
Zoom*UserViews: Querying Relevant Provenance in
Workflow Systems ∗

[Demonstration Proposal]

Olivier Biton
University of Pennsylvania

Philadelphia, USA

biton@seas.upenn.edu

Sarah Cohen-Boulakia
University of Pennsylvania

Philadelphia, USA

sarahcb@seas.upenn.edu

Susan B. Davidson
University of Pennsylvania

Philadelphia, USA

susan@seas.upenn.edu

Figure 1: Phylogenomic workflow specification

ABSTRACT
In this demonstration, we present the ZOOM*UserView sys-
tem, and focus on the module which generates a “user view”
based on what tasks the user perceives to be relevant in the
workflow specification. We will show how user views can be
used to reduce the amount of information returned by prove-
nance queries, while focusing on information the user finds
relevant. User views are based on the notion of composite
tasks, and induce a higher-level specification of a workflow.

1. MOTIVATION
Workflow management systems (e.g. [2, 5]) have become

increasingly popular as a way of specifying and implement-
ing large-scale in-silico experiments. In such systems, a
workflow can be graphically designed by chaining together
bioinformatics tasks (e.g. downloading sequences, building
a phylogenetic tree) which can be grouped together to form
composite tasks. Composite tasks are an important mecha-
nism for abstraction, privacy, and reuse between workflows.

∗This research is supported by the National Science Founda-
tion under Grants No. 0513778, 0415810, 0612177, 0629846,
0630033, and 0629702. (Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.)

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Figure 2: Induced phylogenomic workflows

Figure 3: Phylogenomic workflow run

As an example, the workflow specification in Figure 1 rep-
resents a common analysis in molecular biology: Phyloge-
nomic inference of protein biological function. Each node
in this specification represents a task, and will be called a
Module (M). Some of the modules are considered by the user
as relevant, which we indicate using shading. For example,
“Annotations checking” (M2), “Run alignment” (M3) and
“Build Phylo tree” (M7) may be considered relevant by the
users Joe and Mary, while modules M1, M4, M6, and M8 are
not since they merely re-format data. Joe may not be inter-
ested in the alignment modification step (M5), while Mary
may be (lightly shaded in Figure 1). By grouping together
atomic modules, composite modules such as M9, M10 and
M11 can be formed, allowing the user to visualize the work-
flow in a simpler way. Figure 2 represents Joe’s and Mary’s
visualizations of the workflow induced by their respective
user views, i.e., set of composite modules. Each user can
then define the level of granularity at which he wishes to
view the workflow.

A typical lab executes a given workflow several times a
month, resulting in vast amounts of intermediate and final
data products. Since it is easy to lose track of how a data
object came to be, i.e. what sequence of steps and input data
were used to produce that data product, scientists must be

1366



able to ask provenance queries such as: What are all the data
objects / sequence of steps which have been used to produce
this tree?

Figure 3 shows an execution of the workflow in Figure 1
in which one hundred sequences are taken as initial input
(d1 to d100), minor modifications are done on the annota-
tions (d202 to d206), and thirty additional annotations are
used (d415 to d445). In this run both M2 and M3 have been
executed, and two executions of modules M3 and M4 were
performed. In another run, M2 may be skipped and six exe-
cutions of M3-M5 performed. The execution of consecutive
steps within the same composite module causes a virtual
execution of the composite module, shown in Figure 3 by
dotted boxes.

It is clear that the answer to a provenance query should
depend on the level at which the user can see the workflow.
For example, in Figure 3, Mary will see two executions of
M11, while Joe will see only one execution of M10. The
input used to produce d413 would include the data passed
between executions of M11 and M5 (d410, d411) for Mary,
while this data would not be visible to Joe. Thus the answer
to a provenance query depends on the user view. While sev-
eral workflow systems are able to answer provenance queries
[4], none take user views into account.

In this demonstration, we present the ZOOM*UserViews
system, which allows users to define user views and use them
in provenance queries to reduce the amount of data returned
to the user while ensuring that relevant information is re-
turned. Technical contributions include:

• A model for tracking and querying provenance through
user views which details the information that must be
provided by a workflow system.

• Properties of a “good” user view, and algorithm which
takes as input a workflow specification and set of rel-
evant modules and constructs a user view.

• A provenance reasoning system which assists in the
construction of user views, stores provenance infor-
mation in an Oracle warehouse, and provides a user
interface for querying and visualizing provenance in-
formation with respect to a user view.

It should be noted that although our approach is illus-
trated using scientific workflows, it is generic in the sense
that it can be used by any workflow system which provides
basic logging information.

2. ZOOM ARCHITECTURE
The goal of ZOOM is to provide users with an interface

to query provenance information provided by a workflow
system as well as to help them construct an appropriate
user view.

The architecture of ZOOM is presented in Figure 4. The
warehouse of provenance information (top of figure) is pop-
ulated by the workflow system which provides information
about (i) workflow specifications and user view definitions
(converted to tables contains and userView); and (ii) log
information obtained following (or during) a workflow exe-
cution (tables instanceOf, input, output). The meaning of
these tables will be discussed in the next subsection (prove-
nance model). Note that the Twiki web page of the second
“provenance challenge” [4] provides samples of log informa-
tion (in XML format) generated by 14 workflow systems.

Figure 4: Architecture

Constructing wrappers to convert the log information of
those systems into our model is thus straightforward.

Users interact with the system by posing a provenance
query or building a user view. Provenance information is
displayed graphically to aid in understanding the results.

The provenance model for scientific workflows, UserView-
Builder and query processing engine are described in more
detail in the following subsections.

2.1 Provenance Model
The provenance of a data object is the sequence of modules

and input data objects on which it depends [3, 4]. If the
data is a parameter or was input to the workflow execution
by a user, its provenance is whatever metadata information
is recorded, e.g. who input the data and the time at which
the input occurred. Following other work (e.g. [1, 2]), we
assume data is never overwritten or updated in place. Each
data object therefore has a unique identifier and is produced
by at most one step.

We assume that the workflow run generates a log of events,
which allows us to reason about what module a step is an
instance of, what data objects and parameters were input
to that step, and what data objects were output from that
step. For example, the log could include the start time of
each step, the module of which it was an instance, and read
(write) events that indicate which step read (wrote) which
data objects at what time.

2.1.1 Warehouse Model
ZOOM*UserViews’s model is composed of base tables which

capture information about the workflow execution, the work-
flow specification, the relationship between the specification
and execution, the inclusion relationship between composite
modules and modules, and information about user views.

The abstracted log information is captured using the fol-
lowing relations, where did is the id of a data object, sid is
the id of a step, m is the name of a module, ts is an integer
that captures the partial order of input and output events
to a step, and (label, value) is the metadata information
recorded for user or parameter data:1 instanceOf(sid, m)

input(sid, did, ts)
output(sid, did, ts)
metadata(did, label, value)

A user view is a partition of the modules of a workflow
specification (ignoring input (I) and output (O)). This in-
formation is captured in the base relations userV iew(u, cm)

1If the system does not record the time at which read and
write events occur, the timestamp can be the start time of
the step.

1367



and contains(cm, m), where u represents the name of the
user view, cm is the name of a composite module, and m is
the name of a module. Thus userV iew defines what compos-
ite modules (partitions) are in a user view, while contains

specifies what modules are in a composite module. For ex-
ample, userView(Joe,M9) and userView(Mary,M9) are tu-
ples stating that both Joe and Mary see the module M9;
contains(M9, M6) states that M9 contains the module M6.

As discussed earlier, user views affect what provenance
information the user can see and query, and are defined at
the specification level (userView and contains). However,
since execution occurs at the lowest-level modules, we must
calculate composite steps (executions of composite modules)
as the longest sequence of steps in the same composite mod-
ule. This information is captured in the calculated relations
cStep(csid, sid) and cInstanceOf(csid, cm), where csid is
the (invented) id of a composite step which is an execution
of composite module cm and contains the step sid. We also
calculate the input and output of composite steps, cInput

and cOutput, as follows: Input to a composite step is input
to any contained step that is not produced as output by
some contained step; output to a composite step is output
of any contained step that is not consumed as input by any
contained step.

Using cInput, cOutput, cInstanceOf and userV iew, we
can now calculate the provenance of a data item did as a
function of a user view u.

2.1.2 Implementing provenance relations
The database used for our prototype is Oracle 10.2, ex-

tended with stored procedures. The user interface and wrap-
pers are developed using Java with JDBC.

Information about the workflow and user view definitions
together with workflow runs are stored in the database.

From the tables described earlier, we can express queries
to generate the immediate provenance (immProv) for an
input data object did as the step sid which produced it, and
data objects that were input before did was output. The
deep provenance (prov) for a data object is all steps and
input data that were used to produce it.

Query immProv is easily implemented in SQL using the
base tables instanceOf , input, output and metadata. Rela-
tion cStep is computed by wrappers while loading the exe-
cution (log), and is used to calculate immUprov (immediate
provenance through user view).

Implementing prov and uProv (deep provenance through
user view) implies recursive queries which are, by nature,
extremely expensive. Oracle 10.g provides an extension of
SQL for recursive queries on hierarchical data (CONNECT
BY operator). Although CONNECT BY queries are more
expensive than other SQL queries, the operator takes ad-
vantage of the query optimizer and is in the core system.
Computation is also done on the server, and less data needs
to be sent to the client. We compared the performance of
CONNECT BY with a local computation using Java and
JDBC, and found the processing time to be much better
using CONNECT BY.

However, CONNECT BY was developed for trees, and
does not work for arbitrary DAGs. We therefore extended
it to check for nodes already seen in a DAG. As an example,
the following query Q computes prov for the data id ’d447’.

SELECT
output.execid, output.sid prodstep,
outinst.m prodmodule,

output.did dataid, output.ts ts,
input.sid consstep,
inputinst.m consmodule,
markdata(input.sid, output.did)

FROM
output INNER JOIN input

ON (output.did = input.did
AND output.execId = input.execId)

INNER JOIN instanceOf inputInst
ON (input.sid = inputInst.sid)

INNER JOIN instanceOf outInst
ON (output.sid = outInst.sid)

WHERE execId=1
START WITH output.did=’d447’
CONNECT BY PRIOR output.sid=input.sid

AND isMarked(input.sid, output.did)=0
AND PRIOR output.ts>output.ts;

This query first creates an inline view (FROM clause) of the
data exchange, with, for each row: (i) a data id, (ii) prodStep
(consStep) the step that produced (consumed) this data id.
It then moves recursively through this (flattened) data ex-
change, finding a row’s predecessor using the condition that
this row produced some data which was consumed by the
current prodStep, and this data was read by prodStep before
it output the current data id (test on timestamps). The
call to ISMARKED in the CONNECT BY condition is a
stored procedure used to stop the recursion when a node
has already been seen in the DAG.

Relation uProv could have been implemented by first cal-
culating cInput and cOutput using our extended operator,
and using it again to yield uProv. However, this involves
three transitive closures together with union, which is very
expensive. We therefore implement uProv as a stored pro-
cedure as follows: Compute prov (using the extended oper-
ator), and join with cStep to remove all data exchange that
occur inside a composite step (produced/consumed by steps
in a same composite step). Then replace remaining step
ids with the composite step id in which they are included.
This is equivalent to joining prov with cInput and cOutput

(which hides data exchanges inside the user view composite
step). However, as it only has one call to a recursive pro-
cedure it is much more efficient, making it possible to cope
with databases containing large data sets.

2.2 UserViewBuilder
UserViewBuilder assists users when user views have not

been defined by the designer of the workflow or when the
defined user views are not what users want. At the core is
an algorithm which takes as input a workflow specification
and set of relevant modules, and produces a user view.

But what is a “good” user view? Intuitively, the user
should see in the induced workflow a composite module for
each relevant module. Futhermore, paths between relevant
modules in the workflow specification should be preserved in
the induced workflow specification formed by the user view:
None should be lost and none should be added. The inputs
to and outputs from relevant modules must also be pre-
served. Finally, the induced workflow specification should
hide as much detail about uninteresting modules as possi-
ble.

UserViewBuilder takes as input the workflow definition,
loads it in a graphical environment and allows users to spec-
ify which modules are relevant by flagging them through the
interface. The algorithm for building the user view is run
interactively, so that the user can visualize each new user

1368



Figure 5: Constructing and Visualizing user views

view as they flag or unflag nodes.

3. DEMONSTRATION
ZOOM*UserViews has been implemented in Java. Our

demonstration will highlight the following features:
Loading Data: Users may load a workflow specification

and a user view into the system. We will also show how to
generate synthetic runs, which can be used to validate the
user view or to demonstrate the numerous capabilities of our
approach.

Generating user views: Given a graphical display of the
workflow definition, the user can flag a module as relevant.
The user view is then computed, and the workflow specifi-
cation induced by the user view displayed. The left hand
side of Figure 5 shows an example of a complex workflow
where four modules (19, 11, 25, and 13) have been flagged
as relevant. The user view produced by UserViewBuilder is
shown on the right hand side.

Querying and Visualizing Provenance information: Runs
are displayed graphically. By selecting a run and clicking
on an edge between two steps, the user can see the data set
passed between them. To query provenance, the user selects
the data id of interest. Requested provenance information is
then calculated with respect to the user view, and displayed
as a graph. When run or provenance graphs are long, the
user can navigate over the portion of graph he is interested
in. As the user’s needs evolve, the user may modify (add or
remove) the set of modules he considers to be relevant. The
provenance graph is then automatically modified for the new
user view. For example, the answer to the deep provenance
of the final output (data id d447) using Joe’s view (Section
1) is shown in Figure 6.

What are the database challenges in ZOOM? The
database challenges in ZOOM include:

1. Modeling the information typically available in the logs
of scientific workflow systems (see [4]), and showing
how to use it in reasoning about provenance.

2. Developing abstraction techniques for reducing the amount
of provenance information returned in queries, while
ensuring that “relevant” information is returned.

Figure 6: Graph of provenance information (Q)

3. Automatically constructing user views based on input
from the user.

4. Efficiently implementing provenance queries.

Why would this demo be interesting for the database
community? Within the database community, data inte-
gration has been a long-standing challenge and provenance
has been a topic of increasing interest. Recent VLDB keynote
talks, many research papers, as well as specialized workshops
have focused on those two topic areas. However, within the
scientific database community there is increasing recogni-
tion that (i) data integration is frequently captured through
workflows rather than by just queries and (ii) provenance in-
formation is frequently overwhelming for the end-user (sci-
entist). Abstraction techniques are thus of increasing in-
terest. This demonstration is at the intersection of these
two topic areas, and provides an abstraction technique that
is theoretically and practically interesting to the database
community.

4. REFERENCES
[1] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom.

ULDBs: Databases with Uncertainty and Lineage. In
Proc. Conference on Very Large Data Bases (VLDB),
pages 953–964, 2006.

[2] S. Bowers and B. Ludäscher. Actor-oriented design of
scientific workflows. In Proc of ER’05, International
Conference on Conceptual Modeling, pages 369–384,
2005.

[3] S. Cohen, S. Cohen-Boulakia, and S. Davidson.
Towards a model of provenance and user views in
scientific workflows. In Proc. of Data Integration in the
Life Sciences (DILS), volume 4075 of Lecture Notes in
Bioinformatics, pages 264–279. Springer, 2006.

[4] L. Moreau and J. Freire. The first and second
provenance challenges., 2006.
http://twiki.ipaw.info/bin/view/Challenge/.

[5] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
R. Greenwood, K. Carver, M. G. Pocock, A. Wipat,
and P. Li. Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics,
20(1):3045–3054, 2003.

1369


