
A Cost-Estimation Component for Statement Sequences

Tobias Kraft
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

Tobias.Kraft@ipvs.uni-stuttgart.de

ABSTRACT
Query generators producing sequences of SQL statements
are embedded in many applications. As the execution time
of such sequences is often far from optimal, their optimiza-
tion is an important issue. Therefore, in [5] we proposed
a rule-based optimization approach, which we called CGO
(Coarse-Grained Optimization). Our first prototype used
a heuristic, priority-based control strategy to choose the
rewrite rules that should be applied to a given statement
sequence. This worked well but there is still potential for im-
provements. Thus, in [4] we have introduced an approach to
provide cost estimates for statement sequences which is the
basis for a cost-based CGO optimizer. It exploits histogram
propagation and the optimizer of the underlying database
system for this purpose. In this demonstration, we want to
showcase the functionality and the effectiveness of our ap-
proach. Thereto, we present a prototype of a cost-estimation
component for statement sequences which implements this
approach. It includes a graphical user interface to explain
the histogram-propagation process and to report the results
of the cost-estimation process. In the setup for this demon-
stration, we use a TPC-H benchmark database with an ap-
propriate set of sequences as sample scenario.

1. INTRODUCTION
Tools that generate SQL statements can be found in many

of today’s database application areas. Especially in the data
warehouse area, tools even generate complex sequences of
SQL statements. These sequences break down a complex
information request into a set of subsequent steps. We an-
alyzed such sequences and found out that their execution
time is often far from optimal. Therefore, in [7] and [5]
we proposed an optimization approach that supports the
optimization of statement sequences outside the database
system. This approach is called CGO (Coarse-Grained Op-
timization). It is based on a set of rewrite rules, i.e., the
rules transform a SQL statement sequence into a semanti-
cally equivalent SQL sequence.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

CGO addresses statement sequences that are composed of
CREATE TABLE, INSERT and DROP TABLE statements
with the following properties. The CREATE TABLE and
DROP TABLE statements implement temporary tables that
only exist during the execution of the sequence in order to
store intermediate results of the sequence. Moreover, one
of the CREATE TABLE statements creates the table that
stores the final result of the sequence which is not dropped
within the sequence. The intermediate results as well as
the final result are produced by the INSERT statements
which represent the computational steps of the sequence.
Thus, each INSERT statement has a query within its body
that may access base tables as well as intermediate results
of previous steps. So, multiple steps may share results of
previous steps.

In the first CGO prototype [5][3], we employed a heuris-
tic control strategy to determine the order in which rewrite
rules are applied to a statement sequence. Thereto, we as-
signed a priority to each rule. Among the rules that can be
applied to a sequence, the one with the highest priority is
being chosen. This is repeated until no more rule applica-
tions are possible. This strategy works well but there is still
potential for improvements. Therefore, in [4] we proposed a
practical approach to compute cost estimates for statement
sequences which is the basis for an enhanced cost-based con-
trol strategy. Cost estimates would allow to compare several
alternative sequences without executing them and to select
the presumably most efficient one from the search space that
is made up by the set of CGO rewrite rules. Our approach
exploits the cost-estimation component of the underlying
database system which should later on execute the state-
ment sequence. Furthermore, it makes use of histogram
propagation to provide statistics for the intermediate-result
tables increasing the accuracy and usability of the cost esti-
mates returned by the optimizer of the underlying database
system. This means, it retrieves histogram data and cost
estimates from the underlying database systems and again
stores the results of histogram propagation in the database
catalog. Therefor, it makes use of Statistics API [2], a
DBMS-independent application programming interface for
management of DBMS statistics.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the demonstration setup and
introduces our cost-estimation approach for statement se-
quences. Section 3 describes the purpose of the demonstra-
tion in more detail and shows some screenshots of the pro-
totype’s GUI (graphical user interface).

1382

� � �

� � � � � � � � � 	 � ��

� � � � � � � �
 � � �� � � �
 � � � � � �� � � � � � � �
 � � � � � � � � � � � �� �� � �� � �� � � � �� �� �� !� "# !� # � � � �� $ � � � � % " % $ � � � � �� !% � � �� $& ' ()

Figure 1: Architectural overview.

2. SYSTEM OVERVIEW
Figure 1 gives an architectural overview of the demonstra-

tion setup. It comprises a GUI, the cost-estimation compo-
nent for statement sequences including Statistics API, and
the underlying database system. Each of these components
is highlighted in one of the following sections.

2.1 Database System
In the demonstration setup, we employ IBM DB2 as un-

derlying database system. However, the underlying database
system is interchangeable. It can be replaced by any other
database system that provides access to its optimizer statis-
tics and cost estimates and that is supported by a corre-
sponding Statistics API implementation.

We use a TPC-H benchmark database [8] in the demon-
stration, applying the original benchmark tools to create
the data. For the creation of table and column statistics
as well as histograms, we execute RUNSTATS on all ta-
bles of the TPC-H benchmark database using the WITH
DISTRIBUTION option.

2.2 Statistics API
Statistics API is a JDBC-based programming interface

for DBMS-independent access and management of DBMS
statistics. It defines a set of methods to retrieve and ma-
nipulate histograms as well as a set of methods to retrieve
database meta data and cost estimates for arbitrary SQL
statements from different DBMSs. Furthermore, it provides
DBMS-independent data structures to hold the meta data
and the statistics data which comprises a flexible histogram
format that abstracts from the proprietary data structures of
different DBMSs. For each supported database management
system, a corresponding implementation has to exist that
extracts the requested data from the target database and
transforms the proprietary data structures into the DBMS-
independent formats. Additionally, for histograms this has
to work vice versa. At the moment there exists an im-
plementation for IBM DB2, for Oracle and for Microsoft
SQL Server. As Statistics API uses ordinary JDBC connec-
tions to communicate with the target database system, these
connections can be reused for other data management pur-

poses if needed. Due to the use of Statistics API, the cost-
estimation component is largely independent from a certain
underlying DBMS.

More information about these implementations and about
Statistics API can be found in [2].

2.3 Cost-Estimation Component
The cost-estimation component for statement sequences

expects a statement sequence as input and returns a cost
estimate as output. The measuring unit of the cost value
depends on the underlying database system. At first, the
cost-estimation component traverses the statement sequence
and executes the CREATE TABLE statements that create
the intermediate-result tables. The existence of these ta-
bles is necessary for the subsequent steps. Afterwards, it
parses the INSERT statements of the sequence and trans-
lates them into algebraic operator trees. This trees are used
for histogram propagation, i.e., the operators of this trees
do not process relations but sets of histograms. The his-
tograms resulting from histogram propagation are stored
proprietaryly in the catalog of the underlying database sys-
tem as statistics for the target table of the corresponding
INSERT statement. For this purpose as well as for the re-
trieval of histograms for the base tables used in the INSERT
statements, we make use of Statistics API. After histogram
propagation, the cost-estimation component retrieves a cost
estimate for each INSERT statement from the optimizer
of the underlying database system by the use of Statistics
API. It aggregates the retrieved cost estimates to obtain
a cost estimate for the whole sequence. Finally, it drops
the intermediate-result tables that have been created for
the purpose of cost estimation. The CREATE TABLE and
DROP TABLE statements are executed via JDBC reusing
the JDBC connection that has been opened by the Statistics
API implementation.

The propagation of histograms and the storage of the
propagation results in the database catalog solves the prob-
lem of missing statistics for intermediate-result tables. This
means, the propagated histograms assist the optimizer of
the underlying database system in producing more accurate
query plans and cost estimates for the INSERT statements
that depend on intermediate-result tables. Otherwise, the
optimizer of the underlying database system would use de-
fault values for the cardinality of these tables and default
selectivities for predicates that include attributes of these
tables. For this purpose, we extended previous work on
approximate query answering [1][6] and added support for
arithmetic terms, grouping and aggregation.

More detailed information on the cost estimation approach
and on the extensions to previous work on histogram prop-
agation can be found in [4].

2.4 GUI
The GUI has been developed for demonstration purposes.

It explains the cost-estimation process and in particular the
histogram-propagation process. This means, it displays the
algebraic operator tree obtained by translating the queries
of the INSERT statements of a given sequence into our al-
gebra. Each algebraic operator provides a set of attributes
and a corresponding histogram for each attribute as out-
put. The GUI is able to display these histograms. More-
over, the user can choose between different representations,
i.e., for readability, the histogram resulting from propaga-

1383

Figure 2: GUI screenshots showing an algebraic operator tree and some windows that display histograms
and operator-specific information.

tion may be transformed into an equi-width or an equi-depth
histogram. Besides, the GUI presents operator-specific in-
formation. Furthermore, for each INSERT statement in the
sequence, the GUI reports the cost estimate and cardinal-
ity estimate retrieved from the optimizer of the underlying
database system as well as the cardinality estimate obtained
by histogram propagation. The GUI also allows to modify
configuration parameters concerning the algorithms used for
histogram propagation. For example, you can turn on and
off the normalization step that reduces the number of buck-
ets after creation of a new histogram or after modification of
an existing histogram; or you can vary the maximum num-
ber of buckets concerning normalization.

Figure 2 shows a collection of some screenshots of the
GUI. It contains an algebraic operator tree which is sur-
rounded by some windows that display histograms or addi-
tional operator-specific information.

3. DEMONSTRATION
The demonstration has two purposes:

• First, we want to provide an insight into the cost-
estimation process, especially we want to explain the
histogram-propagation process.

• Secondly, we want to show the successful application
of our cost-estimation approach.

For the first purpose, we employ the GUI that explains
the histogram-propagation process in detail. Therefor, we
use a set of sequences that results from the application of the
CGO rewrite rules to a statement sequence which has been
generated by the MicroStrategy DSS tool suite. So, these se-
quences represent a search space of semantically equivalent
but syntactically different sequences. Some constants used
for filtering in the sequences can also be varied to produce

1384

INSERT INTO temptable1
SELECT

o.o_custkey,
sum(l.l_extendedprice*(1-l.l_discount)*

(1+l.l_tax))
FROM

lineitem l,
orders o

WHERE
l.l_orderkey = o.o_orderkey AND
year(o.o_orderdate) = 1992

GROUP BY
o.o_custkey

HAVING
sum(l.l_extendedprice*(1-l.l_discount)*

(1+l.l_tax)) >= 100000

Figure 3: An INSERT statement of the generated
statement sequence.

additional variants of the sequences with a different selectiv-
ity. To give an example of what is being demonstrated, we
again refer to the collection of screenshots in Figure 2 that
shows the algebraic operator tree obtained for the INSERT
statement in Figure 3. This INSERT statement is part of the
generated sequence. It computes the turnover for each cus-
tomer in the year 1992 and returns all customers that have a
turnover equal to or greater than 100000. For this purpose,
it accesses the base table LINEITEM and the base table
ORDERS which are both part of the TPC-H schema. The
result of the computation is stored in the intermediate-result
table temptable1 which is also created and dropped within
the sequence. The windows that surround the algebraic op-
erator tree depict how the attribute O ORDERDATE pro-
vided by the base table ORDERS is adapted by histogram
propagation. The window in the bottom right corner shows
the corresponding histogram extracted from the catalog ta-
bles of the underlying database system by the use of Statis-
tics API. The cartesian product changes the total cardinal-
ity of the histogram but it does not change the relative data
distribution. The subsequent projection applies the arith-
metic function YEAR to the attribute O ORDERDATE.
The generated attribute $A1$ stores the result which is rep-
resented by the histogram in the upper right corner of Figure
2. The subsequent selection operator applies the join condi-
tion to the result of the projection. This again just modifies
the total cardinality of the histogram of $A1$. The second
selection operator applies the filter condition $A1$ = 1992.
Thus, the resulting histogram, shown in the upper left cor-
ner of Figure 2, contains only a single bucket that represents
the year 1992.

For the second purpose of the demonstration, we execute
the sequences and compare the execution times with the cor-
responding cost estimates. This should depict the success-
ful application of our cost-estimation component. Figure 4
shows the measurement results when using different filter
values in the generated sequence, i.e., when varying selec-
tivities within the sequence. As the trend line shows, the
cost estimates provided by our prototype are a good indica-
tor for the corresponding execution times. Further experi-
ments have also shown that the optimizer of the underlying
database system profits from histograms on intermediate-
result tables provided by histogram propagation.

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� �� 	
 � �
 � � � � � � � � � � 	 �
 �
�������������
����

Figure 4: Measurement results for different variants
of the generated sequence (in a DB2 environment).

4. ACKNOWLEDGMENTS
We would like to thank Benjamin Höferlin for his help in

implementing the graphical user interface.

5. REFERENCES
[1] Y. Ioannidis and V. Poosala. Histogram-Based

Approximation of Set-Valued Query-Answers. In Proc.
VLDB, 1999.

[2] T. Kraft and B. Mitschang. Statistics API:
DBMS-independent Access and Management of DBMS
Statistics in Heterogeneous Environments. In Proc.
ICEIS, 2007.

[3] T. Kraft and H. Schwarz. CHICAGO: A Test and
Evaluation Environment for Coarse-Grained
Optimization. In Proc. VLDB, 2004.

[4] T. Kraft, H. Schwarz, and B. Mitschang. A Statistics
Propagation Approach to Enable Cost-Based
Optimization of Statement Sequences. In Proc. ADBIS,
2007.

[5] T. Kraft, H. Schwarz, R. Rantzau, and B. Mitschang.
Coarse-Grained Optimization: Techniques for
Rewriting SQL Statement Sequences. In Proc. VLDB,
2003.

[6] V. Poosala, V. Ganti, and Y. Ioannidis. Approximate
Query Answering using Histograms. IEEE Data
Engineering Bulletin, 22(4), 1999.

[7] H. Schwarz, R. Wagner, and B. Mitschang. Improving
the Processing of Decision Support Queries: The Case
for a DSS Optimizer. In Proc. IDEAS, 2001.

[8] TPC-H Standard Specification, Revision 2.0.0.
www.tpc.org/tpch, 2002.

1385

