
Tracing Lineage Beyond Relational Operators ∗

Mingwu Zhang† Xiangyu Zhang† Xiang Zhang‡ Sunil Prabhakar†

†Department of Computer Sciences ‡Bindley Bioscience Center
Purdue University Purdue University

West Lafayette, Indiana, USA West Lafayette, Indiana, USA
{mzhang2, xyzhang, sunil}@cs.purdue.edu {zhang100}@purdue.edu

ABSTRACT
Tracing the lineage of data is an important requirement for
establishing the quality and validity of data. Recently, the
problem of data provenance has been increasingly addressed
in database research. Earlier work has been limited to the
lineage of data as it is manipulated using relational opera-
tions within an RDBMS. While this captures a very impor-
tant aspect of scientific data processing, the existing work
is incapable of handling the equally important, and preva-
lent, cases where the data is processed by non-relational
operations. This is particularly common in scientific data
where sophisticated processing is achieved by programs that
are not part of a DBMS. The problem of tracking lineage
when non-relational operators are used to process the data
is particularly challenging since there is potentially no con-
straint on the nature of the processing. In this paper we
propose a novel technique that overcomes this significant
barrier and enables the tracing of lineage of data generated
by an arbitrary function. Our technique works directly with
the executable code of the function and does not require
any high-level description of the function or even the source
code. We establish the feasibility of our approach on a typ-
ical application and demonstrate that the technique is able
to discern the correct lineage. Furthermore, it is shown that
the method can help identify limitations in the function it-
self.

1. INTRODUCTION
With the advance of high-throughput experimental tech-

nology, scientists are tackling large scale experiments and
producing enormous amounts of data. Web technology al-
lows scientists to collaborate and share data – further in-
creasing the amount of available data. To increase the us-
ability of this data, it is essential to know the provenance
of the data – how it was generated, using what tools, what

∗This work is supported by NSF grant number 0534702,
0242421 and AFOSR award number FA9550-06-1-0099

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

parameters were used, etc. This information is often termed
Provenance or Lineage of the data. Lineage information
can be used to estimate the quality, reliability, and appli-
cability of data to a given task. An important aspect of
data provenance is Relationship [23], which has been defined
as “Information on how one data item in a process relates
to another.” Despite the importance of these relationships
between input and output data, acquiring them remains a
challenge which has not been addressed by the existing work
[17, 23].

Lineage can be categorized into coarse-grained lineage and
fine-grained lineage. Coarse-grained lineage records the pro-
cedures used to transform the data, the parameters used and
a general description of the input and output data. Coarse
grained lineage is also referred to as work-flow in literature.
To improve scientific collaboration, Workflow Management
System and Grid computation are used to simplify access
to computational resources and experimental results over
distributed systems[15, 14, 24, 11]. Many prototype sys-
tems such as Chimera[11], MyGrid[24], and Geo-Opera [8]
have been developed. There is a subtle difference between
workflow and lineage. Workflow defines a plan for desired
processing before it actually happens. Lineage, on the other
hand, describes the relationship between data products and
data transformations after processing has occurred. Coarse-
grained lineage is useful in many applications. However,
applications such as the scientific computations in [25, 21]
require fine-grained lineage. Coarse-grained lineage is insuf-
ficient since detailed information of how individual output
elements are derived from a certain subset of input elements
is desired.

Lineage tracing in the context of database systems has
been extensively studied [12, 10, 13]. These algorithms
can trace fine-grained lineage only when the data is pro-
duced by relational operators within a DBMS. Consequently,
they cannot be applied to tracing data lineage when non-
relational operators are employed as is often the case with
scientific applications. For example, a workflow may involve
programs maintained and distributed at different research
groups, but shared within the grid. The program could be
an executable or a web service implementing an arbitrary
function that the user knows little about. Even though the
data may be stored in a database, the program used to de-
rive the data usually resides outside the database, or at best
as a stored procedure. To the best of our knowledge, there is
currently no technique that enables lineage tracing for these
“black box” functions.

A similar challenge is also seen in data mining and data

1116

cleansing applications. For many applications, data clean-
ing is an important first step. It has been reported that
the data cleaning procedure takes more than half the total
time in the construction of a data warehouse. Extensive re-
search has been conducted on how to resolve inconsistencies
and missing values in the data. However, after the data is
cleaned and stored in the database, the information of how
the data is cleaned is not stored in the database and is lost
forever. For example, the missing value could be replaced
by a most likely value or derived from a model, but once the
data has made it to the database, this data is treated as if it
is the real data. In many cases, the data used to replace the
missing value may be incorrect. It is important to maintain
this information if one has doubts about the data. Since the
data cleaning procedures are usually performed by a pro-
gram without relational semantics, it is currently difficult
to obtain this information.

Despite the importance of the problem, there has been
very limited work that has addressed the problem of tracing
lineage when arbitrary functions are used – this is largely
due to the difficulty of the problem. In [25], Wooddruff and
Stonebraker use reverse functions to compute the mappings
from output to input. A reverse function returns the set
of input data that is used to generate a given output data
item. When a reverse function is not available, a weak re-
verse function is used to compute a set of input that is a
superset or subset of the data used to compute the out-
put. A verification function is also used to refine the set.
Marathe [21] apply rewrite rules to AML (Array Manipu-
lation Language) expression in order to trace fine-grained
lineage for array data. This lineage, however, may contain
false positives. These solutions have been shown to be effec-
tive in certain scenarios. However, they have their inherent
limitations. First, reversibility is not a universal charac-
teristic of data processing queries/functions. Even when a
weak reverse function can be found, it will not be very use-
ful if the exact data items can not be identified. Second,
in order to design reverse queries/functions, a comprehen-
sive understanding of the data processing procedures is a
pre-requisite, which makes the solutions application-specific
and hard to automate. The situation becomes worse when
it comes to legacy code because they are often harder to
understand. Third, coding the reverse queries/functions en-
tails non-trivial efforts, which thwart the application of these
techniques.

To the best of our knowledge, there is no existing work
that is able to automatically infer the connections between
input and output for arbitrary functions. In this paper,
we propose the first such technique. The key idea of our
technique is the observation that the program binary that
implements a function is a valuable source of information
that connects input and output. Therefore, tracing program
executions reveals how output is derived from input.

While this is a very promising direction, the design and
implementation is non-trivial. In this paper, we take ad-
vantage of recent advances in dynamic program analysis
and propose fine grained lineage tracing through dynamic
program slicing. Dynamic program slicing is a technique
originally designed to debug program errors. Given an exe-
cutable, dynamic program slicing is able to trace the set of
statements that have been involved in computing a specific
value at a particular execution point, thus helping the pro-
grammer to find the bug. Using dynamic program slicing

to trace fine-grained lineage has many immediate advan-
tages: it is a completely automated general solution and
does not require any user input or domain expertise on the
data processing functions; it can simply work on compiled
binaries without access to the source code, and the traced
fine grained lineage is accurate.

The only barrier to realizing this intuitive idea is the cost.
Fortunately, recent progress in program tracing, especially
in dynamic program slicing, enables tracing fine grained lin-
eage with reasonable cost. It is worth pointing out that
part of the overhead of our system stems from the under-
lying dynamic program analysis engine which is based on a
single-core machine and not highly optimized. As a result,
it is usually several times slower than an industry-strength
engine. Even in the absence of support from a more efficient
engine, the contribution of this paper is significant since it
provides a new functionality that is currently not available.
For most applications that require lineage information – the
availability of the information is more crucial than the run-
time cost of computing it. At the same time, it is a simple
matter to support rapid query processing without lineage
tracing while at the same time having a separate, slower
computation that generates the lineage information in the
background. In this fashion, query results are available im-
mediately while the lineage information is generated a little
later. We show in this paper, that even though lineage trac-
ing is slower than query processing, it remains at accept-
able levels for all the applications that we have considered
– we are certain that this is a price that these applications
are willing to pay for obtaining valuable lineage information
that has not been available earlier. This is strongly sup-
ported by our experiments. Overall, this paper makes the
following contributions:

• We develop the first fine-grained lineage tracing algo-
rithm that can be applied to any arbitrary function
without human input or access to source code. We de-
scribe how the ideas of dynamic slicing for debugging
programs are adapted to provide fine-grained lineage.

• We implement the system and apply it to real ap-
plications. Our experiments show that the overhead
is acceptable. Our case study demonstrates that the
traced fine grained lineage information is highly effec-
tive and greatly benefits a biologist in analyzing and
understanding the results.

2. MOTIVATION
In this section we describe a motivating data process-

ing application of non-relational data processing for which
lineage tracing is both important and challenging. Liquid
Chromatography Mass Spectrometry (LC-MS) is an effec-
tive technique used in protein biomarker discovery in can-
cer research [30, 29]. Figure 1 shows the various steps in-
volved in LC-MS. A biomarker is a protein which undergoes
changes in structure or concentration in diseased samples.
Identified biomarkers can be used in diagnoses and drug
design. To detect these biomarkers, proteins from cancer
patients and normal people are digested into smaller pieces
called peptides. These two samples of peptides are “labeled”
by attaching chemicals to them. The normal and diseased
groups are distinguished by having different isotopes (same
chemical structure but different molecular mass) in their
labels. The labeled cancer and normal samples are then

1117

Y
-A

x
is

X-Axism/z

in
te

n
s
it
y

m/z

in
te

n
s
it
y

Digestion
Isotope

Labeling

L
C

MSDe-Isotope

Cancer

Normal

1:1 mix

Doublet

Figure 1: An overview of the LC-MS process.

mixed in equal parts. An ionization process is used to at-
tach charges to the peptides. Due to the nature of this
process, different molecules of the same peptide can end up
with different charges, thereby producing different m/z ra-
tios. This mixture is then subjected to the LC-MS process.
This process is only able to measure the ratio of molecular
mass to the charge of the peptide.

In an ideal situation, each peptide would produce two
peaks – one corresponding to the normal peptide marked
with a light label and a second corresponding to the cancer
sample marked with a heavy label. These peaks would differ
in mass by the difference in the label weights and are called
a doublet. Unfortunately, the data from the spectrometer is
not so clean. There are two main reasons (in addition to
the difficulty of wet-bench experimentation): charges and
naturally occurring isotopes. The charge that gets attached
to a given peptide is not fixed. Thus a peptide with mass
m0 may show up at a m/z ratio of m0, m0/2, m0/3, etc.
depending upon its charge in the experiment.

Furthermore, due to naturally occurring isotopes, differ-
ent molecules of the same peptide may have different molec-
ular mass and thereby results in a cluster of peaks, called
isotopic peaks. 1 The mass difference between two adjacent
isotopic peaks equals to 1Dalton. Assuming that isotopes
take on the same charge, with a charge of +1, the m/z dif-
ference between these peaks will be 1, with a charge of +2,
the difference will be 0.5, and with a charge of +3, the dif-
ference will be 0.33 etc. Thus, we see that a single peptide
can contribute to multiple peaks in the LC-MS output. Also,
a single observed peak could contain contributions from mul-

1For example, Carbon atoms usually have an atomic weight
of 12. However, there is usually a small fraction of Carbon
atoms with weight 13 (and even fewer with weight 14). De-
pending upon the number of C13 atoms in a given molecule,
the overall molecular weight of that molecule may differ.
Similarly Nitrogen, which is commonly found as N14, also
has a less frequent isotope: N15. Thus depending upon the
number and type of isotopes that make up a given molecule,
we get multiple molecular weights for the same peptide.
Note however, that the typical ratio of the occurrence of
these isotopes is usually known.

���

���
��� � �	
��

��� � ��
�

 ��� � �	
��
 ��� � ��
��
��������������������
������� ��

������ ��� �� ��! ��� ��� ���

" # $ % & ' () * + ,��������������������
������� ��

������ ��� �� ��! ��� ��� ���

Figure 2: Sample Mass Spectrometry results (a) raw
data and (b) analysis results.

tiple peptides (due to multiple isotopes and charges).
The spectrometer produces an output similar to that shown

in Figure 2(a). The x-axis of the graph shows the ratio of
the molecular mass to the charge (m/z ratio) of the various
peptides that were detected by the spectrometer. Molecular
mass is measured in Dalton (Da) and charges are integer
values (typically +1, +2, +3 or +4). The y-axis shows the
intensity (concentration) of that particular m/z value. Each
peak is labeled with a greek symbol to ease exposition. For
example, the left-most peak corresponds to a m/z ratio of
913.437, we will refer to this as Peak α.

De-isotoping functions are employed to process the raw
spectrometer output in order to identify the peptides that
could have generated the observed pattern of peaks. In this
output, the same type of peptides generated from normal
and disease samples will appear in the same mass spectrum
as a doublet. The intensity ratio of the doublet indicates
the relative concentration of proteins from which the pep-
tides were generated. If the ratio is not equal to the ex-
pected ratio (the ratio in which the samples were mixed),
then the protein which generated the peptide may be a po-
tential biomarker.

Due to the complexity of the process and the many factors
that can lead to errors, the de-isotoping functions are heuris-
tics that scientists have developed over a period of time.
Not surprisingly, LC-MS has been known to produce a large
percentage of false positives. Many factors contribute to the
problem of many false positives: The data quality may be

1118

poor; The heuristics used in the algorithm may not handle
some situations; The design of the algorithm may contain
flaws; and there could be human errors that are not easy to
detect. It is evident that the quantification of peak inten-
sity is critical for the success of the experiment. Eliminating
false positives is important since the results of the LC-MS
will determine in what direction the subsequent research will
proceed – typically involving significant effort and expense.
It is important for scientists to have high confidence that
a potential biomarker is worthy of further analysis. The
availability of fine-grained lineage can significantly improve
scientists’ ability to eliminate false positives.

Algorithm 1 shows the pseudo-code for the state-of-the-
art algorithm for the de-isotope procedure. For each peak P
in the spectrum, up to six isotopic peaks are identified. The
intensity of each isotopic peak is compared against a theoret-
ical threshold that is computed from P.intensity and a con-
stant H , which is indexed by i and P.intensity. If it equals
the threshold, this intensity is aggregated to P.intensity
and the peak is removed from the spectrum. Otherwise, the
threshold intensity is added to P.intensity and subtracted
from the isotopic peak’s intensity.

The de-isotope procedure cleans up the raw LC-MS out-
put and generates a spectrum that has no isotopic peaks.
Thus a peak in the output corresponds to the sum of the in-
tensities of all isotopic peaks for the same peptide. It should
be noted that this procedure is based upon domain expertise
and heuristics and may itself have some errors. A sample
result is shown in Figure 2(b). For example, the intensity of
peak µ denoted as Pµ, is computed by the following equa-
tion:

Pµ =(1 + c2) · Pα + Pβ + P γ

Similarly, the intensity of peak ν is computed as:

P ν =(1 + c′1 + c′2) · (P
δ − c2 · Pα) + P ε

The values of the constants used, and the actual peaks that
contribute in each case, depend upon the processing details
that are buried in the complex procedure. This significantly
complicates the ability to automatically infer the relation-
ships between input and output. It is obvious that no reverse
function exists for the functions listed above. One possible
weak function is to compute all six possible isotopic peaks,
which will include Pα, P β, P γ , P δ, P ε, P ζ , P η. This is a su-
perset of the real lineage. The other possible weak reverse
function is to find the peak with the same m/z, which is Pα.
This set is a subset of the real lineage. Neither reverse weak
function gives a satisfactory result. In addition, there is no
good verification function to refine the result produced by
weak reverse function. In this case, the true function used to
compute the intensity will depend on many conditions and
would have to be dynamically generated. Note that coarser
grained lineage such as lineage at method level does not
help either because it is the different execution paths within
a single method that result in various dynamic functions.

3. AUTOMATED LINEAGE TRACING
In this section we present our new approach for automatic

tracing of fine-grained lineage through run-time analysis.
This approach is motivated by the technique of dynamic
slicing that is used as a debugging tool [20]. Dynamic slic-
ing is able to identify a subset of program statements that
are involved in producing erroneous executions. The goal of

Algorithm 1 De-isotope

1: for each peak P in the spectrum do
2: Ch=F (P) /*Compute the charge of P*/
3: M []=G(Ch,P) /* Find the next up to 6 isotopic

peaks*/
4: for each M [i] do
5: T = H(P, i) × P.intensity /*H(...) is the constant

ratio for calculating theoretical isotopic peak inten-
sity*/

6: if (M [i].intensity ≡ T) then
7: P.intensity+ = M [i].intensity
8: remove peak M [i] from the spectrum
9: else

10: P.intensity+ = T
11: M [i].intensity = M [i].intensity − T
12: end if
13: end for
14: print(. . . , P.intensity, . . .)
15: remove P from spectrum
16: end for

lineage tracing is rather different in that we are interested in
identifying the connections between input and output data
for a program. Although not straight-forward, we show that
it is possible to adapt the technique of dynamic slicing for
our purpose. Before we discuss how this is achieved, we
present a very brief description of dynamic slicing as used
for debugging. Interested readers are referred to [20] for
further details.

3.1 Dynamic Slicing
Dynamic slicing operates by observing the execution of

the program on given input data. The goal is to be able to
determine which statements are responsible for the execu-
tion having reached a given statement. Each statement is
identified by a line number, s. Since a given statement may
be executed many times in a given execution, each execution
of Statement s is identified with a numeric subscript: si for
the ith execution.

Definition 1. Given a program execution, the dynamic
slice of an execution point of si, which denotes the ith exe-
cution instance of statement s, is the set of statements that
directly or indirectly affected the execution of si.

In order to identify the set of relevant statements, dy-
namic slicing captures the exercised dependencies between
statement executions. The dependencies can be categorized
into two types, data dependence and control dependence.

Definition 2. A statement execution instance si data
depends on another statement execution instance tj if and
only if a variable is defined at tj and then used at si.

In the execution presented in Figure 3, for example, there
is a data dependence from 60 to 50 since T is defined at 50

and then used at 60. Note that a variable is defined if it
appears in the left hand side of an assignment statement.

Besides data dependence, another type of dependence cap-
tured by dynamic slicing is called control dependence.

Definition 3. A statement execution instance si con-
trol depends on tj if and only if (1) statement t is a pred-
icate statement and (2) the execution of si is the result of
the branch outcome of tj.

1119

. . .

40. for M [0];
50. T = . . . P.intensity

60. if (T ≡ M [0].intensity)
70. P.intensity+ = M [0].intensity

80. . . .

41. for M [1];
51. T = . . . P.intensity

61. if (T ≡ M [1].intensity)
90. else
100. P.intensity+ = T

110. . . .

42. for NULL;
140. print (. . . , P.intensity, . . .)

. . .

Figure 3: Execution Trace of Algorithm 1

For example in Figure 3, 70 and 80 control depend on 60.
More details on how to identify control dependence at run-
time can be found in [28].

The dynamic slice of an executed statement si consists of
si and the dynamic slices of all the executed statements that
si data or control depends on. Therefore, the dynamic slice
of 140 contains 140, 100, 61, 51, 41, 70, 60, 50 and 40.

3.2 Tracing Data Lineage
For the case of lineage tracing we are interested in deter-

mining the set of input items that are involved in computing
a certain value at a particular execution point. In this sec-
tion, we adapt the dynamic slicing technique for data lineage
computation.

We start by defining data lineage in terms of program
execution.

Definition 4. Given a program execution, the data lin-
eage of v at an execution point of si, denoted as DL(v@si),
is the set of input items that are directly or indirectly in-
volved in computation of the value of v at si through data or
control dependences.

We also use DL(si) to denote the data lineage of the left
hand side expression of si. For example,

DL(P@140) = {P, M [0], M [1]}

Dynamic slices are usually computed by first constructing
a dynamic program dependence graph [6], in which an edge
reveals a data/control dependence between two statement
instances, and then traversing the graph to identify the set
of reachable statement instances. This method suffers from
the unbounded size of the constructed dependence graph.
More recently, it has been shown that dynamic slices can
be computed in a forward manner [9, 27], in which slices
are continuously propagated and updated as the execution
proceeds. While this method mitigates the space problem,
dynamic slices are often so large that expensive operations
have to be performed at each step of the execution in order
to update the slices.

Fortunately, in lineage tracing, it is not necessary to trace
statement executions. Consider the example below. It is ob-
vious the lineage set of OUTPUT contains only INPUT [0].
However, all statement executions should be contained in
the dynamic slice of OUTPUT because they directly/indirectly
contributed to the value of OUTPUT .

10: x = INPUT[0];
20: x = x + 1;
30: OUTPUT = x;

In other words, if well designed, lineage tracing can be
much more efficient than dynamic slicing.

Next we describe how data lineage is computed during
program execution. The basic idea is that the set of input
elements that is relevant to the right hand side variable at si
is the union of the relevant input sets of all the statement in-
stances which si data or control depends on. In other words,
all the input items that are relevant to some operand of si or
the predicate that controls the execution of si are considered
as relevant to si as well.

For simplicity of explanation, let

si : dest =? tj : f(use0, use1, ..., usen)

be the executed statement instance si, which assigns a value
to variable dest by using the variables of use0,use1, ..., and
usen, and si control depends on tj . For example, the state-
ment instance 100 can be denoted as

100 : P.intensity =? 61 : f(P.intensity, T)

because it control depends on 61 and defines P.intensity

using T and the old P.intensity.
Let DEF (x) be the latest statement instance that defines

x. The computation of data lineage can be represented by
the following equations:

DL(dest@si) =(
[

∀x

DL(usex@si) ∪ DL(tj)

=DL(tj) ∪ (
[

∀x.DEF (usex)6=φ

DL(usex@DEF (usex))

∪ (
[

∀x.DEF (usex)=φ;

{usex}))

(1)
As shown by the equations, the lineage set of the variable

dest that is defined by si is the union of the lineage set of
tj and the lineage sets of usex. If a variable usex was pre-
viously defined, DL(usex@si) = DL(usex@DEF (usex)),
otherwise, it is treated as an input and thus DL(usex@si) =
{usex}.

Table 1 shows the computation of data lineage for the
execution trace in Figure 3. In the table, M [. . .] and P
are the abbreviations of M [. . .].intensity and P.intensity,
respectively. The last row of the table indicates that the
data lineage of P.intensity at 140 is computed from the
input elements of the original P.intensity, M [0].intensity,
and M [1].intensity.

1. i=0;
2. while (INPUT[i]!=0) {
3. OUTPUT[i]=INPUT[i];

}
4. ...

Execution trace: 11 21 31 22 32 23 ...41

Figure 4: Effect of Control Dependence.

Control Dependence. Handling control dependence is
an important issue. Control dependence is essential to dy-
namic slicing because a large number of bugs are related
to altering the branch outcome of a predicate. However,
considering control dependence in data lineage computation
may degrade the quality of the results. For example in Fig-
ure 4, since each 3i statement instance in the execution con-
trol depends on the corresponding 2i statement instance,
and 2i control depends on 2i−1 since the execution of the ith
instance of the while statement depends upon the branch

1120

Table 1: Computation of data lineage.
si tj def use0 DEF use1 DEF DL(def@si)/DL(si)

(use0) (use1)

40 M [0] DL(40) = φ

50 40 T P φ DL(T@50) = DL(P@50) ∪ DL(40) = {P}
60 40 T 50 M [0] φ DL(60) = DL(T@50) ∪ DL(M [0]@60) ∪ DL(40)

= {P, M [0]}
70 60 P P φ M [0] φ DL(P@70) = DL(P@70) ∪ DL(M [0]@70)

∪DL(60) = {P, M [0]}
41 M [1] DL(41) = φ

51 41 T P φ DL(T@51) = DL(P@51) ∪ DL(41) = {P}
61 41 T 51 M [1] φ DL(61) = DL(T@51) ∪ DL(M [1]@61) ∪ DL(41)

= {P, M [1]}
100 61 P P 70 T 51 DL(P@100) = DL(P@70) ∪ DL(T@51)

∪DL(61) = {P, M [0], M [1]}
42 DL(42) = φ

140 P 100 DL(140) = DL(P@100) = {P, M [0], M [1]}

outcome of the (i − 1)th instance of the while statement.
Therefore,

DL(OUTPUT[i]@3i)) = {INPUT[i]} ∪ DL(2i)

= {INPUT[i]} ∪ (INPUT[i-1] ∪ DL(2i−1)

= ...

= {INPUT[i], INPUT[i-1], ..., INPUT[0]}

In other words, even though OUTPUT[i] is equivalent to
INPUT[i], all the INPUT[x ≤ i] are considered as being rele-
vant to OUTPUT[i], which is not very useful.

This implies that blindly considering all control dependen-
cies in lineage computation may produce an undesired effect.
As it turns out, data dependence is more critical for lineage
tracing than control dependence. This claim is borne out
by the numerous applications that we have considered from
data cleaning, data mining, and scientific applications. It is
possible that a data dependence is buried within a control
dependence – this is an interesting situation. It is possible to
automatically address this case, but the details are beyond
the scope of the current paper. In Section 6 we show that
for all the programs that we considered data lineage can be
correctly computed by considering only data dependencies.

Completeness. We would like to point out that even
tracing both data and control dependencies is not a complete
solution, meaning that relevant input instances may be miss-
ing from the lineage set. Consider the example below. Lets
assume INPUT[0] has the value of 90 such that Statement 3
is not executed. The only statement that Statement 4 de-
pends on is 1. In other words, OUTPUT@4 has an empty data
lineage set. But we can easily tell that OUTPUT is relevant to
INPUT[0]. The root cause is that the dependence between
2 and 4 is neither a data dependence nor a control depen-
dence, and thus the data lineage set can not be propagated
along that dependence. In general, it is hard to capture
this type of dependence because of the fact that it manifests
itself by not executing certain statements while traditional
tracing techniques are only good at capturing what has been
executed.

1: OUTPUT = 10;
2: if (INPUT[0] >100) then
3: OUTPUT=INPUT[1]
4: print (OUTPUT)

The nature of this type of dependence is very close to that
of control dependence and thus it is minor in lineage tracing.
This is also confirmed by our experiments, in which we did
not encounter any observable problems caused by missing

this type of dependencies. Finally, we want to point out
that there exist expensive and conservative techniques to
compute these invisible dependencies [18].

4. IMPLEMENTATION-./01234 56136/ 789:;<=>8:>;?<8:@=>ABCDEFDGDH IJBKILM ;NOPPQRS TBCELMBCH UK VIWDBCJKLUXDCKDWVIWDDYDCK TWWZBCDEFDIUKH UK
Figure 5: Slicing Infrastructure.

We have implemented the lineage tracing prototype on
the tool called Valgrind[2] which was originally designed for
debugging memory errors in x86 binaries. The kernel of val-
grind is a dynamic instrumentation engine which is capable
of adding user specified code into the original binary. There-
fore, when the original code is executed, the corresponding
added code, which is also called instrumented code, is exe-
cuted as well. While previously the instrumentation had the
goal of debugging, the valgrind tool can be easily extended
by replacing the instrumenter.

Figure 5 illustrates the architecture of our prototype. The
valgrind engine takes a x86 binary and executes it with the
provided input. The engine calls our instrumenter when
it is about to execute a piece of code. Our instrumenter
adds our own code and returns a new piece of instrumented
code, to the engine to execute. The execution of the instru-
mented code will result in calling functions provided in the
runtime component, which perform certain operations based
on the semantic of the original code in order to propagate
and update the lineage information. The roBDD component
computes and stores lineage sets. More details about this
component are discussed below. Eventually, the system pro-
duces both the regular output and the corresponding lineage
information. Note that we chose to use valgrind because it
is robust and open-source. However, an inherent limitation
of valgrind is its speed. Simply executing a program on val-
grind without any instrumentation may incur a 10x slow-
down. There are industry tools such as dbt from Intel and
valcun from Microsoft, with much lower overhead (as low
as 50 percent). Unfortunately, those tools are not publicly
available at present.

1121

Next, we discuss two implementation challenges.
The Set Representation. From the earlier discussion,

it is clear that lineage computation involves storing a large
number of sets and performing set operations at each step
of the execution. Therefore, the set representation is critical
to performance. A naive link-list based implementation may
end up traversing a large set, which may contain thousands
of elements, for the execution of a single instruction. Fortu-
nately, recent research on dynamic slicing [27] reveals that
reduced ordered Binary Decision Diagram (roBDD) [1] can
be used to achieve both space and time efficiency in repre-
senting sets. RoBDD benefits us in the following respects.
Each unique lineage set is represented by a unique integer,
which can be considered as an index to the universal roBDD
which stores all lineage sets. In other words, two sets are
represented by the same integer if and only if they are iden-
tical. The use of roBDD achieves space efficiency because
it is tailored for set operations characteristic of lineage data
such as duplicate removal, and handling overlapping and
clustered sets. Set operations can be performed efficiently
using roBDDs. More specifically, equivalence tests can be
performed in O(1) time [22]. Other binary operations (e.g.,
union) on two sets whose roBDD representations contain n
and m roBDD nodes can be performed in time O(n × m)
[22]. Note that the number of roBDD nodes is often much
smaller than the number of elements in the represented set.

Binary Instrumentation. In order to trace lineage, we
have to instrument the binary of the program such that lin-
eage information is updated during program execution. Ac-
cording to Equation 1, we need to update the DL set of the
left hand side variable at every step of the execution and
store it somewhere. In our system, we use shadow space to
store lineage sets. More specifically, if the variable is stored
at a specific stack/heap location, a corresponding shadow
memory (SM) is allocated and used to store the set associ-
ated with the variable. Similarly, we use a shadow register
file (SRF) to store the sets for variables in registers. Both
shadow memory and shadow registers are implemented by
software.

register int sum;
1. A = (int*) malloc (100);
2. SM(A) = malloc in shadow(100);
...
10. sum = sum + A[i];
11. SRF(sum) = SRF(sum) ∪ SM(A)[i];

...

Figure 6: An Example of Instrumentation.

Figure 6 shows an example of instrumentation, the instru-
mented code is in bold. We can see that an original memory
allocation is instrumented with a corresponding memory al-
location in the shadow space. An original operation in the
program is instrumented with a set operation on the corre-
sponding sets which are stored in the shadow space. Even
though the example is at source code level, the real instru-
mentation is performed at binary level – without the need to
access source code.

5. STORING FINE-GRAINED LINEAGE
Through the use of our lineage tracing utility, it is now

possible to automatically instrument any x86 binary so that
it generates fine-grained lineage information for its output.
This lineage information can be stored as part of the database
in order to make it available for querying.

To record fine-grained lineage, the individual data items
must be uniquely identified. If the input is in a flat file, the
data items in the file can be identified by the offset in the
file and their data length. If the file is in a semi-structured
format such as XML, then the scheme proposed in [12] can
be used. If the data is in a DBMS, the data item can be
identified based on its granularity. The granularity of lineage
could be at table, tuple or attribute level. Table level lineage
is equivalent to coarse-grained lineage, tuple- and attribute-
level lineage are examples of fine-grained lineage.

Our lineage tracing utility provides lineage at attribute
level. Tuple level lineage information can be directly com-
puted from the attribute level lineage. The lineage infor-
mation can itself be stored in a table called Lineage. Table
2 shows an example of how the lineage information can be
stored in a database.

id pid level from id to id Program id

1 318 1 (3,-,-) (5,-,-) De-Isotope

2 2122 1 (1,-,-) (3,-,-) Data cleaning

3 2122 2 (3,1,-) (1,101,-) -

4 318 3 (5,1,5) (3,5,6) -

5 318 3 (5,1,5) (3,15,6) -

Table 2: Lineage Table

The id attribute is the primary key of the lineage table.
The pid attribute is the identifier of the process that gener-
ated the data. The level attribute describes the level of the
lineage, 1 is table level, 2 is tuple level and 3 is attribute
level. From id and to id describe that from id depends on
to id. The program id attribute stores the id of the program
used to generate the derived data. If the input data is in a
database, the from id and to id are represented as a triplet
(table id, tuple id, attribute id), the first number is the iden-
tifier of the table, the second number is the identifier of the
tuple in the table and the third number identifies the at-
tribute inside a table. For example, (3,-,-) means Table 3.
(5,1,5) means Table 5, Tuple 1, Attribute 5. If the database
provides the internal table and tuple identifiers, we could
use these as the tuple id. In PostgreSQL, oid and tableoid
columns are created when the table is created. The oid
uniquely identifies the tuple in a table and tableoid iden-
tifies the table to which the tuple belongs. The order of
attributes in the table can be used as the attribute id. If a
key is defined on the table, the key can be used in place of
the oid. For databases that do not provide the internal tuple
identifier, extra tables can be implemented to manage the
internal tuple identifier. Further details on how fine-grained
lineage can be managed in a RDBMS are discussed in our
technical report [26].

6. EXPERIMENTAL RESULTS
In this section, we present an experimental evaluation

of the proposed approach using several real applications.
Two sets of experiments are presented. To demonstrate
the validity of our approach and highlight the importance
of fine-grained lineage, we consider the LC-MS application
discussed earlier. The second set of experiments is con-
ducted on a range of applications including data mining,
data cleansing, and image processing. These experiments
are used to study the performance of our technique. The
LC-MS application uses real data from a cancer study and

1122

was conducted in collaboration with domain experts. This
application is highly sensitive to incorrect (even approxi-
mate) lineage and obtaining accurate lineage information is
not possible with existing techniques. The experiments be-
low establish the feasibility of our approach and also demon-
strate that although there is a distinct slowdown due to
lineage tracing, it is not crippling. It should be noted, as
mentioned earlier, that for many applications the availabil-
ity of correct lineage information is far more important than
rapid query execution. Even when rapid query processing
is necessary, it is possible to compute answers quickly with-
out tracing lineage and later provide lineage information by
repeating the query with lineage tracing. In fact, our exper-
iments lead to the improvement of the de-isotoping results
and identification of limitations of the current algorithm.
These results in themselves were very exciting for our col-
laborators, which further corroborates the value of having
fine-grained lineage (even if it is a little slow to compute).

We use actual mass spectrometer output from a real ex-
periment as input data for our tests. The biological samples
were acquired from normal mice and mice bearing breast
cancer. The mass difference between normal and cancer la-
bels is 3Da. The code used to process the LC-MS data was
obtained from [29]. The experiments are conducted on a
machine with 2.40GHz Pentium 4 CPU and 1GB memory
running GNU Linux.

6.1 De-isotope Results
As discussed in Section 2 the key goal of biomarker dis-

covery is to identify peptides that show a marked difference
in cancer specimens as opposed to normal specimens. Due
to the nature of the application, false positives are often
produced. These can lead to expensive and fruitless fol-
lowup research and thus should be eliminated if possible. A
key requirement in establishing the validity of a potential
biomarker is being able to trace back from the result to the
peaks that contribute to this final result. Currently, since
fine-grained lineage information is not maintained, this is
often done manually and approximately. In the following
experiments we show how our technique is able to provide
the correct fine-grained lineage in order to rule out false
positives from a real experiment. Also, we show that the
availability of fine-grained lineage can help identify limita-
tions of the de-isotope algorithm.

6.1.1 Doublet Quantification
Figure 7 (a) shows a portion of a MS spectrum from a

real experiment. The de-isotope step identifies 4 peaks, each
with charge 4 as shown in Figure 7(b). The peaks in Figure
7(a) are broken up to show their contribution to the final
computed peaks in Figure 7(b). These can form two dou-
blets: (P σ, P υ) and (P τ , Pϕ). However, it turns out that
this result is surprising since it implies an unusually large
peptide2. The availability of fine-grained lineage generated
by our method makes it possible to explore this further. The
lineage for these peaks is as follows:

2Since the charges for these peaks are 4, the peptide that
produces the doublet (P σ, P υ) has to contain 3 occurrences
of the amino acid Lysine(K) and the peptide that produces
the doublet (P τ , Pϕ) should contain 4 occurrences of Ly-
sine(K). While the occurrence of 3 or 4 Lysine(K) is possible,
it is very unlikely.

DL(Pσ) ={P
α

, P
β}

DL(P τ) ={P
α

, P
γ

, P
δ
, P

ε
, P

ζ
, P

η
, P

θ
, P

ι}

DL(Pυ) ={P
κ

, P
λ

, P
µ

, P
ν} DL(Pϕ) = {P

κ
, P

ξ
, P

o
, P

π
, P

ρ
, P

ς}

From this information, we discover that the m/z differ-
ence between the isotopic peaks is approximately 0.33. This
implies that the charge should be 3 instead of 4. Obviously
there is something wrong. After investigation, we found out
that the scientists had inadvertently used an incorrect pa-
rameter for the mass accuracy when running the de-isotope
function. With the help of the fine-grained lineage we were
able to correct this value and set it to a more appropriate
value. We ran the function again with the new value.

The new results are shown in Figure 7 (c) and 7 (d), this
time the program correctly assigned 4 peaks with charge 3.
There are two doublets :(P σ′, P υ′) and (P τ ′, Pϕ′). The in-
tensity ratio between P σ′, P υ′ is 1.45:1, while the intensity
ratio between P τ ′, Pϕ′ is 1.57:1. These results are promis-
ing since the normal ratio is 1:1. Thus, these doublets could
potentially be biomarkers of interest. However, before in-
vesting more money and effort in investigating these poten-
tial biomarkers, it is important to have high confidence that
the ratio is correct. The lineage information can once again
help establish the confidence in these ratios. In this case,
it turns out that the domain experts were satisfied with the
lineage. The new lineage information is shown below. In

particular, the likelihood that P σ′

is correct is high since all
six isotopic peaks have been identified.

DL(Pσ′) ={P
β′

, P
γ′

, P
δ′

, P
ε′

, P
ζ′

, P
η′

, P
θ′}

DL(P τ
′
) ={P

ι′
, P

κ′}

DL(Pυ
′
) ={P

ι′
, P

λ′
, P

o′
, P

π′
, P

ρ′}

DL(Pϕ
′
) ={P

ι′
, P

λ′
, P

µ′
, P

ν′
, P

ξ′}

6.1.2 Identifying False Positives
The availability of fine-grained lineage can help improve

the quality of the results generated by the de-isotope pro-
cedure. Figure 8 shows the results from an experiment that
provides an example of this aspect. Figure 8 (a) shows a rel-
atively clean raw spectrum. Figure 8 (b) shows the output
of the de-isotope function on this input data. The program
detects 4 peaks, which form two doublets (P θ, P κ) and (P ι,
Pλ). The intensity ratio of doublet (P θ, P κ) is 0.78 and that
of doublet (P ι, Pλ) is 1.45. The intensity ratio of doublet
(P θ, P κ) may be within experiment variation, while doublet
(P ι, Pλ) could be a potential biomarker. The fine-grained
lineage reveals that it is very likely that doublet (P ι, Pλ)
is a false positive. This is indicated by the fact that peak
Pλ is not an independent peak, but just a vestige of another
peak (P κ) that was produced as a result of the limitations of
the de-isotope procedure. This determination is not possi-
ble unless we are able to determine the fine-grained lineage.
The following is the fine grained lineage of the two doublets
in Figure 8 (b).

DL(P θ) ={P
α} DL(P ι) ={P

α
, P

β}

DL(Pκ) ={P
α

, P
β

, P
δ
, P

ζ
, P

η} DL(Pλ) ={P
α

, P
β

, P
δ
, P

ε}

P
λ =P

ε − c0 · (P δ − c
′
1 · (Pβ − c

′′
0 · P

α))

The main peak P ε in the lineage set of Pλ, which is iden-
tified by having the same m/z value as Pλ, has a much
higher intensity than Pλ, which is highly unlikely. Further

1123

[\] ^ _ ` a b c d e f g h i jklkmknk
okpkkplkpmk
pmqk pmqp pmql pmqr pmqm pmqq pmqn pmqstuv

wxyzx{wy| } ~ � ��
���

��������� ������������
���������������
���� ���� ���� ���� ���� ���� ���� ����� �� � �� � ��

(a) (b)

�� �� �� �� �� ���� �� �� �
¡� ¢� £� ¤� ¥� ¦�§¨§©§ª§

«§¬§§¬¨§¬©§
¬©­§ ¬©­¬ ¬©­¨ ¬©­® ¬©­© ¬©­­ ¬©­ª ¬©­¯°±²

³́µ¶́·³µ̧ ¹� º�
»¼ ½¾

¿¼ ½¾ À¼ ½¾Á¼ ½¾ÂÃÄ
ÅÆÇÈÆÉÅÇÊ ËÌËÍËËÍÌËÎËË

ÎÌËÏËËÏÌËÐËËÐÌË
ÍÐÌË ÍÐÌÍ ÍÐÌÎ ÍÐÌÏ ÍÐÌÐ ÍÐÌÌ ÍÐÌÑ ÍÐÌÒ

(c) (d)

Figure 7: Example showing doublet quantification

inspection showed that the comparison at Line 6 of Algo-
rithm 1 decides that the computation of P κ takes the else
branch such that a major portion of intensity is subtracted
from P ε, and the remaining intensity constructs the peak
of Pλ. However, the T value at Line 6 is not necessarily
accurate depending on the constant H [P.MW, i], which is
calculated by sampling a large database of proteins. The
error of the sampling procedure is 5%. This particular pep-
tide very likely falls into this 5%. If we add P ι to P θ and
Pλ to P κ, then the intensity ratio between P θ to Pλ be-
comes 0.83 which is close enough to the normal ratio of 1:1
to be insignificant. This result itself was very exciting for
our colleagues working on biomarker discovery.

Figure 9 shows a more complicated situation where the
program was not able to compute the correct answer which
was discovered with the help of our fine-grained lineage. Fig-
ure 9 (b) is the result of de-isotope. Pψ and Pω are both
charge 1 and we infer that Pψ and Pω are a doublet based
on their m/z difference. Pψ is the light peptide from nor-
mal sample and Pω is the heavy peptide that came from
a diseased mouse. After examining the fine-grained lineage
information,

DL(Pψ) ={P
η
, P

ι
, P

λ} DL(Pω) = {P
η
, P

o
, P

ρ
, P

σ}

we are confident that Pψ and Pω are correct and they
are indeed a doublet. On the other hand, P υ is suspicious
because the program determines its charge to be 2. If we
can pair Pϕ with P υ, they will form a doublet but Pϕ is
charge 1. Note that the value is in m/z, if P υ is charge 2,
its molecular weight would have to be 2101 which is far more
than 1053.5 that Pϕ has, therefore P υ and Pϕ can not be a

doublet. We turn to fine-grained lineage for help.

DL(Pυ) = {P
α

, P
β

, P
γ} DL(Pϕ) = {P

η
, P

ν}

DL(Pχ) = {P
θ
, P

κ} DL(Pψ) = {P
η
, P

ι
, P

λ}

P
υ = P

α + P
β + P

γ

P υ is determined to be charge 2 because program included
P β in its lineage. In fact, the charge of the P υcould be 1 or
2. If the charge of P υ is 1, as shown in Figure 9 (c), PΩ will
be assigned charge 1 and appear in the result. P υ and Pψ

could pair up and PΩ and Pχ could pair up. We will have
three doublets. On the other hand, if the charge of P υ is 2,
as shown in Figure 9 (d), P υ and Pχ pair up. Then we will
have two doublets. The program uses heuristics to handle
the situation when peptides and their isotopic peaks overlap.
In this case, the heuristics fail to produce the correct result.
By checking the lineage, we discover the limitations of the
heuristics and two alternative interpretations of the raw MS
data which are shown in Figures 9 (c) and (d).

6.2 Performance
We selected seven benchmark programs to evaluate the

time and space overhead of the lineage tracing technique.
Auto-class [4] is an unsupervised Bayesian classification sys-
tem that seeks a maximum posterior probability classifica-
tion. It takes a database of attribute vectors (cases) as input
and produces a set of classes and the partial class mem-
berships as output. The image processing program takes
a cryo-EM image in tiff format and applies Fourier trans-
formation [16] to the image. The low frequency noise is

1124

ÓÔÓÓÕÓÓÓÕÔÓÓÖÓÓÓÖÔÓÓ×ÓÓÓ×ÔÓÓ
ØÙØ ØÚÕ ØÚ× ØÚÔ ØÚÚÛÜÝ

ÞßàáßâÞà ã ä å æ ç è é êÓÔÓÓÕÓÓÓÕÔÓÓÖÓÓÓÖÔÓÓ×ÓÓÓ×ÔÓÓ
ØÙØ ØÚÕ ØÚ× ØÚÔ ØÚÚÛÜÝ

ÞßàáßâÞà ã ë
ì

íîïîîðîîîðïîîñîîîñïîîòîîîòïîî
óôó óõð óõò óõï óõõö÷ø

ùúûüúýùû þ ÿ
îïîîðîîîðïîîñîîîñïîîòîîîòïîî
óôó óõð óõò óõï óõõö÷ø

ùúûüúýùû þ
(a) (b)

Figure 8: Spectra showing an example of false positive identification.

benchmark original valgrind tracing tracing/

(sec.) (sec.) (sec.) valgrind

auto-class 0.104 2.92 93.6 32.0

image processing 0.8 5.15 166.3 32.3

lemur 0.85 12.1 302.8 25.0

rainbow 2.22 19.6 286.6 14.6

apriori 2.06 20.7 257.4 12.4

deisotope 9.2 85.8 646.6 7.5

cluto 1.67 42 1670 39.7

Table 3: Running times for benchmark applications.

removed and then another Fourier transformation is per-
formed to covert the image back to a visible form. We used
a 512x512 tiff image as input. Lemur [5] is a toolkit designed
to facilitate research in language modeling and information
retrieval (IR), where IR is broadly interpreted as ad hoc and
distributed retrieval, structured queries, cross-language IR,
summarization, filtering, categorization, and so on. We se-
lected the program RelEval from the toolkit to conduct the
experiment. This program makes use of the toolkit library
and performs 32 feedback queries with pre-constructed in-
dex files. Rainbow[3] is a program that performs statistical
text classification. It takes documents as input and pro-
duces a model containing statistics which can be used to
classify documents. The input we used contains 1000 files,
each with the size of a few Kbytes. Apriori [7] is a data min-
ing tool which is able to mine association rules. We used a 4
Mbytes input file. De-isotope [29] is the program introduced
in Section 2. Cluto [19] is a software package for clustering
low- and high-dimensional datasets and for analyzing the
characteristics of the various clusters.

In the first experiment, we studied the runtime overhead
of the technique. The results are presented in Table 3. The
original execution times are given in the second column.
The column labeled with valgrind presents the overhead
of the valgrind instrument engine. In other words, we ran
the programs on the engine without tracing and collected
the execution times. The column with label tracing shows
the times with lineage tracing on. The last column presents
the slow down factor between runs with tracing and with-
out tracing. We chose to compare the execution times be-
tween valgrind and tracing instead of between tracing

and original because valgrind itself often entails x10 slow-
down, which undesirably skews the real slow down incurred
by the lineage tracing technique.

From the results in the table, we make the following ob-
servations.

• The slow down factors range between 7.5-39.8, which
we consider as being acceptable in our application do-
main. The overhead can be easily paid off by the highly
valuable lineage information we gain as demonstrated
in our case studies.

• The overhead is closely related to the characteristics
of a program. For example, in classification type of
programs such as cluto and auto-clsss, individual
output values are usually related to a large set of in-
put values, resulting in slow set operations that are
involved in lineage computation. Deisotope demon-
strates the other extreme, in which small lineage sets
result in low runtime overhead.

• Part of the runtime overhead is caused by the valgrind
engine. As mentioned earlier, replacing valgrind with
a more efficient industry-strength instrumentation en-
gine will greatly reduce the overall runtime overhead.

benchmark orig.(MB) bdd (MB) tracing (MB)

auto-class 1.8 1.9 2.2

image processing 16.1 198 16

lemur 14 38.4 9.7

rainbow 6.8 50.8 15.3

apriori 4.1 0.19 3.6

deisotope 125 66.2 17.4

cluto 3 5.2 2.2

Table 4: Memory

Table 4 presents the memory overhead. The original mem-
ory usage is presented in the column with label orig. The
memory overhead stems from two components: the bdd com-
ponent which stores sets and the tracing component which
propagates lineage sets. The memory consumed by the bdd

component is mainly decided by the characteristics of the
lineage sets. If the sets are repetitive, highly overlapped,

1125

� � � � � � � � � 	
 � �
� � � � � ������������
�����������
���� ���� ���� ���� ���� ������

!"#$"%!#& ' () * (+, (+- (+ . (+
/0/1/2/3/4/
5/6/7/8/0//
0/40 0/42 0/44 0/46 0/48 0/509:;

<=>?=@<>A
(a) (b)

B CD E CDFCDG CD H CD
IJIKILIMINI

OIPIQIRIJII
JINJ JINL JINN JINP JINR JIOJSTU

VWXYWZVX[\ CD] ^_ ` ^_ a ^b c ^b
dedfdgdhdid

jdkdldmdedd
edie edig edii edik edim edjenop

qrstruqsv
(c) (d)

Figure 9: Example spectra highlighting de-isotope function limitations.

or sparse such as in apriori, they can be efficiently repre-
sented by roBDDs, resulting in less memory consumption.
The tracing part is mainly decided by the memory footprint
of the original execution. As we can observe from Table 4,
the memory usages are mostly comparable, which suggests
that memory overhead is not the dominant factor compared
to runtime overhead.

7. RELATED WORK
Provenance, or lineage, has been extensively studied in

the context of scientific computation such as datasets on
the grid. One form of provenance is workflow or coarse-
grained provenance. For some applications, coarse-grained
(i.e., table or file level) lineage is sufficient because typi-
cally all elements in the same file or table have undergone
the same computational process. Also, the lineage is used
to trace the source of abnormality in the data or for data
dissemination (i.e., a description of the derivation process is
disseminated along with the base data). [11] surveys the use
of workflows in scientific computation.

In scientific databases, for example biological databases,
coarse-grained lineage is insufficient since not all data val-
ues are processed similarly. Although there is a strong need
for tracing fine-grained lineage, it remains an unsolved prob-
lem. Recently, there has been increasing interest in this area.
Cui et al. [13] propose fine-grained tracing in the context
of data warehousing where all data is produced using rela-
tional database queries. The notion of reverse queries that
are automatically generated is presented in order to produce
all tuples that participated in the computation of a given
query. Woodruff and Stonebaker [25] support fine-grained

lineage using inverse or weak inverse functions. That is, the
dependence of a given result on base data is captured us-
ing a mathematical function. They adopt a lazy approach
to compute fine-grained lineage upon request from the user.
It is not clear if such functions can be identified for a given
application. The identification task is highly non-trivial and
makes the approach impractical. Similarly, the work on lin-
eage tracing for array data [21] is only applicable in a very
limited scenario where the high-level operations are written
in Array Manipulation Language (AML).

Buneman et al. [12] classified lineage into why lineage,
which specifies why the data is derived, and where lineage,
which specifies where the data is copied from. Bhagwat
et al.[10] proposed three schemes to propagate annotations
attached to attributes in relational data.

Dynamic slicing [20] is a debugging technique that cap-
tures the executed statements that are involved in compu-
tation of a wrong value. Recent research has shown that
dynamic slicing is quite effective in locating runtime soft-
ware errors [28] and dynamic slices can be efficiently com-
puted [27]. The data lineage tracing technique in this paper
is based upon the concepts from dynamic slicing such as
data/control dependencies. Certain implementation tech-
niques such as roBDD are also reused. The distinction be-
tween dynamic slicing and data lineage tracing lies in the
information that is traced. In dynamic slicing, a set of exe-
cuted statements are traced in order to assist programmers
in debugging. In contrast, lineage computation traces the
set of input that is relevant to a particular output value.
A lineage set is usually much smaller than a dynamic slice,
which leads to a much more efficient implementation. Fur-

1126

thermore, while control dependence is very crucial in dy-
namic slicing, it is less important in lineage tracing because
data dependence is dominant.

Overall we see that while tracing of fine-grained lineage
with non-relational operations is critical for many applica-
tions, current solutions fall short of these requirements. To
the best of our knowledge, ours is the first work to propose
such a system and the only one that can support the types of
queries discussed in Section 6 which are of direct relevance
to scientists.

8. CONCLUSIONS
Fine-grained lineage is extremely valuable for many sci-

entific and database applications. Several efforts have been
focussed on computing fine-grained lineage when relational
operators are used to transform data. However this work
is not applicable to the important and common case for
many applications that employ non-relational operators for
processing data. The current work for arbitrary operators
is very limited and cannot be applied automatically with-
out specific domain knowledge. In this paper, we presented
the first technique that can trace fine-grained lineage across
arbitrary operators. Our method is motivated by the tech-
nique of dynamic slicing used for debugging. We have shown
how this technique can be modified for tracing fine-grained
lineage. The new technique was shown to be accurate and
highly effective using a real application for scientific data.
The technique has the significant advantage that it does
not require any domain knowledge, access to source code,
or human intervention. The results from our method were
shown to help improve the accuracy and reliability of the
de-isotope function. In addition, we showed that although
the tracing method does introduce a significant slow down,
it is still an extremely valuable tool. This is especially true
for scientific applications for which the availability of fine-
grained lineage is a major obstacle. Thus making this data
available is far more important than the extra time needed
to compute it. Moreover, since this represents the first step
in developing such a system, we expect that future work will
help improve the runtime cost of the tracing. We tested the
method on a wide variety of applications and showed that
tracing is easily achieved in each case. The new technique is
useful for any application that uses complex processing and
requires lineage tracing such as drill through operations in
data warehouses and data cleansing.

9. REFERENCES
[1] Buddy, a binary decision diagram package. Department of

Information Technology, Technical University of Denmark.
[2] http://valgrind.org.
[3] http://www.cs.cmu.edu/ mccallum/bow.
[4] http://www.cs.purdue.edu/homes/mgelfeky/dq/.
[5] http://www.lemurproject.org/.
[6] H. Agrawal and J. R. Horgan. Dynamic program slicing. In

PLDI, 1990.
[7] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large databases.
In SIGMOD, pages 207–216, 1993.

[8] G. Alonso and C. Hagen. Geo-opera: Workflow concepts for
spatial processes. In Symposium on Large Spatial
Databases, pages 238–258, 1997.

[9] A. Beszedes, T. Gergely, Z. M. Szabo, J. C., and
T. Gyimothy. Dynamic slicing method for maintenance of
large c programs. In CSMR, 2001.

[10] D. Bhagwat, L. Chiticariu, W. C. Tan, and
G. Vijayvargiya. An annotation management system for
relational databases. In VLDB, pages 900–911, 2004.

[11] R. Bose and J. Frew. Lineage retrieval for scientific data
processing: a survey. ACM Comput. Surv., 37(1):1–28,
2005.

[12] P. Buneman, S. Khanna, and W. C. Tan. Why and where:
A characterization of data provenance. In ICDT, 2001.

[13] Y. Cui and J. Widom. Lineage tracing in a data
warehousing system. In ICDE, pages 683–684, 2000.

[14] I. Foster, J. Vockler, M. Wilde, and Y. Zhao. The virtual
data grid: A new model and architecture for data-intensive
collaboration. In CIDR, 2003.

[15] I. T. Foster, J. S. Vöckler, M. Wilde, and Y. Zhao.
Chimera: A virtual data system for representing, querying,
and automating data derivation. In SSDBM, 2002.

[16] M. Frigo and S. G. Johnson. The design and
implementation of FFTW3. Proceedings of the IEEE,
93(2):216–231, 2005.

[17] P. Groth, S. Miles, W. Fang, S. C. Wong, K. P. Zauner, and
L. Moreau. Recording and using provenance in a protein
compressibility experiment. In HPDC’05, July 2005.

[18] T. Gyimothy, A. Beszedes, and I. Forgacs. An efficient
relevant slicing method for debugging. In ESEC/FSE-7,
pages 303–321, 1999.

[19] George Karypis. Cluto - a clustering toolkit. Technical
Report 02-017, Computer Science and Engineering,
University of Minnesota, April 2002.

[20] B. Korel and J. Laski. Dynamic program slicing.
Information Processing Letters, 29(3):155–163, 1988.

[21] A. P. Marathe. Tracing lineage of array data. J. Intell. Inf.
Syst., 17(2-3):193–214, 2001.

[22] C. Meinel and T. Theobald. Algorithms and data
structures in vlsi design, 1998. Springer.

[23] S. Miles, P. Groth, M. Branco, and L. Moreau. The
requirements of recording and using provenance in e-science
experiments. Journal of Grid Computing, 2006.

[24] R. D. Stevens, A. J. Robinson, and C. A. Goble. mygrid:
personalised bioinformatics on the information grid.
Bioinformatics, 19(Suppl 1):i302–i304, 2003.

[25] A. Woodruff and M. Stonebraker. Supporting fine-grained
data lineage in a database visualization environment. In
ICDE, pages 91–102, 1997.

[26] M. Zhang, D. Kihara, and S. Prabhakar. Tracing lineage in
multi-version scientific databases. Technical Report CSD
TR 06-013, CS, Purdue University, July 2006.

[27] X. Zhang, R. Gupta, and Y. Zhang. Efficient forward
computation of dynamic slices using reduced ordered
binary decision diagrams. In ICSE, 2004.

[28] X. Zhang, H. He, N. Gupta, and R. Gupta. Experimental
evaluation of using dynamic slices for fault location. In
AADEBUG, 2005.

[29] X. Zhang, W. Hines, J. Adamec, J. Asara, S. Naylor, and
F. E. Regnier. An automated method for the analysis of
stable isotope labeling data for proteomics. J. Am. Soc.
Mass Spectrom, 16:1181–1191, 2005.

[30] W. Zhu, X. Wang, Y. Ma, M. Rao, and J. S. Glimm,
J.and Kovach. Detection of cancer-specific markers amid
massive mass spectral data. Proc Natl Acad Sci U S A,
100:14666–14671, 2003.

1127

