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Abstract 

This paper describes Continuous Queries (CQ) in Oracle RDBMS, 
a feature that incorporates stream and complex event processing 
into an RDBMS, the first such attempt in commercial databases. 
The feature is based on the concept of query difference and allows 
us to monitor real time changes to the query as the result of 
changes to its underlying tables. The result of a continuous query 
can be deposited into historical tables or queues for further 
asynchronous de-queuing, or can invoke a synchronous trigger for 
procedural processing. The main contribution of our CQ engine is 
that it allows us to react to complex scenarios of changes to data 
such as mixed INSERT, DELETE and UPDATE changes, unlike 
the existing stream processing systems that deal with INSERTS 
only. We support a wide range of query shapes including inner, 
semi and anti-joins, aggregates and window functions. More 
details are given to the efficient computation of query difference 
for general cases and their optimizations based on semantic 
constraints. They are shown to improve the response time for 
practical cases by more than an order of magnitude. We also show 
how delaying CQ re-computation can improve its performance by 
batch processing the changes to the base tables. 

1.  Introduction 
There has been a significant interest in processing, within an 
RDBMS streams of changes to the data and reporting when the 
result of a query defined over the data changes. These queries are 
referred to as the continuous queries (CQ) since they continually 
produce results whenever new data arrives or existing data 
changes. The interest is driven by sensor and event data processing 
(RFID in particular), real-time reporting of Key Performance 
Indicators for Business Intelligence, and by security monitoring to 
discover sequence of prohibited or dangerous events.  One primary 
reason for an RDBMS solution for stream computation is the 
declarative power of SQL that enables rapid and uniform (via a 
single language) application development and offers potential for 
optimizations of multiple stream queries using multi-query 
optimization techniques.  

Stream processing has been researched extensively in the 
recent literature ([Sul96], [CC+02], [CC+03], [CD+00], [LPT99], 
[JMS95], [ABB+03], [SLR94], [CJSS03], [MSHR02]). It also has 

some prototype implementations ([CC+02], [CJSS03], [ABB+03], 
[CC+03]). In most of these works, streams are treated as append-
only tables or transient queues and queries are expressed with SQL 
extensions using window constructs on the streams. Stream 
processing attracted previous interest in form of active databases 
[PD99] (driven by triggers and procedural programming) and in 
form of materialized views ([JMS95]). 

In contrast to the literature where the sources of continuous 
queries are objects called streams, the sources for our CQ engine 
are transactions to the relational tables that can insert (like in 
streams), delete or modify data. Continuous query is defined as a 
relational set difference between the query result at time t1 and 
time t2 (t2 > t1) and is best explained using the analogy of 
materialized views (MVs). Given query Q and its materialized 
image MV1 at time t1, we accept committed DML changes to the 
Q’s tables, re-compute MV2 at time t2, and return query delta ΔQ = 
MV2  - MV1. The notion of query delta is very natural to monitoring 
applications that define data of interest using a SQL query (e.g., 
customers with balance less than 0) and need to monitor records 
entering the set (the insert delta), records leaving it (the delete 
delta), and records in the original set that change (the update delta). 
Frequency of re-computation is defined by the user and similarly to 
MVs, it can be on commit, on demand and periodic. Continuous 
query is a transactionally consistent query delta i.e., only 
committed changes are emitted by it. This allows us to build 
continuous queries that are restartable and consistent across system 
crashes. 

The continuous results of CQ can be deposited either to a 
queue or appended to a table. Users are expected to 
asynchronously de-queue the results from the queue or retrieve it 
directly from the table. Management of the destination (queue or 
table) is left to the user since he/she may decide to preserve it for 
historical purposes. We also provide for procedural extensions for 
CQ. The process of emitting data from a CQ can invoke an 
RDBMS trigger or a user defined callback where further 
programmatic processing can be done. 

Not surprisingly, we use algorithms similar to incremental 
refresh of materialized views to compute query delta. Our 
algorithms, however, have many novel features and cover a larger 
set of queries than the published ones [GMS93], [GHQ95], 
[RB+98]. We provide optimization of the query delta computation 
for queries with joins which is based on constraints. This improves 
performance of the existing methods by more than an order of 
magnitude. We also investigate usage of the snapshot features of 
Oracle RDBMS to retrieve the pre-update state of the tables for 
delta computation expressions. Previously, the pre-update states 
had to be computed using SQL queries over tables and their logs. 
To support non-event detection, we extend the algorithms for NON 
EXIST sub-queries. For real-time Business Intelligence and 
security applications we add incremental refresh of window 
functions with a monotonically increasing attribute in their 
ORDER BY. To efficiently process these CQs, we introduce a new 
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relational constraint of monotonically increasing attribute; in our 
case the time-stamp of events. The constraint is satisfied by many 
applications that store historical, time-stamped data in RDBMS.  

Due to the real-time nature of most CQs, performance of 
refresh for small OLTP transactions is critical and we address it 
with novel refresh algorithms. Equally important is a non-blocking 
(with respect to OLTP commits) nature of CQ. Hence our refresh 
is asynchronous and avoids any locks on the base data. We show 
how this can be done using new logging structures.  

Finally, we present performance of our algorithms and 
compare it to the existing ones. This not only demonstrates 
(expected) improvements due to optimized refresh expression 
based on constraints, but also discovers an unexpected fact that 
pre-update state retrieval using rdbms-native snapshot technology 
does not significantly outperform re-computing the state using 
SQL queries. 

The rest of the paper is organized as follows. Section 2.  gives 
example schemas that are used throughout the paper. Section 3.  
discusses basic concepts and language elements for CQs. In 
Section 4. , we describe the sources of changes, clogs. Section 5. 
describes CQ refresh and concurrency control. Section 6.  presents 
the computation of continuous join queries, followed by the 
optimizations by exploiting constraints in Section 7.  Section 8.  
and 9. discuss the computation of continuous queries with 
aggregations and window functions respectively. In Section 10. , 
we study the performance of our CQ computation model. Section 
11.  concludes the paper. 

2.  Example Schemas and Example CQs 
We use two schemas in this paper. The e-store schema consists of 
three tables: orders(oid,time,uid) records user orders, 
orderline(oid,itemid,price) records items purchased 
in each order, and users(uid,address,name) records users 
and their attributes. Our example query tracks items purchased by 
an under-age user: 
Q1 : 
SELECT ol.item, o.oid, u.name  
FROM orderline ol, order o, user u 
WHERE ol.oid=o.oid AND u.uid=o.uid AND u.age<18; 

The banking schema consists of only one table 
banking_transactions(acct,time,amt) that records 
amount of deposits and withdrawals from an account.  Our 
example query will monitor overdrawn accounts: 
Q2 : 
SELECT acct, sum(amt) amt 
FROM banking_transactions 
GROUP BY acct 
HAVING sum(amt) < 0; 

3.  Basic Concepts and Language Elements 

Query Delta 
Consider a relational query Q over tables T1,..,TN. As the 

tables undergo transactional changes, result of Q changes as well.  
Continuous Query is a transactionally consistent sequence of 
changes to Q. Let Q1 and Q2 be the result set of Q at times t1 and 
t2 correspondingly. The delta change to Q, ΔQ, is  

Q3 ΔQ = (Q2 MINUS+ Q1) UNION ALL (Q1 MINUS+ Q2) 

The first term, (Q2 MINUS+ Q1), represents new rows in the 
results set and we refer to them as the insert delta, Δ+Q. The 
second, (Q1 MINUS+ Q2), represents rows that disappeared from 
the result set, and we refer to them as the delete delta, Δ-Q.  

The MINUS+ operator above doesn’t remove duplicates unlike 
the MINUS operator in ANSI SQL as otherwise we would lose 
useful information. For example {(1,1,1), (1,1,1), (2,2,2)} MINUS+ 
{(1,1,1), (2,2,2)} = {(1,1,1)} and not, as in relational MINUS, the 
empty set {}. 

In the above, an update to Q result set is typically modelled as 
a delete followed by an insert and this is not intuitive. 
Nevertheless, if Q has a primary key, then, for each value of the 
primary key, we can group its deleted-inserted rows, and return a 
single row with updates to the non-primary key columns. We refer 
to this as update delta, ΔuQ. Updates to the primary key will 
continue to produce, as before, delete and insert delta.   

It is useful for the ΔuQ to return not only the new values of the 
updated columns, but their old values as well. We provide a new 
sql function for this, cq_old_value(column). To distinguish the 
three deltas, there is a new function, cq_delta(), returning ‘I’, ‘D’, 
and ‘U’ for Δ+Q, Δ-Q, ΔuQ respectively.  

Continuous Query Definition 
Continuous Query is a new SQL object that is defined similar 

to views. It specifies the query Q, constraints on Q such as its 
primary or foreign key, destination where ΔQ is deposited, type of 
the delta to be returned, and computational characteristics (when 
and how often to compute CQ results). For example, the following 
CQ monitors accounts with negative balance, and returns into 
destination table dest_table Δ+Q, Δ-Q, ΔuQ deltas. 
Q4  

CREATE CONTINUOUS QUERY negative_balance_cq   
  PRIMARY KEY (acct) 
  COMPUTE ON COMMIT  
  DESTINATION dest_table 
SELECT acct, sum(amt) amt 
FROM banking_transactions 
GROUP BY acct 
HAVING sum(amt) < 0; 

The CQ object itself, negative_balance_cq above, is not 
queryable. Its destination, however, is. Note that the CQ has a 
primary key, hence can deliver ΔuQ. We note that the primary key 
applies to defining query and not to the destination.  

Destinations of CQ 
The destination of a CQ can either be a relational table or an 

Oracle queue. In the former case, the shape of the table must be 
compatible with the CQ query. A queue is also implemented as a 
table, but in addition, it has an API that allow users to subscribe to 
the queue, de-queue messages (rows) stored there, and to manage 
the underlying tables, for example deleting messages from them 
after all the subscribers have consumed them.   

In order to programmatically process the delta rows, we 
support row triggers on CQ. The triggers are semantically treated 
as if an INSERT operation occurred on an object represented by 
the CQ and behave the same as row triggers on tables . Hence a 
trigger is invoked for each row of the delta. Observe that CQ does 
not need a destination table to have a trigger. As usual, trigger 
procedures have access to all columns of CQ. For example, users 
can write a procedure, process_negative_balance, to alert 
a branch manager about customer defaulting on his balance: 
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Q5  
CREATE TRIGGER negative_balance_trigger  
  ON negative_balance_cq FOR EACH ROW 
  BEGIN process_negative_balance(acct, amt) END; 

CQ Computation 
CQ computation is performed asynchronously to the 

transaction traffic over the base tables and without locking them, 
hence, its impact on OLTP is minimal (given enough resources for 
CQ computation). Still the CQ produces transactionally consistent 
deltas – a non-trivial task explained in Section 5.  

The computation of CQ can be invoked in three modes: on 
commit of a transaction that modified its base tables, on demand 
by calling an explicit cq_recompute(<cq_name>) API, or 
periodically with a given start time and periodicity. For example, 
CQ negative_balance_cq can recomputed every hour using: 
Q6  
ALTER CONTINUOUS QUERY negative_balance_cq 
  COMPUTE START WITH ’01-01-2007’ PERIOD 1 HOUR; 

In many cases application needs to react to the effect of each 
transaction but may tolerate a delay in notification. Moreover it is 
more performant to compute CQ refresh for a batch of transactions 
at one time rather than processing them individually. Therefore, for 
on demand and periodic computations we provide two modes of 
CQ delta calculation: transactional and batched. The former 
applies the change logs in transaction increments and in the 
transaction order. The result is similar to the result of  “ON 
COMMIT” computation but with a delay. The latter produces the 
result as the delta between state of the query at the last refresh time 
and its current state. For example, to compute Q4 transactionally 
every 1 hour we say: 
Q7  
ALTER CONTINUOUS QUERY negative_balance_cq 
  COMPUTE TRANSACTIONAL DELTA 
  START WITH ’01-01-2007’ PERIOD 1 HOUR; 

 
Note that if Q7 were computed in batch (and not transactional 

mode), we could miss periods when user balance went below 0.   

Managing of CQ. 
Continuous Queries are created with “CREATE 

CONTINUOUS QUERY” statement and managed with a set of 
“ALTER CONTINUOUS QUERY” statements. As expected, CQs 
can be in three states: ACTIVE, SUSPENDED, and INACTIVE. 
In the SUSPENDED state, query delta is not produced, however, 
the database monitors and remembers changes to the table and will 
apply them to produce delta when CQ is activated. An INACTIVE 
CQ just records its own metadata and doesn’t require monitoring 
of the changes to base tables. Activation of such CQ is equivalent 
to re-creating it. For example,  
Q8  
ALTER CONTINUOUS QUERY negative_balance_cq 
SUSPEND;  
suspends  the CQ Q4.  

Using ALTER statements users can change other attributes of 
CQ like its destination, computation options, etc.   

Supported Query Shapes. 
Some of our CQ computation algorithms originate from 

incremental refresh of MVs [BLT86, GMS93, PSCP02]. We 
support single block queries with joins (CQJ) and CQJ with 
algebraic aggregation (CQJA). Extensions to CQJ algorithms allow 
us to support query blocks with semi-joins CQJS  (EXISTS or IN 

sub-queries) and blocks with anti-joins CQAJ (NOT EXISTS or 
NOT IN sub-queries). CQJS algorithms are simple extensions to 
CQJ. Efficient CQJA are challenging, however, due to space 
limitations, the algorithms are not given here. For CQJ, CQJS, and 
CQJA we significantly extend known MV algorithms – see Section 
6. and  8.  

We propose algorithms to support a very useful class of 
continuous queries – single block queries with joins and window 
functions (CQW). CQW is frequently used for sensor processing 
where comparison of current and past measures is critical, for 
example, detection of temperature raise above a threshold within a 
given time. Here, refresh is provided for windows over a 
monotonically increasing attribute. A new constraint is added to 
RDBMS for CQW computation.  

In addition to CQJ, CQJA, CQJS, CQAJ and CQW, we 
support their composition with UNION ALL and simple filtering 
in an outer query block.  

New Constraints for CQ 
In many cases measurements are always produced (and 

stamped) with increasing time values. The monotonically 
increasing constraint guarantees that column values in a table or its 
partition can only increase. The constraint has two modes: 
STRICTLY INCREASING and INCREASING with obvious 
semantics. The (strictly) increasing constraint is equivalent to 
maintaining a max value for a column over the life span of a table 
or its partition, and verifying that new rows, or updated columns 
will always have value (greater) no less than this maximum. This 
constraint has a natural syntax: 
 
  CONSTRAINT const_name INCREASING column  
         [PARTITION BY column] ON table 
The constraint is used for computation of CQW. 

4.  Sources of changes for CQ – clogs 
Changes made by transactions are recorded in auxiliary tables 
called clogs. There is one clog for each table participating in a CQ, 
and by convention its name is clog_<table_name>, for 
example clog_orderline. The clogs store pre-images and 
post-images of the rows modified by the transactions. As expected, 
INSERT, DELETE, UPDATE DML produce post-images, pre-
images, and pre- and post- images, respectively. We note that a 
single update is represented as a delete of the updated row 
followed by an insert of the row with new values. Clogs contain 
the original columns of the tables plus several accounting columns. 
The old_new_mark column indicates if the row is a pre-image 
(marked by ‘O’) or post-image (marked by ‘N’) and dml_type 
indicates the DML that caused the change (‘I’,’D’,’U’ for insert, 
delete and update respectively). The trans_scn column records 
the System Commit Number (SCN) of the originating transaction. 
In an Oracle RDBMS, every transaction is given a unique stamp 
called SCN. In general SCNs form an increasing sequence of 
integers. SCN serves an important role for concurrency control, 
recovery and for retrieval of transactionally consistent versions of 
the database. SCNs are recorded in our undo-logs and are used for 
computing past versions of the tables as of given SCN by applying 
the undo-images to the current image of the table [ORA10GC].  

Our clogs are populated shortly after the transaction has 
committed, hence they do not block OLTP update traffic. Note that 
we get the changes from our transaction layer, which are actually 
from undo/redo logs. 
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During CQ refresh we retrieve records from clogs pertaining to 
the refresh by selecting those with trans_scn between the SCN 
of the last refresh of the CQ and the current SCN. They represent 
changes to the tables that occurred since last refresh. 

5.  CQ refresh and Concurrency Control 
Our challenge was to not slow down the transaction traffic by CQ 
(possibly thousands of them) re-computation.  Critical and  
negative factors include locking of objects that prevent their OLTP 
updates and synchronous refresh that holds transaction commit 
points. We address them as follows:  

Our CQ engine does not place read locks on the base tables or 
their clogs. Instead, we rely on Oracle RDBMS’s versioning 
system to provide a consistent view of the database for the refresh 
expressions. A table T in a query can be qualified with an SCN 
number and our storage layer will retrieve the version of T as of 
the SCN (provided that the undo-log is large enough to store undo-
records back to that SCN). As explained in the following section, 
Oracle CQ refresh expressions consist of SQL statements that 
compute query delta and pass it on to the destination tables or 
triggers. In some cases refresh expressions are comprised of 
multiple SQL statements. At the refresh time, we get current 
system SCN, current_scn, and decorate all tables in the refresh 
expressions with it, hence computations are done on a 
transactionally consistent view of the database. For simplicity, in 
our examples we do not show this decoration since it is applied 
universally. 

We remember in the CQ metadata, the SCN of its last refresh 
last_refresh_scn. This SCN is used to retrieve from the 
clog records that represent table changes since the last refresh. 
Hence retrieval from clogs always has a predicate on 
clog.trans_scn: 
clog.trans_scn BETWEEN last_refresh_scn AND 
current_scn 

Again since this predicate is applied to all clogs, we do not 
show it in the refresh expressions. 

As mentioned before our CQ computation is asynchronous 
with the transaction traffic, therefore refresh doesn’t hold up the 
commit points. Furthermore, our batched refresh mode, allows us 
to use efficient query plans suited for large transaction deltas and 
minimize the overhead of CQ startup. 

6.  Computation of CQJ 
In this section, we present the incremental computation of CQJ. 
First, we describe general incremental computation algebra and 
then show how to generate efficient SQL queries for different 
DML scenarios such as inserts-only, deletes-only, and mixed 
DML. 

Incremental Computation Algebra 
 
Consider a CQ joining tables T1 and T2: CQ = T1 >< T2. Let 
pre(CQ) and pre(Ti) denote the initial, before the update state 
(image) of the CQ and table Ti, respectively; dlt(Ti) denote the 
updates (e.g.,  inserts) to table Ti, and pst(CQ) and pst(Ti) denote 
the state (image) of CQ and table Ti after the update, respectively. 
Then: 
Q9  
pst(CQ) = pst(T1) >< pst(T2) 
  = (pre(T1)+dlt(T1)) >< (pre(T2)+dlt(T2)) 

  = pre(T1) >< pre(T2) + pre(T1) >< dlt(T2) + 
    dlt(T1) >< pre(T2) + dlt(T1) >< dlt(T2) 
  = pre(CQ) + pre(T1)><dlt(T2)+ dlt(T1)><pst(T2) 
 
Hence, query delta, dlt(CQ) is 
 
Q10 dlt(CQ) = pre(T1)><dlt(T2)+ dlt(T1)><pst(T2) 
 
Note that, following Q9, dlt(CQ) can also be expressed as:  
Q11 dlt(CQ) = pst(T1)><dlt(T2) + dlt(T1)><pre(T2) 

Q12 dlt(CQ) = pst(T1)><dlt(T2) + dlt(T1)><pst(T2) 
            - dlt(T1)><dlt(T2) 
 
Choice of the incremental computation algebra expression will 
affect the performance of CQ refresh. Typically, pre-images must 
be recomputed from post-images and table deltas, hence we prefer 
to minimize their usage or re-compute them only for smaller 
tables. Ideally, we would generate all possible expressions, then 
choose the least expensive one, but this computation is exponential 
and prohibitively expensive when the number of involved tables is 
large. We found in most of our internal experiments that Q10 and 
Q11 are more performant than Q12. To choose between Q10 and 
Q11 we chose the one that computes the pre-image of the smaller 
table: Q10 wins if cardinality(T2) > cardinality(T1).  
In general, for a CQ joining N tables, we use 
Q13 dlt(CQ) = 
      dlt(T1)><pre(T2)><pre(T3)>< .. pre(TN) + 
      pst(T1)><dlt(T2)><pre(T3)>< .. pre(TN) + 
       ... 
      pst(T1)><pst(T2)><pst(T3)>< .. dlt(TN) 
 

Again, since inner joins are commutative Q13 is applicable to 
any permutation of the tables and we choose one that requires 
fewer pre-image computations of larger tables. Note that if only a 
subset of tables changed, refresh expressions account for them. For 
example, if only T1 and T2 changed in Q13, it can be reduced to: 
       
      dlt(T1)><pre(T2)><pre(T3)>< ... >< pre(TN) +  
      pst(T1)><dlt(T2)><pre(T3)>< ... >< pre(TN) 
 

Hence, it is also critical to know which tables are changed 
since last refresh of a CQ. In the following we will show how to 
implement the incremental computation algebra in SQL for 
different update scenarios. 
 

Incremental Computation in SQL 
 
INSERT only case  
 

When inserts are the only DMLs which happened on base 
tables, CQJ delta is composed of only insert deltas and will be 
tagged as ‘I’ delta type. This CQJ delta can be computed using 
expression Q13 that requires computing the pre-images of N – 1 
tables for a CQJ involving N tables. To implement Q13 in SQL, 
we investigated two approaches to compute the pre-images of the 
involved tables. One is to use a “NOT IN” subquery and the other 
is to obtain pre-images directly from the storage layer in Oracle 
RDBMS, by requesting a version of the table as of some previous 
time or previous SCN. In the latter case, Oracle  RDBMS applies 
its internal undo logs to the table and rolls it back to that SCN. The 
assumption is that storage layer does this very efficiently since it is 
the basis for Oracle concurrency control. Versioning, aka 
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flashback, is available from Oracle SQL using the SCN sub-clause 
on the table reference, for example: orders AS OF SCN (<scn-
value>).  Typically, for a relatively small amount of updates on the 
base tables, “AS OF SCN” approach outperforms the “NOT IN” 
subquery approach if there is an index available and refresh uses it. 
If there is no index available, the performance between the two is 
similar.  For a relatively large amount of updates on the base 
tables, flashback may not be able to provide enough undo for 
rollback. In that case flashback based refresh would fail. Detailed 
performance studies between these two approaches is presented in 
Section 10.  

Next, we give concrete examples of these two approaches 
using a continuous join query CQJ_2 joining two tables T1 and T2: 
CQJ_2 = T1 ><  T2. 
 
“NOT IN” Subquery Approach 
 
SELECT <cols of T1>,<cols of T2>,’I’ dlt_type 
FROM                  /* dlt(T1) >< pre(T2) */ 
  (SELECT <cols of T1> FROM CLOG_T1) DLT_T1, 
  (SELECT rowid, <cols of T2> FROM T2) PRE_T2,  
WHERE (join condition) AND PRE_T2.rowid NOT IN 
       (SELECT rowid FROM CLOG_T2 ) 
UNION ALL 
SELECT <cols of T1>,<cols of T2>,’I’ dlt_type 
FROM                  /* pst(T1) >< dlt(T2) */ 
  (SELECT <cols of T1> FROM T1) PST_T1, 
  (SELECT <cols of T2> FROM CLOG_T2) DLT_T2  
WHERE (join condition); 
 
“AS OF SCN” Approach 
 
SELECT <cols of T1>,<cols of T2>,’I’ dlt_type 
FROM                  /* dlt(T1) >< pre(T2) */ 
  (SELECT <cols of T1> FROM CLOG_T1) DLT_T1,  
  (SELECT <cols of T2> FROM T2 AS OF SCN :VSCN  
  ) PRE_T2,  
WHERE (join condition) 
UNION ALL 
SELECT <cols of T1>,<cols of T2>,’I’ dlt_type 
FROM                  /* pst(T1) >< dlt(T2) */ 
  (SELECT <cols from T1> FROM T1) PST_T1, 
  (SELECT <cols from T2> FROM CLOG_T2) DLT_T2  
WHERE (join condition); 

 
In the above VSCN is the SCN of the last refresh of the CQ. 
 
DELETE only case 
 
When deletes are the only DMLs happened on base tables, then 
CQJ delta is composed of only delete delta and will be tagged as 
‘D’ delta type. The implementation of the incremental algebra 
expression in Q13 for the deletes-only case is the same as that for 
the inserts-only case. Hence, we will omit the details here. 
 
Mix of INSERTS, DELETES, and UPDATES 
 
CQ refresh becomes complicated when tables go through a mix of 
DMLs. CQ delta  in this case can consist of insert, delete and 
update deltas. We typically model "update" as delete followed by 
insert and log it in clog as two rows. For the simplicity of 
presentation, we model update deltas as an insert and delete pair. 
They can be combined into a single update delta provided that the 

CQ has a primary key that allows us to clump deletes and inserts 
corresponding to the same primary key. 

Similar to the above two cases, CQ refresh with mixed DMLs 
is also based on the incremental computation expression on Q10  
or its general form Q13. Let us consider an example continuous 
join query CQJ_2 joining two tables: CQJ_2 = T1 >< T2. Before 
we show how to process the CQJ_2 refresh for the case with mixed 
DMLs, we rearrange the terms in Q13 making use of the 
commutative characteristic of inner join to get:  
 
 dlt(CQJ_2) = pre(T1)><dlt(T2) +  dlt(T1)><pst(T2)  

 
We first process deletes (rows marked "U" and "O") from clog 

to generate delete delta. We then process inserts (rows marked 
"N") from the clog to generate the insert delta. In the end, we 
combine these deltas to report update delta. The following 
terminology will be needed when describing the CQ refresh for the 
case with mixed DMLs. del(Ti) refers to the delete delta on table 
Ti. ins(Ti) refers to the insert delta on table Ti. pst’(Ti) refers to the 
post-image after deletes on table Ti. pre’(ti) refers to the pre-image 
before inserts on table Ti. Note that pst’(Ti) = pre’(Ti) = pst(Ti) – 
ins(Ti), pre(Ti) = pst(Ti) – ins(Ti) + del(Ti) = pst’(Ti) + del(Ti). 
We then have two deltas to process: 

 
• the delete delta 
Q14 del(CQJ_2) = pre(T1) >< del(T2) +  
                 del(T1) >< pst’(T2) 

• the insert delta 
Q15 ins(CQJ_2) = pre’(T1) >< ins(T2) + 
                 ins(T1) >< pst(T2)  

As compared with either insert-only case or delete-only case, we 
can see that one more image of a table Ti needs to be computed 
based on the post-image of table Ti, i.e., pst’(Ti) or pre’(Ti), for 
notational convenience, denotes the  intermediate image of table 
Ti. To implement the algebra expressions of Q14 and Q15, we can 
follow the same execution logic as what we do for insert only case 
or delete only case but with the adaptation to this particular 
scenarios of mixed DML changes. Due to the space limit, we will 
not give the detailed SQL statement.  

7.  Optimization of CQJ Computation 

INSERT only case 
Refresh expressions from Section 6. can be significantly 

simplified in the presence of Foreign-Primary Key (FK-PK) 
constraints. Consider a CQJ with N-tables. If all n-tables are 
modified, then dlt(CQ), is given by  Q13.  Suppose that tables T1, 
T2, T3 .. Tn are joined (in that order) via FK-PK constraints, i.e., 
T1.fk=T2.pk & T2.fk=T3.pk... Assume further that tables undergo 
inserts only. Observe that rows inserted in T2,..TN cannot join 
with pre(T1) (since all rows of pre(T1) had to join with pre(T2) 
and T2 has a primary index on the join key), hence: 
      
     pre(T1)><dlt(T2)><..pst(TN) = NULL 
     pre(T1)><pre(T2)><..dlt(TN) = NULL 
Hence: 
Q16 dlt(CQ) = dlt(T1)><pst(T2)><..pst(TN) 
 

The above expression is significant since it reduces the number 
of refresh expressions from N to 1, and allows us to use only the 
post images of the tables. 
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For many practical cases, transactions come in FK-PK units. In 
this mode whenever we insert/delete rows on FK side, we always 
insert/delete corresponding row on the PK side. For instance, in the 
e-store application, users will place a single order for multiple 
items. In this case we insert a new “order” row into the orders table 
and insert into the orderline table rows corresponding to the items 
bought. In this case we have dlt(orders) and dlt(orderline) that 
exclusively join with each other. To get delta of the CQ it is 
sufficient to join dlt(orders) and dlt(orderline). There is no need to 
join dlt(orderline) to the entire pst(orders). In these cases Q16 can 
be simplified further to: 
Q17 dlt(CQ) = dlt(T1)><dlt(T2)><..dlt(TN) 

 
For another example, consider an e-store CQ which alerts us if 

an under-age user placed an order 
Q18   : 
  SELECT ol.item, o.oid, u.name  
  FROM orderline ol, order o, user u 
  WHERE ol.oid=o.oid AND u.uid=o.uid ANDu.age<18 

 
We have a very efficient expression operating only on deltas as in:  
dlt(CQ) =   
    dlt(orderline) >< dlt(orders) >< pst(users) 

The problem is that we don’t know if the delta on the FK side, 
dlt(orderline) in our example, joins only with delta on the PK side, 
dlt(orders) in the example. To detect this we could find out if the 
cardinality of the dlt(orderline) >< dlt(orders) is the same as 
dlt(orderline), i.e., all rows from dlt(orderline) join with dlt(orders) 
and hence cannot join with pre(orders). One way to discover it is 
via an outer join. If 
Q19 : 
dlt(CQ) =  
  dlt(orderline) OUTER><dlt(orders)><pst(users) 

has no anti-join tuples, then all rows from delta on the FK side  
(dlt(orderline)) joined with delta on the PK side, 
(dlt(orders)). If there are anti-join tuples, then we could join 
them with pst(orders) to get the full result.  

Suppose query delta dlt(CQ) of Q19 will have an anti-join 
marker (returning 0 for inner and 1 for anti-join tuples). Based on 
this we will insert (using multi-table insert) the delta into two 
tables. The inner join tuples will be placed in the destination table, 
dest, and anti-join tuples will be placed in a temporary table, 
anti_join: 

Q20 : 
INSERT  
  WHEN aj_mark=1 THEN INTO anti_join(item, oid) 
  WHEN aj_mark=0 THEN INTO dest(item, oid, user) 
SELECT ol.item, ol.oid, u.user,  
 CASE o.oid IS NULL THEN 1 ELSE 0 END aj_mark 
FROM dlt(orderline) ol,dlt(order) o, pst(user) u 
WHERE ol.oid = o.oid(+) AND u.user(+) = o.user  
   AND u.age < 18(+) 

If anti_join table is empty, then there were no anit-join rows 
and we are done generating dlt(CQ). Checking can be done 
either via a trigger on the anti-join table or by issuing a query: 
“select count(*) from anti-join”.  

If anti_join table is not empty, then we have to join all anit-join 
rows with pre(orders) and pst(users). Observe that due to FK-
PK relationship, we could join to pst(orders) rather than 
pre(orders). In this case to complete generation of dlt(CQ) 
we would issue one more query: 
 anti_join(MV) >< pst(orders) >< pst(users) 

i.e. 
Q21 : 
INSERT INTO dest (item, oid, user) 
SELECT ol.item, ol.oid, u.user,  
  CASE o.oid IS NULL THEN 1 ELSE 0 END aj_mark 
FROM anti_join ol, pst(order) o, pst(user) u 
WHERE ol.oid = o.oid AND u.user = o.user  
  AND u.age < 18 

Queries Q20 and Q21 can be combined into a single query: 

Q22 : 
INSERT INTO dest (item, oid, user) 
WITH  
oj AS 
 (SELECT ol.item, ol.odi, u.user, 
    CASE o.oid IS NULL THEN 1 ELSE 0 END aj_mark 
  FROM dlt(orderline) ol,dlt(order) o, pst(user)u 
  WHERE ol.oid=o.oid(+) AND u.user(+)=o.user 
  AND u.age < 18(+)) 
anti_join AS 
 (SELECT * FROM oj WHERE aj_mark = 1) 
SELECT item, oid, user FROM oj WHERE aj_mark = 0 
UNION ALL    
SELECT item, oid, user  
FROM anti_join ol, pst(order) o, pst(user) u 
WHERE ol.oid = o.oid AND u.user = o.user  
  AND u.age < 18 

The above query is efficient provided that the subquery OJ is 
small (or typically empty) compared to orderline and order tables. 
In addition, if anti_join is empty (or very small), the second branch 
of UNION ALL takes not time (or is very short). Section 10. 
shows that this formulation speeds up the general refresh algorithm 
of Q9 by orders of magnitude and the FK-PK optimized algorithm 
Q16 by an oder of magnitude. 

DELETE only case 
Assume DELETES only to T1, T2, .. Tn. If the foreign key 

’CASCADE DELETE’ option is active then deleting a row from 
T2 will delete the dependent foreign key rows in T1. If the option 
is not active, then we cannot delete rows from T2 that have foreign 
key in T1. Rows from T1 have to be removed first. Thus deleting 
rows from T2,..Tn which join with T1, will eventually propagate to 
T1. Hence deletes on T1, T2, ..Tn, is equivalent from CQ refresh 
point of view to deletes only on T1. Thus dlt(MV) of Q13can be 
simplified to: 
Q23 : 
dlt(CQ) = dlt(T1) >< pre(T2)... ><  pre(Tn)   

This expression is very efficient, if RDBMS provides an easy 
access to pre refresh images of the tables. Otherwise, pre images 
must be re-computed using post images and change logs on the 
tables. 

Q23 can be further processed by replacing pre(Ri) with 
pst(Ri)+dlt(Ri) to get only the post images of the relations 
which are immediately available. For example, if i=3, then: 

 
dlt(CQ) = dlt(T1) >< pre(T2) ><  pre(T3)   
        = dlt(T1) >< (pst(T2)  
        + dlt(T2) >< (pst(T3) + dlt(T3)) 
        = dlt(T1) >< pst(T2) >< pst(T3) 
        + dlt(T1) >< dlt(T2) >< pst(T3) 
        + dlt(T1) >< pst(T2) >< dlt(T3) 
        + dlt(T1) >< dlt(T2) >< dlt(T3) 

The third factor above:        
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  dlt(T1) >< pst(T2) >< dlt(T3) = NULL 

since pst(T2)><dlt(T3) = NULL, i.e., pst(T2) cannot join 
with dlt(T3) since rows in dlt(T3) would also cause deletion in T2, 
hence they cannot belong to pst(T2). Thus:  

 
dlt(CQ) = dlt(T1) >< pre(T2) >< pre(T3)   
        = dlt(T1) >< pst(T2) >< pst(T3) 
        + dlt(T1) >< dlt(T2) >< pst(T3) 
        + dlt(T1) >< dlt(T2) >< dlt(T3) 

This is an important result as it allows us to express refresh 
expressions in terms of deltas and post-images. In general: 
Q24 : 
dlt(CQ) =  dlt(T1) >< pre(T2) ><  ... >< pre(Tn)   
        =  dlt(T1) >< pst(T2) ><  ... >< pst(Tn)   
        +  dlt(T1) >< dlt(T2) ><  ... >< pst(Tn)   
        ... 
        +  dlt(T1) >< dlt(T2) ><  ... >< dlt(Tn) 

 
Now consider scenario when deletes affect only a subset of 

tables: DELETES on { Ti, .. TN }, i>1.  If ’ON DELETE 
CASCADE’ option is ON, then this delete will cause deletes on 
T1, T2, Ti-1 as well, and Q23 and Q24 still hold. If ’ON DELETE 
CASCADE’ is OFF, then delete on { T2, .. TN } has no effect on  
T1 >< T2 >< T3 >< .. >< Tn as the deletes cannot affect T1. 

Note that for this case (DELETE ONLY) case we can apply an 
optimization for transactions which come in FK-PK units. It is 
similar to the INSERT case above. If on the FK side we delete only 
rows which are deleted on the PK side, then Q23 can be 
significantly simplified to: 

 
dlt(MV) = dlt(T1) >< dlt(T2) >< ... >< dlt(Tn) 

The validity of this optimization can be verified in the same 
way as in the INSERT case.  

Mix of DELETES, INSERTS and UPDATES  
Assume tables T1, T2, .. TN go through a series of 

modifications which (logically) can be represented by set of 
DELETES followed by set of INSERTS. Then, based on the above 
two paragraphs, dlt(CQ) can be represented as two deltas: delete 
followed by insert: 

 
dlD(CQ) = dlD(T1) >< pre(T2) ><.. pre(Tn)   
dlI(CQ) = dlI(T1) >< pst(T2) ><.. pst(Tn)   

If desired, these two deltas can be represented as three deltas – 
delete, insert, or update. This can be done by using the primary key 
of CQ. In the simplest case, the primary key consists of all rowids 
of the tables. Rows from dlD(CQ) and dlI(CQ) with the same 
PK are group together to form an update delta.  

8.  Computation of CQJA 
We compute the results of a CQJA using a backing 

materialized aggregate view (MAV) that will store the aggregates 
of query defining CQ up to the last refresh. Result of CQJA is 
obtained by joining the MV to aggregates on the current deltas. 
Efficient incremental refresh algorithms for MAVs were proposed 
in literature [GMS93], [GH195] and also implemented in 
commercial databases [RB-98], [ORA10GC] and hence we skip 
their explanation here.  

We explain CQJA on an example. Consider the CQ 
negative_balance_cq that notifies whenever a customer’s account 

balance goes below $0. For this CQ, we will create the following 
backing MAV: 
 
CREATE MATERIALIZED VIEW mav_banking_transactions 
REFRESH FAST ON DEMAND 
SELECT 
  acct, sum(amt) sum_amt, count(amt) count_amt, 
  count(*) count_star 
FROM banking_transactions 
GROUP BY acct; 

 
We include count(amt) and count(*) in the MAV definition 

since our incremental refresh [Oracle10GC] requires it. 
CQJA result can be obtained by outer joining the delta query 

(“V” in the below example) with the MV, and then refreshing the 
MV. 

 
INSERT INTO dest_table 
SELECT acct, CASE mv.sum_amt is null THEN 0 
                  ELSE mv.sum_amt END + v.dlt_sum 
FROM (SELECT 
        acct, 
        SUM(CASE dml=’I’ THEN 1 ELSE –1 END*amt)  
                                          dlt_sum 
    FROM CLOG$_BANKING_TRANSACTIONS  
         AS OF SNAPSHOT <refexp_scn>  M 
    WHERE M.COMMIT_SCN IN <SCN_RANGE> 
    GROUP BY acct) V, 
RIGHT OUTER JOIN 
    mav_banking_transactions mv 
ON v.acct = mv.acct 
WHERE CASE mv.sum_amt is null THEN 0 
         ELSE mv.sum_amt END + v.dlt_sum < 0; 
 

We are also investigating extending the MERGE syntax to 
deposit the results into multiple destinations – one destination will 
be the MAV and the other would be the destination table/queue 
specified in the CQ specification.  

9.  Computation of CQW 
In this section we describe techniques to support refresh of CQW. 
Since one of our goals is to not affect OLTP negatively, we restrict 
ourselves to the cases where CQW refresh will be efficient and 
they are: 

1. Tables are append-only and, 

2. Window functions are on monotonically 
increasing column, and 

3. Windows extend only to the preceding rows. 

With the above restrictions, CQW refresh is based on 
maintaining a buffer of past rows (remember that tables are insert 
only) needed for window function computation. These are the 
preceding rows that will be in the window of the incoming rows. 
Rows that no longer needed will be deleted from the buffer. This is 
like MV maintenance and prompted us to use an MV to materialize 
the rows needed for future refreshes of the CQ. The MV definition 
depends on the type of the window functions used in CQW and is 
explained later. Incremental maintenance of this MV will take 
place along with CQW result computation by the refresh process. 
The size of this MV and the expressions for refreshing it depend on 
the type of the window functions used – physical (using ROWS 
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qualifier) vs. logical windows (using RANGE qualifier), and 
cumulative vs. moving [Z99]. 

CQW with physical moving windows  
Physical window functions use ROW offsets to specify 

window size, for example, ROWS BETWEEN CURRENT ROWS 
AND 1 ROW PRECEDING. For simplicity, we explain refresh of 
CQW on a single table. When there are multiple tables, refresh 
expressions of  Section 6. and 7.  are used to get join delta (which 
is the insert delta as tables are append-only) that forms the input to 
window functions. Consider the CQ that sends a single notification 
whenever temperature in a location increases above 90 degrees.  
CREATE CONTINUOUS QUERY notify_hightemp_cq 
  COMPUTE ON COMMIT  
  DESTINATION dest_table 
SELECT loc, time, temp 
FROM (SELECT loc, time, temp, 
        LAG(temp,1) OVER (PARTITION BY loc 

                   ORDER BY time) prev_temp 
FROM temps) 

WHERE temp >= 90 AND prev_temp < 90; 

This CQ emits a row if, in a given location, the previous 
temperature was below 90 degrees but current one is above it. 
Assume that table temps has a constraint indicating column 
temps.time is monotonically increasing within temps.loc. 
For this CQW, we define an MV to materialize the last row of each 
location, i.e., row with a previous temperature. The definition of 
this MV is: 
 
CREATE MATERIALIZED VIEW MV_Q1_window 
  PARTITION BY RANGE(pmarker) 
    (PARTITION po VALUES LESS THAN (1), 
     PARTITION p1 VALUES LESS THAN (MAXVALUE)) 
SELECT loc, time, temp, 0 pmarker 
FROM( SELECT loc, time, temp, 

 ROW_NUMBER () OVER (PARTITION BY loc 
             ORDER BY time) rn, 

 COUNT(*) OVER (PARTITION BY loc) pcard 
FROM temps) 

WHERE rn > pcard-1 AND rn <= pcard; 

The predicate “rn>pcard-1 AND rn<=pcard“ keeps 
only one row (the last one) for each location. Only this row is 
relevant to our CQ refresh. We partition the MV into two partitions 
p0 and p1 so as to deposit CQW results and refresh 
MV_Q1_window together in a single DML statement. The 
overhead of maintaining this MV thus becomes minimal since we 
can use fast partition truncate operations rather than expensive 
DELETE dml to clean up the MV. [N+05] showed clean-up of MV 
using partition truncate operation is significantly better than using 
corresponding DELETE dml. At any point in time, only one 
partition has data and that is the set of rows that potentially be in 
the window of newly arrived rows. While refreshing the CQW, we 
determine the new set of rows needed for next refresh and load 
them into the empty partition. Partition that was used for CQW 
refresh will be truncated at the end of refresh. The following SQL 
accomplishes CQW refresh: 
 
/* Assume pname and pid are the name and number 
   of the partition used for CQW refresh. This 
   information can be obtained from RDBMS  
   internal functions */ 
INSERT 
  WHEN temp>=90 AND prev_temp<90 AND tag=1  

    THEN INTO dest_table 
  WHEN rn > pcard - 1 and rn <= pcard 
    THEN INTO MV_Q1_window  
              (loc, time, temp, 1 - :pid) 
SELECT loc, time, temp, tag, 
  LAG(temp,1) OVER (PARTITION BY loc 
                    ORDER BY time) prev_temp, 
  ROW_NUMBER() OVER (PARTITION BY loc 
                  ORDER BY time) rn, 
  COUNT(*) OVER (PARTITION BY loc) pcard 
FROM ( SELECT loc, time, temp, 0 tag  

FROM MV_Q1_window 
UNION ALL 
SELECT loc, time, temp, 1 tag  
FROM clog_temps) V; 

 
ALTER TABLE MV_Q1_window TRUNCATE  

PARTITION :pname; 

The view V produces the rows of interest – delta rows and 
materialized rows from MV partition. In the outer query block, we 
compute the original window function and two additional window 
functions needed by the multi-table insert to deposit rows in CQ 
destination and in the empty MV partition. 

The above SQL can easily be generalized when there are 
multiple window functions having same PARTITION BY and 
ORDER BY keys but with different window sizes. 
 
WINDOWFUNC_1(a1) over ( 
  PARTITION BY pk_1, pk_2, ..., pk_p 
  ORDER BY ok_1, ok_2, ..., ok_o 
  ROWS BETWEEN m1 PRECEDING AND n1 PRECEDING), 
. . ., 
WINDOWFUNC_k(ak) over ( 
  PARTITION BY pk_1, pk_2, ..., pk_p  
  ORDER BY ok_1, ok_2, ..., ok_o 
  ROWS BETWEEN mk PRECEDING and nk PRECEDING) 

We compute max(m1, m2, ..., mk) and let it be mMX. The MV 
needed to handle these window functions will be similar to 
MV_Q1_window except for the where predicate, which will be: 
  WHERE rn BETWEEEN pcard - mMX + 1 AND pcard; 

SQL for incremental maintenance of the MV again will be 
similar to the one given above except for the WHEN predicate that 
filters in rows to be populated in the empty MV partition. This 
predicate will be: 
  WHEN rn BETWEEN pcard - MMX + 1 AND pcard; 

CQW with logical moving windows  
Logical window functions are those with RANGE window 

specification and they can be supported in a fashion similar to 
physical window functions. The (minor) difference is in the 
expressions used to find rows to be materialized. Due to lack of 
space we omit the details. 

CQ with cumulative window functions 
Cumulative window function is a special case of moving 

window function where the window extends from the first row in 
the partition up to the current row. Our solution for moving 
windows is not viable for cumulative windows, as we would buffer 
the entire table. We solve this by aggregating data within each 
partition and materializing it in the MV. Consider CQ for notifying 
whenever client’s average account balance falls below $100: 

 

CREATE CONTINUOUS QUERY notify_lowbalance_cq 

1180



  DESTINATION dest_table 
SELECT acct, time, cavg 
FROM ( SELECT acct, time, amt, 

  AVG(amt) OVER ( 
PARTITION BY acct ORDER BY time  
ROWS BETWEEN UNBOUNDED PRECEDING 
  AND CURRENT ROW) cavg 

FROM banking_transactions) 
WHERE cavg < 100; 

We materialize SUM and COUNT aggregates for each account 
partition in an MV with the following definition: 

 
CREATE MATERIALIZED VIEW MV_window_cumulative 
  PARTITION BY RANGE(pmarker) 
  (PARTITION p0 VALUES LESS THAN (1), 
   PARTITION p1 VALUES LESS THAN (MAXVALUE)) 
SELECT acct, SUM(amount) csum,  

COUNT(amount) ccnt, 0 pmarker 
FROM banking_transcations 
GROUP BY acct; 

When the CQ is refreshed, we use the following query to 
compute results and data needed to maintain the associated MV: 
INSERT  
  WHEN v1m = 0 AND cavg < 100 
    THEN INTO destination_table(acct, time, 
       CASE ccnt=0 THEN 0 ELSE csmu/ccnt END cavg) 
  WHEN (v1m = 0 AND  rn = pcard) or 

(v1m is NULL) 
    THEN INTO MV_window_cumulative(acct, csum,  

ccnt, 1 - :pid marker) 
SELECT v1.acct, v1.time,  
  v1.csum +  
    CASE v2.marker=0 THEN v2.csum ELSE 0 END csum, 
  v1.ccnt +  
    CASE v2.marker=0 THEN v2.ccnt ELSE 0 END ccnt, 
  v1.marker v1m, v2.marker v2m, 
  v2.acct, v2.csum, v2.ccnt, 
  pcard, rn 
FROM ( SELECT acct, time, amount, 

  SUM(amount) OVER (PARTITION BY acct 
    ORDER BY time ROWS BETWEEN UNBOUNDED 
      PRECEDING AND CURRENT ROW) csum, 
  COUNT(amount) OVER (PARTITION BY acct 
    ORDER BY time ROWS BETWEEN UNBOUNDED 
      PRECEDING AND CURRENT ROW) ccnt, 
  COUNT(*) OVER (PARTITION BY acct) pcard, 
  ROW_NUMBER() OVER (PARTITION BY acct 
    ORDER BY time) rn, 

   0 marker 
FROM clog_banking_transactions 

     ) v1 FULL OUTER JOIN  
     ( SELECT acct, csum, ccnt, pmarker, 0 marker 

FROM MV_window_cumulative 
     ) v2 ON  

sys_op_map_nonnull(v1.acct) = 
sys_op_map_nonnull(v2.acct); 

 
View v1 computes cumulative sum (csum) and cumulative 

count (ccnt) on the delta rows. It also computes the cardinality 
(pcard) of each account partition and sequentially numbers (rn) 
rows within each partition. This view is full outer-joined with the 
MV on the grouping key (acct). Inner-join and left-outer join rows 
form CQW results and they are found with the predicate v1m=0. 
To maintain the MV, we need the last row of each partition for the 

inner and left-outer rows and all the right outer join rows. The 
predicate (v1m = 0 and rn = pcard) or (v1m is NULL) 
finds such rows. This method can be generalized to support 
multiple logical and cumulative window functions. 

10.  Performance Study 
We conducted experiments on the e-store schema. The 
orderline, orders and users tables had 10M, 1M and 100K 
rows respectively, modelling a medium sized e-store application 
where users typically buy about 10 items in a single order. In most 
experiments we assumed that user population is fixed, hence only 
orderline and orders tables changed. We have used a Linux 
Intel machine, with a single 400MHz CPU and 2GB of main 
memory.  
 

FK-PK optimization  
Consider CQ Q18 alerting us when an under-age user places an 

order. Assume only new orders are entered, where a single order, 
on average, contains ten items. The orderline and orders tables will 
then have insert delta only. Figure 1 and 2 plot computation time 
of CQ as a function of the delta size on the orders table.  In the 
experiment delta changed from 100 to 200 orders (0.01% to 0.02% 
of the table. We show two plots: one for computation using general 
expressions (see Q13) and one for FK-PK optimized expressions 
(see Q16). In the first experiment, depicted in Figure 1, none of the 
tables had indexes and joins in refresh expressions were hash joins. 
In this case FK-PK optimized expressions performed an order of 
magnitude better than the unoptimized ones. The result is intuitive 
since Q16 performs only dlt(orderline) >< pst(orders), while Q13 
in addition performs  pst(orderline) >< dlt(orders), and |orderline| = 
10* |orders|.  Figure 2 shows the same experiment when indexes 
were placed on orderline.oid and orders.oid and nested loop join 
with index access was used for CQ computation. In this case, on 
average, Q16 performs seven times better than Q13. We note that 
presence of indexes visibly slowed down the application and in 
some OLTP applications, users may elect not to create them. 
Instead, they may elect less frequent CQ refresh. For less frequent 
refresh, table deltas may be sufficiently large so that the optimal 
refresh plan would choose full table rather than index access path. 
We also conducted experiments (not shown here) where we had 
not only transactions with new orders but also ones with updates to 
the previous orders (e.g, changing the item in the order, discount 
on it, etc). In this case, in addition to the insert delta we also have 
the update deltas on base tables. In this case, the general refresh 
expression based on Q13 performs significantly more work than 
for the insert only case. Optimized refresh expressions based on 
Q16 and Q24 also perform more work, but proportionally much 
less than that of  Q13. For the insert and update cases, the 
optimized refresh expressions performed on average fifteen times 
better than unoptimized ones. 

 

FK-PK with transactions arriving in FK_PK units 
Consider the e-store application where all (or a significant portion 
of) transactions come in FK-PK units. In this case an optimized 
Q22 instead of Q16 can be used. Note that Q22 accounts for 
scenario where transactions do not arrive in FK-PK units but incurs 
an extra overhead in this case. In the e-store application, this 
scenario corresponds to a user logging on multiple times and 
adding  new  items  to  an already placed order.  Expression Q22 is  
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more expensive than Q16 if there is a portion of the dlt(orderline) 
that doesn’t join with dlt(orders), i.e, when “dlt(orderline) anti-
jon><dlt(orders)” is not empty. Figure 3 studies this effect. We 
vary the portion of dlt(orderline) that doesn’t join with dlt(orders), 
i.e., the size of |dlt(orderline) anti-join><dlt(orders)| from 0% to 
100% of |dlt(orderline)><dlt(orders)|. The frequency of CQ 
computation is as in Figure 1 and the size of delta changes from 
100 to 200 orders. Figure 3 also shows the timing for FK-PK 
optimized expression Q16 where there are no indexes on the base 
tables. It can be seen that when transactions arrive in FK-PK units 
(i.e., |dlt(orderline) anti-join><dlt(orders)| = 0), Q22 is about 5 
times faster than Q16. If |dlt(orderline) anti-join><dlt(orders)| >0, 
then Q22 is 20% slower than Q16 and more importantly, that the 
difference is independent of  the size of |dlt(orderline) anti-
jon><dlt(orders)| . Figure 4, show the same scenario with indexes 
on the base tables. In this case Q16 is 1.5 to 2  times faster then 
Q22  for a wide range of the size of anti-join.  This suggest that 
Q22 is beneficial in scenarios where most (if not all) transactions 

 
 
arrive in FK-PK units. This is illustrated in Figure 5 in case 

where base table have no indexes.  We vary the precentage of 
transactions that do not come in FK-PK units from 0 to 100%. For 
these transactions, If |dlt(orderline) anti-jon><dlt(orders)| = 0.5 * 
|dlt(orderline)><dlt(orders)|, i.e., 50% or the dlt(orderlines) refer to 
existing orders rather than to dlt(orders).  It can be seen that if no 
more than 80% of transactions have non empty “dlt(orderline) anti-
jon><dlt(orders)”, it is beneficial to use Q22 over Q16. 

 

Computing pre-images with query vs undo application 
General experssion for CQJ, Q13, requires pre-images of the 

tables. They can be computed from their post-images and delta 
logs. For example, in the e-store experiment where we deal only 
with insert deltas, the pre-image of orders table is calculated using 
anti-join: pst(orders) anti-><dlt(orders): 
SELECT * FROM orders WHERE rowid  
   NOT IN (SELECT rowid FROM dlt(orders)) 

Alternatively in Oracle RDBMS, pre-images can be obtained 
directly from the storage layer requesting a version of a table as of 
previous refresh SCN.  In this experiment we compare pre-image 
calculation using an anti-join query vs using flashback. The 
scenario is simlar to the one from Figure 1. We change size of the 
delta on orders from 100 to 1000 with increments of 100 and 
measure timings of Q13. Figure 6 shows a scenario where indexes 
on orderline.oid and orders.oid are present and Q13 execution uses 
index access with nested loop joins and anti-joins for query based 
pre-image. Figure 7 shows a scenario with no indexes and all  hash 
joins. Figure 6, as expected, shows flashback wins over query 
based pre-image. In Figure 7, however, performance numbers for 
flashback and query based pre-images are similar and this is 
counter-intuitive.   Observe that in Figure 6 we access only few 
data blocks due to nested loops and index access while in Figure 7 
we access all blocks of the tables due to hash joins. In the latter 
case, the overhead of verifying whether a data block needs to be 
subjected to rollback is as comparable to a small anti-join. This 
suggests that for refresh expressions scanning significant amount 
of data, it is safe to use query based pre-images. This is important 
for non-frequent refreshes as flashback may not be able to provide 
enough undo for rollback based on the amount of past changes. In 
that case, flashback based refresh would fail. 
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Frequency of refresh 
In this experiment we study the performance impact of the 

frequency of refresh. As before, we experiment with CQ Q18 
detecting orders placed by under-age customers. We use FK-PK 
optimized refresh expressions of Q16. Each transaction consists of 
one order with, on average, 10 order items. This experiment 
processes 7000 such transactions and we vary the refresh 
frequency from every 10 transactions to every 2000 transactions, 
and measure the total refresh time. Figure 8 illustrates that the 
frequency of refreshes has significant impact on the total time to 
refresh the result of 2000 transactions. Note that if refresh is 
invoked every 10 transactions, the total refresh time is about 35 
times longer than if refresh is called only once. This is due to the 
overhead of starting up a refresh. That start-up time involves setup 
of internal execution structures and retrieval of the query execution 
plan from the cache. If the refresh frequency is above a certain 
threshold, in our case about every 100 transactions, the total 
refresh time doesn’t change significantly.  This validates our initial 
intuition of providing a batch mode of transactional refresh: 
TRANSACTIONAL DELTA clause (see  Q7) where refresh time 
can be regulated by the user. In our case, if minimizing the delay 
of notification is important, users should set the refresh frequency 
just above that threshold. We currently investigate how to set the 
frequency of refresh automatically and close to the threshold given 
user’s frequency range. 
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11.  Conclusion and Future Work 
The paper presented Continuous Query processing engine in 
Oracle. It is a first commercial attempt to provide a stream and 
event-processing engine within a relational database. We found 
that the concepts of traditional streaming systems with queries over 
append only objects is not sufficient in the database where 
modifications include update, delete, partition maintenance 
operations etc in addition to inserts. We based CQ semantics on the 
concept of query delta since most applications define a state they 
monitor using a query and want to observe its changes (delete, 
insert and update deltas) based on changes to the underlying tables.  

We based our CQ computation on materialized view refresh 
and provided significant extensions to the MV refresh algorithms. 
The extensions, together with Oracle concurrency control 
mechanism, allowed us to build efficient, non-blocking, no-locking 
and asynchronous algorithms for CQ refresh.  

There are several open challenges for our CQ architecture. 
First, is to include multi-query optimization in CQ refresh. There 
has been a lot of work in multi-query optimization for MV 
advisors and rewrite. We are in the process of incorporating that 
work in query plans for CQ. An interesting issue is how to deal 
with CQs that have different refresh schedules. Second, is to 
extend incremental refresh algorithms to more query shapes. Third, 
is to include in SQL a functionality to find patterns in sequences of 
rows. Some work in this area has been proposed in [SZZA+04]. 
This would significantly increase the applicability of CQ if we 
could incrementally discover patterns in sequences of updates. We 
are currently working with other commercial vendors on such 
extensions. Fourth, is to provide a SQL language construct that 
allows us to compose CQs. Right now our CQs are stand-alone 
objects whose results cannot be easily composed using SQL. A 
possibility is to apply FROM clause windows on CQs [ABB+03]. 
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