ..., pk_p
 ORDER BY ok_1, ok_2, ..., ok_o
 ROWS BETWEEN m1 PRECEDING AND n1 PRECEDING),
. . .,
WINDOWFUNC_k(ak) over (
 PARTITION BY pk_1, pk_2, ..., pk_p
 ORDER BY ok_1, ok_2, ..., ok_o
 ROWS BETWEEN mk PRECEDING and nk PRECEDING)

We compute max(m1, m2, ..., mk) and let it be mMX. The MV
needed to handle these window functions will be similar to
MV_Q1_window except for the where predicate, which will be:
 WHERE rn BETWEEEN pcard - mMX + 1 AND pcard;

SQL for incremental maintenance of the MV again will be
similar to the one given above except for the WHEN predicate that
filters in rows to be populated in the empty MV partition. This
predicate will be:
 WHEN rn BETWEEN pcard - MMX + 1 AND pcard;

CQW with logical moving windows
Logical window functions are those with RANGE window

specification and they can be supported in a fashion similar to
physical window functions. The (minor) difference is in the
expressions used to find rows to be materialized. Due to lack of
space we omit the details.

CQ with cumulative window functions
Cumulative window function is a special case of moving

window function where the window extends from the first row in
the partition up to the current row. Our solution for moving
windows is not viable for cumulative windows, as we would buffer
the entire table. We solve this by aggregating data within each
partition and materializing it in the MV. Consider CQ for notifying
whenever client’s average account balance falls below $100:

CREATE CONTINUOUS QUERY notify_lowbalance_cq

1180

 DESTINATION dest_table
SELECT acct, time, cavg
FROM (SELECT acct, time, amt,

 AVG(amt) OVER (
PARTITION BY acct ORDER BY time
ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) cavg

FROM banking_transactions)
WHERE cavg < 100;

We materialize SUM and COUNT aggregates for each account
partition in an MV with the following definition:

CREATE MATERIALIZED VIEW MV_window_cumulative
 PARTITION BY RANGE(pmarker)
 (PARTITION p0 VALUES LESS THAN (1),
 PARTITION p1 VALUES LESS THAN (MAXVALUE))
SELECT acct, SUM(amount) csum,

COUNT(amount) ccnt, 0 pmarker
FROM banking_transcations
GROUP BY acct;

When the CQ is refreshed, we use the following query to
compute results and data needed to maintain the associated MV:
INSERT
 WHEN v1m = 0 AND cavg < 100
 THEN INTO destination_table(acct, time,
 CASE ccnt=0 THEN 0 ELSE csmu/ccnt END cavg)
 WHEN (v1m = 0 AND rn = pcard) or

(v1m is NULL)
 THEN INTO MV_window_cumulative(acct, csum,

ccnt, 1 - :pid marker)
SELECT v1.acct, v1.time,
 v1.csum +
 CASE v2.marker=0 THEN v2.csum ELSE 0 END csum,
 v1.ccnt +
 CASE v2.marker=0 THEN v2.ccnt ELSE 0 END ccnt,
 v1.marker v1m, v2.marker v2m,
 v2.acct, v2.csum, v2.ccnt,
 pcard, rn
FROM (SELECT acct, time, amount,

 SUM(amount) OVER (PARTITION BY acct
 ORDER BY time ROWS BETWEEN UNBOUNDED
 PRECEDING AND CURRENT ROW) csum,
 COUNT(amount) OVER (PARTITION BY acct
 ORDER BY time ROWS BETWEEN UNBOUNDED
 PRECEDING AND CURRENT ROW) ccnt,
 COUNT(*) OVER (PARTITION BY acct) pcard,
 ROW_NUMBER() OVER (PARTITION BY acct
 ORDER BY time) rn,

 0 marker
FROM clog_banking_transactions

) v1 FULL OUTER JOIN
 (SELECT acct, csum, ccnt, pmarker, 0 marker

FROM MV_window_cumulative
) v2 ON

sys_op_map_nonnull(v1.acct) =
sys_op_map_nonnull(v2.acct);

View v1 computes cumulative sum (csum) and cumulative

count (ccnt) on the delta rows. It also computes the cardinality
(pcard) of each account partition and sequentially numbers (rn)
rows within each partition. This view is full outer-joined with the
MV on the grouping key (acct). Inner-join and left-outer join rows
form CQW results and they are found with the predicate v1m=0.
To maintain the MV, we need the last row of each partition for the

inner and left-outer rows and all the right outer join rows. The
predicate (v1m = 0 and rn = pcard) or (v1m is NULL)
finds such rows. This method can be generalized to support
multiple logical and cumulative window functions.

10. Performance Study
We conducted experiments on the e-store schema. The
orderline, orders and users tables had 10M, 1M and 100K
rows respectively, modelling a medium sized e-store application
where users typically buy about 10 items in a single order. In most
experiments we assumed that user population is fixed, hence only
orderline and orders tables changed. We have used a Linux
Intel machine, with a single 400MHz CPU and 2GB of main
memory.

FK-PK optimization
Consider CQ Q18 alerting us when an under-age user places an

order. Assume only new orders are entered, where a single order,
on average, contains ten items. The orderline and orders tables will
then have insert delta only. Figure 1 and 2 plot computation time
of CQ as a function of the delta size on the orders table. In the
experiment delta changed from 100 to 200 orders (0.01% to 0.02%
of the table. We show two plots: one for computation using general
expressions (see Q13) and one for FK-PK optimized expressions
(see Q16). In the first experiment, depicted in Figure 1, none of the
tables had indexes and joins in refresh expressions were hash joins.
In this case FK-PK optimized expressions performed an order of
magnitude better than the unoptimized ones. The result is intuitive
since Q16 performs only dlt(orderline) >< pst(orders), while Q13
in addition performs pst(orderline) >< dlt(orders), and |orderline| =
10* |orders|. Figure 2 shows the same experiment when indexes
were placed on orderline.oid and orders.oid and nested loop join
with index access was used for CQ computation. In this case, on
average, Q16 performs seven times better than Q13. We note that
presence of indexes visibly slowed down the application and in
some OLTP applications, users may elect not to create them.
Instead, they may elect less frequent CQ refresh. For less frequent
refresh, table deltas may be sufficiently large so that the optimal
refresh plan would choose full table rather than index access path.
We also conducted experiments (not shown here) where we had
not only transactions with new orders but also ones with updates to
the previous orders (e.g, changing the item in the order, discount
on it, etc). In this case, in addition to the insert delta we also have
the update deltas on base tables. In this case, the general refresh
expression based on Q13 performs significantly more work than
for the insert only case. Optimized refresh expressions based on
Q16 and Q24 also perform more work, but proportionally much
less than that of Q13. For the insert and update cases, the
optimized refresh expressions performed on average fifteen times
better than unoptimized ones.

FK-PK with transactions arriving in FK_PK units
Consider the e-store application where all (or a significant portion
of) transactions come in FK-PK units. In this case an optimized
Q22 instead of Q16 can be used. Note that Q22 accounts for
scenario where transactions do not arrive in FK-PK units but incurs
an extra overhead in this case. In the e-store application, this
scenario corresponds to a user logging on multiple times and
adding new items to an already placed order. Expression Q22 is

1181

general vs fk-pk - no indexes

0
2
4
6
8

10
12
14

0 10000 20000 30000 40000
delta (#rows)

ti
m

in
g general

fk-pk

general vs fk-pk w ith indexes

0

0.5

1

1.5

2

2.5

0 10000 20000 30000 40000
delta (#rows)

ti
m

in
g general

fk-pk

fk-pk vs fk-pk-units: no indexes

0

0.5

1

1.5

2

0 50 100 150
% of anti-join rows

ti
m

in
g

fk-pk

fk-pk-units

Figure 1.

Figure 2.

Figure 3.

fk-pk vs fk-pk-units w ith indexes

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0 50 100 150

% of anti-join rows

ti
m

in
g

fk-pk

fk-pk-units

fk-pk units percentage

0
0.2

0.4
0.6
0.8

1
1.2

1.4
1.6

1 2 3 4 5 6
% of trans. with anti-joins

ti
m

in
g

fk-pk

fk-pk-units

pre-image using a query vs scn: w ith
indexes

0
0.5

1
1.5

2
2.5

3
3.5

0 5000 10000 15000
delta (#rows)

ti
m

in
g

pre-query

pre-scn

Figure 4.

Figure 5.

Figure 6.

1182

more expensive than Q16 if there is a portion of the dlt(orderline)
that doesn’t join with dlt(orders), i.e, when “dlt(orderline) anti-
jon><dlt(orders)” is not empty. Figure 3 studies this effect. We
vary the portion of dlt(orderline) that doesn’t join with dlt(orders),
i.e., the size of |dlt(orderline) anti-join><dlt(orders)| from 0% to
100% of |dlt(orderline)><dlt(orders)|. The frequency of CQ
computation is as in Figure 1 and the size of delta changes from
100 to 200 orders. Figure 3 also shows the timing for FK-PK
optimized expression Q16 where there are no indexes on the base
tables. It can be seen that when transactions arrive in FK-PK units
(i.e., |dlt(orderline) anti-join><dlt(orders)| = 0), Q22 is about 5
times faster than Q16. If |dlt(orderline) anti-join><dlt(orders)| >0,
then Q22 is 20% slower than Q16 and more importantly, that the
difference is independent of the size of |dlt(orderline) anti-
jon><dlt(orders)| . Figure 4, show the same scenario with indexes
on the base tables. In this case Q16 is 1.5 to 2 times faster then
Q22 for a wide range of the size of anti-join. This suggest that
Q22 is beneficial in scenarios where most (if not all) transactions

arrive in FK-PK units. This is illustrated in Figure 5 in case

where base table have no indexes. We vary the precentage of
transactions that do not come in FK-PK units from 0 to 100%. For
these transactions, If |dlt(orderline) anti-jon><dlt(orders)| = 0.5 *
|dlt(orderline)><dlt(orders)|, i.e., 50% or the dlt(orderlines) refer to
existing orders rather than to dlt(orders). It can be seen that if no
more than 80% of transactions have non empty “dlt(orderline) anti-
jon><dlt(orders)”, it is beneficial to use Q22 over Q16.

Computing pre-images with query vs undo application
General experssion for CQJ, Q13, requires pre-images of the

tables. They can be computed from their post-images and delta
logs. For example, in the e-store experiment where we deal only
with insert deltas, the pre-image of orders table is calculated using
anti-join: pst(orders) anti-><dlt(orders):
SELECT * FROM orders WHERE rowid
 NOT IN (SELECT rowid FROM dlt(orders))

Alternatively in Oracle RDBMS, pre-images can be obtained
directly from the storage layer requesting a version of a table as of
previous refresh SCN. In this experiment we compare pre-image
calculation using an anti-join query vs using flashback. The
scenario is simlar to the one from Figure 1. We change size of the
delta on orders from 100 to 1000 with increments of 100 and
measure timings of Q13. Figure 6 shows a scenario where indexes
on orderline.oid and orders.oid are present and Q13 execution uses
index access with nested loop joins and anti-joins for query based
pre-image. Figure 7 shows a scenario with no indexes and all hash
joins. Figure 6, as expected, shows flashback wins over query
based pre-image. In Figure 7, however, performance numbers for
flashback and query based pre-images are similar and this is
counter-intuitive. Observe that in Figure 6 we access only few
data blocks due to nested loops and index access while in Figure 7
we access all blocks of the tables due to hash joins. In the latter
case, the overhead of verifying whether a data block needs to be
subjected to rollback is as comparable to a small anti-join. This
suggests that for refresh expressions scanning significant amount
of data, it is safe to use query based pre-images. This is important
for non-frequent refreshes as flashback may not be able to provide
enough undo for rollback based on the amount of past changes. In
that case, flashback based refresh would fail.

pre-image using query vs scn. no indexes

0
2
4
6
8

10
12
14

0 5000 10000 15000
delta (#rows)

ti
m

in
g

pre-query

pre-scn

Figure 7.

Frequency of refresh
In this experiment we study the performance impact of the

frequency of refresh. As before, we experiment with CQ Q18
detecting orders placed by under-age customers. We use FK-PK
optimized refresh expressions of Q16. Each transaction consists of
one order with, on average, 10 order items. This experiment
processes 7000 such transactions and we vary the refresh
frequency from every 10 transactions to every 2000 transactions,
and measure the total refresh time. Figure 8 illustrates that the
frequency of refreshes has significant impact on the total time to
refresh the result of 2000 transactions. Note that if refresh is
invoked every 10 transactions, the total refresh time is about 35
times longer than if refresh is called only once. This is due to the
overhead of starting up a refresh. That start-up time involves setup
of internal execution structures and retrieval of the query execution
plan from the cache. If the refresh frequency is above a certain
threshold, in our case about every 100 transactions, the total
refresh time doesn’t change significantly. This validates our initial
intuition of providing a batch mode of transactional refresh:
TRANSACTIONAL DELTA clause (see Q7) where refresh time
can be regulated by the user. In our case, if minimizing the delay
of notification is important, users should set the refresh frequency
just above that threshold. We currently investigate how to set the
frequency of refresh automatically and close to the threshold given
user’s frequency range.

frequency of refresh vs total refresh time

0

20

40

60

80

100

0 1000 2000 3000
transactions

ti
m

in
g

frequency

 Figure 8

1183

11. Conclusion and Future Work
The paper presented Continuous Query processing engine in
Oracle. It is a first commercial attempt to provide a stream and
event-processing engine within a relational database. We found
that the concepts of traditional streaming systems with queries over
append only objects is not sufficient in the database where
modifications include update, delete, partition maintenance
operations etc in addition to inserts. We based CQ semantics on the
concept of query delta since most applications define a state they
monitor using a query and want to observe its changes (delete,
insert and update deltas) based on changes to the underlying tables.

We based our CQ computation on materialized view refresh
and provided significant extensions to the MV refresh algorithms.
The extensions, together with Oracle concurrency control
mechanism, allowed us to build efficient, non-blocking, no-locking
and asynchronous algorithms for CQ refresh.

There are several open challenges for our CQ architecture.
First, is to include multi-query optimization in CQ refresh. There
has been a lot of work in multi-query optimization for MV
advisors and rewrite. We are in the process of incorporating that
work in query plans for CQ. An interesting issue is how to deal
with CQs that have different refresh schedules. Second, is to
extend incremental refresh algorithms to more query shapes. Third,
is to include in SQL a functionality to find patterns in sequences of
rows. Some work in this area has been proposed in [SZZA+04].
This would significantly increase the applicability of CQ if we
could incrementally discover patterns in sequences of updates. We
are currently working with other commercial vendors on such
extensions. Fourth, is to provide a SQL language construct that
allows us to compose CQs. Right now our CQs are stand-alone
objects whose results cannot be easily composed using SQL. A
possibility is to apply FROM clause windows on CQs [ABB+03].

12. References
[ABB+03] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I.
Nishizawa, J. Rosenstein, J. Widom. “STREAM: The Stanford
Stream Data Manager”, Proceedings of SIGMOD, 2003.

[AS89] A. Swamy, "Optimization of Large Join Queries:
Combining Heuristics and Combinatorial Techniques,", ACM
SIGMOD, 1989.

[RB+98] R. Bello, et all. “Materialized Views In Oracle”,
Proceedings of VLDB, 1998.

[BLT86] J. Blakeley, P. Larson, F. Tompa. “Efficiently Updating
Materialized Views”, Proceedings of SIGMOD, 1986.

[CC+02] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik,
“Monitoring Streams: A New Class of Data Management
Applications”, Proceedings of VLDB, 2002.

[CC+03] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S.
Madden, F. Reiss, M. A. Shah, “TelegraphCQ: Continuous
Dataflow Processing”, Proceedings of SIGMOD, 2003.

[CD+00] J. Chen, D. J. DeWitt, F. Tian, Y. Wang, “NiagaraCQ: A
Scalable Continuous Query System for Internet Databases”,
Proceedings of SIGMOD, 2000.

[CJSS03] C. Cranor, T. Johnson, O. Spataschek, V. Shkapenyuk,
“Gigascope: A Stream Database for Network applications”,
Proceedings of SIGMOD, 2003.

[CS94] S. Chaudhuri, K. Shim, “Including Group-By in Query
Optimization”, Proceedings of the 20th VLDB Conference,
Santiago, Chile, 1994.

[CS96] S. Chaudhuri, K. Shim, “Optimizing Queries with
Aggregate Views”, EDBT 1996.

[G+92] C.A.Galindo-Legaria et al. “How to extend a conventional
optimizer to handle one- and two- sided outerjoin”, IEEE ICDE
1992.

[G+97] C.A. Galindo-Legaria et al., “Outerjoin Simplification and
Reordering for Query Optimization”, TODS, 1997.

[N+05] N. Folkert, et al “Optimizing Refresh Of a Set of
Materialized Views”. Proceedings of VLDB, 2005.

 [G+04] A. Gupta, et al “Data Densification in Relational Database
Systems”. Proceedings of SIGMOD, 2004.

[GHQ95] A. Gupta, V. Harinarayan, D. Quass, “Aggregate-Query
Processing in Data Warehousing Environments”, Proceedings of
VLDB,1995.

[GMS93] A. Gupta, I. Mumick, V. Subrahmanian, “Maintaining
Views Incrementally”, Proceedings of SIGMOD, 1993.

[JMS95] H. V. Jagadish, I. S. Mumick, A. Silberschatz, “View
Maintenance Issues for the Chronicle Data Model”, Proceedings of
PODS, 1995.

 [LPT99] L. Liu, C. Pu, W. Tang, “Continual Queries for Internet
Scale Event-Driven Information Delivery”, TKDE, 1999.

[MSHR02] S. Madden, M. A. Shah, J. M. Hellerstein, V. Raman,
“Continuously Adaptive Continuous Queries over Streams”,
Proceedings of SIGMOD, 2002.

[ORA10GC] Oracle Database Concepts 10G Release 1. Part Numb
er B 10743-01.

[PD99] N. Paton, O. Diaz, “Active Database Systems”, ACM
Computing Surveys, 31(1):63-103, Mar 1999.

[PHH92] H. Pirahesh, J.M. Hellerstein, W. Hasan.
“Extensible/Rule Based Query Rewrite Optimizations in
Starburst”, Proceedings of ACM SIGMOD 1992.

[PSCP02] T. Palpanas, R. Sidle, R. Cochrane, H. Pirahesh,
“Incremental Maintenance for Non-Distributive Aggregate
Functions”, Proceedings of VLDB 2002.

[SLR94] P. Seshadri, M. Livny, R. Ramakrishnan. “Sequence
Query Processing”, Proceedings of SIGMOD, 1994.

[SZZA+04] R. Sadri, C. Zaniolo, A. Zarkesh, J. Adibi.
“Expressing and Optimizing Sequence Queries in Database
Systems” ACM Transactions on Database Systems, June 2004

 [Sul96] M. Sullivan, “Tribeca: A Stream Database Manager for
Network Traffic Analysis”, Proceedings of VLDB, 1996.

 [Z99] “Rank, Moving and reporting functions for OLAP,”
99/01/22 proposal for ANSI-NCITS.

1184

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

